

1 Genomic predictive ability for foliar nutritive traits in perennial 2 ryegrass

3 **Sai Krishna Aroju^{*1}, Mingshu Cao^{*}, M. Z. Zulfi Jahufer^{*}, Brent A Barrett^{*}, Marty J Faville^{*}**

4 *AgResearch Ltd, Grasslands Research Centre, PB 11008, Palmerston North, New Zealand

5 **¹Correspondence:**

6 Dr. Sai Krishna Aroju

7 sai.aroju@agresearch.co.nz

8 **Keywords:** genomic selection, genotype-by-environments, heritability, nutritive traits, perennial
9 ryegrass, water soluble carbohydrates.

10

11 Abstract

12 Forage nutritive value impacts animal nutrition, which underpins livestock productivity, reproduction
13 and health. Genetic improvement for nutritive traits has been limited, as they are typically expensive
14 and time-consuming to measure through conventional methods. Genomic selection is appropriate for
15 such complex and expensive traits, enabling cost-effective prediction of breeding values using genome-
16 wide markers. The aims of the present study were to assess the potential of genomic selection for a
17 range of nutritive traits in a multi-population training set, and to quantify contributions of genotypic,
18 environmental and genotype-by-environment (G x E) variance components to trait variation and
19 heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families,
20 from five advanced breeding populations, evaluated in two distinct New Zealand grazing
21 environments. Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of
22 the half-sib families were genotyped using genotyping-by-sequencing. Significant (P<0.05) genotypic
23 variation was detected for all nutritive traits and genomic heritability (h^2_g) was moderate to high (0.20
24 to 0.74). G x E interactions were significant and particularly large for water soluble carbohydrate
25 (WSC), crude fat, phosphorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesC genomic
26 prediction models displayed similar predictive ability, estimated by 10-fold cross validation, for all
27 nutritive traits with values ranging from $r = 0.16$ to 0.45 using phenotypes from across two
28 environments. High predictive ability was observed for the mineral traits sulphur (0.44), sodium (0.45)
29 and magnesium (0.45) and the lowest values were observed for P (0.16), digestibility (0.22) and high
30 molecular weight WSC (0.23). Predictive ability estimates for most nutritive traits were retained when
31 marker number was reduced from 1 million to as few as 50,000. The moderate to high predictive
32 abilities observed suggests implementation of genomic selection is feasible for most of the nutritive
33 traits examined. For traits with lower predictive ability, multi-trait genomic prediction approaches that
34 exploit the strong genetic correlations observed amongst some nutritive traits may be useful. This
35 appears to be particularly important for WSC, considered one of the primary constituent of nutritive
36 value for forages.

37

38

39

40 **1 Introduction**

41 Perennial ryegrass (*Lolium perenne* L.) from permanent pasture is the major feed component for
42 ruminant production systems in temperate regions of the world. Historically, improvement of annual
43 and seasonal dry matter yield (DMY) have been significant objectives for perennial ryegrass breeding
44 (WILKINS AND HUMPHREYS 2003; WILLIAMS *et al.* 2007; VAN PARIJS *et al.* 2018). Today, seasonal
45 distribution of DMY features as the major component of economic ranking indices developed for this
46 species in New Zealand (Forage Value Index, FVI) (CHAPMAN *et al.* 2017), Australia (LEDDIN *et al.*
47 2018) and Ireland (Pasture Profit Index, PPI) (MC EVOY *et al.* 2011; MC EVOY *et al.* 2014). Nutritive
48 traits in forages are also important for livestock productivity, maintenance of body weight and for
49 supporting reproduction and health in the grazing animals (WAGHORN AND CLARK 2004). Although
50 there is existing information that demonstrates the importance of nutritive value traits and the potential
51 economic returns from trait improvement, the overall breeding effort for nutritive traits in ryegrass has
52 received considerably less attention than for DMY (SMITH *et al.* 1997). Increased breeding effort for
53 nutritive traits, with validated outcomes for animal productivity, would provide enhanced on-farm
54 value to farmers (JAFARI *et al.* 2003a; CHAPMAN *et al.* 2017).

55 Compared to other forage grass species, perennial ryegrass is regarded as having relatively high
56 nutritive value, providing a cost effective, nutrient rich feed for ruminant livestock (WILKINS 1991;
57 BAERT AND MUYLLE 2016). Breeding for improved nutritive value in this species has focused
58 principally on higher *in vitro* dry matter (DM) digestibility to enhance energy availability and voluntary
59 intake from grazed pasture (JUNG AND ALLEN 1995). This is a key selection criterion in many ryegrass
60 breeding schemes (CASLER AND VOGEL 1999; EASTON *et al.* 2002; MUYLLE *et al.* 2013), particularly
61 in Europe, where WILKINS AND HUMPHREYS (2003) reported genetic improvement of approximately
62 10g kg⁻¹ per decade for DM digestibility. Breeding to increase water-soluble carbohydrate (WSC)
63 content in ryegrass herbage, one of few reported studies of successful breeding for a nutritive trait in
64 perennial ryegrass (HUMPHREYS 1989a; JONES AND ROBERTS 1991; SMITH *et al.* 1997), has been a
65 major contributor to genetic improvement of digestibility (WILKINS AND HUMPHREYS 2003; MUYLLE
66 *et al.* 2013). More recently, there has been increased emphasis on addressing digestibility through the
67 improvement of fibre degradability *per se*, by targeting changes in the biochemical composition of the
68 cell wall (FAVILLE *et al.* 2010; VAN PARIJS *et al.* 2018).

69 Minerals and trace elements are essential elements for plant growth and are critical to various biological
70 functions of the plant. In forages, these macro- and micronutrients are also important components of
71 nutritive quality, critical for maintaining livestock health (WAGHORN 2007). For example, metabolic
72 disorders can be caused or contributed to by mineral imbalances in the diet, such as hypomagnesaemia
73 (grass tetany) which is caused by insufficient magnesium and calcium in the diet. Earlier studies have
74 identified genetic variation amongst families (EASTON *et al.* 1997; SMITH *et al.* 1999) or genotypic
75 variation amongst cultivars (CRUSH *et al.* 2018a; CRUSH *et al.* 2018b) for micro- and macronutrients,
76 indicating that breeding for mineral content is a realistic opportunity.

77 The reduced emphasis on breeding for nutritive traits in forages is affected by a number of factors,
78 including a lack of consensus on specific breeding targets (WHEELER AND CORBETT 1989; CHAPMAN
79 *et al.* 2015), ambiguous evidence for the impact of specific nutritive traits on animal production
80 outcomes (EASTON *et al.* 2002; EDWARDS *et al.* 2007; MC EVOY *et al.* 2011), the confounding influence
81 of environment and genotype x environment (G x E) interactions, and the significant additional

82 resources needed in a breeding program to undertake nutritive trait measurements in large panels of
83 selection candidates (SMITH *et al.* 1997).

84 Genomic selection (GS), where breeding value for a trait may be cost-effectively predicted for selection
85 candidates using genome-wide markers, was initially proposed for animal breeding by MEUWISSEN *et*
86 *al.* (2001). In GS, a training population combining phenotypic and genotypic information is used to
87 develop a model that can subsequently be used to predict genomic estimated breeding values (GEBVs)
88 for individuals in a test or selection population that have been genotyped only. In essence, GS replaces
89 the need to phenotype the target trait. GS has been demonstrated in dairy cattle breeding, where the
90 rate of genetic gain was doubled by reducing generation interval from 7 to 2.5 years or from 4 to 2.5
91 years, depending upon selection strategy (GARCÍA-RUIZ *et al.* 2016). Over the last decade the declining
92 cost of genotyping single nucleotide polymorphisms (SNPs), largely through reduced representation
93 sequencing approaches such as genotyping-by-sequencing (GBS) (ELSHIRE *et al.* 2011), has made this
94 tool feasible for plant breeding. GS is now being applied in major crop species, including wheat
95 (RUTKOSKI *et al.* 2011; POLAND *et al.* 2012; LOPEZ-CRUZ *et al.* 2015; HAYES *et al.* 2017), maize (ZHAO
96 *et al.* 2012; FRISTCHE-NETO *et al.* 2018) and barley (ZHONG *et al.* 2009; LORENZ *et al.* 2012) and is
97 under adoption in forage species, including perennial ryegrass (FÈ *et al.* 2016; GRINBERG *et al.* 2016;
98 BYRNE *et al.* 2017; AROJU *et al.* 2018; FAVILLE *et al.* 2018; PEMBLETON *et al.* 2018), and alfalfa
99 (ANNICCHIARICO *et al.* 2015; LI *et al.* 2015; BIAZZI *et al.* 2017; JIA *et al.* 2018).

100 GS can accelerate genetic gain particularly for complex traits, which are controlled by many genes
101 with small effects and for traits which are difficult to measure and expensive (HESLOT *et al.* 2015). GS
102 is therefore a very attractive tool for nutritive traits, given the barriers, described above, to routine
103 integration of nutritive traits into forage breeding programs. The success of GS primarily depends on
104 predictive ability, which is influenced by trait heritability (h^2_n), training population size, marker
105 density, extent of linkage disequilibrium (LD) and relatedness between training and test population
106 (DAETWYLER *et al.* 2013). While the heritability of a trait and the extent of LD in a training population
107 cannot be easily optimized, the density of markers and the size and composition of the training
108 population are two factors that can be controlled. Several methods have been developed for genomic
109 prediction and can be broadly classified as whole-genome regression methods (discussed by DE LOS
110 CAMPOS *et al.* (2013)) or machine learning methods (outlined by GONZÁLEZ-CAMACHO *et al.* (2018)).
111 Based on simulation and empirical results, DAETWYLER *et al.* (2013) concluded that genomic best
112 linear unbiased predictor (GBLUP) and Bayesian variable selection methods (BayesB and BayesC)
113 were the benchmark for genomic prediction, as these methods are appropriate for a range of genetic
114 architectures, from traits which are controlled by many genes with small effects (infinitesimal model)
115 to traits with large SNP effects (variable selection model).

116 The principle aim of the current study was to assess genomic predictive ability for 18 nutritive quality
117 traits, measured in a large multi-population training set in two key New Zealand grazing environments,
118 and to investigate the impact of marker density and of genomic prediction models with different prior
119 assumptions regarding the distribution of SNP effects. The study also provided an opportunity to assess
120 the magnitude of genetic variation and to estimate heritability for a large range of nutritive traits under
121 New Zealand grazing environments.

122 2 Materials and Methods

123 2.1 Plant material and experimental design

124 The half-sibling (half-sib) families used in this study were derived from five different advanced
125 breeding populations (Pop I – Pop V), which are part of the Grassland Innovation Ltd breeding

126 program. From each population, 102 to 117 plants that tested positive for endophyte infection (*Epichloë*
127 *festucae* var *lollis*) by immunoblotting (HAHN *et al.* 2003), were polycrossed in isolation during spring
128 2012 in Palmerston North, New Zealand (FAVILLE *et al.* 2018). Polycrosses were performed separately
129 for each population, without admixing, and seeds from the maternal parents were harvested and
130 cleaned. In total 543 half-sib families were harvested for seed, however only 517 families had sufficient
131 seed ($\geq 3.6\text{g}$) for sowing field trials.

132 A total of six trials were sown (FAVILLE *et al.* 2018), of which two were used for the current study.
133 These were trials established at Lincoln (Canterbury region, southern New Zealand, 43.38°S 172.62°E ;
134 Wakanui silt loam) and Aorangi (Manawatu region, central New Zealand, 40.34°S 175.46°E ; Kairanga
135 sandy loam), during the autumn of 2013. The experimental design at each site was row-column with
136 three replicates. Within each replicate, populations were blocked, and families randomized within
137 blocks. Multiple repeated checks (clonal replicates) were also randomly allocated within and across
138 the replicated blocks. Half-sib families were evaluated as a 1m row of plants (referred to from now as
139 plots), by sowing 0.2 g of seed (which is equivalent to 14 kg ha^{-1} , if a sward was sown at 7 rows m^{-1}).
140 Nitrogen and phosphate fertilizer was applied at the rate of $15\text{-}30\text{ kg N ha}^{-1}$ and 8.8 kg P ha^{-1} , in late
141 autumn each year (FAVILLE *et al.* 2018).

