

1

2

Genomic insights into the

3

Archaea inhabiting an Australian

4

radioactive legacy site

5

6

Xabier Vázquez-Campos^{1*}, Andrew S. Kinsela^{2,3}, Mark W. Bligh^{2,3},

7

Timothy E. Payne³, Marc R. Wilkins¹ & T. David Waite^{2*}

8

9

10 ¹ NSW Systems Biology Initiative, School of Biotechnology and Biomolecular Sciences, The
11 University of New South Wales, Sydney, New South Wales 2052, Australia

12 ² UNSW Water Research Centre and School of Civil and Environmental Engineering, The University
13 of New South Wales, Sydney, New South Wales 2052, Australia

14 ³ Institute for Environmental Research, Australian Nuclear Science and Technology Organisation,
15 Locked Bag 2001, Kirrawee DC, New South Wales 2232, Australia

16 * Corresponding authors:

17 **Running title:** Archaea from Little Forest

18 Abstract

19 During the 1960s, small quantities of radioactive materials were co-disposed with chemical waste at
20 the Little Forest Legacy Site (LFLS, Sydney, Australia). The microbial function and population
21 dynamics during a rainfall event using shotgun metagenomics has been previously investigated. This
22 revealed a broad abundance of candidate and potentially undescribed taxa in this iron-rich,
23 radionuclide-contaminated environment.

24 Here, applying genome-based metagenomic methods, we recovered 37 refined archaeal bins ($\geq 50\%$
25 completeness, $\leq 10\%$ redundancy) from 10 different major lineages. They were, for the most part,
26 included in 4 proposed lineages within the DPANN supergroup (LFWA-I to IV) and
27 *Methanoperedaceae*.

28 The new *Methanoperedens* spp. bins, together with previously published data, suggests a potentially
29 widespread ability to use nitrate (or nitrite) and metal ions as electron acceptors during the anaerobic
30 oxidation of methane by *Methanoperedens* spp.

31 While most of the new DPANN lineages show reduced genomes with limited central metabolism
32 typical of other DPANN, the candidate species from the proposed LFWA-III lineage show some
33 unusual features not often present in DPANN genomes, i.e. a more comprehensive central metabolism
34 and anabolic capabilities. While there is still some uncertainty about the capabilities of LFW-121_3
35 and closely related archaea for the biosynthesis of nucleotides *de novo* and amino acids, it is to date
36 the most promising candidate to be a *bona fide* free-living DPANN archaeon.

37 **Keywords:** Archaea, DPANN, metagenomics, genomics, phylogenomics, ANME-2d

38 Introduction

39 The Little Forest Burial Ground, now termed the Little Forest Legacy Site (LFLS), was a low-level
40 radioactive waste (LLRW) disposal site active between 1960 and 1968. During this period, small
41 quantities of both short and long-lived radionuclides (including plutonium and americium) were
42 disposed of in three-metre deep, unlined trenches, as was common practice at the time [1]. Although
43 the waste material was overtopped with locally sourced geological fill, the legacy trenches remain to
44 this day orders of magnitude more porous than the surrounding clay and shale strata. Consequently,
45 during extended rainfall events, atmospheric and surface waters fill up the legacy trenches and
46 periodically (depending on preceding conditions) result in the trench water discharging into the
47 surface and near-surface soils in a ‘bath-tub’-like mechanism [2]. This mechanism has been proposed
48 as a major process for exporting plutonium and americium from the legacy trenches [2].

49 Frequent filling and discharge events within the LFLS trenches and changes to the redox conditions
50 affect the chemistry as well as the resident microbial community [3]. When oxygen-laden rainwater
51 enters the trenches, the predominantly reducing redox conditions of the trench water switch to being
52 partially oxic, altering a range of biogeochemical processes which impact upon contaminant mobility
53 [3]. Repeated redox oscillations in mesocosm-like experiments across a range of depositional
54 environments have been shown to alter iron and sulfur mineral phase solubility and crystallinity [4, 5],
55 processes closely coupled to organic carbon mineralisation [6] that lead to variable rates of entrained
56 contaminant mobilisation and retardation [7, 8].

57 The domain Archaea constitutes by far the most understudied domain of life. Archaea have been
58 traditionally regarded as biological oddities and marginal players in the global geochemical elemental
59 cycles, with most living in extreme environments [9]. However, the continuous development of
60 cultivation-independent techniques in recent decades has completely changed this conception. For
61 example, *Thaumarchaeota* Archaea are known now to be key elements in the global nitrogen cycle
62 [10] and can even induce systemic resistance to pathogens in plants [11]; *Euryarchaeota* capable of
63 anaerobic oxidation of methane (AOM) may consume up to 80-90% of the methane produced in

64 environments such as rice fields and ocean floors before it is released into the atmosphere [12]. Our
65 previous research showed that the archaeal community in the LFLS trenches was mainly composed of
66 methanogens and anaerobic methane oxidisers (ANME-2d) from the *Methanomicrobia* class and
67 DPANN archaea [3]. While they constituted a minor component of the community, they still may
68 have an important role in facilitating redox cycling and therefore impacting upon contaminant
69 mobilisation.

70 Here we describe the analysis of 37 new archaeal genomes with different degrees of completeness,
71 derived from samples collected in a legacy radioactive waste trench at the LFLS during a redox
72 cycling event. We present evidence of four new DPANN lineages and six non-conspecific
73 *Methanoperedens* sp. genomes, while exploring their potential role in the biogeochemical cycles and
74 uniqueness.

75 Material and Methods

76 Data source and experimental details

77 Raw sequencing reads from ENA project PRJEB14718 [3] were reanalysed, this time using
78 genome-based metagenomic methodologies in order to better understand the contributions of the
79 Archaea in the LFLS groundwater to the biogeochemistry of the site. Briefly, samples were collected
80 in triplicate over a period of 47 days at 4 time-points (0, 4, 21 and 47 days) after an intense rainfall
81 event that completely filled the trench. Thorough chemical and radiochemical analyses were
82 conducted on the samples in order to understand the biogeochemistry of the site [3]. Over this time
83 period, the redox conditions became increasingly reducing/anoxic and it was reflected in both the
84 chemical analyses and the community profile, with a clear increase in obligate anaerobes on days 21
85 and 47 [3].

86

Recovery and assessment of community genomes

87 QC and pre-processing of raw sequencing reads were performed with Trim Galore!

88 (http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/). Co-assembly of the trimmed reads

89 from all samples was performed with MEGAHIT v1.0.2 [13, 14].

90 Contigs >2.5kbp were binned with CONCOCT [15] within Anvi'o v2.3 [16]. Bins of archaeal origin

91 were manually refined. Completeness and redundancy were estimated with Anvi'o single copy gene

92 (SCG) collection, based on Rinke *et al.* [17] as well as with CheckM v1.0.13 [18]. Further details are

93 available in the Supplementary Information (SI).

94

Phylogenomics and phylogenetics

95 Prodigal v2.6.3 (-p meta) was used to predict proteins from the archaeal bins and 242 archaeal

96 reference genomes (Table S1). Predicted proteins were assigned to archaeal Clusters of Orthologous

97 Groups (arCOGs) using the arNOG database of eggNOG v4.5.1 [19] using eggNOG-mapper v0.99.2

98 [20]. An original set of 44 arCOGs (rp44, Table S2) combining universal and archaeal-specific

99 ribosomal proteins was created for the phylogenomic analysis based, to some extent, on Yutin *et al.*

100 [21]. Further details are provided in SI.

101 Ribosomal proteins were individually aligned with MAFFT-L-INS-i v7.305b [22] and concatenated.

102 Concatenated alignment was trimmed with BMGE v1.2 [23] based on [24]. The concatenated archaeal

103 protein tree was constructed using the posterior mean site frequency (PMSF) model [25] in IQ-TREE

104 v1.5.5 [26], using a base tree built under an LG model and a final tree under LG+C60+F+I+G with

105 1000 ultrafast bootstrap replicates [27].

106 Phylogeny of NarG-like proteins was created using as reference all proteins (416) from related

107 orthologous groups from the EggNOG database, i.e.: arCOG01497, ENOG4102T1R,

108 ENOG4102TDC, ENOG4105CRU and ENOG4108JIG. Protein sequences were clustered with CD-

109 HIT v4.6 [28] and aligned with MAFFT-L-INS-i v7.305b [22]. Alignment was trimmed with BMGE

110 v1.2 [23] and tree build with IQ-TREE v1.5.5 under the recommended model (LG+R10) and 10,000
111 ultrafast bootstrap replicates [26].

112 **Functional annotation**

113 In addition to arCOGs, predicted proteomes were profiled with InterProScan v5.25-64.0 [29]. Key
114 biogeochemical enzymes were identified based on signature hmm profiles in the InterProScan output
115 or by custom hmm profiles not integrated in available databases [30, 31]. Custom hmm profiles were
116 searched with HMMER v3.1b2 (-E 1e-20) [32]. Proteins with single HMMER matches below
117 previously established thresholds [30, 31] were searched against Swissprot and checked against the
118 InterProScan results to reduce the incidence of false negatives.

119 High-heme cytochromes (≥ 10 binding sites per protein) were predicted using a modified
120 motif_search.py script (<https://github.com/alexherns/biotite-scripts>) that uses CX(1,4)CH as well as
121 the canonical CXXCH heme-binding motif.

122 Carbohydrate-active enzymes were searched locally with hmmscan (HMMER v3.1b2) [32] using the
123 CAZy-based [33] hmm library v5 from dbCAN [34].

124 Peptidases/proteases and transporters were annotated by similarity search of the predicted proteins
125 (blastp) against the MEROPS database v11.0 [35] and TCDB (downloaded on 12 July 2018) [36],
126 respectively.

127 The subcellular location of the proteins was predicted with PSORTb v3.0.6 [37].

128 Prediction of tRNA and rRNA genes was performed with tRNAscan-SE 2.0 [38] and Barrnap v0.9
129 (<https://github.com/tseemann/barrnap>) respectively.

130 **Genome annotation**

131 Metagenome assembled genomes were annotated with Prokka v1.12 [39]. Annotations were imported
132 into PathwayTools v22.0 [40] for modelling. Selected proteomes were also submitted to
133 GhostKOALA for KEGG annotation [41, 42].

134 **Pangenomic analyses**

135 Pangenomic analysis of the found ‘*Ca. Methanoperedens* spp.’ genomes, as well as the nearly
136 complete genomes of ‘*Ca. M. nitroreducens*’ ANME-2D (JMIY00000000.1) [29], ‘*Ca. M.*
137 *ferrireducens*’ (PQAS00000000.1) [43], ‘*Ca. M. nitroreducens*’ BLZ1 (also known as MPEBLZ)
138 (LKCM00000000.1) [44], and ‘*Ca. M. nitroreducens*’ Vercelli (GCA_900196725.1) [45], was
139 performed with Anvi’o v5.4.0 [16] following the standard pangenomics workflow
140 (<http://merenlab.org/2016/11/08/pangenomics-v2>). Protein-coding genes were clustered with an MCL
141 inflation value of 6 [46]. Note that neither ‘*Ca. M. nitroreducens*’ BLZ1 or ‘*Ca. M. nitroreducens*’
142 Vercelli are actual ‘*Ca. M. nitroreducens*’ based on ANI/AAI values and therefore we will refer to
143 them as ‘*Ca. Methanoperedens* sp.’ BLZ1 and ‘*Ca. Methanoperedens* sp.’ Vercelli respectively to
144 avoid confusion. New species names for these two MAGs are proposed in the SI.

