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Abstract

Forage nutritive value impacts animal nutrition, which underpins livestock productivity, reproduction
and health. Genetic improvement for nutritive traits has been limited, as they are typically expensive
and time-consuming to measure through conventional methods. Genomic selection is appropriate for
such complex and expensive traits, enabling cost-effective prediction of breeding values using genome-
wide markers. The aims of the present study were to assess the potential of genomic selection for a
range of nutritive traits in a multi-population training set, and to quantify contributions of genotypic,
environmental and genotype-by-environment (G x E) variance components to trait variation and
heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families,
from five advanced breeding populations, evaluated in two distinct New Zealand grazing
environments. Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of
the half-sib families were genotyped using genotyping-by-sequencing. Significant (P<0.05) genotypic
variation was detected for all nutritive traits and genomic heritability (h%) was moderate to high (0.20
to 0.74). G x E interactions were significant and particularly large for water soluble carbohydrate
(WSC), crude fat, phosphorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesC genomic
prediction models displayed similar predictive ability, estimated by 10-fold cross validation, for all
nutritive traits with values ranging from r = 0.16 to 0.45 using phenotypes from across two
environments. High predictive ability was observed for the mineral traits sulphur (0.44), sodium (0.45)
and magnesium (0.45) and the lowest values were observed for P (0.16), digestibility (0.22) and high
molecular weight WSC (0.23). Predictive ability estimates for most nutritive traits were retained when
marker number was reduced from 1 million to as few as 50,000. The moderate to high predictive
abilities observed suggests implementation of genomic selection is feasible for most of the nutritive
traits examined. For traits with lower predictive ability, multi-trait genomic prediction approaches that
exploit the strong genetic correlations observed amongst some nutritive traits may be useful. This
appears to be particularly important for WSC, considered one of the primary constituent of nutritive
value for forages.
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1 Introduction

Perennial ryegrass (Lolium perenne L.) from permanent pasture is the major feed component for
ruminant production systems in temperate regions of the world. Historically, improvement of annual
and seasonal dry matter yield (DMY) have been significant objectives for perennial ryegrass breeding
(WILKINS AND HUMPHREYS 2003; WILLIAMS et al. 2007; VAN PARIJS et al. 2018). Today, seasonal
distribution of DMY features as the major component of economic ranking indices developed for this
species in New Zealand (Forage Value Index, FVI) (CHAPMAN et al. 2017), Australia (LEDDIN et al.
2018) and Ireland (Pasture Profit Index, PPI) (McCEvoy et al. 2011; McEvoy et al. 2014). Nutritive
traits in forages are also important for livestock productivity, maintenance of body weight and for
supporting reproduction and health in the grazing animals (WAGHORN AND CLARK 2004). Although
there is existing information that demonstrates the importance of nutritive value traits and the potential
economic returns from trait improvement, the overall breeding effort for nutritive traits in ryegrass has
received considerably less attention than for DMY (SMITH et al. 1997). Increased breeding effort for
nutritive traits, with validated outcomes for animal productivity, would provide enhanced on-farm
value to farmers (JAFARI et al. 2003a; CHAPMAN et al. 2017).

Compared to other forage grass species, perennial ryegrass is regarded as having relatively high
nutritive value, providing a cost effective, nutrient rich feed for ruminant livestock (WILKINS 1991;
BAERT AND MuYLLE 2016). Breeding for improved nutritive value in this species has focused
principally on higher in vitro dry matter (DM) digestibility to enhance energy availability and voluntary
intake from grazed pasture (JUNG AND ALLEN 1995). This is a key selection criterion in many ryegrass
breeding schemes (CASLER AND VOGEL 1999; EASTON et al. 2002; MUYLLE et al. 2013), particularly
in Europe, where WILKINS AND HUMPHREYS (2003) reported genetic improvement of approximately
10g kg per decade for DM digestibility. Breeding to increase water-soluble carbohydrate (WSC)
content in ryegrass herbage, one of few reported studies of successful breeding for a nutritive trait in
perennial ryegrass (HUMPHREYS 1989a; JONES AND ROBERTS 1991; SMITH et al. 1997), has been a
major contributor to genetic improvement of digestibility (WILKINS AND HUMPHREYS 2003; MUYLLE
et al. 2013). More recently, there has been increased emphasis on addressing digestibility through the
improvement of fibre degradability per se, by targeting changes in the biochemical composition of the
cell wall (FAVILLE et al. 2010; VAN PARWSS et al. 2018).