142 2.2 Phenotypic measurements

143 Plot harvests were undertaken at Lincoln starting 14 April 2014 and at Aorangi starting 29 April 2014,
144 during the southern hemisphere autumn. At each site a single harvest was undertaken over three days,
145 between 10:30 am and 3:00 pm on each day to minimize the influence of diurnal variation on levels of
146 measured constituents. Split harvesting of populations or replicate blocks over two days was avoided.
147 Plots were cut to a height of approximately 5 cm, above the pseudostem, meaning that only leaf lamina
148 material was harvested. Harvested foliage was placed into micro-perforated plastic bread bags and
149 immediately snap frozen in liquid nitrogen. Samples were subsequently maintained at ca. -80°C on
150 frozen CO_2 to preserve labile components and then freeze-dried at one of two commercial facilities -
151 Genesis Biolaboratory Ltd (Christchurch, New Zealand) or Horowhenua Freeze-Dry (Levin, New
152 Zealand). Freeze-dried samples were milled to powder through a 1mm sieve and thoroughly mixed to
153 homogenize the sample. Sub-samples were weighed out and transferred to Hill Laboratories (Hamilton,
154 New Zealand) for near-infrared spectroscopy (NIRS) and minerals analysis and to AgResearch
155 (Palmerston North, New Zealand) for analysis of water-soluble carbohydrate (WSC). A total of 3082
156 samples ($n = 1476$ from Lincoln and $n = 1606$ from Manawatu) were provided for analysis. Hill
157 Laboratories provided NIRS data for a range of nutritional traits, as outlined in Table 1. Data for
158 mineral concentrations (Table 1) were based on inductively coupled plasma-optical emission (ICP-
159 OES) analysis of plant material digested with nitric acid: hydrogen peroxide (2:1). Grass tetany ratio
160 was calculated as $[\text{K}/(\text{Mg} + \text{Ca})]$ using the data provided for the individual minerals. WSC was
161 extracted and quantified as described by HUNT *et al.* (2005). Briefly, 25 mg of milled leaf material was
162 extracted twice with 1mL of 80% ethanol (low-molecular-weight fraction; LMW WSC WSC) and then
163 twice with 1 mL water (high-molecular-weight fraction; HMW WSC WSC), for 30 min at 65°C .
164 Extracts were centrifuged, and supernatants of the respective fractions were analyzed using anthrone
165 as a colorimetric reagent (JERMYN 1956).

166 2.3 Statistical models and variance components

167 Data analyses were performed across the five populations, for individual locations and across the two
168 locations, using the restricted maximum likelihood (REML) method, by fitting a linear mixed model
169 in GenStat (PAYNE *et al.* 2009). Analyses were also performed on the five populations individually, by
170 fitting linear mixed models in DeltaGen (JAHUFER AND LUO 2018). Genotype, G x E interaction,

replicates, rows and columns were considered as random effects, whereas location, population and repeated checks were considered as fixed effects. Three different mixed linear models were used: (i) Model 1, to estimate genotypic variance components, pooling all five populations, all 517 families together, within individual locations; (ii) Model 2, for estimating genotypic variance components and interactions of family and location, pooling all five populations, across locations; and (iii) Model 3, for estimating genetic variance and G x E interactions, among half-sib families within individual populations, across locations.

Model 1: Mixed model for individual locations.

$$y_{ijkln} = \mu + g_i + p_n + b_{nl} + r_{nlj} + c_{nlk} + \varepsilon_{ijkln} \quad (1)$$

y_{ijkln} is the phenotypic value measured on half-sib family i in row j and column k of replicate l nested within population n , and $i = 1, \dots, n_g$, $j = 1, \dots, n_r$, $k = 1, \dots, n_c$, $l = 1, \dots, n_b$, $m = 1, \dots, n_s$, $n = 1, \dots, n_p$, where g , r , c , b , and p are half-sib families, rows, columns, replicates and populations respectively. Where, μ is the overall mean; g_i is the random effect of half-sib family i , $N(0, \sigma_g^2)$; p_n is the fixed effect of population n ; b_{nl} is the random effect of replicate l in population n , $N(0, \sigma_b^2)$; r_{nlj} is the random effect of row j within replicate l of population n , $N(0, \sigma_r^2)$; c_{nlk} is the random effect of column k within replicate l of population n , $N(0, \sigma_c^2)$; ε_{ijkln} is the residual effect of half-sib family i in row r and column c of replicate b of population n , $N(0, \sigma_\varepsilon^2)$.

Model 2: Mixed model for across locations.

$$y_{ijklmn} = \mu + g_i + s_m + (gs)_{im} + p_n + b_{nml} + r_{nmlj} + c_{nmlk} + \varepsilon_{ijklmn} \quad (2)$$

y_{ijklmn} is the phenotypic value measured on half-sib family i in row j and column k of replicate l nested in location m within population n , and $i = 1, \dots, n_g$, $j = 1, \dots, n_r$, $k = 1, \dots, n_c$, $l = 1, \dots, n_b$, $m = 1, \dots, n_s$, $n = 1, \dots, n_p$, where g , r , c , b , s and p are half-sib families, rows, columns, replicates, locations and populations respectively. In the equation, μ is the overall mean; g_i is the random effect of half-sib family i , $N(0, \sigma_g^2)$; s_m is the fixed effect of location m ; $(gs)_{im}$ is the random effect of interaction between half-sib family i and location m , $N(0, \sigma_{gs}^2)$; p_n is the fixed effect of population n ; b_{nml} is the random effect of replicate l within location m in population n , $N(0, \sigma_b^2)$; r_{nmlj} is the random effect of row j within replicate l in location m of population n , $N(0, \sigma_r^2)$; c_{nmlk} is the random effect of column k within replicate l in location m of population n , $N(0, \sigma_c^2)$; ε_{ijklmn} is the residual effect of half-sib family i in row r and column c of replicate b in location m of population n , $N(0, \sigma_\varepsilon^2)$.

Model 3: Mixed model for individual populations.

$$y_{ijklm} = \mu + g_i + s_m + (gs)_{im} + b_{ml} + r_{mlj} + c_{mlk} + \varepsilon_{ijklm} \quad (3)$$

y_{ijklm} is the phenotypic value measured on half-sib family i in row j and column k of replicate l nested in location m . In the equation, μ is the overall mean; g_i is the random effect of half-sib family i ,

202 $N(0, \sigma_g^2)$; s_m is the fixed effect of location m ; $(gs)_{im}$ is the random effect between half-
203 sib family i and location m , $N(0, \sigma_{gs}^2)$; p_n is the fixed effect of population n ; b_{ml} is the random effect
204 of replicate l within location m , $N(0, \sigma_b^2)$; r_{mlj} is the random effect of row j within replicate l in
205 location m , $N(0, \sigma_r^2)$; c_{mlk} is the random effect of column k within replicate l in location m , $N(0, \sigma_c^2)$;
206 ε_{ijklmn} is the residual effect of half-sib family i in row r and column c of replicate b in location m ,
207 $N(0, \sigma_\varepsilon^2)$.

208 The variance components estimated based on the mixed model analysis were used to calculate
209 repeatability (Model 2) (FALCONER 1960) and narrow sense heritability (Model 3) for each trait.
210 Repeatability was based on genotypic variance estimated across five populations, whereas narrow-
211 sense heritability is based on additive genetic variance among half-sib families within each population.
212 Repeatability and narrow sense heritability, on a family mean basis, were estimated using the equation:

$$R \text{ or } h_n^2 = \frac{\sigma_g^2}{\sigma_g^2 + \frac{\sigma_{gs}^2}{s} + \frac{\sigma_\varepsilon^2}{sb}} \quad (4)$$

213 Where, R and h_n^2 are repeatability and narrow-sense heritability. For repeatability, σ_g^2 was the
214 genotypic variance among all the 517 half-sib families. In the estimation of narrow-sense
215 heritability, σ_g^2 was the estimated additive genetic variation among half-sib families within a specific
216 population, σ_{gs}^2 is the variance associated with G x E interaction and σ_ε^2 is the variance of residuals.

217 2.4 Genotypic and phenotypic correlation

218 The genotypic correlation among traits was estimated as proposed by FALCONER (1960). Multivariate
219 analysis of variance (MANOVA) was performed in DeltaGen (JAHUFER AND LUO 2018), using the
220 multivariate analysis option, to estimate variance and covariance among traits:

$$r_{g(x,y)} = \frac{Cov_{g(x,y)}}{\sqrt{\sigma^2(x), \sigma^2(y)}} \quad (5)$$

221 Where, $Cov_{g(x,y)}$ is the genotypic covariance between trait x and y ; $\sigma^2(x)$ is the variance associated
222 with trait x , and $\sigma^2(y)$ is the variance associated with trait y . Phenotypic correlation was performed in
223 DeltaGen (JAHUFER AND LUO 2018) using the best linear unbiased predictors (BLUPs) estimated based
224 on Model 2.

225 2.5 Genotyping and genomic heritability

226 All maternal parents of the 517 half-sib families were genotyped using a GBS approach described in
227 FAVILLE *et al.* (2018), following the protocol proposed by ELSHIRE *et al.* (2011). Briefly, a reference
228 ryegrass genome assembly was constructed using scaffolds from a published ryegrass assembly
229 (BYRNE *et al.* 2015). Scaffolds were aligned to the barley genome using Lastz version 7.0.1 (HARRIS
230 2007) from Geneious 8 (<https://www.geneious.com/>, (KEARSE *et al.* 2012)) with default parameters.
231 Demultiplexing of sequencing reads was performed using the TASSEL 5.0 GBS pipeline (GLAUBITZ
232 *et al.* 2014) and initial quality control was based on read count statistics. The quality GBS tags were
233 aligned to the reference genome using Bowtie2 (LANGDON 2015). Genotype calling was performed

234 using TASSEL GBS pipeline to obtain 1,093,464 SNPs, after filtering for maximum missing SNPs per
 235 site (50%), minor allele frequency (> 0.05) and read depth (> 1) using VCF tools (DANECEK *et al.*
 236 2011). Genotyped 1,093,464 SNPs were exported and filtered for Hardy-Weinberg disequilibrium
 237 (HWdiseq > -0.05). The resulting 1,023,011 SNPs, with a mean read depth of 2.98, were used to
 238 compute a genomic relationship matrix (KGD matrix) based on protocol proposed by DODDS *et al.*
 239 (2015). The KGD matrix was used for genomic predictive modelling. Population structure was
 240 previously analyzed using multi-dimensional scaling based on genomic relationship matrix (see Figure
 241 1 in FAVILLE *et al.* (2018))

242 Genomic heritability (h^2_g) was calculated using Eq. 4, based on variance components estimated using
 243 the mixed model proposed in Eq. 2. In the model, the KGD matrix was fitted as variance-covariance
 244 among genotypes (DE LOS CAMPOS *et al.* 2015) and the genetic variance was calculated as proportion
 245 of variance explained by regressing markers on phenotypes. The model was fitted in ASreml-R
 246 (BUTLER *et al.* 2009).

247 **2.6 Genomic prediction modelling**

248 Three whole-genome regression methods, with two different prior assumptions regarding the
 249 distribution of marker effects, were used for generating GEBVs. The first method was a univariate
 250 linear mixed model, called GBLUP (GODDARD *et al.* 2011) in which markers effects were assumed to
 251 have equal variance. The linear model can be expressed follows:

$$y = \beta + Z\mu + \varepsilon \quad (6)$$

252 Where y is the vector of BLUP values of the trait, β is the vector of grand mean, Z is the design matrix
 253 associated with random marker effects μ , with $\mu \sim N(0, \sigma_\mu^2 G)$, in which G is the additive genetic
 254 relationship matrix, and $\varepsilon \sim N(0, \sigma_\varepsilon^2 I)$, in which I is the identity matrix. The G matrix was calculated
 255 based on the method proposed by VANRADEN (2008); ENDELMAN AND JANNINK (2012) using A.mat
 256 function in rrBLUP package (ENDELMAN 2011).

257 The second method is a variant of GBLUP method with KGD matrix as G in the linear mixed model.
 258 The GBLUP and KGD-GBLUP models were fitted using the rrBLUP package (ENDELMAN 2011),
 259 implemented through R programming language (R CORE TEAM 2017).

260 The third method was BayesC (HABIER *et al.* 2011), in which markers effects can depart from
 261 normality, that is, large variances are allowed for markers with larger effects.