145 For the pangenomic analysis of the LFWA-III lineage, only genomes $\geq 70\%$ C from the rp44 dataset
146 were considered, i.e. 6 newly obtained and 2 from references. Protein-coding genes were clustered
147 with an MCL inflation values of 1.0, 1.5 and 2.0 [46].

148 Average Nucleotide Identity (ANI) and Average Amino acid Identity (AAI) were calculated with
149 pyani [47] and CompareM v0.0.23 (<https://github.com/dparks1134/CompareM>) respectively, for both
150 the *Methanoperedens* and LFWA-III genome datasets.

151 **Proposed taxa**

152 Proposed species and genera were registered in the Digital Protologue (<http://imedea.uib-csic.es/dprotologue>). Details on etymology, nomenclature and Digital Protologue registration numbers
153 can be found in Table S3. Additional nomenclatural proposal changes above genus level are described
154 in the Supplementary Information (see Nomenclatural novelties section). A summary of the proposed
155 candidate species can be found in Table 1.

157 **Data availability**

158 Annotated assemblies are available at ENA under project PRJEB21808 and sample identifiers
159 ERS2655284-ERS2655320. See details in Table S4. The output of the different analyses, including
160 the reference genomes, are available at Zenodo (doi:10.5281/zenodo.3365725).

161 The methods section is described in further detail in the SI.

162 **Results and Discussion**

163 **Binning results and archaeal community**

164 *De novo* assembly and binning from LFLS trench subsurface water samples [3] generated 290 initial
165 bins. Bins with clear archaeal identity and bins with ambiguous identity (similar completeness scores
166 for bacterial and archaeal SCG profiles) were further refined with Anvi'o, producing a total of 37
167 draft archaeal genomes with completeness $\geq 50\%$ (20 of which $\geq 70\%$ C) and redundancy $\leq 10\%$ (Table
168 2).

169 Phylogeny based on the 44 concatenated ribosomal proteins (Figure 1) showed that most metagenome
170 assembled genomes (MAGs) belonged to diverse DPANN lineages and *Methanomicrobia*
171 (*Methanoperedenaceae* and *Methanotrichaceae*) (Table 2). Phylogenomic analysis based on the rp44
172 (Figure 1) showed a tree topology largely consistent with current studies, e.g. *Asgardarchaeota* as

173 sister lineage to TACK and *Altiarchaeota* as sister to DPANN [9, 48]. Most high level branches
174 showed UF bootstrap support values >90%, with the exception of the very basal Euryarchaeota, which
175 is known to be difficult to resolve [49]. The position of the MAGs in the archaeal phylogeny, together
176 with the 16S rRNA gene identities with described or proposed taxa, suggest four new lineages (Figure
177 1), denoted LFWA-I to -IV. LFWA-I lineage is a sister lineage to *Parvarchaeota* (ARMAN-4 and 5)
178 [50, 51] and contains a unique MAG, LFW-252_1 ('*Ca. Tiddalikarchaeum anstoanum*') (Figure S1).
179 LFWA-II is sister to the *Micrarchaeota*+LFWA-III clade and contains two MAGs, including the type
180 LFW-144_1 ('*Ca. Wianamattarchaeum fermentum*') (Figure S2). LFWA-III is the closest branch to
181 *Micrarchaeota* s. stricto, contains 11 MAGs from this work and is typified by LFW-121_3 ('*Ca.*
182 *Gugararchaeum adminiculabundum*') (Figure 2). Lastly, LFWA-IV is the closest relative to
183 *Aenigmarchaeota*, containing an unnamed MAG, LFW-46 (missing all rRNA genes aside from a
184 partial 5S) (Figure S3). In a way to honour the traditional owners of the land where LFLS is based,
185 many of the nomenclatural novelties proposed are based on terms from Aboriginal languages related
186 to the site (Guringai and Dharawal), see Table S3 and SI.

187 During the drafting of this manuscript, a genome-based taxonomy was developed for Bacteria and
188 Archaea (GTDB) [52]. Based on the GTDB (r89), LFWA-I would correspond to the order/family
189 “o__CG07-land; f__CG07-land” (class *Nanoarchaeia*); LFWA-II, to “o__UBA8480” (class
190 *Micrarchaeia*); LFWA-III, primarily to “o__UBA10214” (class *Micrarchaeia*); and, LFWA-IV could
191 remain a new class within the yet-to-be-named phylum “p__EX4484-52”.

192 The lineage LFWA-III was the most diverse of all Archaea encountered at LFLS with 11 bins
193 belonging to 10 different genera based on AAI values (Tables S6 and S7). While this lineage contains
194 the expected conserved SCG in their putative core genome (178-184 gene clusters), it included barely
195 any other gene clusters (Figure 3 and Table S8). This was also evident regarding the singletons: >89%
196 of the gene clusters were singletons covering >66% of all protein-coding genes, regardless of the
197 inflation values used for clustering. The large proportion of singletons relates to the presumably fast
198 evolutionary rates in DPANN Archaea [9] though the core genes appear to be far less affected as
199 evidenced by their absence in the cloud or singleton pangenome gene sets.

200 The occurrence of methanogenic bins (3) from the *Methanotrichaceae* family (previously indicated to
201 be the illegitimate *Methanosaetaceae* [3]) were principally, and unsurprisingly, detected during the
202 highly anoxic phase (117-147 mV Standard Hydrogen Electrode). More interestingly, though, was the
203 recovery of MAGs belonging to the genus ‘*Ca. Methanoperedens*’ (simply *Methanoperedens* from
204 here on) a group of Archaea capable of AOM, previously known as ANME-2d [53] or AAA (AOM-
205 associated Archaea) [54]. A total of six MAGs were assembled in this study, four $\geq 90\%$ C. Each of
206 these MAGs belong to different species based on ANI and AAI scores (Figure 4, Table S9 and Table
207 S10), constituting the most diverse set of *Methanoperedens* spp. genomes reconstructed to date in a
208 single study, and all different to previously sequenced MAGs.

209 Based on coverage information, DPANN bins, especially those from the *Pacearchaeota* and LFWA-
210 III groups, dominated the archaeal community with a maximum relative abundance of 82.5% of the
211 entire archaeal community by day 4 (Table S11). *Euryarchaeota* bins (*Methanotrichaceae* and,
212 especially, *Methanoperedonaceae*) do not become an important constituent prior to day 47, when all
213 *Euryarchaeota* account for 42.8% of the archaeal community. Our previous analysis indicated that
214 DPANN constituted a maximum of 55.8% of the archaeal community [3]. This discrepancy could be
215 an artefact derived from the different copy numbers of rRNA gene clusters in most DPANN (likely
216 limited to one) compared to other Archaea with more typically sized genomes containing multiple
217 copies of the operon.

218 Carbon metabolism

219 The central carbon metabolism of the majority of Archaea in the LFLS trench waters was either host-
220 dependent glycolytic/fermentative (DPANN) or methane cycling-related (methanogens and AOM).
221 The predominant glycolytic pathway was suggested to be the Embden-Meyerhof-Parnas pathway,
222 based on the lack of 2-keto-3-deoxygluconate kinase (KDG kinase) and 2-keto-3-deoxy-6-
223 phosphogluconate aldolase (KDPG aldolase), along with the absence of key Entner-Doudoroff
224 pathway-enzymes in every MAG, excluding LFW-68_2.

225 Extracellular CAZymes in the archaeal bins were diverse: a total of 12 different glycoside hydrolase
226 (GH), 9 carbohydrate binding module (CBM), 5 carbohydrate esterase (CE), and 3 polysaccharide
227 lyase (PL) families were detected (Table S12). Proteins containing CBM from the CBM40 and
228 CBM44 families were especially abundant.

229 Interestingly, within LFW-68_2, a total of 19 extracellular proteins were predicted to contain a
230 CBM44 domain and 18 of those also contained a polycystic kidney disease (PKD) domain (Table
231 S13). Despite its name, the PKD domains are relatively widespread, mediating protein-protein or
232 protein-carbohydrate interactions in proteins such as collagenases and chitinases, and are also thought
233 to be important components in proteins mediating cell to cell interactions in *Metazoa* [55]. Only a
234 limited number of CBM44-containing proteins have been well-characterised to date (only 18
235 sequences, 2 characterised in the CAZy website, 1 August 2019). The CBM44-PKD domain
236 combination has previously been described in the bifunctional cellulase/xyloglucanase of *Clostridium*
237 *thermocellum* [56] where it binds cellulose or β 1,4-glucans (branched or not, including xyloglucan),
238 and the carbohydrate metabolism protein BT2081 of *Bacteroides thetaiotaomicron* [57]. However, it
239 is likely that most of the CBM44-PKD containing proteins (12 out of the 18) are acting as proteases
240 rather than on carbohydrates, given their similarity with proteases in the MEROPS database, mainly
241 M09B (Table S13). Further details into the detritivorous/proteolytic lifestyle of LFW-68_2 are
242 explored in the [Protein degradation / catabolism](#) section.

243 Carbon fixation is explored in detail in the SI.

244 The biosynthesis of polyhydroxyalkanoates is a common feature of
245 *Methanoperedens* spp.

246 Polyhydroxyalkanoates (PHA) are carbon-rich, energetic polymers that result from the polymerisation
247 of hydroxyalkanoates, e.g. 3-hydroxybutyrate, produced by numerous microorganisms under
248 unfavourable conditions, particularly in association with unbalanced nutrient levels [58, 59]. The
249 biosynthesis of PHA is a widespread characteristic in many groups of aerobic Bacteria, including
250 photosynthetic [58] and methanotrophic bacteria [59]. However, very few strict anaerobes are able to

251 synthesise PHA, being mostly limited to syntrophic bacteria [60]. Genes involved in the biosynthesis
252 of polyhydroxyalkanoates (PHA) were detected in three of the most complete *Methanoperedens* spp.
253 genomes, i.e. LFW-24, LFW-280_3_1 and LFW-280_3_2, as well as in the *Thaumarchaeota* LFW-
254 283_4_5 (Table S14).

255 In *Methanoperedens* spp., the genes associated with the biosynthesis of PHA appear grouped as a well
256 conserved gene cluster (Figure 5A). In Archaea, the biosynthesis of PHA is known to occur, mainly,
257 in many *Nitrososphaerales* (*Thaumarchaeota*) [60] and *Euryarchaeota*, where it has been
258 traditionally limited to *Halobacteria* [61]. Although not explicitly reported in their respective
259 manuscripts, PhaC (PHA synthase type III heterodimeric, TIGR01836) and PhaE (PHA synthase
260 subunit E, PF09712) were predicted in all the *Methanoperedens* reference genomes included in this
261 study [43–45, 62], and it was not until 2019 that experimental evidence was generated for the
262 production of PHA by *Methanoperedens nitroreducens* [63]. However, while all PhaC proteins form a
263 gene cluster in the pan-genome analysis, the PhaE do not (Figure 4). This could be related to their
264 function: PhaC is a catalytic protein while PhaE ‘simply’ regulates PhaC [61], so any sequence
265 modifications in PhaC might have a more critical effect on the biosynthesis of PHA. Both proteins,
266 PhaC and PhaE have also been predicted in three of the most complete new genomes in the present
267 study (LFW-24, LFW-280_3_1 and LFWA-280_3_2). This suggests that the biosynthesis of PHA
268 could be a widespread feature in *Methanoperedens* spp. or even in all *Methanoperedensaceae*,
269 indicating a possible, generalised, role in the accumulation of excess carbon at times when the carbon
270 source (methane) is much more abundant than other nutrients and/or trace elements [64].

