

1 Spatial structure undermines parasite 2 suppression by gene drive cargo

**3 James J Bull¹, Christopher H Remien², Richard Gomulkiewicz³, and
4 Stephen M Krone⁴**

5 ¹Department of Biological Sciences, University of Idaho, Moscow, ID, USA

6 ²Department of Mathematics, University of Idaho, Moscow, ID, USA

7 ³School of Biological Sciences, Washington State University, Pullman, WA, USA

8 ⁴Department of Mathematics, University of Idaho, Moscow, ID, USA

9 Corresponding author:

10 J J Bull¹

11 Email address: bull@utexas.edu

12 ABSTRACT

13 Gene drives may be used in two ways to curtail vectored diseases. Both involve engineering the drive
14 to spread in the vector population. One approach uses the drive to directly depress vector numbers,
15 possibly to extinction. The other approach leaves intact the vector population but suppresses the disease
16 agent during its interaction with the vector. This second application may use a drive engineered to carry
17 a genetic cargo that blocks the disease agent. An advantage of the second application is that it is far less
18 likely to select vector resistance to block the drive, but the disease agent may instead evolve resistance
19 to the inhibitory cargo. However, some gene drives are expected to spread so fast and attain such high
20 coverage in the vector population that, if the disease agent can evolve resistance only gradually, disease
21 eradication may be feasible. Here we use simple models to show that spatial structure in the vector
22 population can greatly facilitate persistence and evolution of resistance by the disease agent. We suggest
23 simple approaches to avoid some types of spatial structure, but others may be intrinsic to the populations
24 being challenged and difficult to overcome.

25 INTRODUCTION

26 Genetic engineering has advanced to the point that it is not only possible to introduce arbitrary, massive
27 changes into the genomes of countless organisms, but it is also possible to engineer changes that rapidly
28 sweep throughout an entire species. The rapid sweeps are enabled by a class of genetic elements called
29 gene drives that function on the principle of biasing transmission in gametes or in survival (Hamilton,
30 1967; Lyttle, 1977; Burt, 2003; Deredec et al., 2008; Gould, 2008; Gould et al., 2008; Report, 2016).
31 Perhaps the most powerful use of a gene drive is one that suppresses population numbers and even
32 potentially drives the population extinct. A more benign form of gene drive is one that sweeps without
33 causing much harm to its host. Any gene drive may be harnessed with additional genetic material (i.e.,
34 ‘effector gene’ or simply ‘cargo’) that is carried along with the drive as it spreads (Sandler and Novitski,
35 1957; Gould, 2008; Gould et al., 2008; Gantz et al., 2015). A harmless drive equipped with a cargo
36 provides a fast and simple means of genetically transforming a population, potentially endowing that
37 population with properties that meet social goals without harming the species.

38 The application of gene drives is limited in a few important ways. They require species with largely
39 obligate sexual reproduction and moderate to high rates of outcrossing. Furthermore, drives that impair
40 fitness are highly susceptible to evolution of resistance (Burt, 2003; Noble et al., 2017; Unckless et al.,
41 2017; Bull et al., 2019). For these reasons, some applications are most amenable to species modification
42 with harmless gene drives carrying genetic cargo. One such application is the use of gene drives to
43 transform disease vectors so that the disease agent (‘parasite’ or ‘pathogen’) can no longer be transmitted:
44 the pathogen cannot be targeted with a gene drive, but its vector can. Such a gene drive can be designed
45 to have little effect on the vector yet completely block the pathogen (Sandler and Novitski, 1957; Burt,
46 2003; Gantz et al., 2015).

47 Multiple approaches to population replacement that involve gene drive have been proposed. Several of
48 these have been implemented successfully in model systems, and important progress has been made with
49 homing-based approaches. Current technology using CRISPR homing drives appears good enough to
50 allow a gene drive to avoid resistance evolution and achieve wide coverage of a population (Kyrou et al.,
51 2018; Champer et al., 2019c). Thus, an inhibitory cargo should also be able to achieve wide population
52 coverage and thereby eradicate many types of parasite, provided that the cargo's suppression of the
53 parasite cannot be overcome by single mutations. One potential limitation of this approach is that even
54 slight fitness costs of cargo carriage will ultimately lead to a decay of cargo in the vector population, but
55 the decay should often be slow enough to allow parasite suppression for tens to hundreds of generations
56 (Beaghton et al., 2017) – still potentially enough for eradication.

57 Here we suggest another possible basis of cargo failure, spatial structure in the host population
58 combined with imperfect gene drive coverage/expression. If parasite movement is limited, even small
59 areas of incomplete suppression may allow parasite persistence that serve as nuclei for evolution of
60 parasite resistance. We offer simple models of the sensitivity of parasite persistence and resistance
61 evolution under spatial structure to gauge the plausibility of parasite escape from gene drive control. Our
62 approach potentially applies to any widespread genetic modification of a population, not just gene drives.

63 **BACKGROUND**

64 This section offers a biological framework for the problem addressed in the models section. This
65 framework is easily explained at an intuitive level and helps anticipate the models. We henceforth use
66 'parasite' instead of 'pathogen,' to avoid confusion as to the effect of the parasite—it will commonly be a
67 pathogen of humans but not necessarily of the vector, where it is targeted.

68 **Two kinds of engineered gene drives**

69 The gene drives proposed and developed for genetic engineering fall into two classes. One class relies
70 on homing, whereby the drive element cuts the genome at a specific site and inserts itself into that site
71 (Burt, 2003; Gantz and Bier, 2015; Kyrou et al., 2018). A homing drive's fitness advantage comes from a
72 transmission bias in gametes of heterozygotes. CRISPR technology has greatly facilitated this type of
73 engineering because CRISPR-Cas9 is a site-directed nuclease. The other class relies on biased offspring
74 survival, many of which are known as 'killer-rescue' systems (Chen et al., 2007; Gould et al., 2008;
75 Marshall and Hay, 2011; Legros et al., 2013; Akbari et al., 2013, 2014; Buchman et al., 2018; Oberhofer
76 et al., 2019; Champer et al., 2019a). One of the major differences between these two classes of drive
77 elements is the speed and ease with which they spread. A homing element spreads rapidly and can, in
78 theory, be successfully introduced with a single individual. Killer-rescue systems spread more slowly and
79 often must be introduced above a threshold density to spread, although that distinction is not absolute
80 (Champer et al., 2019a).

81 **Mass action dynamics**

82 Gene drives have traditionally been modeled and understood in the context of well-mixed populations
83 (e.g., Prout, 1953; Bruck, 1957; Hamilton, 1967; Burt, 2003; Marshall and Hay, 2011; Legros et al.,
84 2013; Akbari et al., 2014; Unckless et al., 2015; Beaghton et al., 2017; Godfray et al., 2017). A homing
85 gene drive gains its advantage from heterozygotes, the non-drive allele of a heterozygote being replaced
86 with the drive allele during reproduction. Heterozygote frequency is enhanced with outcrossing (mass
87 action), depressed with inbreeding and some other types of assortative mating. Even killer-rescue systems
88 presumably rely on mixing, so that the killer and rescue alleles are not closely associated, and the rescue
89 allele thereby gains a large benefit. With mass action, an efficient homing drive can spread from low
90 frequencies to near-fixation in close to 10 generations (Burt, 2003; Godfray et al., 2017; Beaghton et al.,
91 2017).

92 The evolution of a gene drive and its associated cargo can be divided into two phases. The first phase
93 encompasses the short-lived spread of the drive. Although gene drives are potentially highly efficient,
94 various types of fitness effects, imperfections in the drive mechanics and variation in the host population
95 can limit the final coverage of the drive (Deredec et al., 2008; Godfray et al., 2017; Beaghton et al.,
96 2017; Champer et al., 2017). Once the drive has spread to its limit, phase two sets in, whereby evolution
97 proceeds according to fitness effects on the host. Any fitness cost stemming from the drive allele or its
98 genetic cargo now begins to select a population reversal toward loss of the cargo and/or drive, favoring

99 alleles resistant to the drive or cargo-free drive states. The speed of this reversal depends heavily on fitness
100 costs and on the initial frequencies of the different parties; it is typically much slower than the spread
101 of the drive (Beaghton et al., 2017). In the long term, a genetic cargo with any fitness cost will be lost.
102 The social benefits of the cargo must therefore be manifest in a time frame compatible with its expected
103 duration.