262 The model is expressed as follows:

$$y = \beta + \sum_{k=1}^k z_k \alpha_k + \varepsilon \quad (7)$$

263 Where y is the vector of BLUP values of the trait, β is the vector of grand mean, k is the number of
 264 makers, Z_k is the vector of genotypes at marker k , α_k is the additive effect of the marker, and ε is the
 265 vector of residual effects with a normal distribution $N(0, \sigma_\varepsilon^2)$. The BayesC model was implemented
 266 through R programming using the BGLR package (PÉREZ AND DE LOS CAMPOS 2014), with the number

267 of burn-ins set to 2,000, total number of iterations set to 10,000, and other parameters set to default
268 (PÉREZ AND DE LOS CAMPOS 2014).

269 The predictive ability of the models based on data from the composite training population was assessed
270 by a ten-fold cross validation approach. For each cross validation, randomized data were divided into
271 ten equal parts, of which nine parts (training set) were used to train the model and to predict GEBVs
272 in the remaining one part of the data (test set). Randomization of the complete data set was repeated
273 five times and the mean of the five iterations was reported as the predictive ability of the model
274 (FAVILLE *et al.* 2018).

275 2.7 Evaluating predictions in individual populations

276 As the overall training population is a composite of 517 individuals and their corresponding half-sib
277 families from five discrete breeding populations, the predictive ability of the prediction models was
278 also assessed within each individual population using KGD-GBLUP. A random 50% of individuals
279 was selected from within each population (Pop I – Pop V; total = 255 individuals) as a training set in
280 order to represent each population equally. Using this set of 255 individuals to train the model, GEBVs
281 were then predicted in the remaining 50% of Pop I and the mean correlation of 500 iterations was
282 considered as the predictive ability for this population. This approach was likewise extended to each
283 of the other four populations.

284 2.8 Optimising marker density

285 To evaluate the minimum number of markers needed to achieve maximum predictive ability for each
286 nutritive trait, a random set of markers ranging from 1,093,464 (100%, unfiltered) to 1,093 (0.1%) in
287 10 steps were obtained from the training population. Using each set of randomly selected markers, a G
288 matrix was computed based on the method proposed by VANRADEN (2008) using the rrBLUP package
289 (ENDELMAN 2011). Considering the computational load, KGD method was not extended to randomly
290 selected markers, to construct G matrix. FAVILLE *et al.* (2018) reported broadly similar predictive
291 ability for DMY in this training population, when G matrices based on DODDS *et al.* (2015) and
292 VANRADEN (2008) were compared. The G matrix was used in a GBLUP model to estimate predictive
293 ability for each randomly chosen marker set. The predictive ability was assessed via Monte-Carlo cross
294 validations with 500 iterations, where 80% of the data were used to train the model (training set) and
295 20% to predict the GEBVs (test set).

296 3 Results

297 3.1 Variance components, repeatability, and genomic heritability

298 There was significant ($P < 0.05$) genotypic variation among 517 half-sib families from five populations
299 for all traits, based on mean performance across the two locations, Lincoln and Aorangi (Table 1,
300 Supplementary Table S1 and S2). There were also significant ($P < 0.05$) $G \times E$ interactions for all the
301 traits, indicating a relative change in ranking among the 517 half-sib families between the two
302 locations. There was a high genotypic correlation ($r = 0.93$) between R and h^2_g in the across-location
303 dataset and these ranged from a low of 0.26 (R) and 0.22 (h^2_g) for traits N and P to a high of 0.75 (R)
304 and 0.74 (h^2_g) for Na (Table 1) across the two locations. Genotypic correlation between R and h^2_g was
305 slightly lower in Aorangi ($r = 0.85$) compared with Lincoln ($r = 0.93$). Because of the high correlation
306 between R and h^2_g and because h^2_g captures marker-based additive variance, from here on results for
307 h^2_g only are reported and discussed. Overall, h^2_g estimated within a location was substantially higher
308 at the Aorangi site than Lincoln (mean of all traits $h^2_g = 0.62$ and 0.43, respectively) (Supplementary

309 Table S1 and S2), with values from the across-location analysis ($h^2_g = 0.42$) lying between those of
310 Lincoln and Aorangi. Traits with low h^2_g tended to have relatively large G x E, whereas those with
311 high h^2_g had a low G x E interaction components (Table 1). Variance component analysis within the
312 two locations (Lincoln and Aorangi) indicated significant ($P < 0.05$) genotypic variation for all 18
313 nutritive traits. Differences in additive variance were observed for the same trait amongst the five
314 populations in the across location dataset (Supplementary Table S3-S7). For example, additive genetic
315 variance was non-significant ($P > 0.05$) for ADF, NDF and DOMD in Pop I & II, but was significant
316 for these traits in Pop III – V (Supplementary Table S3-S7). Similar observations can be made for all
317 of the analyzed traits, with no population showing significant ($P < 0.05$) additive genetic variance
318 component for all 18 traits. Amongst the five populations, Pop I had significant additive variance for
319 only 42% of traits (8 traits out of 19) while for Pop V that number was 84%, with the remaining
320 populations intermediate to these at 58 – 68% (Supplementary Table S3-S7).

321 3.2 Correlation among traits

322 Genotypic and phenotypic correlation coefficients for all nutritive quality traits are shown in Tables 2
323 and S8, respectively. Strong, positive genotypic correlation was observed between fibre measures ADF
324 and NDF and these in turn were negatively correlated with energy traits including ME, DOMD and
325 WSC (Tables 2 and Supplementary Table S8). A positive genotypic correlation was estimated for both
326 LMW WSC and total WSC with DOMD, however, a weak positive correlation was found between
327 HMW WSC and DOMD. A strong negative genotypic correlation was observed for both ADF and
328 NDF with both LMW WSC and total WSC. A moderate genotypic correlation was observed between
329 fibre traits (ADF and NDF) and minerals traits including K, Mg and Mn (positive), P and Ca (negative).

330 3.3 Predictive ability for nutritive traits

331 Predictive ability for all nutritive traits was evaluated using GBLUP, KGD-GBLUP and BayesC
332 genomic prediction models, and the results are summarized in Figure 1 as the Pearson correlation
333 coefficient between observed (adjusted means) and predicted values. There were no significant
334 differences ($P > 0.05$) in terms of predictive ability between GBLUP, KGD-GBLUP and BayesC across
335 all nutritive traits (Figure 1). Although slight differences can be noted from the Figure 1, no single
336 statistical approach consistently gave higher predictive ability for all nutritive traits. Because the results
337 from the three models were largely indistinguishable, from here on results from KGD-GBLUP are only
338 reported and discussed. Using the adjusted phenotypic trait means (BLUPs) estimated across both
339 locations, predictive ability for all traits was positive and was strongly correlated with h^2_g ($r = 0.65$).
340 The highest predictive ability observed was for Na and S (both $r = 0.45$), followed by CFAT (0.38)
341 (Figure 1). The lowest predictive ability was noted for P (0.16), followed by DOMD with a value of
342 0.22 (Figure 1). The bias (slope of regression) of the model for all nutritive traits was around 1, meaning
343 unbiased estimates were obtained by regressing GEBVs on adjusted means (BLUPs) (Supplementary
344 Table S9).

345 Predictive ability of models based on phenotypic means from Lincoln only (location-specific predictive
346 ability) was negative to low and showed a very high correlation with h^2_g ($r = 0.93$) (Supplementary
347 Table S1). The highest predictive ability was obtained for Na (0.35), similar to the across locations
348 analysis, and the lowest predictive ability was for ADF with a negative accuracy of -0.06. Predictive
349 ability of models using phenotypic data from Aorangi were generally higher than both the Lincoln and
350 across-location models (Supplementary Table S2) and the correlation between h^2_g and predictive ability
351 was 0.67. In this dataset the highest predictive ability was for HMW WSC (0.56) and lowest predictive
352 ability was for Ca (0.16) (Supplementary Table S2).

353 In terms of different trait categories, for the measures of fibre content, ADF and NDF, predictive ability
354 of the across-location models was moderate, at 0.24 and 0.36 respectively. There was a strong effect
355 of location on these traits, with moderate predictive ability at Aorangi (ADF = 0.29 and NDF = 0.35)
356 whereas at Lincoln, the predictive ability was almost zero for NDF (0.02) and negative for ADF (-0.06)
357 (Supplementary Table S1 and S2).

358 The traits DOMD, CFAT, WSC (LMW, HMW and total) and ME were grouped as energy traits in this
359 study. Predictive ability for energy traits in the across location analysis was generally low to moderate,
360 with CFAT (0.38) and LMW WSC (0.34) the highest, and DOMD (0.22) and HMW WSC (0.23) low
361 (Figure 1). As with the fibre traits, the ranking of predictive ability for CFAT varied by environment
362 and was highest in Lincoln and in across-location analysis, whereas predictive ability for CFAT ranked
363 fourth highest in Aorangi. By contrast, the predictive ability estimated for DOMD was ranked similarly
364 (fifth highest) for Lincoln and Aorangi.

365 The predictive ability of genomic prediction models for mineral traits assessed in this study was
366 generally high, with Mg, Na and S consistently ranked highest in terms of predictive ability within the
367 two locations (Lincoln and Aorangi) and in across-location analysis. The lowest h^2_g was observed for
368 P, which was reflected in the predictive ability of prediction models for Lincoln and across-location
369 analysis. Models for tetany ratio ([K/(Ca+Mg)]), a predictor of hypomagnesaemia risk in livestock,
370 had a predictive ability of 0.34 across locations, 0.29 at Lincoln and 0.18 at Aorangi.

371 The measures CP and N are both indicative of protein content, with crude protein a derivate of
372 measured N, obtained by multiplying N by a conversion factor of 6.25 (WAGHORN 2007), hence
373 predictive ability estimated within and across locations was highly similar for both the traits. Predictive
374 ability for these traits was low to moderate, at 0.28 (CP) and 0.26 (N) in the across location analysis,
375 0.14 for both traits at Lincoln and 0.20 and 0.21 for CP and N at Aorangi.

376 Genotyping efficiency impacts the design and overall cost of implementing GS in a breeding program.
377 To investigate the minimum number of SNP markers needed to achieve maximum predictive ability
378 within the current dataset, random marker sets with varying numbers of SNPs were used to build
379 genomic prediction models for all nutritive traits, using the across locations dataset. For all nutritive
380 traits, a steady decline in predictive ability was observed from 100% (1,093,464) to 0.5% (5,467)
381 markers and a rapid decrease in predictive ability was noted from 0.5% to 0.1% (1,093) (Figure 2 and
382 Supplementary Table S9). Overall, reducing the marker number to 5% (54,673) of the total available
383 SNPs had minimal impact on overall predictive ability (Figure 2 and Supplementary Table S9). Further
384 reductions in marker number resulted in losses in predictive ability, the extent of which varied by trait
385 (Supplementary Table S9). For example, with 10,934 markers (1% of the total dataset) the predictive
386 ability for LMW WSC, HMW WSC and total WSC decreased by 3%, 7% and 4%, respectively
387 compared to the total dataset (100%) (Figure 2). At 1,093 markers (0.1%) the predictive ability for
388 these traits declined further although the absolute values were still positive, at 0.31 for LMW WSC,
389 0.18 for HMW WSC and 0.26 for total WSC (Figure 2). The decay in predictive ability was typically
390 highest for those traits which had low h^2_g and low predictive ability under the full SNP dataset. For
391 example, between the highest and lowest marker number datasets there was a 36% decrease in
392 predictive ability for P ($h^2_g = 0.22$), while for S ($h^2_g = 0.53$) there was a 14% decrease in predictive
393 ability (Supplementary Table S9).

394 The training population used in this study is a composite of five different breeding populations, with
395 differing genetic relationships (see Figure 1 in FAVILLE *et al.* (2018)). The predictive ability of a model,
396 constructed based on a composite training set, for each of the individual populations is therefore an

397 important consideration. Cross-validations were conducted within the individual populations using the
398 protocol reported by FAVILLE *et al.* (2018). Predictive ability varied amongst the populations (Figure
399 3). For example, predictive ability for ADF ranged from 0.13 to 0.24 amongst the five populations
400 (Figure 3). The majority of predictions were positive across all populations, with the exception of K
401 for Pop I, and only LMW WSC and P in Pop II had notably poor predictive ability (Figure 3). No
402 population was superior for genomic prediction of all nutritive traits. However, Pop V returned the
403 highest predictive ability overall (mean predictive ability of Pop V = 0.29, compared with 0.30 in the
404 training set, TP), followed by Pop III, Pop I, Pop IV, and Pop II (Figure 3).