Minerals and trace elements are essential elements for plant growth and are critical to various biological
functions of the plant. In forages, these macro- and micronutrients are also important components of
nutritive quality, critical for maintaining livestock health (WAGHORN 2007). For example, metabolic
disorders can be caused or contributed to by mineral imbalances in the diet, such as hypomagnesaemia
(grass tetany) which is caused by insufficient magnesium and calcium in the diet. Earlier studies have
identified genetic variation amongst families (EASTON et al. 1997; SMITH et al. 1999) or genotypic
variation amongst cultivars (CRUsH et al. 2018a; CRUSH et al. 2018b) for micro- and macronutrients,
indicating that breeding for mineral content is a realistic opportunity.

The reduced emphasis on breeding for nutritive traits in forages is affected by a number of factors,
including a lack of consensus on specific breeding targets (WHEELER AND CORBETT 1989; CHAPMAN
et al. 2015), ambiguous evidence for the impact of specific nutritive traits on animal production
outcomes (EASTON et al. 2002; EDWARDS et al. 2007; McEvoy et al. 2011), the confounding influence
of environment and genotype x environment (G x E) interactions, and the significant additional
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82  resources needed in a breeding program to undertake nutritive trait measurements in large panels of
83  selection candidates (SMITH et al. 1997).

84  Genomic selection (GS), where breeding value for a trait may be cost-effectively predicted for selection
85  candidates using genome-wide markers, was initially proposed for animal breeding by MEUWISSEN et
86 al. (2001). In GS, a training population combining phenotypic and genotypic information is used to
87  develop a model that can subsequently be used to predict genomic estimated breeding values (GEBVSs)
88  forindividuals in atest or selection population that have been genotyped only. In essence, GS replaces
89 the need to phenotype the target trait. GS has been demonstrated in dairy cattle breeding, where the
90 rate of genetic gain was doubled by reducing generation interval from 7 to 2.5 years or from 4 to 2.5
91 vyears, depending upon selection strategy (GARCIA-RuUIZz et al. 2016). Over the last decade the declining
92  cost of genotyping single nucleotide polymorphisms (SNPs), largely through reduced representation
93  sequencing approaches such as genotyping-by-sequencing (GBS) (ELSHIRE et al. 2011), has made this
94  tool feasible for plant breeding. GS is now being applied in major crop species, including wheat
95 (RuTtkoskletal. 2011; PoLAND et al. 2012; Lorez-CRuUz et al. 2015; HAYES et al. 2017), maize (ZHAO
96 et al. 2012; FRISTCHE-NETO et al. 2018) and barley (ZHONG et al. 2009; LORENZ et al. 2012) and is
97  under adoption in forage species, including perennial ryegrass (FE et al. 2016; GRINBERG et al. 2016;
98 BYRNE et al. 2017; ArRoJU et al. 2018; FAVILLE et al. 2018; PEMBLETON et al. 2018), and alfalfa
99  (ANNICCHIARICO et al. 2015; LI et al. 2015; Biazzi et al. 2017; JiA et al. 2018).

100  GS can accelerate genetic gain particularly for complex traits, which are controlled by many genes
101  with small effects and for traits which are difficult to measure and expensive (HESLOT et al. 2015). GS
102 is therefore a very attractive tool for nutritive traits, given the barriers, described above, to routine
103 integration of nutritive traits into forage breeding programs. The success of GS primarily depends on
104  predictive ability, which is influenced by trait heritability (h?)), training population size, marker
105 density, extent of linkage disequilibrium (LD) and relatedness between training and test population
106  (DAETWYLER et al. 2013). While the heritability of a trait and the extent of LD in a training population
107  cannot be easily optimized, the density of markers and the size and composition of the training
108  population are two factors that can be controlled. Several methods have been developed for genomic
109  prediction and can be broadly classified as whole-genome regression methods (discussed by DE LOS
110  CAmpPos et al. (2013)) or machine learning methods (outlined by GoNzALEzZ-CAMACHO et al. (2018)).
111 Based on simulation and empirical results, DAETWYLER et al. (2013) concluded that genomic best
112  linear unbiased predictor (GBLUP) and Bayesian variable selection methods (BayesB and BayesC)
113 were the benchmark for genomic prediction, as these methods are appropriate for a range of genetic
114  architectures, from traits which are controlled by many genes with small effects (infinitesimal model)
115  to traits with large SNP effects (variable selection model).

116  The principle aim of the current study was to assess genomic predictive ability for 18 nutritive quality
117  traits, measured in a large multi-population training set in two key New Zealand grazing environments,
118 and to investigate the impact of marker density and of genomic prediction models with different prior
119  assumptions regarding the distribution of SNP effects. The study also provided an opportunity to assess
120  the magnitude of genetic variation and to estimate heritability for a large range of nutritive traits under
121 New Zealand grazing environments.