104 **Population spatial structure**

105 Gene drives require reproduction. Their spread will thus follow the conduits of reproductive connections
106 in the host population, which may well have a strong spatial component—as when individuals mate with
107 neighbors (North et al., 2013; Beaghton et al., 2016; Tanaka et al., 2017). Any genetic variation that arises
108 in the gene drive or cargo, such as mutations that delete or down-regulate the cargo, will be propagated
109 along those conduits and expand accordingly, leading to spatial structure in parasite inhibition (Beaghton
110 et al., 2017). Even more simply, for purely dynamical reasons, the drive may fail to reach isolated pockets
111 of the population (North et al., 2013). In turn, spatial structure of a genetically variable inhibitor will
112 often mean that different locations of the parasite experience different levels of inhibition. With spatial
113 structure, even small regions of reduced parasite suppression may enable parasite persistence which then
114 facilitate parasite evolution of resistance to the inhibitor.

115 Pre-existing genetic variation in the host population may also affect gene drive efficacy, spread and
116 cargo expression (e.g., Drury et al., 2017; Champer et al., 2019b). For example, some designs for a
117 harmless homing drive have it target a genomic region that can be disrupted with little or no fitness
118 effects; such a region may thus not be strongly selected to conserve sequences and may be variable across
119 the host population, blocking gene drive spread in some regions. (One design avoids this problem by
120 targeting an essential gene and carrying a cargo that replaces the targeted gene (Burt, 2003; Champer
121 et al., 2019c).) Cargo gene expression may likewise be affected by the genome in which it resides, and
122 geographic variation in genomic content may lead to geographic variation in cargo expression.

123 Our intent is to investigate the consequences of spatially structured inhibition of the parasite/pathogen.
124 The details of structure will typically be implementation-specific, but an appreciation for the importance
125 of spatial structure when it exists may be a requisite for successful application of a gene drive cargo.

126 **ANALYSIS**

127 **Mathematical models**

128 Our model is most easily applied to an asexual pest/parasite infecting a single host species. Although
129 not specifically modeled, our problem may be extended in spirit to a parasite transmitted between two
130 host species, as to *Plasmodium* transmitted by a mosquito to humans and back to mosquitoes; in this case,
131 the gene drive is introduced into the mosquito to block *Plasmodium* reproduction and transmission. Our
132 models merely omit the second host, but we conjecture that the effects they reveal apply to that case,
133 subject to some conditions mentioned in the Discussion.

134 The social goal is to suppress parasite reproduction with a genetic cargo in the host. To keep the
135 problem simple, we assume that a gene drive and its cargo have already swept through the host species.
136 (The actual process of gene drive evolution is thus ignored, and indeed, non-gene-drive methods of cargo
137 infusion may also be used to achieve this end (Okamoto et al., 2014).) In any one host individual, parasite
138 inhibition by the cargo occurs in one of three states: (i) full inhibition, (ii) partial inhibition, or (iii) no
139 inhibition. Partial inhibition would result from weak expression of the cargo in the host; no inhibition
140 would result from loss of the cargo from the gene drive or resistance to the gene drive itself, such that the
141 host individual lacks the gene drive and its cargo altogether. The formulation of the model is trivially
142 extended to multiple states of partial inhibition.

143 The model counts numbers of parasites in each type of host. Host type merely translates into parasite
144 reproduction. Notation is

145 x_h : The relative frequency of hosts of type h

146 b_{gh} : The fecundity of a parasite genotype g in hosts of type h

147 n_{gh} : The current number of parasites of genotype g in hosts of type h

148 N_g : The current number of progeny produced by genotype g across all patches

149 α : The fidelity of parasite reproduction to hosts of the same type.

150 where parasite genotype $g \in \{0, 1, \dots, M\}$ and host type $h \in \{0, 1, \dots, H\}$. Here, host type 0 indicates
 151 hosts with no cargo (hence no parasite suppression), and larger values of h correspond to increased levels
 152 of suppression, with H denoting the number of types of cargo-carrying hosts differing in some aspect
 153 of parasite suppression; parasite genotype 0 is the wild type (with no protection against the cargo), and
 154 larger values of g correspond to mutant strains with increased levels of resistance to the cargo.

155 To approximate the separation of phases between rapid gene drive spread and the subsequent effect
 156 of cargo on the parasite, we let the x_h and b_{gh} be constant in time, so the only changes are in parasite
 157 numbers. Time is discrete. For biological reasons, in the case of three host types, we also assume that
 158 the fecundity of parasite genotype 0 satisfies $b_{00} > 1 > b_{01} > b_{02}$, which means that the parasite has
 159 negative growth in all host types except the one lacking cargo.

160 To set the stage for a structured host population, we suppose that hosts are clustered in *patches* of
 161 similar host types, patch types designated by subscript h . ('Host' and 'patch' are used interchangeably
 162 below, but 'patch' helps convey structure.) Patches could result, for example, from limited host migration
 163 and gene drive spread through the host population in a manner that follows host population structure.
 164 The clustering of hosts and the consequent movement of parasites between patches determines the extent
 165 to which structure is experienced by the parasites. To establish a mass-action baseline, adult parasites
 166 reproduce and release all progeny into a random pool, from which they settle into each of the $H + 1$ patch
 167 types at frequencies x_0, x_1, \dots, x_H .

168 Spatial structure is modeled indirectly by assuming that a fraction α of the progeny born in a patch
 169 type remains in the same patch type without entering the random pool; this 'fidelity' increases with the
 170 retention of progeny in their natal patch type. This process is fundamentally the same as migration in
 171 standard population genetics problems (Crow and Kimura, 1970). Our formulation is different in that
 172 α denotes a lack of movement from the natal site instead of movement between patches/populations;
 173 this formulation leads naturally to calculating the null case of mass action ($\alpha = 0$), which is presumably
 174 the default expectation in gene drive applications. Note that fidelity to a patch type is imposed without
 175 inbreeding, so the numbers within a patch are assumed large enough that consanguinity can be ignored.

176 We first consider a simple system of linear dynamical equations. The overall progeny output of strain
 177 g across all environments is

$$N_g = \sum_{h=0}^H n_{gh} b_{gh} \quad . \quad (1)$$

178 Using primes to indicate one generation hence,

$$n'_{gh} = \alpha n_{gh} b_{gh} + (1 - \alpha) N_g x_h \quad . \quad (2)$$

179 The joint dynamics for genotype g across all host types can be written as a matrix projection recursion
 180 (Caswell, 2006). Dropping the genotype subscript g for ease of visualization, the recursion has form

$$\mathbf{n}' = \mathbf{M}\mathbf{n} \quad (3)$$

181 where \mathbf{n} and \mathbf{n}' are $(H + 1)$ -dimensional column vectors with h th element n_h and n'_h , respectively. The
 182 $(H + 1) \times (H + 1)$ matrix \mathbf{M} has diagonal elements $M_{hh} = b_h[\alpha + (1 - \alpha)x_h]$ and off-diagonal elements
 183 $M_{hi} = b_i(1 - \alpha)x_h$, $i \neq h$. In words, matrix element M_{hi} describes the rate that individuals who originate
 184 in patch type i contribute to the abundance in patch type h at the next time step. The densities of the
 185 genotype g at any time t , $\mathbf{n}(t)$, can be computed as $\mathbf{n}(t) = \mathbf{M}^t \mathbf{n}(0)$ (Caswell, 2006).

186 This model allows for a biological anomaly: when a genotype i is initially assigned to a patch (j) ,
 187 a sufficiently large combination of fecundity and fidelity ($b_{ij}\alpha > 1$) allows its numbers to persist even
 188 when the patch type is absent (even when $x_j = 0$). This effect occurs because, once a genotype exists
 189 in a patch (by initial conditions), a portion of its growth comes from offspring who stay in the patch to
 190 reproduce. This effect is independent of patch size. Because we interpret x_j as the fraction of hosts of
 191 type j , we require $x_j > 0$ for any host type that harbors parasites. This requirement is further imposed
 192 when enforcing a carrying capacity (see below).

193 These equations assume fixed fecundities and thus allow unlimited population growth. They should
 194 be adequate to decide whether parasites persist or die out, because they can be applied to deterministic

190 dynamics at low population densities to describe the direction of population growth, when fecundities
191 are intrinsic and unaffected by densities. For dynamics and evolution in high-density populations, we
192 use a related model that imposes density regulation. For simplicity, we limit our description of density
193 regulation to the case of two patches and two strains.