405 **4 Discussion**

406 Nutritive quality traits in forages are important for animal productivity and for maintaining livestock
407 health and are therefore important targets for genetic improvement in perennial ryegrass. Nutritive
408 traits can be expensive to measure and are labour-intensive, hindering the improvement of these traits
409 by conventional breeding methods. Genomic selection (GS), the use of genome-wide molecular
410 markers for the prediction of breeding values in selection candidates, is well suited for traits that are
411 costly and difficult to phenotype (HEFFNER *et al.* 2009; JANNINK *et al.* 2010) and therefore represents
412 a promising approach for enabling cost-effective improvement of nutritive traits in forages. In this
413 study we demonstrate that GS is a strong prospect for improvement of nutritive quality traits as assessed
414 by cross-validation predictive abilities estimated for 18 nutritive traits in a multi-population training
415 set. Furthermore, the extensive phenotypic dataset, collected from two contrasting environments, has
416 enabled the contribution of genotypic, environment, and genotype-by-environment variance
417 components to be estimated across a large range of nutritive traits.

418 Several methods for GS have been proposed for both plant and animal breeding, including GBLUP,
419 Bayesian alphabets (BayesA, BayesB and BayesC), Ridge Regression (RR) BLUP, Random Forest,
420 Support Vector Machine and deep learning through Multilayer Perceptron's and Convolutional Neural
421 Networks (DE LOS CAMPOS *et al.* 2013; CROSSA *et al.* 2017). Both simulations and empirical data
422 suggests that linear models are superior in terms of predicting GEBVs at higher accuracy (DAETWYLER
423 *et al.* 2010; DE LOS CAMPOS *et al.* 2013; BYRNE *et al.* 2017; BELLOT *et al.* 2018; FAVILLE *et al.* 2018).
424 In this study, we compared three linear models characterized by two different assumptions with respect
425 to the distribution of variance for marker effects. In GBLUP and KGD-GBLUP all marker effects are
426 shrunk equally, assuming the predicted trait is controlled by many markers with small effect (GODDARD
427 *et al.* 2011), whereas BayesC assumes that the trait is a mixture of distributions with large and small
428 effect markers (HABIER *et al.* 2011). Even with different prior assumptions, Figure 1 illustrates the
429 similarity in predictive ability amongst the three methods for all nutritive traits, with only minor
430 differences (Figure 1). Through simulation and empirical data, DE LOS CAMPOS *et al.* (2013) pointed
431 out that the superiority of Bayesian variable selection models can be illustrated when applied to a trait
432 with large effect quantitative trait loci (QTL). The lack of improvement in predictive ability under the
433 BayesC model observed here may reflect a complex genetic architecture for the nutritive traits studied,
434 which are likely controlled by many genes with small effects. For instance, QTL studies in perennial
435 ryegrass reported 25 loci for WSC (COGAN *et al.* 2005; TURNER *et al.* 2006; SHINOZUKA *et al.* 2012;
436 GALLAGHER *et al.* 2015), however genetic variation explained by the multiple QTLs was no more than
437 20%, suggesting that genetic control of WSC may tend towards an infinitesimal model.

438 The success of GS primarily depends on the predictive ability of the genomic prediction model, which
439 is influenced by h_n^2 , training population size, linkage disequilibrium (LD), genetic diversity within the
440 training population and relatedness between training and test set (DAETWYLER *et al.* 2013; CROSSA *et*
441 *al.* 2017; AROJU *et al.* 2018). Traits with low h_n^2 need a larger training population to achieve the same

442 level of predictive ability as a trait with higher h_n^2 . Results from our study indicate that predictive ability
443 estimated by cross-validation and h_n^2 will not be a limiting factor for implementing GS for nutritive
444 traits in perennial ryegrass, as predictive ability and various measures of heritability (R , h_g^2 and h_n^2)
445 were moderate to high for most traits (Table 1, Supplementary Table S1-S7 and Figure 1). A strong
446 positive correlation was observed between predictive ability and h_g^2 for traits at the individual locations
447 (Aorangi and Lincoln) and in the across-location analysis, confirming previous findings (CROSSA *et al.*
448 2017) and suggesting that genomic prediction can be more accurate for highly heritable traits. A
449 positive correlation between predictive ability and heritability was also previously observed for
450 nutritive traits in switchgrass (FIEDLER *et al.* 2018) and alfalfa (JIA *et al.* 2018), as well as for crown
451 rust and heading date in perennial ryegrass (AROJU *et al.* 2018) and for fruit quality traits in apple
452 (MURANTY *et al.* 2015).

453 For most traits, h_g^2 at Aorangi was consistently higher compared to Lincoln, and consequently higher
454 predictive abilities were observed. This difference between locations was due to a combination of the
455 genotypic variance component estimated at Aorangi being higher and estimates of trait-associated
456 experimental error being higher at Lincoln (Supplementary Table S1 and S2). While it is not possible
457 to conclusively determine the basis of this disparity in experimental error, it may be explained by
458 greater within-environment variability at Lincoln, due to factors that such as climatic variations over
459 the sampling period (Figure S1 in FAVILLE *et al.* (2018)), soil heterogeneity or operator-to-operator
460 variations.

461 In contrast to switchgrass (FIEDLER *et al.* 2018) and alfalfa (JIA *et al.* 2018), prior to this study, genomic
462 predictive ability for nutritive traits has been evaluated in perennial ryegrass for limited set of traits.
463 FÈ *et al.* (2016) reported high predictive abilities of 0.68 for NDF and 0.45 for fructan in a large training
464 set of 1918 F_2 families, evaluated at multiple environments. In another study, GRINBERG *et al.* (2016)
465 reported similarly high predictive abilities for WSC (0.59), DMD (0.41) and N (0.31) from prediction
466 models applied in F_{14} generation families after training using a set of 364 families from earlier
467 generations, phenotyped at a single location. Predictive ability for nutritive traits in the present study
468 were overall lower compared to those reported by FÈ *et al.* (2016) and GRINBERG *et al.* (2016) with
469 predictive abilities of 0.35, 0.29 and 0.22 for NDF, total WSC and HMW WSC (fructan), respectively.
470 The lower predictive ability was likely affected by the smaller training population used in this study
471 compared to FÈ *et al.* (2016), as well as its composite nature. Although, GRINBERG *et al.* (2016)
472 reported high predictive ability for nutritive trait models, these values were based on a single
473 environment and therefore unaffected by $G \times E$, which might decrease the reliability of predictions.
474 Overall, the values in the current study, based on a relatively small, composite training set were
475 sufficiently high to support prediction of GEBVs and implementation of genomic selection to
476 accelerate genetic gain for nutritive traits across environments in perennial ryegrass.

477 Determining the magnitude and genetic basis of $G \times E$ interactions for a trait is important, as it can
478 assist in making appropriate breeding design decisions for the development of cultivars that are adapted
479 to a broad range of target environments. In the current study $G \times E$ interactions were significant for all
480 nutritive quality traits. The majority of traits displayed a $G \times E$ variance component that was small in
481 comparison to genotypic variance, when nutritive traits were evaluated at two distinct locations (Table
482 1). This was reflected in the ratio of σ_g to σ_{gs} , which was > 1 for 60% of the traits, indicating that the
483 genotypic variance was predominant. However, the ratio for CFAT, CP, total WSC, LMW WSC,
484 HMW WSC, P and N were < 1 , indicating a greater influence of $G \times E$ interactions. The identification
485 of high $G \times E$ interactions for WSC contrasts with results reported by EASTON *et al.* (2009) and are at
486 variance with propositions by CASLER AND VOGEL (1999) and JAFARI (2012), that $G \times E$ for WSC are
487 minimal to negligible. Our results are based on relatively large populations of half-sib families,

488 compared to previous studies and may therefore be a more accurate reflection of the influence of G x
489 E on these traits, particularly in New Zealand environments. However, it should be noted that the G x
490 E interactions estimated here were based on only two locations, and a more robust estimation would
491 be derived if based on a larger number of locations, representing the full target population of
492 environments. The presence of G x E interactions may negatively influence ability to improve these
493 traits for broad adaptation and represents a challenge during selections (HOLLAND *et al.* 2003).

494 Where G x E effects are large and significant, genetic improvement for a trait may only be achieved
495 through selection based on multi-year, multi-environment evaluation. Considering the relatively high
496 costs associated with phenotyping of nutritive quality traits, this approach might not always be feasible,
497 and decisions will be based on available resources. Genomic selection, however, represents a promising
498 approach to more directly tackle G x E. Models such as marker-by-environment interactions proposed
499 by LOPEZ-CRUZ *et al.* (2015) and further developed by CROSSA *et al.* (2016), can be used to identify
500 genomic regions that are stable across environments and other regions that are associated with specific
501 environments that contribute to G x E interactions. These marker effects can be fixed in GS models to
502 assist the selection of stable genotypes. However, these models were primarily developed for wheat,
503 and a detailed investigation is needed to assess models perform in outcrossing species such as perennial
504 ryegrass.

505 Traits with high G x E interactions displayed both lower h_g^2 and comparatively low predictive abilities
506 (Table 1, Supplementary Table S1-S2 and Figure 1). For such traits multi-trait genomic prediction
507 models (JIA AND JANNINK 2012) may be one way of improving predictive ability and thereby genetic
508 gain. The concept of multi-trait genomic prediction approaches is to improve the predictive ability of
509 a primary target trait (which may be difficult and expensive to phenotype) by utilizing the genetic
510 correlation with a secondary trait which is highly heritable and significantly less expensive to
511 phenotype. Heritability and genotypic correlation data generated in the current study may assist in
512 designing multi-trait prediction models for key nutritive traits. For example, a negative genetic
513 correlation was observed between fibre and WSC traits, as reported previously in Italian ryegrass
514 (WANG *et al.* 2015), and a positive genetic correlation was observed between DOMD and WSC traits
515 as described previously by HUMPHREYS (1989b); JAFARI *et al.* (2003b) (Table 4). These secondary
516 traits (ADF, NDF and DOMD) are measured routinely and relatively inexpensively by NIRS and may
517 therefore be useful in multi-trait genomic prediction models to more accurately predict WSC traits that
518 are most accurately measured using more expensive wet chemistry methodologies.

519 Mineral composition of forages is of interest from a perspective of livestock health and, as with
520 nutritive traits overall, there has been little or no emphasis on selection for mineral composition in
521 forage breeding programs (MASTERS *et al.* 2019). Significant genotypic variation was observed for all
522 minerals in this study, with relatively low influence of G x E, moderate to high heritability and genomic
523 prediction models with predictive abilities high in comparison to the other nutritive quality traits
524 assessed (Figure 1). This indicates that selective breeding for levels of micro- and macro-minerals is
525 feasible and that genomic selection represents a strong option for pursuing improvement in these traits.
526 In general, ryegrass cultivars that grow well under low soil P will compete less for P in the sward,
527 increasing P availability for uptake to support legume growth (EASTON *et al.* 1997; McDOWELL *et al.*
528 2011). For instance, CRUSH *et al.* (2006), reported that in a mixed sward of ryegrass and clover (18%
529 clover content), net annual flux of P into ryegrass was 4.7 times higher compared to clover. A small
530 improvement in ryegrass phosphate use efficiency (PUE), can significantly change these proportions
531 and may have large environmental and economic benefits (CRUSH *et al.* 2018a). In the current dataset
532 predictive ability for P was very low (0.13), underpinned by a significant G x E interaction component
533 to total phenotypic variation. This indicates that breeding for this P levels in perennial ryegrass foliage

534 needs to be designed to account for G x E interaction effects. Alternatively, moderate to high genetic
535 correlation with high h_g^2 traits, such as Mg (genotypic correlation -0.62), might support an indirect
536 multi-trait genomic selection strategy, as discussed earlier.