271 It has been estimated that the anaerobic methane oxidisers may consume up to 80–90% of the methane
272 produced in certain environments avoiding its release to the atmosphere [12]. The capacity of
273 *Methanoperedens* spp. to accumulate PHA might have implications for the calculation of these
274 estimates. The inference being that methane would not solely be used for energy production or to
275 increase cell numbers, and that *Methanoperedens* spp. could act as a ‘carbon-capture’ device,
276 especially within carbon-rich anoxic environments whenever they are the main anaerobic methane

277 oxidisers. This would likely be the case for the LFLS test trench, where ammonium, nitrate/nitrite and
278 total dissolved nitrogen are limiting.

279 *Methanoperedens* spp. acquired respiratory nitrate reductases at
280 least three different times

281 *Methanoperedens* archaea have been reported (or at least suggested) to be able to utilise a wide
282 range of inorganic electron acceptors for AOM, e.g. nitrate [62], nitrite [44], Fe(III) [43, 65], Mn(IV)
283 [65] or even Cr(VI) [66]. The type species of the genus *Methanoperedens*, ‘*Ca. Methanoperedens*
284 nitroreducens’, receives its name due to its ability to use nitrate as an electron acceptor [62]. However,
285 the alpha subunit of this candidate respiratory nitrate reductase (NarG_{Mn}) is a molybdopterin
286 oxidoreductase different from any canonical or putative NarG, with no match with TIGRFAM, CDD
287 or Pfam profiles characteristic of these proteins. The NarG_{Mn} does not belong to the same orthologous
288 group alongside other typical archaeal NarG (arCOG01497), but to ENOG4102T1R, which includes
289 the well-characterised “dimethyl sulfoxide reductase subunit A” (DmsA) of several *Halobacteria*. The
290 NarG_{Mn} has a high similarity (>80%) with proteins from both *Methanoperedens* sp. BLZ1
291 (NarG1_{MBLZ1}) and *Methanoperedens* sp. Vercelli (NarG_{MV}), and relates to the nitrite reductases of
292 *Nitrospira defluvii* (Figure 6). While *Methanoperedens* sp. Vercelli and *M. nitroreducens* have only
293 this unusual NarG, *Methanoperedens* sp. BLZ1 harbours an additional, unrelated, canonical NarG
294 (NarG2_{MBLZ1}) based on the detection by the TIGRFAM profile (TIGR01580, arCOG01497). All the
295 *Methanoperedens* spp. found at LFLS have similar putative NarG_{LFLS}, not present in the other
296 genomes, that belong to arCOG01497 and are identified as TIGR03479 (DMSO reductase family type
297 II enzyme, molybdopterin subunit). Interestingly, the putative NarG_{LFLS} not only relates to the NarG
298 from *Haloferax mediterranei* ([I3R9M9](#)) [61] and other *Halobacteria*, but also to the PcrA of
299 *Dechloromonas aromatica* and *Azospira oryzae* (previously known as *Dechlorosoma suillum* strain
300 PS) [62]. It is worth mentioning that several of the NarG related to NarG_{LFLS} have been confirmed to
301 have certain promiscuity (Figure 6) and known to be able to use (per)chlorate as substrate *in vivo* [67,
302 68]. Although it is close to impossible to predict the actual potential substrates of the NarG_{LFLS} (or

303 PcrA_{LFLS}), the phylogenetic analysis is, at least, suggestive of the potential utilisation of (per)chlorate.
304 However, no chlorite dismutase gene was found in any of the LFLS *Methanoperedens* spp. genomes,
305 raising some uncertainty about this possibility.

306 Based on the observations made above, nitrate reductase(-like) enzymes are rather widespread in
307 *Methanoperedens* spp., with the exception of ‘*Ca. M. ferrireducens*’, from which no nitrate reductase
308 candidate could be detected, aside from an orphan NapA-like protein (cd02754). Phylogenetic
309 analysis of the NarG and similar proteins (Figure 6) suggests that these proteins might have been
310 acquired at least three different times during the evolution of *Methanoperedens*. At the same time, the
311 pangenomic analysis showed the three different NarG variants in their respective gene clusters (Figure
312 4 and Figure 6).

313 Nitrate was rarely measured in noticeable concentrations in the LFLS test trench [3]. With a
314 maximum concentration of 0.55 µM during partially oxidising conditions (after the rainfall event), it
315 fell below detection limit (<0.01 µM) before any *Methanoperedens* became relatively abundant.
316 Historical disposal records of the waste deposited into the LFLS trenches list quantities of
317 perchlorate/perchloric acid as being disposed in the vicinity of the sample location. Despite its highly
318 oxidising capacity, perchlorate has been shown to be persistent in the environment [69].

319 The oxidation of methane linked to the bioreduction of perchlorate has been proposed a number of
320 times in the past [70–72]. Recent work by Xie *et al.* [71] and Wu *et al.* [72] suggest the possible
321 involvement of ANME archaea based on chemical and amplicon data analyses. Our results indicate
322 that this might be a reality, although further studies are needed to confirm this.

323 While the *Nitrosotalea*-related MAG LFW-283_4_5 would be expected to contribute to the nitrogen
324 cycle as ammonia oxidising archaea, the recovered bin is partial, so we were not able to predict any
325 proteins involved in this process (Table S14). No other MAG showed any indication of dissimilatory
326 pathways for inorganic nitrogen compounds.

327 **MAG LFW-68_2 is a versatile protein-degrading Archaea**

328 In settings where assimilable nitrogen can be scarce, as is the case at LFLS, being able to fix N₂ can
329 be advantageous. Dinitrogenase components I and II were only detected in the *Methanoperedens* spp.
330 MAGs with $\geq 90\%$ C and also within a single methanogen (LFW-151_2, Table S14). While the
331 dinitrogenase in LFW-151_2 can be easily defined as [MoFe]-nitrogenase, the nitrogenases of the
332 *Methanoperedens* spp. MAGs do not match any specific type based on the metal centre. This is
333 concordant with previous work on the metal centre of nitrogenases where the anaerobic methane
334 oxidising Archaea were classified as “undefined” type nitrogenases [74] and likely belonging to the
335 Nif-D lineage [75].

336 However, nitrogen fixation is an energetically costly process. Sediments accumulate detrital organic
337 matter that can provide a source of carbon and nitrogen. Some archaeal lineages such as
338 *Thorarchaeota* [73] and MBG-D (Marine Benthic Group D) [74] are well equipped to exploit detrital
339 material. Similar to the related MBG-D archaea SCGC AB-539-N05 (ALXL00000000.1) and SCGC
340 AB-539-C06 (AOSH00000000.1) [74], LFW-68_2 possess an expanded repertoire of peptidases.
341 With 59.84 MEROPS matches per Mbp (compared to ~50/Mbp for the aforementioned MBG-D and
342 25-35/Mbp for most other archaea), LFW-68_2 is the archaeal genome with the highest density of
343 peptidase-coding genes (Figure S4). The collection of peptidases in the genome of LFW-68_2 is
344 especially expanded in C25.001 cysteine peptidases (15 copies), M09.002 metallopeptidases (17
345 copies), and M08.020 metallopeptidases (8 copies). A total of 26 extracellular peptidases provides
346 LFW-68_2 with an exhaustive machinery for the degradation of detrital proteins.

347 The proteolytic capabilities of LFW-68_2 are even more exceptional than just a broad repertoire of
348 proteases. We predicted an extracellular protease from the S12 family (PID 281199). The family S12,
349 along with S11 and S13, constitute the SE clan which includes peptidases with specialised roles in the
350 bacterial cell-wall metabolism, i.e. they act on D-amino acids [75]. A cytoplasmic M19 dipeptidase
351 (PID 342444) was also predicted and is one of the few dipeptidases able to cleave dipeptides
352 regardless of whether the C-terminal residue is a D- or L- isomer [76]. Lastly, we predicted a putative

353 operon (PID 515476-85, Figure 5B) containing homologues to the peptide-binding substrate binding
354 protein-dependent ABC transport system (Dpp/Ddp/Opp/App/Gsi), used for the import of D,D-amino
355 acids [77]. In contrast to other well-known examples where the operons are limited to a single gene
356 per protein in the transport system, the organisation of the peptide-binding transport operon in LFW-
357 68_2, i.e. DdpFDCBAFFCBA (Figure 5B), suggests that a duplication/rearrangement/recombination
358 event occurred somewhere during its evolutionary history. The above three points suggest that LFW-
359 68_2 might not have a role in the degradation of proteins but in the degradation of D-amino acid-
360 containing organic matter.

361 The D-amino acid containing necromass is one of the most recalcitrant components, often found in
362 bacterial cell walls, as well as enriched in aged sediments, as a product of amino acid racemisation
363 [74, 78]. The presence of the three aforementioned components (i.e. extracellular protease S12, M19
364 dipeptidase and oligo-/di-peptide transport system) support the hypothesis that LFW-68_2 is a
365 detritivorous Archaea able to feed on bacterial cell walls and recalcitrant biomass.

366 While all other MAGs have some kind of amino acid transporters (MFS and/or ABC), the transporter
367 systems for oligopeptides are mainly limited to App (min 4 aa chains) in *Methanomicrobia*.

368 No evidence of sulfur dissimilatory pathways was found in any of the recovered genomes.

369 **High heme cytochromes are common in *Methanoperedens* spp.**
370 **genomes**

371 As described above, field measurements revealed that nitrogen compounds were limited in the LFLS
372 trenches and, while the concentration of dissolved Mn doubled during anoxic periods, the iron
373 concentration was 200-400 times higher than Mn at any point in time [3]. Analysis of historical
374 disposal records revealed that over 760 (intact and partially corroded) steel drums were deposited
375 within the legacy trenches at LFLS, including in the vicinity of the collected samples [79]. The
376 unabated redox oscillations which have occurred in the trenches over the last 60+ years and the
377 resultant impact upon the steel drums, have likely contributed to the elevated concentrations of

378 soluble iron observed (~0.5 to 1 mM) [3]. Our field data indicates that during rainfall events when
379 oxygen-laden rainwater enters the reducing trench water, soluble iron, i.e. Fe(II), is oxidised to
380 insoluble Fe(III) oxides ferrihydrite and lepidocrocite [80]. However, these initially formed, meta-
381 stable iron oxides are readily removed from the water column, via reductive dissolution to Fe(II), or
382 transformed, via Fe(II)-catalysed remineralisation, to more crystalline Fe(III) oxides including
383 goethite [81]. Being less susceptible to microbial reduction, it is plausible that crystalline Fe(III)
384 minerals persist in reducing trench waters over periods between rainfall events, when Fe(III) oxides
385 could be reformed.

386 Utilisation of metals (e.g. Fe, Mn, Cr, U) as electron acceptors requires the presence of multi-heme
387 cytochromes. Although multi-heme cytochromes are not intrinsically exclusively employed for the
388 reduction of heavy metals (e.g. decaheme DmsE for DMSO reduction), multi-heme cytochromes with
389 a high number (≥ 10) of heme binding sites (HHC, high heme cytochromes) are generally exclusive of
390 microorganisms implicated in the biological reduction of metals. In our case, the screening of the
391 *Methanoperedens* spp. MAGs from LFLS revealed multiple HHCs in all genomes with a minimum of
392 6 copies for LFW-280_1_1 (68.5%C, Table S14). All reference *Methanoperedens* spp. genomes
393 revealed similar abundances when considering their relative completeness, i.e., ~ 10 HHC per genome.
394 Although metal reduction has only been confirmed for *M. ferrireducens* and *Methanoperedens* spp.
395 BLZ1 [43, 65], our data suggests metal reduction to be a universal, or at least widespread,
396 characteristic of *Methanoperedens* spp.