194 **Introducing density regulation**

195 Density regulation may be important in the evolution of alternative genotypes in a persisting population,
196 at least because a small portion of the environment with cargo-free hosts may be limited in how many
197 parasites it can support – a small patch may allow parasite persistence but have little impact on parasite
198 numbers across the entire environment. We thus introduce a simple form of patch-specific density
199 regulation that will be used in some numerical trials of two patch types, 0 and 1.

200 Let K be the overall upper density limit for the environment and let $K_0 = Kx_0$, $K_1 = Kx_1$ denote the
201 ceilings for patch 0 and 1, respectively. Let $\Pi_1 = \min\{n_{01}b_{01} + n_{11}b_{11}, K_1\}$ be total parasite progeny
202 production emanating from patch 1, and $\Pi_0 = \min\{n_{00}b_{00} + n_{10}b_{10}, K_0\}$ be the total parasite progeny
203 production from patch 0, each limited locally, without respect to regulation in the other patch type. The
204 extension to more than two patch types is straightforward.

205 To decide how overall parasite production in a patch is divided between two genotypes when progeny
206 output is limited by carrying capacity, let $p_{11} = n_{11}b_{11}/(n_{01}b_{01} + n_{11}b_{11})$ denote the fraction of offspring
207 that are strain 1 within patch 1, and $p_{01} = 1 - p_{11}$ the fraction in patch 1 that are strain 0. Similarly, in
208 patch 0 we have fractions $p_{10} = n_{10}b_{10}/(n_{00}b_{00} + n_{10}b_{10})$ and $p_{00} = 1 - p_{10}$. Accounting for mixing and
209 assuming both genotypes are density-regulated the same, the total number of genotype 1 entering patch 1
210 is

$$\alpha p_{11}\Pi_1 + (1 - \alpha)[p_{10}\Pi_0 + p_{11}\Pi_1]x_1 \quad (4)$$

211 and the total number of genotype 0 entering patch 1 is

$$\alpha p_{01}\Pi_1 + (1 - \alpha)[p_{00}\Pi_0 + p_{01}\Pi_1]x_1. \quad (5)$$

212 Analogous equations apply to genotypes 0 and 1 entering patch 0. Note that mixing can lead to a temporary
213 violation of local carrying capacities when patches are repopulated by adults, but the capacity limit is
214 imposed again at the next round of reproduction.

215 **Parasite persistence is facilitated by spatial structure**

216 The growth or suppression of the parasite depends on whether the magnitude of the leading eigenvalue
217 of \mathbf{M} in eqn (3) exceeds 1. Density dependence can be ignored when addressing persistence, but an
218 eigenvalue exceeding 1 merely indicates that parasites have positive growth somewhere in the environment,
219 perhaps in only a tiny locale, with negative growth everywhere else. Although the characteristic equation
220 is easily found, the leading eigenvalue (λ_{max}) of a genotype is tractable for arbitrary H only for the
221 extremes of mass action ($\alpha = 0$), and complete parasite isolation among host types ($\alpha = 1$). For mass
222 action,

$$\lambda_{max,g} = \sum_h x_h b_{gh} \quad . \quad (6)$$

223 As is well appreciated for mass action, parasite growth is just the weighted average fecundity across all
224 host types. Small levels of weak suppression (i.e., low values of x_0 despite possibly high values of b_{00})
225 will not themselves enable parasite persistence except when parasite fecundity is extraordinarily high.
226 When more than one genotype has an eigenvalue greater than 1, density dependence will determine which
227 one prevails (see below).

228 With complete parasite separation across the host types ($\alpha = 1$),

$$\lambda_{max,g} = b_{g0} \quad (7)$$

229 (λ_{max} is associated with patch type 0 because cargo-free hosts are assumed to offer the highest fecundity
230 of all patches, regardless of genotype). Here, the parasites inhabiting each host type have their own
231 eigenvalue, and any host type with $b_{gh} > 1$ will allow parasites of genotype g to persist in that patch type

217 (subject to competition among different parasite genotypes). In this extreme, the values of x_h no longer
218 matter: even a small fraction of permissive hosts will allow the parasite to persist.

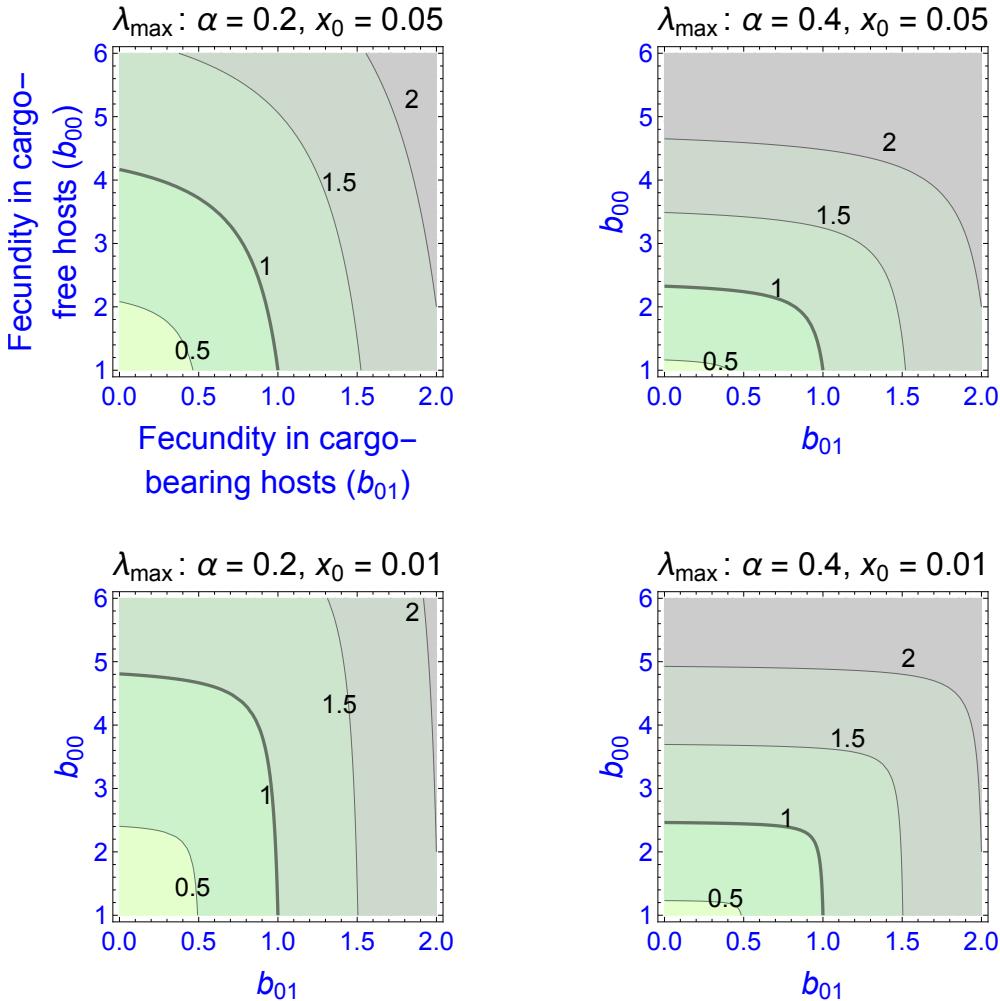
219 The question motivating our study is how sensitive parasite persistence is to fidelity α —reflecting
220 spatial structure. As the eigenvalue for several patch/host types is unwieldy, we reduce the problem to
221 just two patch types, $g = 0$ and 1 (fully permissive and fully blocking of wild-type); this reduction also
222 simplifies patch type abundances: $x_0 + x_1 = 1$. For this case, the largest eigenvalue is

$$\lambda_{max,g} = \frac{1}{2} \left\{ \alpha [b_{g1}x_0 + b_{g0}(1-x_0)] + b_{g1}(1-x_0) + b_{g0}x_0 \right\} + \frac{1}{2} \sqrt{[b_{g1}((1-\alpha)(1-x_0) + \alpha) + b_{g0}((1-\alpha)x_0 + \alpha)]^2 - 4\alpha b_{g1}b_{g0}[(1-\alpha)(1-x_0) + (1-\alpha)x_0 + \alpha]} . \quad (8)$$

223
224 Values of the eigenvalues for different fecundities in the two patch types are shown in Fig. 1, the panels
225 differing in fidelity (α) and cargo-free patch size (x_0) values. The graphs show four contour lines, but
226 $\lambda_{max} = 1$ —the boundary between persistence and extinction—is thicker than the others. It is clear that
227 persistence is enhanced by spatial structure, though typically a large cargo-free fecundity is required if
228 the cargo is effective (b_{00} must be well above 1 when α and b_{01} are small). But for small cargo-free
229 patch sizes (small x_0), parasite persistence becomes possible despite low fecundity values in cargo-free
230 hosts when the cargo becomes moderately ineffective (when b_{01} exceeds 1). In addition to the effect
231 of fecundity, there are also effects of α and x_0 ; one interesting effect is that the isolines are visually
232 step-like except in the lower left panel. For those cases, fecundity in cargo-bearing hosts has little effect
233 on the parasite growth rate until $b_{01} \approx \lambda_{max}$.