537 Hypomagnesaemia or grass tetany is a metabolic disorder in ruminants, caused by inadequate supply
538 of Ca and Mg. This is often described in terms of a tetany index ([K/Ca+Mg]), for which values
539 exceeding 2.2 (KEMP AND THART 1957) are associated with increased risk of the disorder. We observed
540 a moderate predictive ability for the ratio and the magnitude of G x E was low compared to genotypic
541 variation, suggesting that tetany ratio could be used successfully as a selection criteria for developing
542 cultivars with reduced potential for the incidence of hypomagnesaemia. This is in contrast to the results
543 of SMITH *et al.* (1999), who reported large G x E variance for the tetany ratio evaluated at two locations
544 in Australian environments and suggested the use Mg alone as a selection criteria to improve tetany
545 ratio. Results from the current study showed a high predictive ability for Mg, making genomic selection
546 a viable strategy for this trait. Although, increasing Mg concentration alone may be sufficient to
547 decrease the incidence of hypomagnesaemia, the presence of a positive correlation between Mg and K
548 observed in the current study (Table 2) and reported by SMITH *et al.* (1999), suggests that selections
549 based on Mg concentration alone should be monitored and might not always give the expected
550 outcome.

551 Using approximately 50k random markers the predictive ability of genomic prediction models for all
552 nutritive traits was similar to using the full dataset of ca. 1M markers (Figure 2 and Supplementary
553 Table S9). This reflects observations made in the same training set for herbage accumulation, a proxy
554 for DM yield (Faville *et al.* 2018) except in that instance the marker subsets were not selected randomly.
555 Below the 50k marker number there was a decrease in predictive ability, and this was particularly
556 evident for traits with low h_g^2 . Considering the low levels of LD (r^2 decaying to 0.25 after 366-1750
557 base pairs (FAVILLE *et al.* 2018)) observed in the component populations of the training set, the major
558 proportion of predictive ability is likely a result of capturing relationship among individuals, rather
559 than historical LD with QTL. In perennial ryegrass, to capture genetic variance associated with all
560 causative QTL a very large number of markers and a large training population are needed, due to rapid
561 decay of LD as a result of a very large past effective population size (N_e) (HAYES *et al.* 2013; FIEDLER
562 *et al.* 2018). Predictive ability based on relatedness between training and selection population can
563 deteriorate after a few selection cycles (HABIER *et al.* 2007), and to maintain adequate predictive
564 ability, either the training population should be very large and highly diverse or some form of
565 relatedness should exist between training and selection population (HAYES *et al.* 2013; NORMAN *et al.*
566 2018).

567 In conclusion, genotypic variation and G x E interactions were significant for all nutritive quality traits
568 evaluated in two distinct New Zealand environments. The predictive ability of genomic prediction
569 models reported in this study for most of the traits would be sufficient to implement GS for nutritive
570 traits in perennial ryegrass. Although a major proportion of this predictive ability is the result of
571 capturing relatedness among individuals, maintaining relatedness between training and selection
572 population would be an option to implement GS in perennial ryegrass. Predictive ability for most of
573 the nutritive traits was retained even with as few as 50,000 markers. A next step would be to simulate
574 a cost-benefit analysis to study the implications of manipulating marker number for cost-effective GS.
575 For traits with low G x E interactions, single-trait genomic prediction models can be considered and
576 for traits with large G x E, and consequently lower predictive ability, multi-trait approaches may be
577 useful to explore as a method for obtaining high levels of prediction. This appears to be particularly
578 important for WSC, which is considered to be one of the primary constituents of nutritive value for
579 forages.

580

581

582 **5 Conflict of Interest**

583 All authors were employed by AgResearch, a New Zealand Crown Research Institute. Authors declare
584 that the research was conducted at AgResearch and neither the funders (Pastoral Genomics
585 (PSTG1501)) nor the plant material providers (Grasslands Innovation Ltd), had a role in design of
586 experiments, data generation, statistical analysis, or preparation of the manuscript.

587 **6 Author Contributions**

588 MF, ZJ and BB conceived, designed, and coordinated the study. SKA, MC and MF performed the
589 analysis. SKA and MF drafted the initial manuscript. SKA, MC, MJ, ZJ and BB contributed to
590 interpretation of results and preparation of the final manuscript. All authors read and approved the final
591 version.

592 **7 Funding**

593 This work was supported by Pastoral Genomics (PSTG1501), a research consortium funded by the
594 Ministry of Business, Innovation and Employment (MBIE), DairyNZ, Beef + Lamb New Zealand,
595 DEEResearch, Dairy Australia, AgResearch Ltd, Barenbrug Agriseeds Ltd and Grasslands Innovation
596 Ltd.

597 **8 Acknowledgments**

598 The authors thank Dr. Alan Stewart, Keith Saulsbury and Tom Lyons of Grasslands Innovation Ltd for
599 providing accesses to the ryegrass populations used in this study. We are grateful to Jason Trethewey,
600 Anthony Hilditch, Lee Sutherland, Ivan Baird, Keith Widdup, Phil Rolston, Casey Flay, Jana Schmidt,
601 Won Hong, Alieu Sartie, Aimee Avery, Anna Larking, Prue Taylor, Michelle Ebbett, Craig Anderson,
602 Jessica O'Connor and many others for their assistance in trial harvests and sample processing. Special
603 thanks to Dr. Andrew Griffith, Dr. Marcelo Carena and Dr. Valerio Hoyos-Villegas for their
604 suggestions to improve this manuscript.

605 **9 Supplementary Material**

606 **Supplementary Table 1:** Trait genotypic (σ_g^2) and residual error (σ_ϵ^2) variance components, standard
607 errors (SE), repeatability (R) and genomic heritability (h_g^2) and predictive ability (r_p) estimated for 18
608 nutritive traits, among 517 half-sib families of perennial ryegrass evaluated at Lincoln.

609 **Supplementary Table 2:** Trait genotypic (σ_g^2) and residual error (σ_ϵ^2) variance components and their
610 associated standard errors (SE), repeatability (R) and genomic heritability (h_g^2) and predictive ability
611 (r_p) estimated for 18 nutritive traits, among 517 half-sib families of perennial ryegrass evaluated at
612 Aorangi.

613 **Supplementary Table 3:** Trait mean, standard deviation (σ), variance of genotype (σ_g^2), genotype-
614 by-location interaction (σ_{gl}^2) and residual error (σ_ϵ^2), along with their associated standard errors (SE),
615 and narrow-sense heritability (h^2) estimated for a range of nutritive quality traits in Pop I (96 half-sib
616 families), using data from across locations (Lincoln and Aorangi).

617 **Supplementary Table 4:** Trait mean, standard deviation (σ), variance of genotype (σ^2_g), genotype-by-
618 location interaction (σ^2_{gl}) and residual error (σ^2_ϵ), along with their associated standard errors (SE) and
619 narrow-sense heritability (h^2) estimated for a range of nutritive quality traits in Pop II (110 half-sib
620 families), using data from across locations (Lincoln and Aorangi).

621 **Supplementary Table 5:** Trait mean, standard deviation (σ), variance of genotype (σ^2_g), genotype-by-
622 location interaction (σ^2_{gl}) and residual error (σ^2_ϵ), along with their associated standard errors (SE), and
623 narrow-sense heritability (h^2) estimated for a range of nutritive quality traits in Pop III (115 half-sib
624 families), using data from across locations (Lincoln and Aorangi).

625 **Supplementary Table 6:** Trait mean, standard deviation (σ), variance of genotype (σ^2_g), genotype by
626 location interaction (σ^2_{gl}) and residual error (σ^2_ϵ), along with their associated standard errors (SE) and
627 narrow-sense heritability (h^2) estimated for a range of nutritive quality traits in Pop IV (90 half-sib
628 families), using the data from across locations (Lincoln and Aorangi).

629 **Supplementary Table 7:** Trait mean, standard deviation (σ), variance of genotype (σ^2_g), genotype by
630 location interaction (σ^2_{gl}) and residual error (σ^2_ϵ), along with their associated standard errors (SE) and
631 narrow-sense heritability (h^2) estimated for a range of nutritive quality traits in Pop V (106 half-sib
632 families), using data from across locations (Lincoln and Aorangi).

633 **Supplementary Table 8:** Phenotypic correlation for a range of nutritive quality traits among 517 half-
634 sib families, estimated using data from across two locations (Lincoln and Aorangi).

635 **Supplementary Table 9:** Random subsets of markers ranging from 0.10% ($n = 1,093$) to 100% ($n =$
636 1,093,464) of the full GBS SNP dataset used in a GBLUP model to estimate predictive ability (r_p) and
637 bias (β) for 18 nutritive traits.

638 10 Data Availability Statement

639 The raw datasets used for the analysis or generated in the current study to draw conclusions will be
640 made available upon request to any qualified researcher.

641 11 References

642 Annicchiarico, P., N. Nazzicari, X. Li, Y. Wei, L. Pecetti *et al.*, 2015 Accuracy of genomic selection
643 for alfalfa biomass yield in different reference populations. *BMC Genomics* 16: 1020.

644 Arojuu, S. K., P. Conaghan, S. Barth, D. Milbourne, M. D. Casler *et al.*, 2018 Genomic prediction of
645 crown rust resistance in *Lolium perenne*. *BMC Genetics* 19: 35.

646 Baert, J., and H. Muylle, 2016 Feeding value evaluation in grass and legume breeding and variety
647 testing: Report of a debate, pp. 307-311 in *Breeding in a World of Scarcity*. Springer.

648 Bellot, P., G. de los Campos and M. Pérez-Enciso, 2018 Can deep learning improve genomic
649 prediction of complex human traits? *Genetics* 210: 809-819.

650 Biazzì, E., N. Nazzicari, L. Pecetti, E. C. Brummer, A. Palmonari *et al.*, 2017 Genome-wide
651 association mapping and genomic selection for alfalfa (*Medicago sativa*) forage quality traits.
652 *PloS One* 12: e0169234.

653 Butler, D., B. R. Cullis, A. Gilmour and B. Gogel, 2009 ASReml-R reference manual. The State of
654 Queensland, Department of Primary Industries and Fisheries, Brisbane.

655 Byrne, S. L., P. Conaghan, S. Barth, S. K. Aroju, M. Casler *et al.*, 2017 Using variable importance
656 measures to identify a small set of SNPs to predict heading date in perennial ryegrass.
657 *Scientific Reports* 7: 3566.

658 Byrne, S. L., I. Nagy, M. Pfeifer, I. Armstead, S. Swain *et al.*, 2015 A synteny-based draft genome
659 sequence of the forage grass *Lolium perenne*. *The Plant Journal* 84: 816-826.

660 Casler, M., and K. P. Vogel, 1999 Accomplishments and impact from breeding for increased forage
661 nutritional value. *Crop Science* 39: 12-20.

662 Chapman, D., J. Bryant, M. Olayemi, G. Edwards, B. Thorrold *et al.*, 2017 An economically based
663 evaluation index for perennial and short-term ryegrasses in New Zealand dairy farm systems.
664 *Grass and Forage Science* 72: 1-21.

665 Chapman, D., G. Edwards, A. Stewart, M. McEvoy, M. O'Donovan *et al.*, 2015 Valuing forages for
666 genetic selection: what traits should we focus on? *Animal Production Science* 55: 869-882.

667 Cogan, N., K. Smith, T. Yamada, M. Francki, A. Vecchies *et al.*, 2005 QTL analysis and
668 comparative genomics of herbage quality traits in perennial ryegrass (*Lolium perenne* L.).
669 *Theoretical and Applied Genetics* 110: 364-380.

670 Crossa, J., G. de los Campos, M. Maccaferri, R. Tuberrosa, J. Burgueño *et al.*, 2016 Extending the
671 marker \times environment interaction model for genomic-enabled prediction and genome-wide
672 association analysis in durum wheat. *Crop Science* 56: 2193-2209.

673 Crossa, J., P. Pérez-Rodríguez, J. Cuevas, O. Montesinos-López, D. Jarquín *et al.*, 2017 Genomic
674 selection in plant breeding: methods, models, and perspectives. *Trends in Plant Science* 22:
675 961-975.

676 Crush, J., S. Woodward, J. Eerens and K. Macdonald, 2006 Growth and milksolids production in
677 pastures of older and more recent ryegrass and white clover cultivars under dairy grazing.
678 *New Zealand Journal of Agricultural Research* 49: 119-135.

679 Crush, J. R., J. M. Lee, G. P. Cosgrove, L. Rossi, D. F. Chapman *et al.*, 2018a Foliar macronutrient
680 concentrations of eight perennial ryegrass (*Lolium perenne* L.) cultivars grown in four regions
681 in New Zealand. *New Zealand Journal of Agricultural Research* 61: 285-300.