397 Previous studies indicate that *Methanoperedens* spp. BLZ1 and *M. ferrireducens* can both use
398 ferrihydrite as electron acceptor for AOM [43, 65]. Reports showing the involvement of more
399 crystalline forms of iron oxides in AOM are scarce, with the possibility that these organisms may
400 drive a cryptic sulfate reduction cycle rather than a more direct Fe(III)-dependent AOM [82].
401 Nonetheless, it is not clear if *Methanoperedensaceae* archaea or other ANME would be responsible for
402 these observations.

403 Questions remain as to the role of *Methanoperedens* spp. with regard to the ultimate fate of iron
404 within the legacy trenches; an important consideration given the central role that iron plays in the
405 mobilisation/retardation of key contaminants plutonium and americium [3, 83].

406 A self-sustaining DPANN?

407 The DPANN archaea *sensu stricto* (not including *Altiarchaeota*) are generally described as organisms
408 with extremely reduced metabolic capacities and generally dependant on a host for the acquisition of
409 essential metabolites such as vitamins, amino acids or even reducing equivalents [9].

410 During the examination of the metabolic reconstruction of the individual archaeal genomes, it was
411 observed that some DPANN from the LFWA-III lineage, exemplified by LFW-121_3, possess nearly
412 complete pathways for the synthesis of amino acids, purine and pyrimidine nucleotides, riboflavin and
413 thiamine (Figure 2). The predictions derived from either Pathway Tools (via Prokka annotations) or
414 KEGG were unusual given that when a DPANN genome lacks the biosynthetic capacity for an amino
415 acid, all enzymes for that pathway are typically missing. However, several of the LFW-121_3
416 pathways had a limited number of gaps (Figure 2). These alleged ‘gaps’, thoroughly discussed in the
417 SI, were often related to, e.g., unusual enzymes poorly annotated in databases, or steps known to be
418 possible to be performed by bifunctional or promiscuous enzymes. Manual curation with predicted
419 functions from other databases combined with literature searches was able to fill some of those gaps
420 or, at least, provide reasonable candidate proteins that may carry on those functions.

421 Conclusion

422 While the Archaea inhabiting the LFLS trench water constitute a relatively small portion of its
423 microbial community, they have important roles in the biogeochemical cycles: methanogenesis,
424 anaerobic methane oxidation, Fe(III) reduction, and protein degradation. The diverse
425 *Methanoperedens* spp., *Methanotrichaceae*, and *Thermoplasmata* are of special relevance due to their

426 roles in organic matter turnover (C and N), Fe cycling and dissimilatory pathways for nitrate and
427 maybe even use of (per)chlorate as electron acceptor.

428 The broad phylogenetic representation of DPANN organisms, which have attracted special attention
429 in the last few years either for their unusual characteristics or their controversial evolutionary history,
430 is another interesting feature of the LFLS archaeal community. The proposed LFWA-III lineage is
431 amongst the most interesting. Not only is this because they are unusually diverse or predicted to have
432 any special metabolic functions *per se*, but because they have a proper central metabolism. While
433 there is still some uncertainty about the capabilities of LFW-121_3 and closely related archaea for the
434 biosynthesis of nucleotides *de novo* and amino acids, it is to date the most promising candidate to be
435 the first *bona fide* free-living DPANN archaeon. This is duly reflected in the proposed name ‘*Ca.*
436 *Gugararchaeum adminiculabundum*`, where the specific epithet translates as “self-supporting” relating
437 to the possibility of not needing a symbiotic partner.

438 Acknowledgements

439 MRW acknowledges the support of the Australian Federal Government NCRIS scheme, via
440 Bioplatforms Australia, and the NSW State Government RAAP scheme.

441 Conflict of Interest

442 The authors declare that they have no conflict of interest.

443 Contribution statement

444 XVC: Conceptualization, Data curation, Formal analysis, Investigation, Methodology, Project
445 administration, Visualization, Writing – original draft, Writing – review & editing. ASK: Writing –
446 original draft, Writing – review & editing. MWB: Writing – review & editing. MRW: Resources,

447 Writing – review & editing. TEP: Resources, Funding acquisition, Project administration. TDW:

448 Resources, Funding acquisition, Project administration, Supervision, Writing – review & editing.

449

References

450 1. Payne TE. Background report on the Little Forest Burial Ground legacy waste site. 2012.
451 Institute for Environmental Research, Australian Nuclear Science and Technology Organisation,
452 Lucas Heights, N.S.W. (AU).

453 2. Payne TE, Harrison JJ, Hughes CE, Johansen MP, Thiruvoth S, Wilsher KL, et al. Trench
454 'bathtubbing' and surface plutonium contamination at a legacy radioactive waste site. *Environ
455 Sci Technol* 2013; **47**: 13284–13293.

456 3. Vázquez-Campos X, Kinsela AS, Bligh M, Harrison JJ, Payne TE, Waite TD. Response of
457 microbial community function to fluctuating geochemical conditions within a legacy radioactive
458 waste trench environment. *Appl Environ Microbiol* 2017; **83**: e00729.

459 4. Noël V, Boye K, Kukkadapu RK, Li Q, Bargar JR. Uranium storage mechanisms in wet-dry
460 redox cycled sediments. *Water Res* 2019; **152**: 251–263.

461 5. Winkler P, Kaiser K, Thompson A, Kalbitz K, Fiedler S, Jahn R. Contrasting evolution of iron
462 phase composition in soils exposed to redox fluctuations. *Geochim Cosmochim Acta* 2018; **235**:
463 89–102.

464 6. Bhattacharyya A, Campbell AN, Tfaily MM, Lin Y, Kukkadapu RK, Silver WL, et al. Redox
465 fluctuations control the coupled cycling of iron and carbon in tropical forest soils. *Environ Sci
466 Technol* 2018; **52**: 14129–14139.

467 7. Borch T, Kretzschmar R, Kappler A, Cappellen PV, Ginder-Vogel M, Voegelin A, et al.
468 Biogeochemical Redox Processes and their Impact on Contaminant Dynamics. *Environ Sci
469 Technol* 2010; **44**: 15–23.

470 8. Wilkins MJ, Lives FR, Vaughan DJ, Beadle I, Lloyd JR. The influence of microbial redox
471 cycling on radionuclide mobility in the subsurface at a low-level radioactive waste storage site.
472 *Geobiology* 2007; **5**: 293–301.

473 9. Dombrowski N, Lee J-H, Williams TA, Offre P, Spang A. Genomic diversity, lifestyles and
474 evolutionary origins of DPANN archaea. *FEMS Microbiol Lett* 2019; **366**: fnz008.

475 10. Kitzinger K, Padilla CC, Marchant HK, Hach PF, Herbold CW, Kidane AT, et al. Cyanate and
476 urea are substrates for nitrification by Thaumarchaeota in the marine environment. *Nat*
477 *Microbiol* 2019; **4**: 234.

478 11. Song GC, Im H, Jung J, Lee S, Jung M-Y, Rhee S-K, et al. Plant growth-promoting archaea
479 trigger induced systemic resistance in *Arabidopsis thaliana* against *Pectobacterium*
480 *carotovorum* and *Pseudomonas syringae*. *Environ Microbiol* 2019; **21**: 940–948.

481 12. Reeburgh WS. Oceanic methane biogeochemistry. *Chem Rev* 2007; **107**: 486–513.

482 13. Li D, Liu C-M, Luo R, Sadakane K, Lam T-W. MEGAHIT: an ultra-fast single-node solution
483 for large and complex metagenomics assembly via succinct de Bruijn graph. *Bioinformatics*
484 2015; **31**: 1674–1676.

485 14. Li D, Luo R, Liu C-M, Leung C-M, Ting H-F, Sadakane K, et al. MEGAHIT v1.0: a fast and
486 scalable metagenome assembler driven by advanced methodologies and community practices.
487 *Methods* 2016; **102**: 3–11.

488 15. Alneberg J, Bjarnason BS, de Bruijn I, Schirmer M, Quick J, Ijaz UZ, et al. Binning
489 metagenomic contigs by coverage and composition. *Nat Methods* 2014; **11**: 1144–1146.

490 16. Eren AM, Esen ÖC, Quince C, Vineis JH, Morrison HG, Sogin ML, et al. Anvi'o: an advanced
491 analysis and visualization platform for 'omics data. *PeerJ* 2015; **3**: e1319.

492 17. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the
493 phylogeny and coding potential of microbial dark matter. *Nature* 2013; **499**: 431–437.

494 18. Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW. CheckM: assessing the
495 quality of microbial genomes recovered from isolates, single cells, and metagenomes. *Genome*
496 *Res* 2015; **25**: 1043–1055.

497 19. Huerta-Cepas J, Szklarczyk D, Forslund K, Cook H, Heller D, Walter MC, et al. eggNOG 4.5: a
498 hierarchical orthology framework with improved functional annotations for eukaryotic,
499 prokaryotic and viral sequences. *Nucleic Acids Res* 2016; **44**: D286–D293.

500 20. Huerta-Cepas J, Forslund K, Coelho LP, Szklarczyk D, Jensen LJ, von Mering C, et al. Fast
501 genome-wide functional annotation through orthology assignment by eggNOG-mapper. *Mol*
502 *Biol Evol* 2017; **34**: 2115–2122.

503 21. Yutin N, Puigbò P, Koonin EV, Wolf YI. Phylogenomics of prokaryotic ribosomal proteins.
504 *PLOS ONE* 2012; **7**: e36972.

505 22. Yamada KD, Tomii K, Katoh K. Application of the MAFFT sequence alignment program to
506 large data—reexamination of the usefulness of chained guide trees. *Bioinformatics* 2016; **32**:
507 3246–3251.

508 23. Criscuolo A, Gribaldo S. BMGE (Block Mapping and Gathering with Entropy): a new software
509 for selection of phylogenetic informative regions from multiple sequence alignments. *BMC Evol
510 Biol* 2010; **10**: 210.

511 24. Lazar CS, Baker BJ, Seitz KW, Teske AP. Genomic reconstruction of multiple lineages of
512 uncultured benthic archaea suggests distinct biogeochemical roles and ecological niches. *ISME J*
513 2017; **11**: 1118–1129.

514 25. Wang HC, Minh BQ, Susko S, Roger AJ. Modeling site heterogeneity with posterior mean site
515 frequency profiles accelerates accurate phylogenomic estimation. *Syst Biol* 2018; **67**: 216–235.

516 26. Nguyen L-T, Schmidt HA, von Haeseler A, Minh BQ. IQ-TREE: A Fast and Effective
517 Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies. *Mol Biol Evol* 2015;
518 **32**: 268–274.

519 27. Minh BQ, Nguyen MAT, von Haeseler A. Ultrafast approximation for phylogenetic bootstrap.
520 *Mol Biol Evol* 2013; **30**: 1188–1195.

521 28. Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or
522 nucleotide sequences. *Bioinformatics* 2006; **22**: 1658–1659.

523 29. Jones P, Binns D, Chang H-Y, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-
524 scale protein function classification. *Bioinformatics* 2014; **30**: 1236–1240.