234 Most empirical interest is likely to be in the extreme case that the cargo completely suppresses
235 wild-type parasite reproduction ($b_{01} = 0$), as that would be the goal of the engineer. Indeed, any gene
236 drive release could be avoided until such an appropriate inhibitor was found. This case corresponds to the
237 the sliver defined by the vertical axes in Fig. 1. Furthermore, this case is highly tractable:

$$\lambda_{max,0} |_{b_{01}=0} \equiv \lambda_0 = b_{00} [x_0 + \alpha(1-x_0)] . \quad (9)$$


238 Persistence in this case requires $\lambda_0 = b_{00} [x_0 + \alpha(1-x_0)] \geq 1$. This implies, for example, that persistence
239 of the parasite is assured even when completely inhibited by the cargo as long as fecundity in cargo-free
240 hosts (b_{00}), exceeds $[x_0 + \alpha(1-x_0)]^{-1}$. Consideration of this minimum cargo-free fecundity (Fig. 2)
241 shows that spatial structuring with fidelity (α) well below 1 (e.g., 0.5) enables parasite persistence for
242 even rare cargo-free hosts (small x_0), as long as the parasite can grow there moderately well (e.g., $b_{00} > 2$).
243 The results are largely insensitive to patch size x_0 when fidelity reaches 0.6.

244 It is also easy to see that, when cargo-free patch size x_0 is small, as it should be if the engineering
245 worked as expected, the effect of increasing fidelity α is approximately the same as increasing the
246 frequency of permissive hosts (x_0)—both are mostly linear effects and of the same magnitude. Whereas x_0
247 is somewhat under the control of the engineer, α is not and has the potential to thwart parasite eradication.
248 Thus, a very small x_0 could easily cause parasite population collapse in the mass action case, but $b_{00}\alpha > 1$
249 is sufficient for persistence no matter how small x_0 . Persistence could be achieved by a cargo-free patch
250 merely large enough that parasite progeny often did not disperse beyond the patch edges.

251 Ease of resistance evolution depends on ecology

252 At the population level, the evolution of resistance to a genetic cargo has many parallels with the evolution
253 of resistance to antibiotics and pesticides. The latter problems are thoroughly studied, and it is well
254 appreciated that resistance is especially prone to evolve under intermediate levels of drug/chemical
255 application (e.g., Gould and MacKenzie, 2002; Andersson and Hughes, 2012; Tabashnik and Gould, 2012;
256 Neve et al., 2014; Gould et al., 2018). Inhibition by a gene drive cargo is different from chemicals in that
257 the levels of inhibition are established at fixed, semi-permanent levels in the near term. They are also
258 largely unchangeable, at least in the short term, should it be discovered that they are inadequate.

259 Of the many factors to consider, an important one is the mutational spectrum of resistance: a cargo for
260 which simple, single mutations can allow parasite persistence seems doomed to fail, and intuition suffices
261 for preliminary understanding, at least deterministically. Our interest instead lies in gradual evolution and
262 the selection of weak resistance mutations. It might be hoped that cargo-based inhibitors can be found for

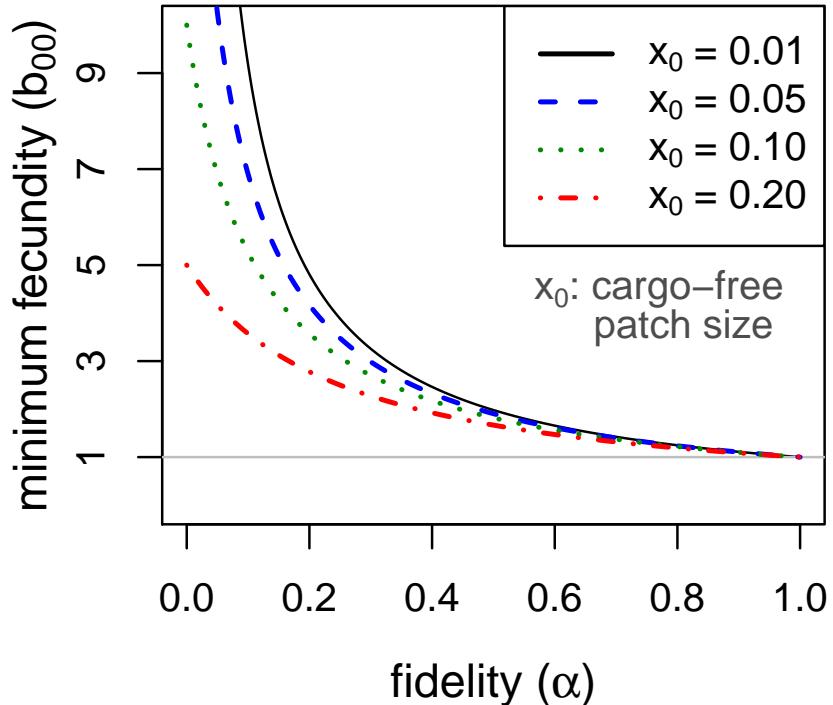


Figure 1. Contour plots of wild-type parasite growth rates, as given by eigenvalues (λ_{\max} , from eqn (8)). Each panel varies parasite fecundities in the two patch types (b_{00} is cargo-free fecundity, b_{01} is fecundity in cargo-bearing hosts). Parasite growth rates rise with increases in each fecundity, but the eigenvalues often show a step-like pattern in which fecundity increases in one host type have little effect until it reaches a threshold. Panels differ in parasite fidelity (α) and size of the cargo-free patches (x_0); λ_{\max} values are given adjacent to the contours. The wild-type genotype is represented as $g = 0$. Colors merely distinguish the regions bounded by the curves.

263 which resistance mutations are impossible, but a more realistic hope is that inhibitors could be found for
 264 which resistance can evolve only gradually.

265 The evolution of resistance can be considered in two contexts. One is known as ‘evolutionary rescue,’
 266 whereby the population is in decline and a resistance mutation potentially reverses the decline (Martin
 267 et al., 2013; Uecker et al., 2014; Hufbauer et al., 2015; Gomulkiewicz et al., 2017). The other context, the
 268 one addressed here, is resistance evolution in a persisting population. For our application, we imagine
 269 that the parasite is persisting because of spatial structure and would go extinct under mass action – the
 270 large majority of hosts inhibit parasite reproduction because of the cargo. We address how selection acts
 271 on a weakly resistant mutation, a mutation that is not necessarily sufficient to provide positive parasite
 272 growth from inhibitory hosts alone.

273 It might seem valid to evaluate long term resistance evolution from a comparison of eigenvalues of
 274 wild-type and mutant growth, in which case the preceding figures could be used to infer evolution of
 275 alternative genotypes. However, we are considering resistance evolution in established populations at

Figure 2. Minimum fecundity in cargo-free hosts required for parasite persistence when the cargo causes complete inhibition, ($b_{01} = 0$, from eqn (9)). Each curve represents a different size of cargo-free patch (x_0); the required cargo-free fecundity for parasite persistence (b_{00} , vertical axis) decreases with the fidelity to patch type (α , horizontal axis). For $\alpha \geq 0.6$, there is little effect of patch size. The curves intersect $\alpha = 0$ at $b_{00} = \frac{1}{x_0}$. The horizontal line at $b_{00} = 1$ indicates the minimum fecundity required for the parasite to persist in the absence of cargo, which all curves intersect at $\alpha = 1$.