682 Crush, J. R., J. M. Lee, G. P. Cosgrove, L. Rossi, D. F. Chapman *et al.*, 2018b Foliar micronutrient
683 concentrations of eight perennial ryegrass (*Lolium perenne* L.) cultivars grown in four regions
684 in New Zealand. *New Zealand Journal of Agricultural Research* 61: 301-311.

685 Daetwyler, H. D., M. P. Calus, R. Pong-Wong, G. de los Campos and J. M. Hickey, 2013 Genomic
686 prediction in animals and plants: simulation of data, validation, reporting, and benchmarking.
687 *Genetics* 193: 347-365.

688 Daetwyler, H. D., R. Pong-Wong, B. Villanueva and J. A. Woolliams, 2010 The impact of genetic
689 architecture on genome-wide evaluation methods. *Genetics* 185: 1021-1031.

690 Danecek, P., A. Auton, G. Abecasis, C. A. Albers, E. Banks *et al.*, 2011 The variant call format and
691 VCFtools. *Bioinformatics* 27: 2156-2158.

692 de los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler and M. P. Calus, 2013 Whole-
693 genome regression and prediction methods applied to plant and animal breeding. *Genetics*
694 193: 327-345.

695 de los Campos, G., D. Sorensen and D. Gianola, 2015 Genomic heritability: what is it? *PLoS*
696 *Genetics* 11: e1005048.

697 Dodds, K. G., J. C. McEwan, R. Brauning, R. M. Anderson, T. C. Stijn *et al.*, 2015 Construction of
698 relatedness matrices using genotyping-by-sequencing data. *BMC Genomics* 16: 1047.

699 Easton, H., A. Mackay and J. Lee, 1997 Genetic variation for macro-and micro-nutrient
700 concentration in perennial ryegrass (*Lolium perenne* L.). *Australian Journal of Agricultural
701 Research* 48: 657-666.

702 Easton, H., A. Stewart, T. Lyons, M. Parris and S. Charrier, 2009 Soluble carbohydrate content of
703 ryegrass cultivars. *Proceedings of the New Zealand Grassland Association* 71: 161-166.

704 Easton, S., J. Amyes, N. Cameron, R. Green, G. Kerr *et al.*, 2002 Pasture plant breeding in New
705 Zealand: where to from here? *PROCEEDINGS OF THE CONFERENCE-NEW ZEALAND
706 GRASSLAND ASSOCIATION*: 173-180.

707 Edwards, G. R., A. Parsons, S. Rasmussen and R. H. Bryant, 2007 High sugar ryegrasses for
708 livestock systems in New Zealand. *Proceedings of the New Zealand Grassland Association*
709 69: 161-171.

710 Elshire, R. J., J. C. Glaubitz, Q. Sun, J. A. Poland, K. Kawamoto *et al.*, 2011 A robust, simple
711 genotyping-by-sequencing (GBS) approach for high diversity species. *PloS One* 6: e19379.

712 Endelman, J. B., 2011 Ridge regression and other kernels for genomic selection with R package
713 rrBLUP. *The Plant Genome* 4: 250-255.

714 Endelman, J. B., and J.-L. Jannink, 2012 Shrinkage estimation of the realized relationship matrix.
715 *G3: Genes, Genomes, Genetics* 2: 1405-1413.

716 Falconer, D. S., 1960 *Introduction to quantitative genetics*. Oliver And Boyd; Edinburgh; London.

717 Faville, M., K. Richardson, M. Gagic, W. Mace, X. Sun *et al.*, 2010 Genetic improvement of fibre
718 traits in perennial ryegrass. *Proceedings of the New Zealand Grassland Association* 72: 71-
719 78.

720 Faville, M. J., S. Ganesh, M. Cao, M. Z. Jahufer, T. P. Bilton *et al.*, 2018 Predictive ability of
721 genomic selection models in a multi-population perennial ryegrass training set using
722 genotyping-by-sequencing. *Theoretical and Applied Genetics* 131: 703-720.

723 Fè, D., B. H. Ashraf, M. G. Pedersen, L. Janss, S. Byrne *et al.*, 2016 Accuracy of genomic prediction
724 in a commercial perennial ryegrass breeding program. *The Plant Genome* 9.

725 Fiedler, J. D., C. Lanzatella, S. J. Edmé, N. A. Palmer, G. Sarath *et al.*, 2018 Genomic prediction
726 accuracy for switchgrass traits related to bioenergy within differentiated populations. *BMC
727 Plant Biology* 18: 142.

728 Fristche-Neto, R., D. Akdemir and J.-L. Jannink, 2018 Accuracy of genomic selection to predict
729 maize single-crosses obtained through different mating designs. *Theoretical and Applied
730 Genetics* 131: 1153-1162.

731 Gallagher, J. A., L. B. Turner, A. J. Cairns, M. Farrell, J. A. Lovatt *et al.*, 2015 Genetic
732 differentiation in response to selection for water-soluble carbohydrate content in perennial
733 ryegrass (*Lolium perenne* L.). *BioEnergy Research* 8: 77-90.

734 García-Ruiz, A., J. B. Cole, P. M. VanRaden, G. R. Wiggans, F. J. Ruiz-López *et al.*, 2016 Changes
735 in genetic selection differentials and generation intervals in US Holstein dairy cattle as a
736 result of genomic selection. *Proceedings of the National Academy of Sciences* 113: E3995-
737 E4004.

738 Glaubitz, J. C., T. M. Casstevens, F. Lu, J. Harriman, R. J. Elshire *et al.*, 2014 TASSEL-GBS: a high
739 capacity genotyping by sequencing analysis pipeline. *PLoS one* 9: e90346.

740 Goddard, M. E., B. J. Hayes and T. H. Meuwissen, 2011 Using the genomic relationship matrix to
741 predict the accuracy of genomic selection. *Journal of Animal breeding and Genetics* 128:
742 409-421.

743 González-Camacho, J. M., L. Ornella, P. Pérez-Rodríguez, D. Gianola, S. Dreisigacker *et al.*, 2018
744 Applications of machine learning methods to genomic selection in breeding wheat for rust
745 resistance. *The Plant Genome*.

746 Grinberg, N. F., A. Lovatt, M. Hegarty, A. Lovatt, K. P. Skøt *et al.*, 2016 Implementation of genomic
747 prediction in *Lolium perenne* (L.) breeding populations. *Frontiers in Plant Science* 7: 133.

748 Habier, D., R. L. Fernando and J. C. Dekkers, 2007 The impact of genetic relationship information
749 on genome-assisted breeding values. *Genetics* 177: 2389-2397.

750 Habier, D., R. L. Fernando, K. Kizilkaya and D. J. Garrick, 2011 Extension of the Bayesian alphabet
751 for genomic selection. *BMC Bioinformatics* 12: 186.

752 Hahn, H., W. Huth, W. Schöberlein and W. Diepenbrock, 2003 Detection of endophytic fungi in
753 *Festuca* spp. by means of tissue print immunoassay. *Plant Breeding* 122: 217-222.

754 Harris, R. S., 2007 Improved Pairwise Alignmnet of Genomic DNA.

755 Hayes, B., J. Panizzo, C. Walker, A. Choy, S. Kant *et al.*, 2017 Accelerating wheat breeding for end-
756 use quality with multi-trait genomic predictions incorporating near infrared and nuclear
757 magnetic resonance-derived phenotypes. *Theoretical and Applied Genetics* 130: 2505-2519.

758 Hayes, B. J., N. O. Cogan, L. W. Pembleton, M. E. Goddard, J. Wang *et al.*, 2013 Prospects for
759 genomic selection in forage plant species. *Plant Breeding* 132: 133-143.

760 Heffner, E. L., M. E. Sorrells and J.-L. Jannink, 2009 Genomic selection for crop improvement. *Crop
761 Science* 49: 1-12.

762 Heslot, N., J.-L. Jannink and M. E. Sorrells, 2015 Perspectives for genomic selection applications
763 and research in plants. *Crop Science* 55: 1-12.

764 Holland, J. B., W. E. Nyquist and C. T. Cervantes-Martínez, 2003 Estimating and interpreting
765 heritability for plant breeding: an update. *Plant Breeding Reviews* 22: 9-112.

766 Humphreys, M., 1989a Water-soluble carbohydrates in perennial ryegrass breeding. *Grass and
767 Forage Science* 44: 237-244.

768 Humphreys, M., 1989b Water-soluble carbohydrates in perennial ryegrass breeding: III.
769 Relationships with herbage production, digestibility and crude protein content. *Grass and
770 Forage Science* 44: 423-430.

771 Hunt, M. G., S. Rasmussen, P. C. Newton, A. J. Parsons and J. A. Newman, 2005 Near-term impacts
772 of elevated CO₂, nitrogen and fungal endophyte-infection on *Lolium perenne* L. growth,
773 chemical composition and alkaloid production. *Plant, Cell & Environment* 28: 1345-1354.

774 Jafari, A., V. Connolly, A. Frolich and E. Walsh, 2003a A note on estimation of quality parameters in
775 perennial ryegrass by near infrared reflectance spectroscopy. *Irish journal of agricultural and
776 food research*: 293-299.

777 Jafari, A., V. Connolly and E. Walsh, 2003b Genetic analysis of yield and quality in full-sib families
778 of perennial ryegrass (*Lolium perenne* L.) under two cutting managements. Irish journal of
779 agricultural and food research: 275-292.

780 Jafari, A. A., 2012 Environmental and genetic variation for water soluble carbohydrate content in
781 cool season forage grasses in *Carbohydrates-Comprehensive Studies on Glycobiology and*
782 *Glycotechnology*. InTech.

783 Jahufer, M., and D. Luo, 2018 DeltaGen: A Comprehensive Decision Support Tool for Plant
784 Breeders. Crop Science.

785 Jannink, J.-L., A. J. Lorenz and H. Iwata, 2010 Genomic selection in plant breeding: from theory to
786 practice. *Briefings in Functional Genomics* 9: 166-177.

787 Jermyn, M., 1956 A new method for determining ketohexoses in the presence of aldohexoses. *Nature*
788 177: 38-39.

789 Jia, C., F. Zhao, X. Wang, J. Han, H. Zhao *et al.*, 2018 Genomic Prediction for 25 Agronomic and
790 Quality Traits in Alfalfa (*Medicago sativa*). *Frontiers in Plant Science* 9: 1220.

791 Jia, Y., and J.-L. Jannink, 2012 Multiple-trait genomic selection methods increase genetic value
792 prediction accuracy. *Genetics* 192: 1513-1522.

793 Jones, E., and J. Roberts, 1991 A note on the relationship between palatability and water-soluble
794 carbohydrates content in perennial ryegrass. *Irish Journal of Agricultural Research*: 163-167.

795 Jung, H., and M. Allen, 1995 Characteristics of plant cell walls affecting intake and digestibility of
796 forages by ruminants. *Journal of Animal Science* 73: 2774-2790.

797 Kearse, M., R. Moir, A. Wilson, S. Stones-Havas, M. Cheung *et al.*, 2012 Geneious Basic: an
798 integrated and extendable desktop software platform for the organization and analysis of
799 sequence data. *Bioinformatics* 28: 1647-1649.

800 Kemp, A., and M. t Hart, 1957 Grass tetany in grazing milking cows. *Netherlands Journal of*
801 *Agricultural Science* 5: 4-17.

802 Langdon, W. B., 2015 Performance of genetic programming optimised Bowtie2 on genome
803 comparison and analytic testing (GCAT) benchmarks. *BioData mining* 8: 1.

804 Leddin, C., J. Jacobs, K. Smith, K. Giri, B. Malcolm *et al.*, 2018 Development of a system to rank
805 perennial ryegrass cultivars according to their economic value to dairy farm businesses in
806 south-eastern Australia. *Animal Production Science* 58: 1552-1558.

807 Li, X., Y. Wei, A. Acharya, J. L. Hansen, J. L. Crawford *et al.*, 2015 Genomic prediction of biomass
808 yield in two selection cycles of a tetraploid alfalfa breeding population. *The Plant Genome* 8.

809 Lopez-Cruz, M., J. Crossa, D. Bonnett, S. Dreisigacker, J. Poland *et al.*, 2015 Increased prediction
810 accuracy in wheat breeding trials using a marker \times environment interaction genomic selection
811 model. *G3: Genes, Genomes, Genetics*: g3. 114.016097.