525 30. Anantharaman K, Brown CT, Hug LA, Sharon I, Castelle CJ, Probst AJ, et al. Thousands of
526 microbial genomes shed light on interconnected biogeochemical processes in an aquifer system.
527 *Nat Commun* 2016; **7**: 13219.

528 31. Dombrowski N, Seitz KW, Teske AP, Baker BJ. Genomic insights into potential
529 interdependencies in microbial hydrocarbon and nutrient cycling in hydrothermal sediments.
530 *Microbiome* 2017; **5**: 106.

531 32. Eddy SR. Accelerated profile HMM searches. *PLOS Comput Biol* 2011; **7**: e1002195.

532 33. André I, Potocki-Véronèse G, Barbe S, Moulis C, Remaud-Siméon M. CAZyme discovery and
533 design for sweet dreams. *Curr Opin Chem Biol* 2014; **19**: 17–24.

534 34. Yin Y, Mao X, Yang J, Chen X, Mao F, Xu Y. dbCAN: a web resource for automated
535 carbohydrate-active enzyme annotation. *Nucleic Acids Res* 2012; **40**: W445–W451.

536 35. Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS: the database of proteolytic
537 enzymes, their substrates and inhibitors. *Nucleic Acids Res* 2014; **42**: D503–D509.

538 36. Saier MH, Reddy VS, Tamang DG, Västermark Å. The Transporter Classification Database.
539 *Nucleic Acids Res* 2014; **42**: D251–D258.

540 37. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein
541 subcellular localization prediction with refined localization subcategories and predictive
542 capabilities for all prokaryotes. *Bioinformatics* 2010; **26**: 1608–1615.

543 38. Chan PP, Lin BY, Mak AJ, Lowe TM. tRNAscan-SE 2.0: Improved Detection and Functional
544 Classification of Transfer RNA Genes. *bioRxiv* 2019; 614032.

545 39. Seemann T. Prokka: rapid prokaryotic genome annotation. *Bioinformatics* 2014; **30**: 2068–2069.

546 40. Karp PD, Latendresse M, Paley SM, Krummenacker M, Ong QD, Billington R, et al. Pathway
547 Tools version 19.0 update: software for pathway/genome informatics and systems biology. *Brief
548 Bioinform* 2016; **17**: 877–890.

549 41. Kanehisa M, Sato Y, Morishima K. BlastKOALA and GhostKOALA: KEGG tools for
550 functional characterization of genome and metagenome sequences. *J Mol Biol* 2016; **428**: 726–
551 731.

552 42. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference resource
553 for gene and protein annotation. *Nucleic Acids Res* 2016; **44**: D457–D462.

554 43. Cai C, Leu AO, Xie G-J, Guo J, Feng Y, Zhao J-X, et al. A methanotrophic archaeon couples
555 anaerobic oxidation of methane to Fe(III) reduction. *ISME J* 2018; **12**: 1929–1939.

556 44. Arshad A, Speth DR, de Graaf RM, Op den Camp HJM, Jetten MSM, Welte CU. A
557 metagenomics-based metabolic model of nitrate-dependent anaerobic oxidation of methane by
558 *Methanoperedens*-like Archaea. *Front Microbiol* 2015; **6**: 1423.

559 45. Vaksmaa A, Guerrero-Cruz S, van Alen TA, Cremers G, Ettwig KF, Lüke C, et al. Enrichment
560 of anaerobic nitrate-dependent methanotrophic ‘*Candidatus Methanoperedens nitroreducens*’
561 archaea from an Italian paddy field soil. *Appl Microbiol Biotechnol* 2017; **101**: 7075–7084.

562 46. van Dongen S, Abreu-Goodger C. Using MCL to Extract Clusters from Networks. In: van
563 Helden J, Toussaint A, Thieffry D (eds). *Bacterial Molecular Networks: Methods and*
564 *Protocols*. 2012. Springer New York, New York, NY, pp 281–295.

565 47. Pritchard L, Glover RH, Humphris S, Elphinstone JG, Toth IK. Genomics and taxonomy in
566 diagnostics for food security: soft-rotting enterobacterial plant pathogens. *Anal Methods* 2015;
567 **8**: 12–24.

568 48. Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al.
569 Asgard archaea illuminate the origin of eukaryotic cellular complexity. *Nature* 2017; **541**: 353–
570 358.

571 49. Adam PS, Borrel G, Brochier-Armanet C, Gribaldo S. The growing tree of Archaea: new
572 perspectives on their diversity, evolution and ecology. *ISME J* 2017.

573 50. Baker BJ, Tyson GW, Webb RI, Flanagan J, Hugenholtz P, Allen EE, et al. Lineages of
574 acidophilic Archaea revealed by community genomic analysis. *Science* 2006; **314**: 1933–1935.

575 51. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ, Cheng J-F, et al. Insights into the
576 phylogeny and coding potential of microbial dark matter. *Nature* 2013; **499**: 431–437.

577 52. Parks DH, Chuvochina M, Waite DW, Rinke C, Skarszewski A, Chaumeil P-A, et al. A
578 standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of
579 life. *Nat Biotechnol* 2018; **36**: 996–1004.

580 53. Mills HJ, Hodges C, Wilson K, MacDonald IR, Sobecky PA. Microbial diversity in sediments
581 associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. *FEMS Microbiol*
582 *Ecol* 2003; **46**: 39–52.

583 54. Knittel K, Boetius A. Anaerobic oxidation of methane: progress with an unknown process. *Annu*
584 *Rev Microbiol* 2009; **63**: 311–334.

585 55. Jing H, Takagi J, Liu J, Lindgren S, Zhang R, Joachimiak A, et al. Archaeal surface layer
586 proteins contain β propeller, PKD, and β helix domains and are related to metazoan cell surface
587 proteins. *Structure* 2002; **10**: 1453–1464.

588 56. Najmudin S, Guerreiro CIPD, Carvalho AL, Prates JAM, Correia MAS, Alves VD, et al.
589 Xyloglucan is recognized by carbohydrate-binding modules that interact with β -glucan chains. *J
590 Biol Chem* 2006; **281**: 8815–8828.

591 57. Yeh AP, Abdubek P, Astakhova T, Axelrod HL, Bakolitsa C, Cai X, et al. Structure of
592 *Bacteroides thetaiotaomicron* BT2081 at 2.05 Å resolution: the first structural representative of
593 a new protein family that may play a role in carbohydrate metabolism. *Acta Crystallogr Sect F
594 2010*; **66**: 1287–1296.

595 58. Reddy CSK, Ghai R, Rashmi, Kalia VC. Polyhydroxyalkanoates: an overview. *Bioresour
596 Technol* 2003; **87**: 137–146.

597 59. Martínez-Gutiérrez CA, Latisnere-Barragán H, García-Maldonado JQ, López-Cortés A.
598 Screening of polyhydroxyalkanoate-producing bacteria and PhaC-encoding genes in two
599 hypersaline microbial mats from Guerrero Negro, Baja California Sur, Mexico. *PeerJ* 2018; **6**:
600 e4780.

601 60. Spang A, Poehlein A, Offre P, Zumbrägel S, Haider S, Rychlik N, et al. The genome of the
602 ammonia-oxidizing *Candidatus Nitrososphaera gargensis*: insights into metabolic versatility and
603 environmental adaptations. *Environ Microbiol* 2012; **14**: 3122–3145.

604 61. Koller M. Polyhydroxyalkanoate biosynthesis at the edge of water activity-Haloarchaea as
605 biopolyester factories. *Bioengineering* 2019; **6**: 34.

606 62. Haroon MF, Hu S, Shi Y, Imelfort M, Keller J, Hugenholtz P, et al. Anaerobic oxidation of
607 methane coupled to nitrate reduction in a novel archaeal lineage. *Nature* 2013; **500**: 567–570.

608 63. Cai C, Shi Y, Guo J, Tyson GW, Hu S, Yuan Z. Acetate production from anaerobic oxidation of
609 methane via intracellular storage compounds. *Environ Sci Technol* 2019; Just accepted.

610 64. Karthikeyan OP, Chidambarampadmavathy K, Cirés S, Heimann K. Review of sustainable
611 methane mitigation and biopolymer production. *Crit Rev Environ Sci Technol* 2015; **45**: 1579–
612 1610.

613 65. Ettwig KF, Zhu B, Speth D, Keltjens JT, Jetten MSM, Kartal B. Archaea catalyze iron-
614 dependent anaerobic oxidation of methane. *Proc Natl Acad Sci* 2016; **113**: 12792–12796.

615 66. Lu Y-Z, Fu L, Ding J, Ding Z-W, Li N, Zeng RJ. Cr(VI) reduction coupled with anaerobic
616 oxidation of methane in a laboratory reactor. *Water Res* 2016; **102**: 445–452.

617 67. Yoshimatsu K, Sakurai T, Fujiwara T. Purification and characterization of dissimilatory nitrate
618 reductase from a denitrifying halophilic archaeon, *Haloarcula marismortui*. *FEBS Lett* 2000;
619 **470**: 216–220.

620 68. Oren A, Elevi Bardavid R, Mana L. Perchlorate and halophilic prokaryotes: implications for
621 possible halophilic life on Mars. *Extremophiles* 2014; **18**: 75–80.

622 69. Brown GM, Gu B. The Chemistry of Perchlorate in the Environment. In: Gu B, Coates JD (eds).
623 *Perchlorate: Environmental Occurrence, Interactions and Treatment*. 2006. Springer US,
624 Boston, MA, pp 17–47.

625 70. Luo Y-H, Chen R, Wen L-L, Meng F, Zhang Y, Lai C-Y, et al. Complete perchlorate reduction
626 using methane as the sole electron donor and carbon source. *Environ Sci Technol* 2015; **49**:
627 2341–2349.

628 71. Xie T, Yang Q, Winkler MKH, Wang D, Zhong Y, An H, et al. Perchlorate bioreduction linked
629 to methane oxidation in a membrane biofilm reactor: Performance and microbial community
630 structure. *J Hazard Mater* 2018; **357**: 244–252.

631 72. Wu M, Luo J-H, Hu S, Yuan Z, Guo J. Perchlorate bio-reduction in a methane-based membrane
632 biofilm reactor in the presence and absence of oxygen. *Water Res* 2019; **157**: 572–578.

633 73. Seitz KW, Lazar CS, Hinrichs K-U, Teske AP, Baker BJ. Genomic reconstruction of a novel,
634 deeply branched sediment archaeal phylum with pathways for acetogenesis and sulfur reduction.
635 *ISME J* 2016; **10**: 1696–1705.

636 74. Lloyd KG, Schreiber L, Petersen DG, Kjeldsen KU, Lever MA, Steen AD, et al. Predominant
637 archaea in marine sediments degrade detrital proteins. *Nature* 2013; **496**: 215–218.

638 75. Laskar A, Chatterjee S, Roy A, Kumar Dey S, Mandal C. Molecular modeling and structural
639 analysis of five SE clan (S12 family) serine proteases. *Asian J Biotechnol* 2011; **3**: 435–448.

640 76. Hooper NM. Membrane dipeptidase. In: Rawlings ND, Salvesen G (eds). *Handbook of*
641 *Proteolytic Enzymes*, 3rd ed. 2013. pp 1670–1673.

642 77. Maqbool A, Levdikov VM, Blagova EV, Hervé M, Horler RSP, Wilkinson AJ, et al.
643 Compensating stereochemical changes allow murein tripeptide to be accommodated in a
644 conventional peptide-binding protein. *J Biol Chem* 2011; **286**: 31512–31521.