276 which density dependence is operating. When density dependence operates locally, as assumed here,
 277 it will have a different effect on parasite growth in cargo-free patches than in inhibitory patches. If
 278 the wild-type parasite cannot grow in inhibitory patches but the mutant can, the fecundities of both
 279 genotypes will be suppressed by density dependence in cargo-free patches but the mutant's fecundity in
 280 the inhibitory environment will be unaffected (at least while rare). Eigenvalue calculations do not include
 281 these fecundity modifications. Our model of resistance evolution uses the system of equations in (3) but
 282 with the density-dependent carrying capacity enforced as in eqns (4) and (5).

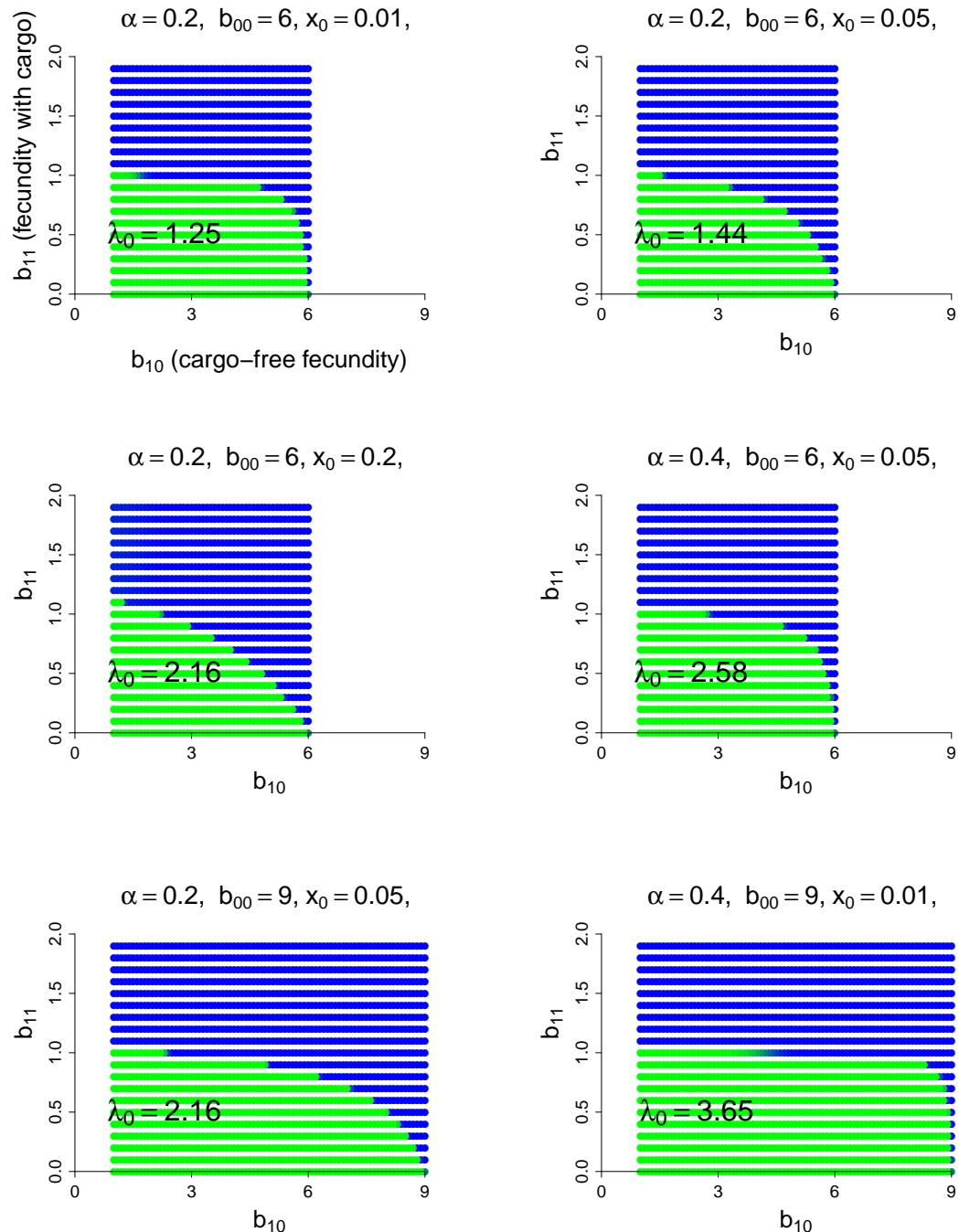
283 This model was evaluated numerically for different combinations of fidelity (α), cargo-free patch
 284 size (x_0), and genotype fecundities (b_{ij}). We focused on the case of a wild-type (starting genotype) that
 285 was unable to grow in the inhibitory environment of cargo-bearing hosts ($b_{01} = 0$), and for which the
 286 mutant could grow in the inhibitory environment at some reduction in its ability to grow in the cargo-free
 287 environment (i.e., a trade-off was imposed between growth in the two patch types). The patterns across
 288 trials are qualitatively similar and easily comprehended (Fig. 3). Resistance could invariably evolve if it
 289 did not incur too much of a cost to growth in the cargo-free hosts.

290 Some 'ecological' patterns are evident. (1) A large effect of α – host patch fidelity – on evolution
 291 exists in some parameter ranges. Thus, to displace wild-type, the mutant is more sensitive to a reduction
 292 in cargo-free fecundity at larger α – until fecundity in cargo-bearing hosts is high enough that the mutant

293 could sustain itself in those hosts alone (until b_{11} exceeded 1). This effect is evident when comparing
294 lower portions of the top right and middle right panels in Fig. 3 and was seen in other trials (not shown).
295 We interpret this effect as that higher values of α increasingly partition growth in the two patch types, so
296 that any fitness loss in the permissive patch – the one sustaining the population – is increasingly penalized,
297 but only to the point that the mutant parasite can maintain itself in cargo-bearing hosts.

298 (2) Patch size x_0 also appears to have a large effect, but in the opposite direction as that of α : as x_0
299 increases, resistance evolves more easily (i.e., tolerates larger reductions in cargo-free fecundity, $b_{00} - b_{10}$).
300 This effect is seen by comparing the first 3 panels of Fig. 3 which vary only x_0 . Although not shown, the
301 trend does not continue at high values of x_0 , and the effect reverses. Indeed, mutants whose $b_{11} > 1$ are
302 not favored at high x_0 values if they suffer too much cost in b_{10} . We do not pretend to grasp these patterns
303 intuitively. One challenge in understanding these outcomes is that x_0 has effects at different steps of the
304 life cycle: with higher x_0 , the cargo-free patch has an increased carrying capacity and thus produces more
305 progeny; some of these progeny return to patch 0 and the others go to the random pool. But the increase
306 in x_0 reduces the number of random-pool progeny that land in patch 1 and thereby reap the benefits of
307 resistance.

308 DISCUSSION


309 Genetic engineering has brought us to the brink of being able to introduce selfish genetic elements (known
310 as gene drives) in countless species (Esveld et al., 2014; Report, 2016; Collins, 2018). Although safety
311 concerns and regulatory hurdles, and to some extent technical hurdles, have so far prevented the release of
312 engineered gene drives, it seems inevitable that they will be released and eventually become a standard
313 intervention for pest management and disease control—if they work as expected. Much excitement is
314 about using gene drives for population suppression (Hamilton, 1967; Lyttle, 1977; Burt, 2003; Godfray
315 et al., 2017; Lambert et al., 2018), but an alternative approach that may encounter fewer regulatory
316 obstacles is to use ‘modification drives’ for spreading genetic cargo through a population (Sandler and
317 Novitski, 1957; Gould, 2008; Gantz et al., 2015; Beaghton et al., 2017). In this latter application, the gene
318 drive is a rapid and potentially harmless means of genetically engineering an entire population to carry a
319 novel gene of interest. Thus, a mosquito that transmits *Plasmodium* might be targeted for eradication by a
320 gene drive (Kyrou et al., 2018) or be targeted with a modification drive to spread a cargo that express
321 anti-*Plasmodium* antibodies that block *Plasmodium* reproduction in the mosquito (Gantz et al., 2015).

322 Our study addressed the latter type of application and even assumed that the gene drive cargo had
323 already spread in the host (e.g., mosquito) population. If this inhibitor fully suppresses the parasite in
324 any host individual expressing the cargo—if it operates as expected—how might parasites persist despite
325 our efforts to eradicate? Our emphasis here is on the possible contribution of spatial structure in the host
326 population to parasite escape. Even when the gene drive successfully spreads the cargo to most of the host
327 population, spatial structure combined with imperfect gene drive spread may leave pockets of cargo-free
328 mosquitoes that allow the parasite to persist locally.