812 Lorenz, A. J., K. P. Smith and J.-L. Jannink, 2012 Potential and optimization of genomic selection
813 for Fusarium head blight resistance in six-row barley. *Crop Science* 52: 1609-1621.

814 Masters, D. G., H. C. Norman and D. T. Thomas, 2019 Minerals in pastures—are we meeting the
815 needs of livestock? *Crop and Pasture Science*.

816 McDowell, R. W., A. N. Sharpley, J. R. Crush and T. Simmons, 2011 Phosphorus in pasture plants:
817 potential implications for phosphorus loss in surface runoff. *Plant and Soil* 345: 23-35.

818 McEvoy, M., N. McHugh, M. O'Donovan, D. Grogan and L. Shalloo, 2014 Pasture profit index:
819 updated economic values and inclusion of persistency. EGF at 50: The future of European
820 grasslands. Proceedings of the 25th General Meeting of the European Grassland Federation,
821 Aberystwyth, Wales, 7-11 September 2014: 843-845.

822 McEvoy, M., M. O'Donovan and L. Shalloo, 2011 Development and application of an economic
823 ranking index for perennial ryegrass cultivars. *Journal of Dairy Science* 94: 1627-1639.

824 Meuwissen, T. H., B. J. Hayes and M. E. Goddard, 2001 Prediction of total genetic value using
825 genome-wide dense marker maps. *Genetics* 157: 1819-1829.

826 Muranty, H., M. Troggio, I. B. Sadok, M. Al Rifaï, A. Auwerkerken *et al.*, 2015 Accuracy and
827 responses of genomic selection on key traits in apple breeding. *Horticulture Research* 2:
828 15060.

829 Muylle, H., C. Van Waes, F. Van Parijs, G. Obianugba, J. Baert *et al.*, 2013 Genetic diversity for cell
830 wall digestibility in a diverse *Lolium perenne* collection, pp. 261-267 in *Breeding strategies*
831 for sustainable forage and turf grass improvement. Springer.

832 Norman, A., J. Taylor, J. Edwards and H. Kuchel, 2018 Optimising genomic selection in wheat:
833 effect of marker density, population size and population structure on prediction accuracy. *G3:*
834 Genes, Genomes, Genetics

835 Payne, R., D. Murray, S. Harding, D. Baird and D. Soutar, 2009 GenStat for windows introduction.
836 VSN International, Hemel Hempstead 204.

837 Pembleton, L. W., C. Inch, R. C. Baillie, M. C. Drayton, P. Thakur *et al.*, 2018 Exploitation of data
838 from breeding programs supports rapid implementation of genomic selection for key
839 agronomic traits in perennial ryegrass. *Theoretical and Applied Genetics* 131: 1891-1902.

840 Pérez, P., and G. de Los Campos, 2014 Genome-wide regression and prediction with the BGLR
841 statistical package. *Genetics* 198: 483-495.

842 Poland, J., J. Endelman, J. Dawson, J. Rutkoski, S. Wu *et al.*, 2012 Genomic selection in wheat
843 breeding using genotyping-by-sequencing. *The Plant Genome* 5: 103-113.

844 R Core Team, 2017 R: a language and environment for statistical computing. Vienna, Austria: R
845 Foundation for Statistical Computing; 2017, pp.

846 Rutkoski, J. E., E. L. Heffner and M. E. Sorrells, 2011 Genomic selection for durable stem rust
847 resistance in wheat. *Euphytica* 179: 161-173.

848 Shinozuka, H., N. O. Cogan, G. C. Spangenberg and J. W. Forster, 2012 Quantitative Trait Locus
849 (QTL) meta-analysis and comparative genomics for candidate gene prediction in perennial
850 ryegrass (*Lolium perenne* L.). *BMC Genetics* 13: 101.

851 Smith, K., G. Rebetzke, H. Eagles, M. Anderson and H. Easton, 1999 Genetic control of mineral
852 concentration and yield in perennial ryegrass (*Lolium perenne* L.), with special emphasis on
853 minerals related to grass tetany. *Australian Journal of Agricultural Research* 50: 79-86.

854 Smith, K., K. Reed and J. Foot, 1997 An assessment of the relative importance of specific traits for
855 the genetic improvement of nutritive value in dairy pasture. *Grass and Forage Science* 52:
856 167-175.

857 Turner, L. B., A. J. Cairns, I. P. Armstead, J. Ashton, K. Skøt *et al.*, 2006 Dissecting the regulation of
858 fructan metabolism in perennial ryegrass (*Lolium perenne*) with quantitative trait locus
859 mapping. *New Phytologist* 169: 45-58.

860 van Parijs, F., C. Van Waes, B. Vandecasteele, G. Haesaert, I. Roldán-Ruiz *et al.*, 2018 The optimal
861 lignin quantification method to breed for an improved cell wall digestibility in perennial
862 ryegrass. *Grass and Forage Science* 73: 101-111.

863 VanRaden, P. M., 2008 Efficient methods to compute genomic predictions. *Journal of Dairy Science*
864 91: 4414-4423.

865 Waghorn, G., 2007 What is dietary metabolisable energy? *PROCEEDINGS OF THE*
866 *CONFERENCE-NEW ZEALAND GRASSLAND ASSOCIATION* 69: 153.

867 Waghorn, G., and D. Clark, 2004 Feeding value of pastures for ruminants. *New Zealand Veterinary*
868 *Journal* 52: 320-331.

869 Wang, J., N. Cogan, L. Pembleton and J. Forster, 2015 Variance, inter-trait correlation, heritability
870 and trait-marker association of herbage yield, nutritive values, and morphological
871 characteristics in Italian ryegrass (*Lolium multiflorum* Lam.). *Crop and Pasture Science* 66:
872 973-984.

873 Wheeler, J., and J. Corbett, 1989 Criteria for breeding forages of improved feeding value: results of a
874 Delphi survey. *Grass and Forage Science* 44: 77-83.

875 Wilkins, P., 1991 Breeding perennial ryegrass for agriculture. *Euphytica* 52: 201-214.

876 Wilkins, P., and M. Humphreys, 2003 Progress in breeding perennial forage grasses for temperate
877 agriculture. *The Journal of Agricultural Science* 140: 129-150.

878 Williams, W., H. Easton and C. Jones, 2007 Future options and targets for pasture plant breeding in
879 New Zealand. *New Zealand Journal of Agricultural Research* 50: 223-248.

880 Zhao, Y., M. Gowda, W. Liu, T. Würschum, H. P. Maurer *et al.*, 2012 Accuracy of genomic
881 selection in European maize elite breeding populations. *Theoretical and Applied Genetics*
882 124: 769-776.

883 Zhong, S., J. C. Dekkers, R. L. Fernando and J.-L. Jannink, 2009 Factors affecting accuracy from
884 genomic selection in populations derived from multiple inbred lines: a barley case study.
885 *Genetics* 182: 355-364.

886

888 **Table 1:** Trait genotypic (σ^2_g), genotype-by-location interaction (σ^2_{gl}) and residual error (σ^2_ϵ) variance components and their associated
 889 standard errors (SE), repeatability (R) and genomic heritability (h^2_g), estimated for the range of nutritive traits, among 517 half-sib families of
 890 perennial ryegrass evaluated across the two locations in Lincoln and Aorangi. All σ^2_g for nutritive traits were significant ($P < 0.05$).

Trait	Abbreviation	$\sigma^2_g \pm SE$	$\sigma^2_{gl} \pm SE$	$\sigma^2_\epsilon \pm SE$	R	h^2_g
Acid detergent fibre	ADF	0.16 ± 0.036	0.083 ± 0.04	1.11 ± 0.042	0.42	0.32
Neutral detergent fibre	NDF	0.50 ± 0.068	0.16 ± 0.057	1.36 ± 0.054	0.62	0.48
Digestible organic matter in dry-matter	DOMD	0.41 ± 0.088	0.22 ± 0.096	2.49 ± 0.097	0.44	0.35
Crude fat	CFAT	4.99 ± 1.380 [†]	9.38 ± 1.630 [†]	30.0 ± 0.001 [†]	0.34	0.29
Metabolisable energy	ME	0.01 ± 0.002	0.005 ± 0.002	0.06 ± 0.002	0.45	0.36
Crude protein	CP	0.15 ± 0.052	0.148 ± 0.065	1.64 ± 0.064	0.31	0.27
Calcium	Ca	0.57 ± 0.073 [†]	0.17 ± 0.058 [†]	1.48 ± 0.058 [†]	0.63	0.60
Potassium	K	10.0 ± 0.001 [†]	5.19 ± 1.890 [†]	48.0 ± 0.002 [†]	0.49	0.46
Magnesium	Mg	0.11 ± 0.014 [†]	0.03 ± 0.010 [†]	0.25 ± 0.010 [†]	0.65	0.62
Manganese (mg/kg)	Mn	64.6 ± 10.10	22.1 ± 9.70	240.5 ± 9.4	0.56	0.55
Sodium	Na	2.32 ± 0.236 [†]	0.25 ± 0.128 [†]	3.93 ± 0.015 [†]	0.75	0.74
Phosphorus	P	0.04 ± 0.016 [†]	0.04 ± 0.021 [†]	0.58 ± 0.022 [†]	0.26	0.22
Sulphur	S	0.33 ± 0.050 [†]	0.15 ± 0.045 [†]	1.04 ± 0.041 [†]	0.57	0.53
Nitrogen	N	3.08 ± 1.250 [†]	3.0 ± 0.001 [†]	40.0 ± 0.001 [†]	0.26	0.22
Tetany ratio (K/Ca+Mg)	Tetany ratio	0.01 ± 0.002	0.005 ± 0.001	0.04 ± 0.001	0.61	0.63
Total water soluble carbohydrates	Total WSC	51.7 ± 12.8	51.6 ± 14.6	325.2 ± 13	0.39	0.31
Low molecular weight carbohydrates	LMW WSC	19.6 ± 4.6	19.3 ± 5.1	105.1 ± 4.2	0.42	0.20
High molecular weight carbohydrates	HMW WSC	13.7 ± 4.3	11.9 ± 5.1	141.3 ± 5.5	0.32	0.34

891 [†] x10⁻³

894 **Table 2:** Genotypic correlations amongst a range of nutritive quality traits measured from 517 half-sib families, estimated using data from
 895 across two locations (Lincoln and Aorangi).

	ADF	NDF	DOMD	CFAT	CP	ME	P	N	K	S	Ca	Mg	Na	Mn	Tetany ratio	LMW WSC	HMW WSC	Total WSC
ADF	1	0.84	-0.88	0.12	-0.65	-0.87	-0.51	-0.69	0.47	-0.26	-0.72	0.20	0.03	0.30	0.61	-0.49	-0.04	-0.35
NDF		1	-0.77	-0.05	-0.53	-0.77	-0.43	-0.54	0.60	-0.09	-0.79	0.41	-0.23	0.54	0.67	-0.60	-0.38	-0.59
DOMD			1	0.05	0.36	1.00	0.57	0.43	-0.29	0.15	0.46	-0.45	-0.01	-0.55	-0.32	0.73	0.21	0.60
CFAT				1	-0.10	0.03	0.73	-0.06	0.02	-0.61	0.00	-0.67	0.32	-0.57	0.14	0.41	0.59	0.55
CP					1	0.36	0.27	0.99	-0.49	0.06	0.68	0.14	0.02	0.10	-0.65	-0.19	0.11	-0.08
ME						1	0.55	0.44	-0.29	0.18	0.46	-0.42	0.01	-0.55	-0.32	0.72	0.22	0.59
P							1	0.34	-0.15	-0.20	0.29	-0.62	0.13	-0.53	-0.13	0.58	0.33	0.55
N								1	-0.45	0.08	0.65	0.10	0.01	0.07	-0.60	-0.13	0.11	-0.04
K									1	0.25	-0.69	0.34	-0.61	0.45	0.92	-0.29	-0.55	-0.46
S										1	-0.08	0.55	-0.50	0.47	0.10	-0.19	-0.67	-0.44
Ca											1	-0.07	0.35	-0.34	-0.89	0.31	0.34	0.37
Mg												1	-0.43	0.82	0.09	-0.75	-0.66	-0.82
Na													1	-0.58	-0.47	0.32	0.73	0.55
Mn														1	0.29	-0.89	-0.83	-1.00
Tetany ratio															1	-0.20	-0.37	-0.31
LMW WSC																1	0.50	0.92
HMW WSC																	1	0.80
Total WSC																		1