645 78. Lomstein BA, Langerhuus AT, D'Hondt S, Jørgensen BB, Spivack AJ. Endospore abundance,
646 microbial growth and necromass turnover in deep sub-seafloor sediment. *Nature* 2012; **484**:
647 101–104.

648 79. Payne TE, Kinsela AS, Rowling B, Hughes CE, Hankin S, Wilsher KL, et al. Application of an
649 Experimental Trench to Evaluate Hydrogeological Factors Impacting Radionuclide Migration at
650 a Legacy Waste Disposal Site. *J Environ Radioact* 2019; Submitted.

651 80. Kinsela AS, Jones AM, Bligh MW, Pham AN, Collins RN, Harrison JJ, et al. Influence of
652 dissolved silicate on rates of Fe(II) oxidation. *Environ Sci Technol* 2016; **50**: 11663–11671.

653 81. Boland DD, Collins RN, Miller CJ, Glover CJ, Waite TD. Effect of solution and solid-phase
654 conditions on the Fe(II)-accelerated transformation of ferrihydrite to lepidocrocite and goethite.
655 *Environ Sci Technol* 2014; **48**: 5477–5485.

656 82. Sivan O, Antler G, Turchyn AV, Marlow JJ, Orphan VJ. Iron oxides stimulate sulfate-driven
657 anaerobic methane oxidation in seeps. *Proc Natl Acad Sci* 2014; **111**: E4139–E4147.

658 83. Ikeda-Ohno A, Harrison JJ, Thiruvoth S, Wilsher K, Wong HKY, Johansen MP, et al. Solution
659 speciation of plutonium and americium at an Australian legacy radioactive waste disposal site.
660 *Environ Sci Technol* 2014; **48**: 10045–10053.

661

662 **Figures and tables**

663 Table 1. Summary of new candidate species proposed.

Proposed species name	Current name	Current lineage name (GTDB)	Proposed type
‘ <i>Ca. Tiddalikarchaeum anstoniae</i> ’	Uncultured archaeon LFW-252_1 ^a	Nanoarchaeota; Nanoarchaeia; CG07-land	ERS2655302
‘ <i>Ca. Wianamattarchaeum fermentum</i> ’	Uncultured archaeon LFW-144_1 ^a	Micrarchaeota; Micrarchaeia; UBA8480	ERS2655293
‘ <i>Ca. Gugararchaeum adminiculabundum</i> ’	Uncultured archaeon LFW-121_3 ^a	Micrarchaeota; Micrarchaeia; UBA10214	ERS2655291
‘ <i>Ca. Wayembeharchaeum dharawalense</i> ’	Uncultured archaeon LFW-283_2 ^a	Micrarchaeota; Micrarchaeia; UBA10214	ERS2655319
‘ <i>Ca. Burarchaeum australiense</i> ’	Uncultured archaeon LFW-281_7 ^a	Micrarchaeota; Micrarchaeia; UBA10214	ERS2655318
‘ <i>Ca. Anstonella stagnisolia</i> ’	Uncultured archaeon LFW-35 ^a	Micrarchaeota; Micrarchaeia; UBA10214	ERS2655287
‘ <i>Ca. Methanoperedens vercellense</i> ’	‘ <i>Ca. Methanoperedens nitroreducens</i> ’ Vercelli	Methanoperedenaceae	GCA_900196725
‘ <i>Ca. Methanoperedens batavicum</i> ’	‘ <i>Ca. Methanoperedens nitroreducens</i> ’ BLZ1 (or MPEBLZ)	Methanoperedenaceae	GCA_001317315

664 ^a: obtained in this study.

665

666 Table 2. General stats of the genomes reconstructed in this study.

667 MAGs in bold indicate named candidate species. Additional details can be found in Table S4.

668 Expanded completeness analysis are available in Table S5.

MAG	Lineage	Contigs	Size (Mbp)	tRNA ^a	GC (%)	rRNA genes ^b	C% / R% ^c
LFW-28	Altiarchaeota	151	2.41	23	49.9	Y/N/Y	91.4 / 4.9
LFW-252_2	Diapherotrites	64	1.05	21	40.6	Y/Y/Y	75.3 / 1.9
LFW-281_4	Diapherotrites	72	1.09	20	49.7	Y/Y/Y	64.2 / 4.9
LFW-252_1	LFWA-I	56	1.16	21	36.5	Y/Y/Y	75.3 / 1.9
LFW-144_1	LFWA-II	49	0.93	20	57.5	Y/N/Y	85.8 / 2.5
LFW-156_1	LFWA-II	109	0.93	18	32.5	N/N/Y	72.8 / 7.4
LFW-121_3	LFWA-III	76	1.47	21	49.8	Y/Y/Y	93.2 / 3.7
LFW-144_2_1	LFWA-III	219	0.77	16	57.5	N/N/N	61.7 / 6.8
LFW-242_1	LFWA-III	69	0.97	21	57.3	N/N/Y	77.8 / 8.6
LFW-281_1_2	LFWA-III	79	0.71	17	55.7	N/N/Y	50 / 2.5
LFW-281_3_2	LFWA-III	81	1.08	19	54.9	N/N/Y	75.3 / 9.3
LFW-281_5_4	LFWA-III	104	0.64	15	55.4	N/N/Y	54.9 / 4.3
LFW-281_6_1	LFWA-III	122	0.70	14	53.7	N/Y/N	52.5 / 6.2
LFW-281_7	LFWA-III	76	1.20	18	57.6	Y/N/Y	90.1 / 3.1
LFW-283_2	LFWA-III	63	1.27	20	40.0	Y/Y/Y	85.8 / 2.5
LFW-29	LFWA-III	68	1.30	21	62.2	N/N/Y	88.3 / 1.9
LFW-35	LFWA-III	68	1.33	21	50.3	Y/Y/Y	87 / 3.7
LFW-46	LFWA-IV	85	1.20	18	43.8	N/N/Y	83.3 / 4.9
LFW-125_1	Micrarchaeota	97	0.82	20	54.7	Y/Y/N	66.7 / 1.2
LFW-165_1	Pacearchaeota	67	1.34	19	30.7	N/N/Y	67.3 / 1.2
LFW-170_1	Pacearchaeota	42	0.84	19	33.8	Y/Y/Y	64.2 / 1.2
LFW-170_3	Pacearchaeota	31	0.59	20	35.3	N/N/Y	63 / 1.2
LFW-262_2	Pacearchaeota	45	0.62	20	31.5	N/N/Y	51.2 / 6.2
LFW-262_5	Pacearchaeota	44	0.58	19	31.9	N/N/Y	61.7 / 5.6
LFW-273_1	Pacearchaeota	27	0.56	20	33.4	N/N/Y	61.1 / 0.6
LFW-252_3	Woesearchaeota	101	1.04	20	42.3	N/N/Y	69.1 / 3.1
LFW-24	Methanoperedenaceae	169	2.92	21	40.3	N/N/Y	93.8 / 5.6
LFW-280_1_1	Methanoperedenaceae	207	1.69	20	44.4	N/N/N	68.5 / 4.3
LFW-280_2_2	Methanoperedenaceae	298	2.20	15	43.6	N/N/Y	74.7 / 4.9
LFW-280_3_1	Methanoperedenaceae	179	3.24	21	43.8	N/N/Y	95.7 / 9.9
LFW-280_3_2	Methanoperedenaceae	147	2.79	19	43.8	N/N/Y	90.7 / 9.9
LFW-280_4	Methanoperedenaceae	182	2.60	21	42.9	N/N/Y	92 / 9.9
LFW-151_1	Methanotrichaceae	401	1.75	15	53.2	N/N/N	68.5 / 8
LFW-151_2	Methanotrichaceae	390	2.28	16	50.6	N/N/Y	83.3 / 3.7
LFW-83_1	Methanotrichaceae	580	2.63	19	47.7	Y/Y/Y	62.4 / 8.6
LFW-68_2	Thermoplasmata	152	2.06	22	38.2	N/N/Y	85.2 / 6.2
LFW-283_4_5	Thaumarchaeota	152	1.15	18	37.0	N/N/N	50.6 / 3.1

669

670 ^a: number of different tRNA found (21 includes starting iMet). Additional tRNA may include Sec,
671 Ile2, or undetermined types.

672 ^b: found rRNA genes, 16S/23S/5S.

673 ^c: completeness (C%) and redundancy (R%) estimations based on Anvi'o. Additional estimations
674 based on CheckM can be found in the SI.

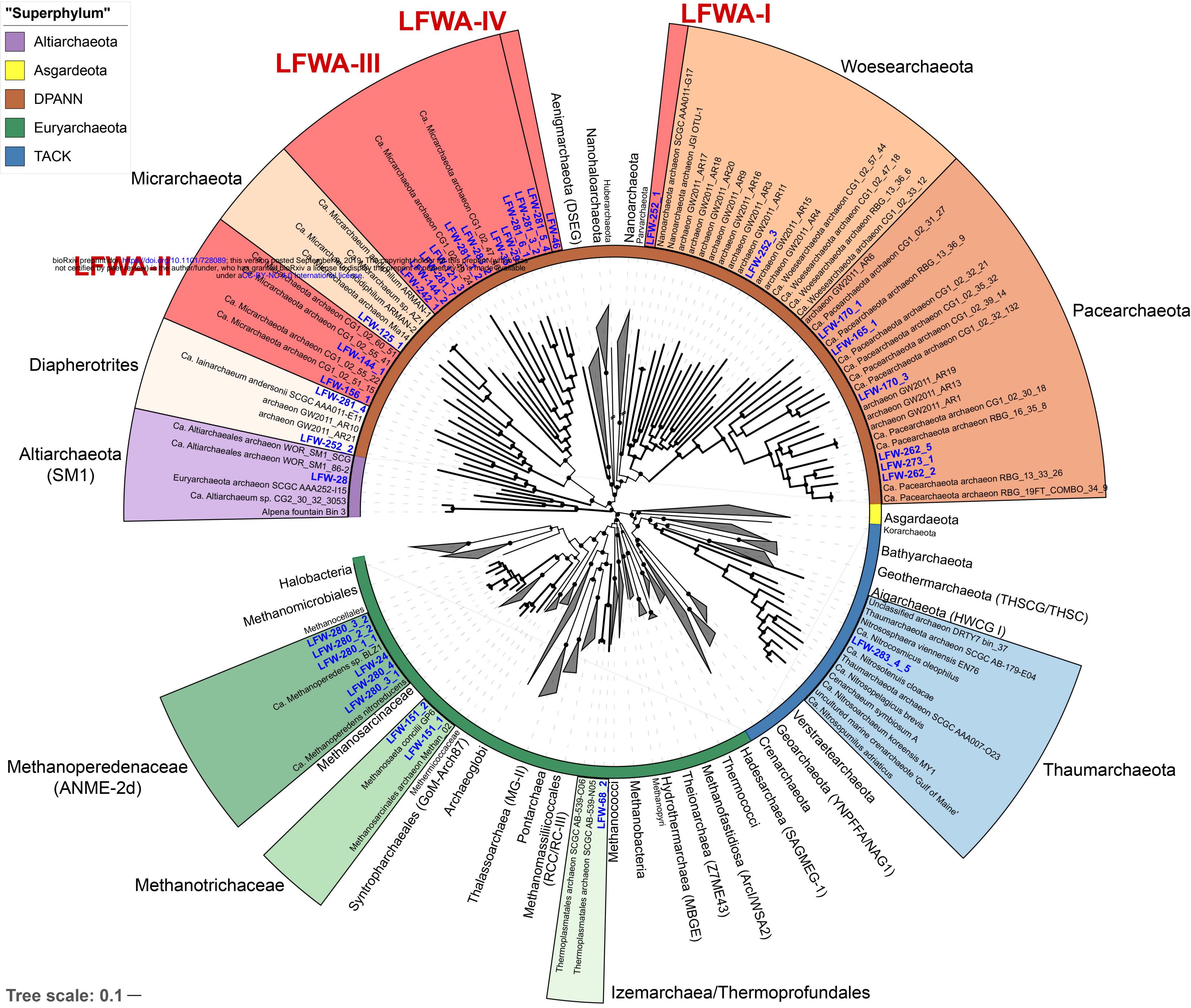
675

676 Figure 1. Phylogenomic analysis of the archaeal bins found at LFLS.

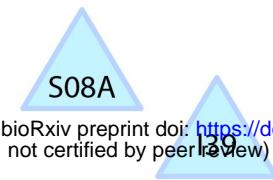
677 Concatenated protein tree constructed with 44 universal and Archaea-specific ribosomal proteins from
678 230 reference genomes and 36 original MAGs from this work. Tree was constructed with IQ-TREE
679 under the PMSF+LG+C60+F+I+G. Lineages with representatives at LFLS are shown coloured and
680 uncollapsed, with labels in blue. Inner ring indicates the major archaeal lineages. Shortened branches
681 are shown at 50% of their length. Black circles indicate ultrafast bootstrap support values >90%.