329 Our findings suggest that spatial structure in the host population can contribute to—indeed be sufficient
330 to—enable parasite persistence against a cargo that would otherwise eradicate the parasite. Pockets of
331 parasite persistence then foment the evolution of resistance to escape the cargo, unless resistance mutations
332 cannot arise. The pockets need not be large, possibly representing a very small fraction of the range of the
333 species targeted by the drive.

334 Our results follow work suggesting another reason that cargo-bearing gene drives may fail to eradicate
335 parasites: the cargo frequency will begin to decline as soon as the gene drive carrier has reached its zenith
336 in the host population (Beaghton et al., 2017). Thus, independent of spatial structure, any cost to carrying
337 the gene drive element or cargo will select a loss of those elements once the gene drive spread has ended.
338 An additional problem facing modification drives that use homing is that they target genomic sequences
339 that are not essential to the host and thus have few selective constraints. Weakly selected sequences
340 can tolerate variation that would block a gene drive. A clever solution to this problem is to use drives
341 that target highly conserved sequences; to avoid harmful effects, they carry an insensitive cargo that
342 replaces the target gene (Burt, 2003; Champer et al., 2019c). They must then carry two cargos, one for the
343 modification, one to replace the target gene. Alternatively, use of multiple targets with CRISPR homing
344 (multiple gRNAs) may limit resistance evolution (Champer et al., 2019d).

345 There are two requirements for parasite escape under the models studied here: spatial structure and
346 genetic variation in cargo presence/expression that coincides with the spatial structure. Observation of

Figure 3

347 a spatially structured population would indicate that the first requirement is met. Pre-existing genetic
 348 variation in the host population may even contribute to variation in cargo presence or expression, as when
 349 existing variation directly resists gene drive spread or affect cargo expression, and spatial structure of the
 350 variation would lead to both requirements being satisfied. But even if existing genetic variation does not
 351 affect gene drive evolution or cargo expression, any existing spatial structure may become a problem for
 352 genetic variation that evolves during gene drive spread. Gene drive spread can generate its own variation
 353 in cargo presence/expression by evolving as it follows demographic paths of reproduction in the host

Figure 3. Parasite resistance to gene drive cargo, even if only partial, is favored if the cost to cargo-free fecundity is not too severe. Each panel represents evolution of wild-type versus mutant alleles under the set of parameter values given in the title. Patch-type fidelity is α , wild-type fecundity in cargo-free hosts is b_{00} , and the patch size of cargo-free hosts is x_0 ; wild-type fecundity in cargo-bearing hosts (b_{01}) is zero in all panels. Each dot represents a different mutant allele whose fecundities in cargo-free hosts (b_{10}) and in cargo-bearing hosts (b_{11}) are given by its coordinates; axes in the upper left panel are labeled to assist recollecting the b_{1j} . Green indicates that the wild-type was in a strong majority at the end of the trial, blue that the mutant was in a strong majority, and an intermediate color indicates that both alleles were moderately common. In the absence of competition from the mutant, the wild-type would persist for all conditions tested; its growth rate when rare is given as λ_0 in the panel, from eqn (9). Trials were run for 1000 generations in which both alleles started equally abundant in both patch types. Carrying capacity was 10^6 for all trials shown here.

354 population (Beaghton et al., 2017). Such variation would be maintained by any spatial structure intrinsic
355 to the host population.

356 The problem of parasite persistence and resistance evolution in response to a gene drive cargo has
357 parallels with evolution of resistance in other contexts: antibiotic treatment of bacteria, use of chemical
358 pesticides, and even genetically engineered ‘Bt’ crops. There is a widespread recognition that intermediate
359 levels of pesticides and antibiotics favor the evolution of resistance (e.g., Gould and MacKenzie, 2002;
360 Andersson and Hughes, 2012; Tabashnik and Gould, 2012; Neve et al., 2014; Gould et al., 2018). These
361 problems are more often cast as stemming from temporal variation in dose rather than spatial variation, but
362 the two types of heterogeneity are similar over the right time scales. In contrast, the practice of planting
363 non-engineered strains among genetically engineered Bt crops to delay insect resistance evolution is
364 explicitly one of destroying spatial structure (Tabashnik and Gould, 2012) and highlights the importance
365 of spatial structure to the evolution of resistance. Gene drive cargo expression is presumably stable in
366 time (for individual hosts and their dependants), at least for the short term, so parasite escape is primarily
367 a problem of spatial variation rather than one of temporal variation.

368 The models leave many questions unanswered about the nature and magnitude of spatial structure
369 required to enable parasite persistence. Indeed, it is the combination of spatial structure in conjunction
370 with genetic variation that matters. The right kind of spatial structure might exist in one part of a species
371 range, the appropriate genetic variation in another, yet the parasite be suppressed by the cargo throughout.
372 Furthermore, the permanence of spatial structure in the host population will depend heavily on host
373 dispersal patterns, and it is the combined movement over the the life cycle of the parasite that determines
374 the relevant structure. For parasites that alternate between two host species (e.g., mosquito-borne diseases
375 of humans), a highly structured mosquito species will not necessarily enable parasite persistence if the
376 second host—humans—is sufficiently mobile on the right time scale. Issues such as longevity of the
377 spatially structured patches, plus averages and variances of host dispersal distances may need to be
378 explored in the context of specific applications before understanding the potential for parasite escape.

379 Evolution of resistance is perhaps the ultimate concern. If cargo can be engineered to be resistance-
380 proof, spatial structure will be only a temporary setback as additional interventions are implemented.
381 Spatial structure will have the largest impact in facilitating evolution of resistance to cargo when resistance
382 can evolve only gradually, in small steps. In this case, parasite eradication might well be achieved were it
383 not for structure, but the structure provides the nucleus for gradual evolution of resistance that ultimately
384 enables the parasite to maintain itself on cargo-bearing hosts. Stacking multiple inhibitors in the same
385 host individual (as proposed for malaria (Gantz et al., 2015)) may, in the ideal case, prevent stepwise
386 resistance evolution. Here the concern is an evolutionary loss of part of the cargo, so that only single
387 inhibitors operate in some hosts; spatial structure would then contribute to evolution of resistance.

388 It has been convenient to focus on cargo-free patches as the type of reservoir enabling parasite escape.
389 An alternative—or additional—type of refuge to consider is patches of intermediate cargo expression,
390 enabling the parasite to persist at some level and directly favoring resistance. Intermediate patches may
391 occur with many levels of expression and may arise because of genetic background effects in the host
392 species or may arise by mutation during the spread of the gene drive itself. Thus, if cargo expression is
393 costly to the host, drives with reduced expression will spread even faster than drives with the original
394 engineering. These mutant-drive cargoes will form their own spatial structure as they spread, which may

395 then be maintained by intrinsic host structure. See (Weinstein et al., 2017) for an interesting study on
396 the evolution and dynamics of spatial structure in competing bacterial strains. The engineering faces a
397 delicate balance between cargo over-expression and cargo under-expression. Over-expression may impose
398 a fitness cost that selects against the drive/cargo, whereas the under-expression risks facilitating parasite
399 persistence and evolution of resistance. The effect of patch intermediacy on persistence may be evaluated
400 for our 2-patch case in Fig. 1 merely by considering one of the two patches to be intermediate instead
401 of extreme (e.g., cargo-free fecundity b_{00} would be depressed or cargo-bearing fecundity b_{01} would be
402 greater than 0). In a sense, our two patch model describes a worst-case scenario for parasite persistence;
403 we expect permissive conditions in the real world will be broader than our results suggest.

404 Subject to possible limitations of our analysis (see below), our findings can be tentatively used to
405 inform implementation practices most likely to succeed. In any implementation, inhibitory cargo should
406 be chosen so that resistance evolution is difficult (i.e., requires multiple steps) or impossible, as inhibitors
407 that can be overcome with single mutations seemed assured of eventual failure. Anti-drive resistance
408 evolution will also be a factor that should be considered and is likely to vary with design and even with
409 host population characteristics (Champer et al., 2019a,b), but that concern is not any more important for
410 spatial structure than without. Beyond that, there are a few design features that may facilitate parasite
411 suppression and work to limit evolution of resistance.