896

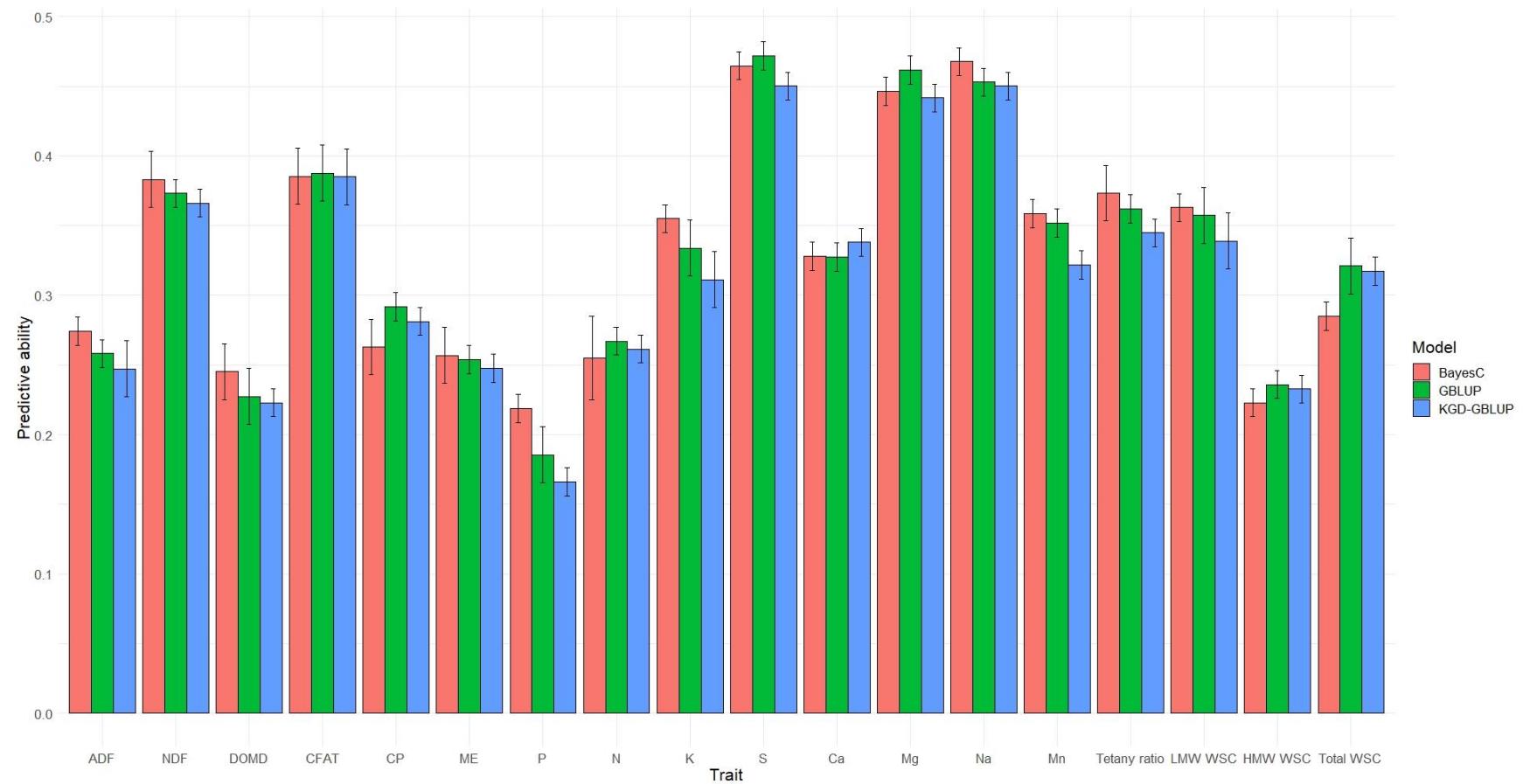
897

898

899

900 13 Figures

901



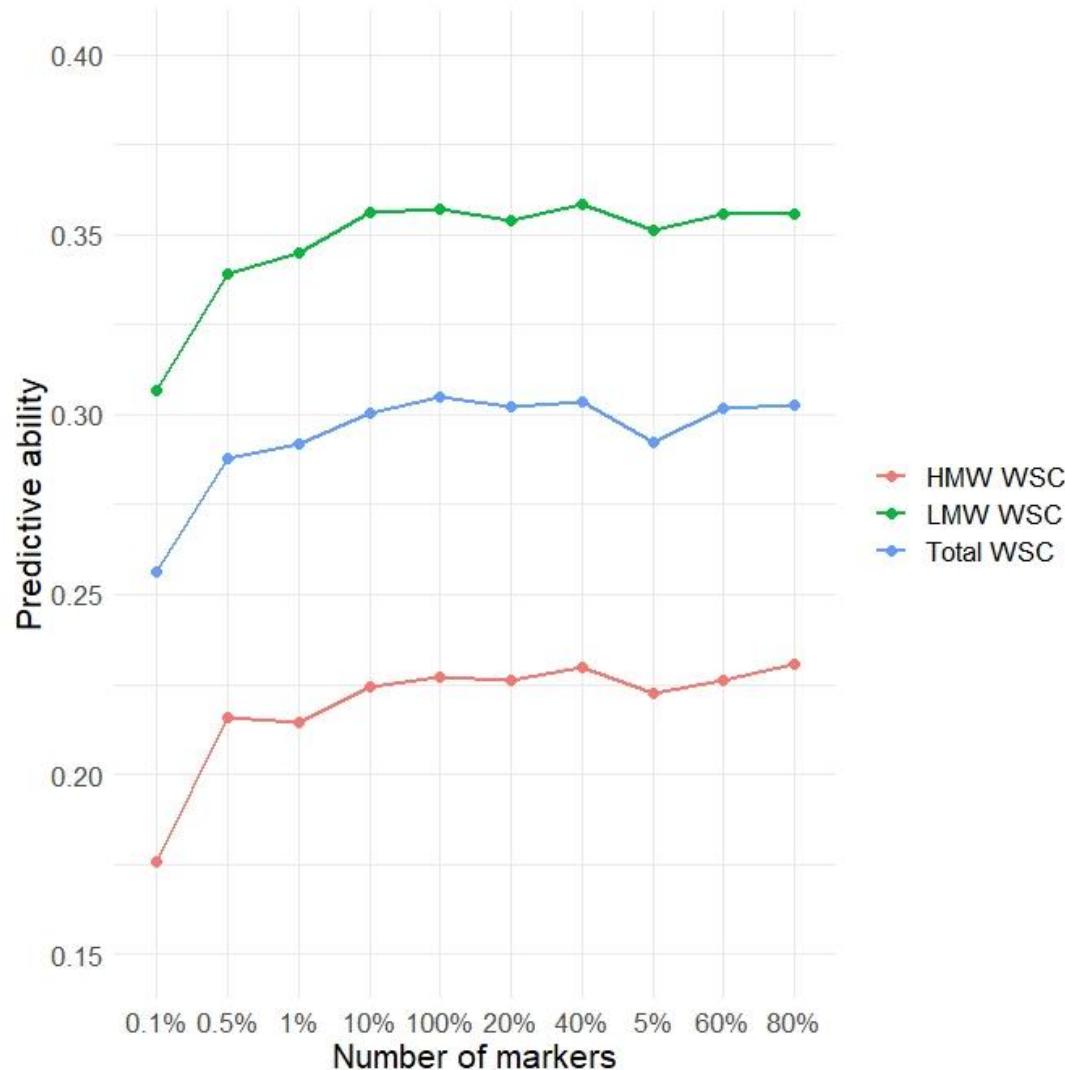
902

903

904

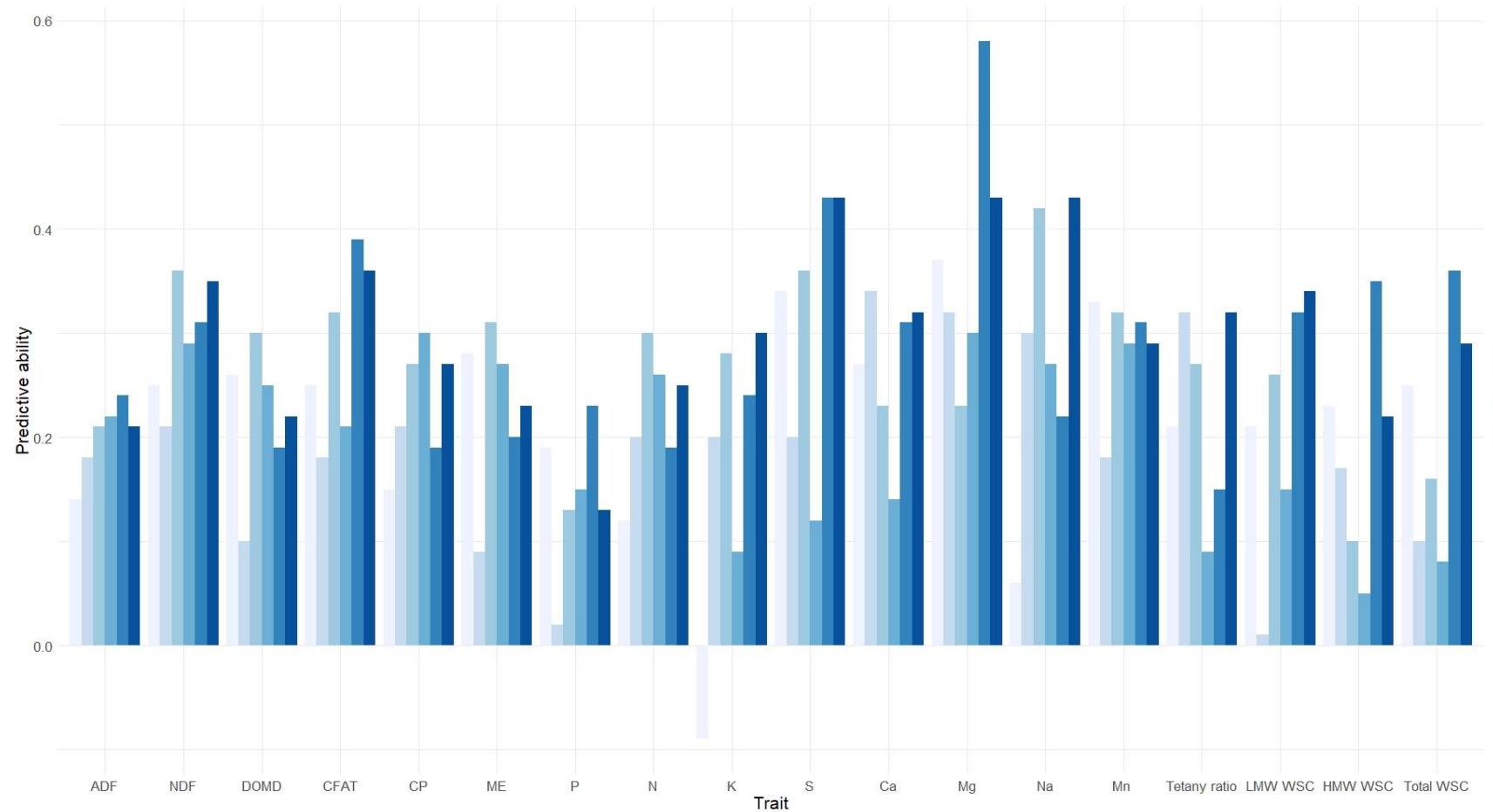
905

Figure 1: Predictive ability (Pearson correlation coefficient between observed and predicted values) for nutritive traits and their associated standard deviation, assessed using three genomic prediction models (BayesC, KGD-GBLUP and GBLUP), based on adjusted means (BLUP's) measured among five populations across two locations.



906 **Figure 2:** Random subsets of markers ranging from 0.1% (1,093) to 100% (1,093,464) of the marker set, used in GBLUP model to estimate
907 predictive ability for HMW WSC, LMW WSC and Total WSC.

908



909
910 **Figure 3:** Predictive ability for 18 nutritive traits in each individual population (Pop I – Pop V)
911 (TP)