682 Figure 2. Model of a LFWA-III archaeon cell.

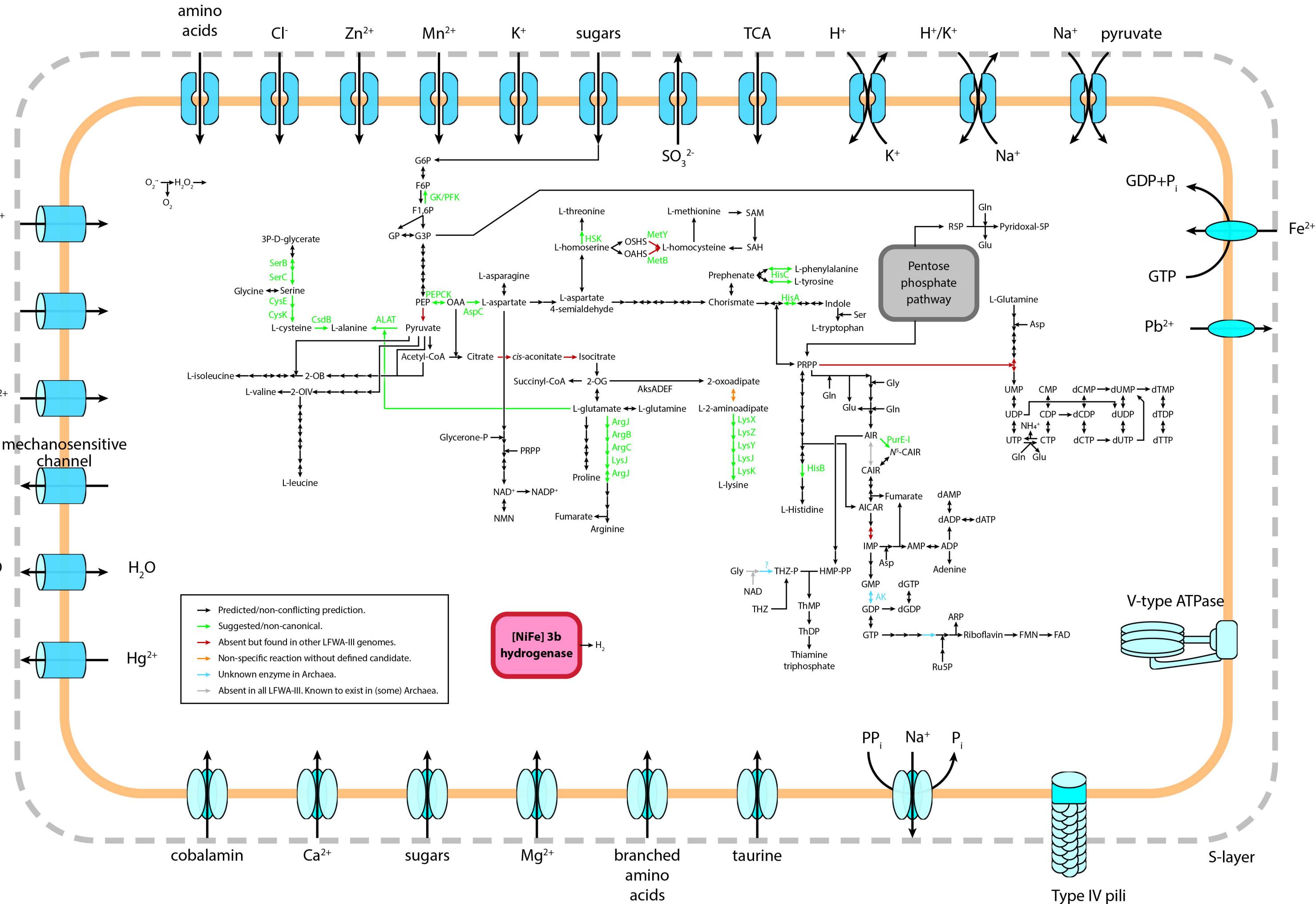
683 Figure is based on the metabolic modelling of LFW-121_3 ('*Ca. Gugararchaeum*
684 *adminiculabundum*'). Abbreviations: 2-OG, 2-oxoglutarate; 2-OIV, 2-oxoisovalerate; AICAR, 5-
685 amino-1-(5-phospho-D-ribosyl)imidazole-4-carboxamide; AIR, 5-amino-1-(5-phospho- β -D-
686 ribosyl)imidazole; ARP, 5-amino-6-ribitylamino-2,4(1H,3H)-pyrimidinedione; CAIR, 5-amino-1-(5-
687 phospho-D-ribosyl)imidazole-4-carboxylate; F1,6P, β -D-Fructose 1,6-bisphosphate; F6P, β -D-
688 Fructose-6P; FAD, Flavin adenine dinucleotide; FMN, Flavin mononucleotide; G3P, Glyceraldehyde-
689 3P; G6P, Glucose-6P; GP, Glycerone-P; HMP-PP, 4-amino-5-hydroxymethyl-2-methylpyrimidine
690 diphosphate; N5-CAIR, 5-(carboxyamino)imidazole ribonucleotide; NAD+, β -nicotinamide adenine
691 dinucleotide; NADP+, β -nicotinamide adenine dinucleotide phosphate; NMN, β -nicotinamide D-
692 ribonucleotide; OAA, Oxaloacetate; OAHS, O-acetyl-homoserine; OSHS, O-succinyl-homoserine;
693 PEP, Phosphoenolpyruvate; PRPP, 5-phospho- α -D-ribose 1-diphosphate; R5P, D-ribose 5-phosphate;
694 SAH, S-adenosyl-L-homocysteine; SAM, S-adenosyl-L-methionine; ThDP, Thiamine diphosphate;
695 ThMP, Thiamine monophosphate; THZ, 4-methyl-5-(β -hydroxyethyl)thiazolium; THZ-P, 4-methyl-5-
696 (β -hydroxyethyl)thiazolium phosphate.