- 412 • **Prevent emergence of spatially structured variation.** Existing spatially structured genetic variation in a wild species may be difficult to change, although inundating small areas with release of lab-reared strains may offer a temporary solution—as underlies the sterile insect technique (Klassen and Curtis, 2005; Dyck et al., 2005). However, spatial variation that arises from gene drive spread and evolution (Beaghton et al., 2017) may be reduced by gene drive release at multiple sites (North et al., 2013), especially sites of import, such as population centers: the different waves of advance will collide with other waves, reducing any spatial evolution from single release points. Releasing multiple, independent drives in the same population, as proposed to overcome resistance evolution within unstructured populations (Burt, 2003; Derec et al., 2011), may limit the extent to which any area is completely free of cargo from at least one drive. As pointed out by a reviewer, killer-rescue systems may be far more susceptible to the generation of spatial structured variation than are homing drives; indeed, that is one of their oft-cited advantages.
- 424 • **Target areas of incomplete coverage.** Following gene drive spread, areas can be assessed for
425 cargo presence and expression. Regions identified as having inadequate coverage can be targeted
426 for additional interventions to offset the limited effect on parasites.
- 427 • **Consider gene knockouts as cargo.** Quantitative variation in cargo expression may be structured,
428 just as with cargo-free hosts. Partial expression of cargo may be even more conducive to parasite
429 resistance evolution than is a complete absence of cargo (by selecting intermediates). A gene drive
430 system that knocks out a non-essential host gene required for parasite reproduction/transmission
431 may be less subject to intermediate expression than is a cargo transgene and thus less likely to
432 select resistance. A possible downside is that ablation of a non-essential host gene may carry larger
433 fitness defects than does expression of a foreign transgene, and thus select resistance to the drive.

434 **Limitations of the models.** The models analyzed here depicted spatial structure abstractly and used
435 several other simplifications to achieve analytical tractability and comprehension: population regulation
436 with a sharp threshold, deterministic dynamics, steady state analyses, and few host types. Parasite
437 fecundity was abstracted to be as simple as possible. The models are best interpreted as augmenting
438 intuition rather than formally capturing any natural process, as might be done with agent-based simulations
439 (e.g. North et al., 2013, 2019). The results may thus be seen as to invite more formal analyses that include,
440 at a minimum, explicit spatial structure but also small population sizes that would accrue near extinction.
441 Despite these limitations, the results unambiguously point toward spatial structure as seriously impeding
442 gene drive implementations using cargo – an otherwise promising use of gene drives. From our results,
443 we conjecture that spatial structure can be sufficient to enable parasite escape from inhibitory genetic
444 cargo in the host population, but we equally suggest that there are likely to be many details affecting the
445 ease of escape and evolution of resistance. Indeed, it will be desirable to study models specific to the
446 biology of an implementation before making critical decisions about engineering and sites of release (e.g.,
447 Eckhoff et al., 2017; Lambert et al., 2018; North et al., 2019).

448 ACKNOWLEDGMENTS

449 We are very grateful to reviewers who offered their considerable insight to the biology of gene drives
450 and helped correct some our misunderstandings. JJB and CHR acknowledge support from National
451 Institutes of Health (R01GM 122079 and P20GM 104420). RG was supported by a WSU Honors College
452 Distinguished Professorship and NSF Grant DEB 1354264. The content is solely the responsibility of
453 the authors and does not necessarily represent the official views of the National Institutes of Health. The
454 funders had no role in study design, data collection and analysis, decision to publish, or preparation of the
455 manuscript.

456 REFERENCES

457 Akbari, O. S., Chen, C.-H., Marshall, J. M., Huang, H., Antoshechkin, I., and Hay, B. A. (2014). Novel
458 synthetic Medea selfish genetic elements drive population replacement in *Drosophila*; a theoretical
459 exploration of Medea-dependent population suppression. *ACS synthetic biology*, 3(12):915–928.

460 Akbari, O. S., Matzen, K. D., Marshall, J. M., Huang, H., Ward, C. M., and Hay, B. A. (2013). A synthetic
461 gene drive system for local, reversible modification and suppression of insect populations. *Current
462 biology: CB*, 23(8):671–677.

463 Andersson, D. I. and Hughes, D. (2012). Evolution of antibiotic resistance at non-lethal drug concen-
464 trations. *Drug Resistance Updates: Reviews and Commentaries in Antimicrobial and Anticancer
465 Chemotherapy*, 15(3):162–172.

466 Beaghton, A., Beaghton, P. J., and Burt, A. (2016). Gene drive through a landscape: Reaction-diffusion
467 models of population suppression and elimination by a sex ratio distorter. *Theoretical Population
468 Biology*, 108:51–69.

469 Beaghton, A., Hammond, A., Nolan, T., Crisanti, A., Godfray, H. C. J., and Burt, A. (2017). Requirements
470 for driving antipathogen effector genes into populations of disease vectors by homing. *Genetics*,
471 205(4):1587–1596.

472 Bruck, D. (1957). Male segregation ratio advantage as a factor in maintaining lethal alleles in wild
473 populations of house mice. *Proceedings of the National Academy of Sciences of the United States of
474 America*, 43(1):152–158.

475 Buchman, A. B., Ivy, T., Marshall, J. M., Akbari, O. S., and Hay, B. A. (2018). Engineered reciprocal
476 chromosome translocations drive high threshold, reversible population replacement in *Drosophila*. *ACS
477 synthetic biology*, 7(5):1359–1370.

478 Bull, J. J., Remien, C. H., and Krone, S. M. (2019). Gene-drive-mediated extinction is thwarted by
479 population structure and evolution of sib mating. *Evolution, Medicine, and Public Health*, 2019(1):66–
480 81.

481 Burt, A. (2003). Site-specific selfish genes as tools for the control and genetic engineering of natural
482 populations. *Proceedings. Biological Sciences / The Royal Society*, 270(1518):921–928.

483 Caswell, H. (2006). *Matrix population models*, volume 3. Wiley Online Library.

484 Champer, J., Kim, I., Champer, S. E., Clark, A. G., and Messer, P. W. (2019a). Performance analysis of
485 novel toxin-antidote CRISPR gene drive systems. *bioRxiv*, page 628362.

486 Champer, J., Reeves, R., Oh, S. Y., Liu, C., Liu, J., Clark, A. G., and Messer, P. W. (2017). Novel
487 CRISPR/Cas9 gene drive constructs reveal insights into mechanisms of resistance allele formation and
488 drive efficiency in genetically diverse populations. *PLOS Genet*.

489 Champer, J., Wen, Z., Luthra, A., Reeves, R., Chung, J., Liu, C., Lee, Y. L., Liu, J., Yang, E., Messer,
490 P. W., and Clark, A. G. (2019b). CRISPR gene drive efficiency and resistance rate is highly heritable
491 with no common genetic loci of large effect. *Genetics*, 212(1):333–341.

492 Champer, J., Yang, E., Lee, Y. L., Liu, J., Clark, A. G., and Messer, P. W. (2019c). Resistance is futile: A
493 CRISPR homing gene drive targeting a haplolethal gene. *bioRxiv*, page 651737.

494 Champer, S. E., Oh, S. Y., Liu, C., Wen, Z., Clark, A. G., Messer, P. W., and Champer, J. (2019d).
495 Computational and experimental performance of CRISPR homing gene drive strategies with multiplexed
496 gRNAs. *bioRxiv*, page 679902.

497 Chen, C.-H., Huang, H., Ward, C. M., Su, J. T., Schaeffer, L. V., Guo, M., and Hay, B. A. (2007). A
498 synthetic maternal-effect selfish genetic element drives population replacement in *Drosophila*. *Science
499 (New York, N.Y.)*, 316(5824):597–600.

500 Collins, J. P. (2018). Gene drives in our future: challenges of and opportunities for using a self-sustaining
501 technology in pest and vector management. *BMC proceedings*, 12(Suppl 8):9.

502 Crow, J. F. and Kimura, M. (1970). *An introduction to population genetics theory*. Burgess Pub. Co.

503 Deredec, A., Burt, A., and Godfray, H. C. J. (2008). The population genetics of using homing endonuclease
504 genes in vector and pest management. *Genetics*, 179(4):2013–2026.

505 Deredec, A., Godfray, H. C. J., and Burt, A. (2011). Requirements for effective malaria control with
506 homing endonuclease genes. *Proceedings of the National Academy of Sciences of the United States of
507 America*, 108(43):E874–880.

508 Drury, D. W., Dapper, A. L., Siniard, D. J., Zentner, G. E., and Wade, M. J. (2017). CRISPR/Cas9
509 gene drives in genetically variable and nonrandomly mating wild populations. *Science Advances*,
510 3:e1601910.

511 Dyck, V. A., Hendrichs, J., and Robinson, A. S. (2005). *Sterile Insect Technique*. Springer-Verlag.

512 Eckhoff, P. A., Wenger, E. A., Godfray, H. C. J., and Burt, A. (2017). Impact of mosquito gene drive on
513 malaria elimination in a computational model with explicit spatial and temporal dynamics. *Proceedings
514 of the National Academy of Sciences*, 114(2):E255–E264.

515 Esveld, K. M., Smidler, A. L., Catteruccia, F., and Church, G. M. (2014). Concerning RNA-guided gene
516 drives for the alteration of wild populations. *eLife*, page e03401.

517 Gantz, V. M. and Bier, E. (2015). Genome editing. The mutagenic chain reaction: a method for converting
518 heterozygous to homozygous mutations. *Science (New York, N.Y.)*, 348(6233):442–444.

519 Gantz, V. M., Jasinskiene, N., Tatarenkova, O., Fazekas, A., Macias, V. M., Bier, E., and James, A. A.
520 (2015). Highly efficient Cas9-mediated gene drive for population modification of the malaria vector
521 mosquito *Anopheles stephensi*. *Proceedings of the National Academy of Sciences of the United States
522 of America*, 112(49):E6736–6743.

523 Godfray, H. C. J., North, A., and Burt, A. (2017). How driving endonuclease genes can be used to combat
524 pests and disease vectors. *BMC biology*, 15(1):81.

525 Gomulkiewicz, R., Krone, S. M., and Remien, C. H. (2017). Evolution and the duration of a doomed
526 population. *Evolutionary Applications*, 10(5):471–484.

527 Gould, F. (2008). Broadening the application of evolutionarily based genetic pest management. *Evolution*,
528 62(2):500–510.

529 Gould, F., Brown, Z. S., and Kuzma, J. (2018). Wicked evolution: Can we address the sociobiological
530 dilemma of pesticide resistance? *Science (New York, N.Y.)*, 360(6390):728–732.

531 Gould, F., Huang, Y., Legros, M., and Lloyd, A. L. (2008). A killer-rescue system for self-limiting
532 gene drive of anti-pathogen constructs. *Proceedings. Biological Sciences / The Royal Society*,
533 275(1653):2823–2829.

534 Gould, I. M. and MacKenzie, F. M. (2002). Antibiotic exposure as a risk factor for emergence of resistance:
535 the influence of concentration. *Journal of Applied Microbiology*, 92 Suppl:78S–84S.

536 Hamilton, W. D. (1967). Extraordinary sex ratios. A sex-ratio theory for sex linkage and inbreeding has
537 new implications in cytogenetics and entomology. *Science (New York, N.Y.)*, 156(3774):477–488.

538 Hufbauer, R. A., Szűcs, M., Kasyon, E., Youngberg, C., Koontz, M. J., Richards, C., Tuff, T., and
539 Melbourne, B. A. (2015). Three types of rescue can avert extinction in a changing environment.
540 *Proceedings of the National Academy of Sciences of the United States of America*, 112(33):10557–
541 10562.

542 Klassen, W. and Curtis, C. F. (2005). History of the sterile insect technique. In Dyck, V. A., Hendrichs, J.,
543 and Robinson, A. S., editors, *Sterile Insect Technique*, pages 3–36. Springer Netherlands.

544 Kyrou, K., Hammond, A. M., Galizi, R., Kranjc, N., Burt, A., Beaghton, A. K., Nolan, T., and Crisanti, A.
545 (2018). A CRISPR-Cas9 gene drive targeting doublesex causes complete population suppression in
546 caged *Anopheles gambiae* mosquitoes. *Nature Biotechnology*.

547 Lambert, B., North, A., Burt, A., and Godfray, H. C. J. (2018). The use of driving endonuclease genes to
548 suppress mosquito vectors of malaria in temporally variable environments. *Malaria Journal*, 17(1):154.

549 Legros, M., Xu, C., Morrison, A., Scott, T. W., Lloyd, A. L., and Gould, F. (2013). Modeling the dynamics
550 of a non-limited and a self-limited gene drive system in structured *Aedes aegypti* populations. *PloS
551 One*, 8(12):e83354.

552 Lyttle, T. W. (1977). Experimental population genetics of meiotic drive systems. I. Pseudo-Y chromosomal
553 drive as a means of eliminating cage populations of *Drosophila melanogaster*. *Genetics*, 86(2 Pt. 1):413–
554 445.

555 Marshall, J. M. and Hay, B. A. (2011). Inverse Medea as a novel gene drive system for local population
556 replacement: a theoretical analysis. *The Journal of Heredity*, 102(3):336–341.

557 Martin, G., Aguilée, R., Ramsayer, J., Kaltz, O., and Ronce, O. (2013). The probability of evolutionary
558 rescue: towards a quantitative comparison between theory and evolution experiments. *Philosophical
559 Transactions of the Royal Society of London. Series B, Biological Sciences*, 368(1610):20120088.

560 Neve, P., Busi, R., Renton, M., and Vila-Aiub, M. M. (2014). Expanding the eco-evolutionary context of
561 herbicide resistance research. *Pest Management Science*, 70(9):1385–1393.

562 Noble, C., Olejarz, J., Esveld, K. M., Church, G. M., and Nowak, M. A. (2017). Evolutionary dynamics of
563 CRISPR gene drives. *Science Advances*, 3(4):e1601964.

564 North, A., Burt, A., Godfray, H. C. J., and Buckley, Y. (2013). Modelling the spatial spread of a homing
565 endonuclease gene in a mosquito population. *The Journal of Applied Ecology*, 50(5):1216–1225.

566 North, A. R., Burt, A., and Godfray, H. C. J. (2019). Modelling the potential of genetic control of malaria
567 mosquitoes at national scale. *BMC biology*, 17(1):26.

568 Oberhofer, G., Ivy, T., and Hay, B. A. (2019). Cleave and Rescue, a novel selfish genetic element and
569 general strategy for gene drive. *Proceedings of the National Academy of Sciences of the United States
570 of America*, 116(13):6250–6259.

571 Okamoto, K. W., Robert, M. A., Gould, F., and Lloyd, A. L. (2014). Feasible introgression of an
572 anti-pathogen transgene into an urban mosquito population without using gene-drive. *PLoS neglected
573 tropical diseases*, 8(7):e2827.

574 Prout, T. (1953). Some effects of variations in the segregation ratio and of selection on the frequency of
575 alleles under random mating. *Acta Genetica Et Statistica Medica*, 4(2-3):148–151.

576 Report, N. A. (2016). Gene drive research in non-human organisms: Recommendations for responsible
577 conduct.

578 Sandler, L. and Novitski, E. (1957). Meiotic drive as an evolutionary force. *The American Naturalist*,
579 91(857):105–110.

580 Tabashnik, B. E. and Gould, F. (2012). Delaying corn rootworm resistance to Bt corn. *Journal of
581 Economic Entomology*, 105(3):767–776.

582 Tanaka, H., Stone, H. A., and Nelson, D. R. (2017). Spatial gene drives and pushed genetic waves.
583 *Proceedings of the National Academy of Sciences of the United States of America*, 114(32):8452–8457.

584 Uecker, H., Otto, S. P., and Hermisson, J. (2014). Evolutionary rescue in structured populations. *The
585 American Naturalist*, 183(1):E17–35.

586 Unckless, R. L., Clark, A. G., and Messer, P. W. (2017). Evolution of resistance against CRISPR/Cas9
587 gene drive. *Genetics*, 205(2):827–841.

588 Unckless, R. L., Messer, P. W., Connallon, T., and Clark, A. G. (2015). Modeling the manipulation of
589 natural populations by the mutagenic chain reaction. *Genetics*, 201(2):425–431.

590 Weinstein, B. T., Lavrentovich, M. O., Möbius, W., Murray, A. W., and Nelson, D. R. (2017). Genetic
591 drift and selection in many-allele range expansions. *PLOS Computational Biology*, 13(12):e1005866.