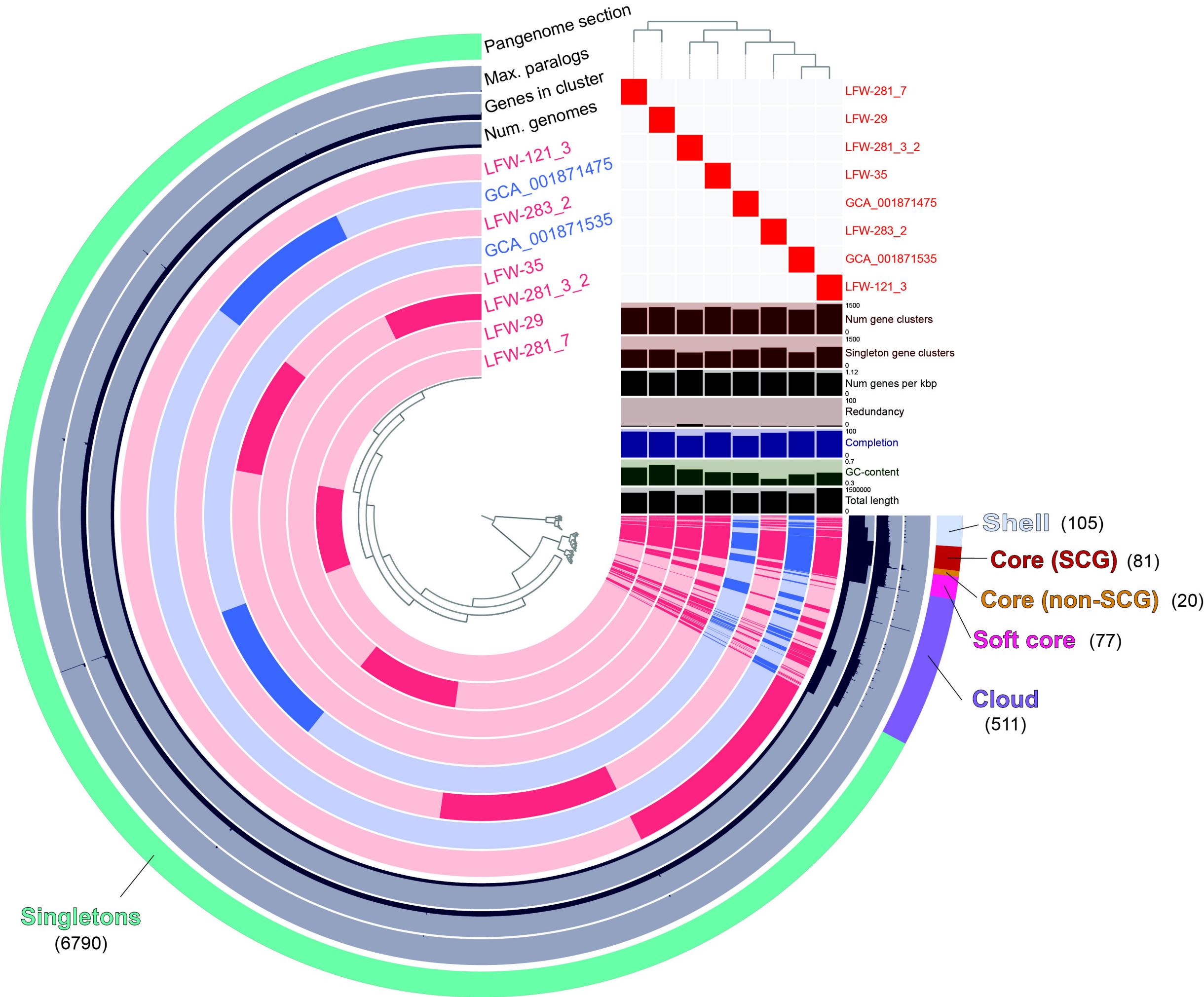

697 Figure 3. Pangenomic analysis of lineage LFWA-III (Gugararchaeaceae).

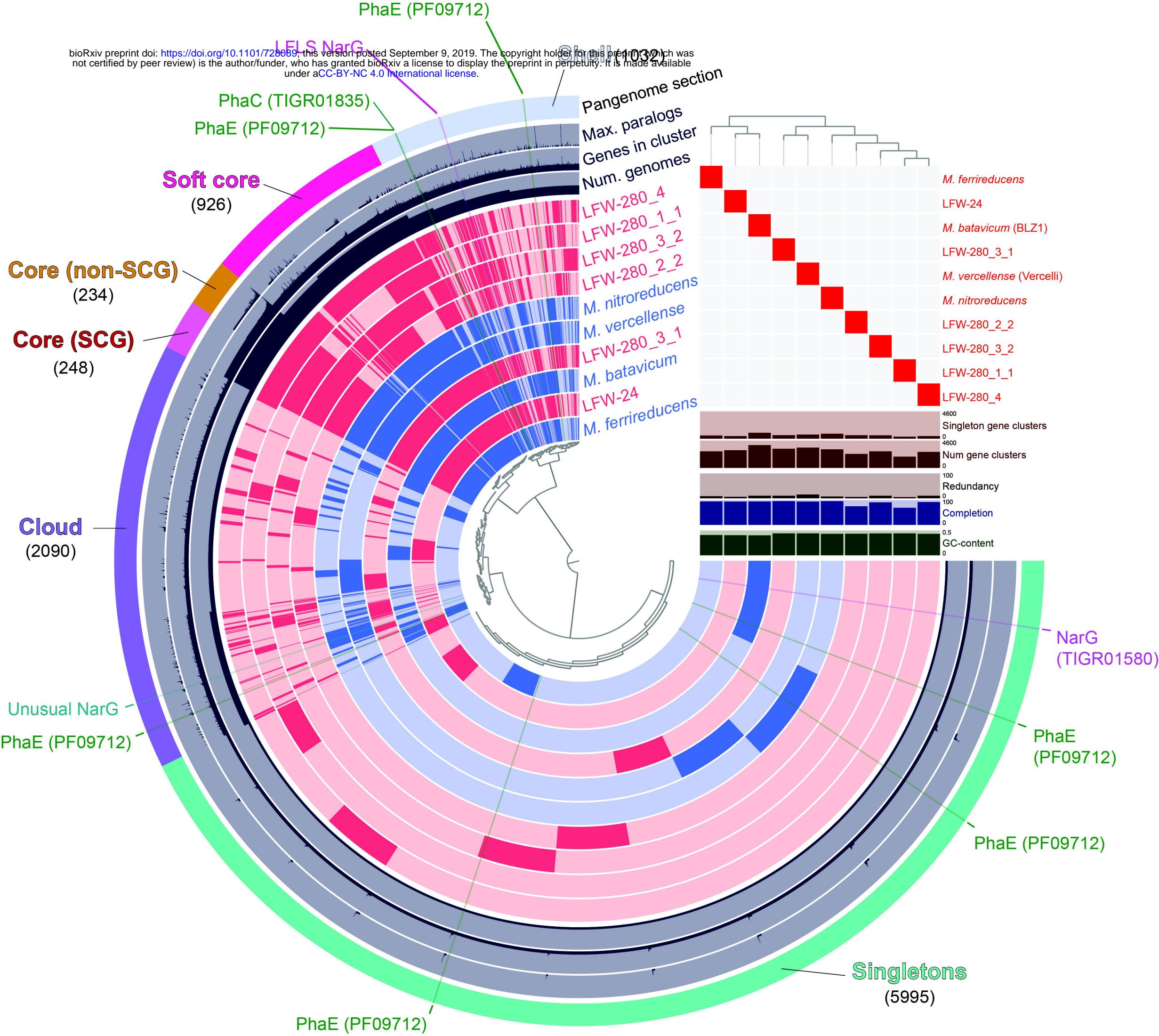
698 Pangenome generates with 8 genomes from the LFWA lineage, with a total of 10,238 protein-coding
699 genes grouped in 7,584 gene clusters. Gene clusters generated with an MCL inflation value of 2.0.

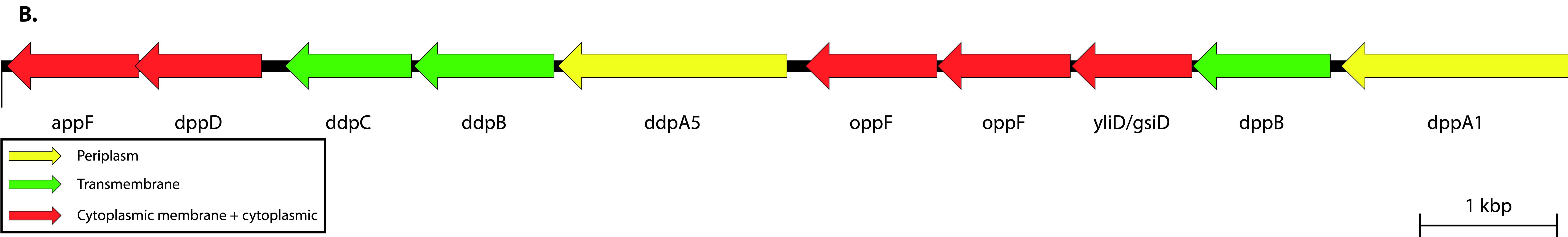
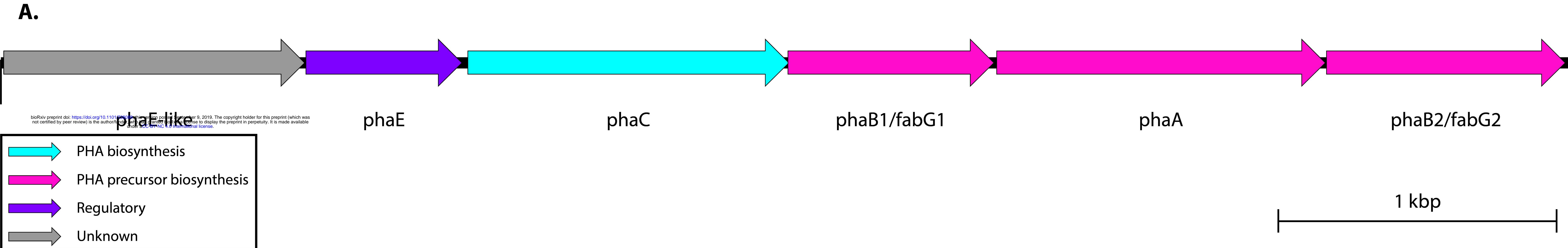

700 Figure 4. Pangenomic analysis of genus *Methanoperedens*.
701 Pangenome generates with 10 *Methanoperedens* spp. genomes, accounting for a total of 31,974
702 protein-coding genes grouped in 10,525 gene clusters. Gene clusters generated with an MCL inflation
703 value of 6.0.

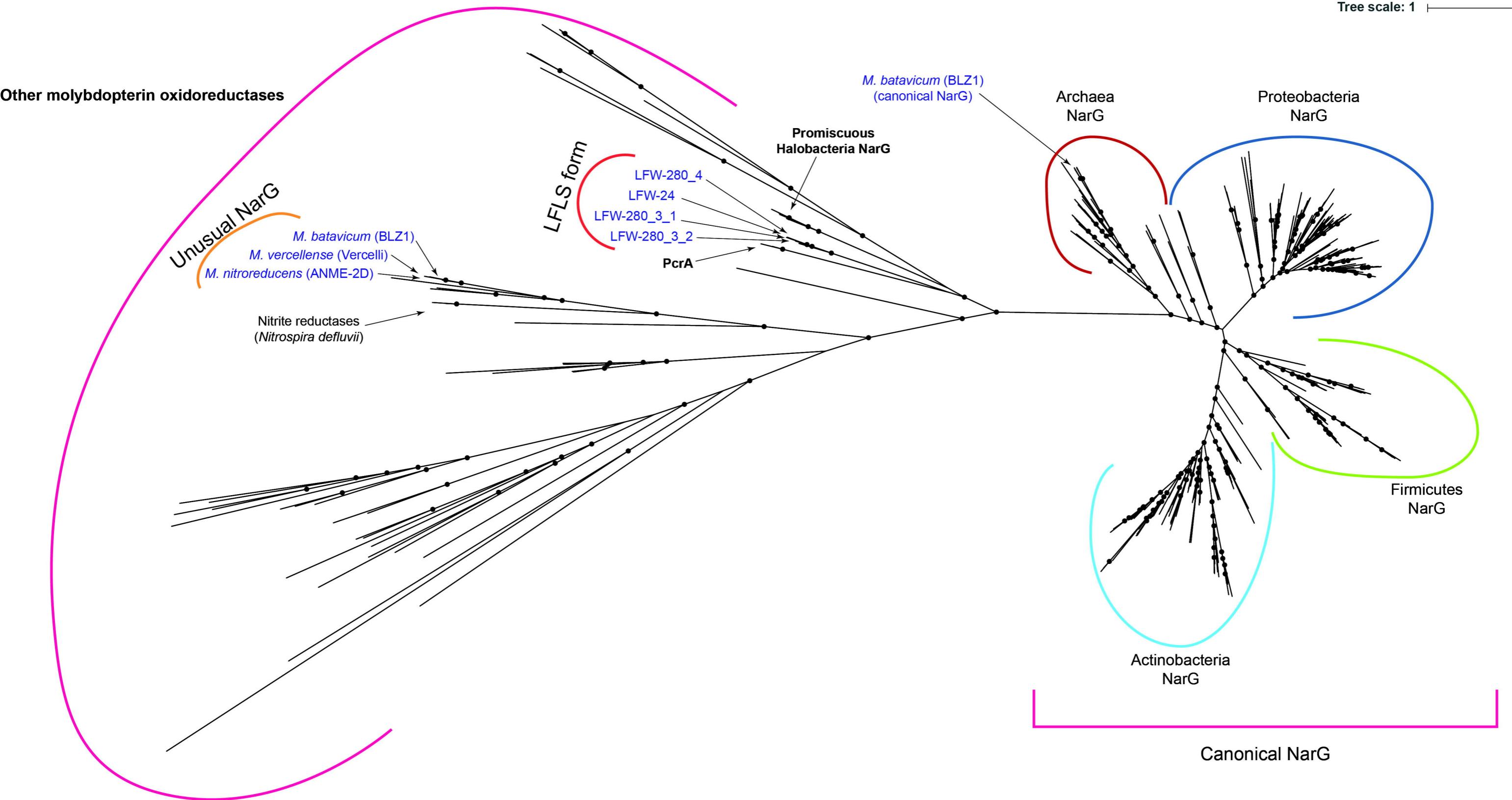
704 Figure 5. Schematic diagram of operons of interest.
705 A) Biosynthetic gene cluster for polyhydroxyalkanoates in *Methanoperedens* spp. from LFLS, one of
706 the clusters in LFW-280_3_1 as an example. B) D,D-amino acid import/cleavage operon of the
707 archaeon LFW-68_2.


708 Figure 6. Phylogenetic analysis of molybdopterin oxidoreductase proteins.
709 Tree was generated with 268 reference sequences and 8 query sequences from ‘*Ca. Methanoperedens*’
710 spp. NarG(-like) proteins. Tree was built under model LG+R10 model and 10,000 ultrafast bootstrap
711 iterations. Branches with ultrafast bootstrap support values <50% are collapsed. Black circles indicate
712 a branch support $\geq 90\%$.




Extracellular proteases


bioRxiv preprint doi: <https://doi.org/10.1101/728089>; this version posted September 9, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license.