122 2 Materials and Methods

123 2.1 Plant material and experimental design

124 The half-sibling (half-sib) families used in this study were derived from five different advanced
125  breeding populations (Pop | — Pop V), which are part of the Grassland Innovation Ltd breeding
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126 program. From each population, 102 to 117 plants that tested positive for endophyte infection (Epichloé
127  festucae var lolli) by immunoblotting (HAHN et al. 2003), were polycrossed in isolation during spring
128 2012 in Palmerston North, New Zealand (FAVILLE et al. 2018). Polycrosses were performed separately
129  for each population, without admixing, and seeds from the maternal parents were harvested and
130  cleaned. In total 543 half-sib families were harvested for seed, however only 517 families had sufficient
131  seed (> 3.6g) for sowing field trials.

132 A total of six trials were sown (FAVILLE et al. 2018), of which two were used for the current study.
133 These were trials established at Lincoln (Canterbury region, southern New Zealand, 43.38°S 172.62°E;
134  Wakanui silt loam) and Aorangi (Manawatu region, central New Zealand, 40.34°S 175.46°E; Kairanga
135  sandy loam), during the autumn of 2013. The experimental design at each site was row-column with
136 three replicates. Within each replicate, populations were blocked, and families randomized within
137  blocks. Multiple repeated checks (clonal replicates) were also randomly allocated within and across
138 the replicated blocks. Half-sib families were evaluated as a 1m row of plants (referred to from now as
139  plots), by sowing 0.2 g of seed (which is equivalent to 14 kg ha™, if a sward was sown at 7 rows m™).
140  Nitrogen and phosphate fertilizer was applied at the rate of 15-30 kg N ha* and 8.8 kg P ha’, in late
141 autumn each year (FAVILLE et al. 2018).

142 2.2 Phenotypic measurements

143  Plot harvests were undertaken at Lincoln starting 14 April 2014 and at Aorangi starting 29 April 2014,
144 during the southern hemisphere autumn. At each site a single harvest was undertaken over three days,
145  between 10:30 am and 3:00 pm on each day to minimize the influence of diurnal variation on levels of
146 measured constituents. Split harvesting of populations or replicate blocks over two days was avoided.
147  Plots were cut to a height of approximately 5 cm, above the pseudostem, meaning that only leaf lamina
148  material was harvested. Harvested foliage was placed into micro-perforated plastic bread bags and
149  immediately snap frozen in liquid nitrogen. Samples were subsequently maintained at ca. -80°C on
150  frozen CO; to preserve labile components and then freeze-dried at one of two commercial facilities -
151  Genesis Biolaboratory Ltd (Christchurch, New Zealand) or Horowhenua Freeze-Dry (Levin, New
152  Zealand). Freeze-dried samples were milled to powder through a 1mm sieve and thoroughly mixed to
153  homogenize the sample. Sub-samples were weighed out and transferred to Hill Laboratories (Hamilton,
154  New Zealand) for near-infrared spectroscopy (NIRS) and minerals analysis and to AgResearch
155  (Palmerston North, New Zealand) for analysis of water-soluble carbohydrate (WSC). A total of 3082
156  samples (n = 1476 from Lincoln and n = 1606 from Manawatu) were provided for analysis. Hill
157  Laboratories provided NIRS data for a range of nutritional traits, as outlined in Table 1. Data for
158  mineral concentrations (Table 1) were based on inductively coupled plasma-optical emission (ICP-
159  OES) analysis of plant material digested with nitric acid: hydrogen peroxide (2:1). Grass tetany ratio
160 was calculated as [K/(Mg+ Ca)] using the data provided for the individual minerals. WSC was
161  extracted and quantified as described by HUNT et al. (2005). Briefly, 25 mg of milled leaf material was
162  extracted twice with ImL of 80% ethanol (low-molecular-weight fraction, LMW WSC WSC) and then
163  twice with 1 mL water (high-molecular-weight fraction; HMW WSC WSC), for 30 min at 65°C.
164  Extracts were centrifuged, and supernatants of the respective fractions were analyzed using anthrone
165  asa colorimetric reagent (JERMYN 1956).

166 2.3 Statistical models and variance components

167  Data analyses were performed across the five populations, for individual locations and across the two
168 locations, using the restricted maximum likelihood (REML) method, by fitting a linear mixed model
169 in GenStat (PAYNE et al. 2009). Analyses were also performed on the five populations individually, by
170  fitting linear mixed models in DeltaGen (JAHUFER AND Luo 2018). Genotype, G x E interaction,
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171  replicates, rows and columns were considered as random effects, whereas location, population and
172  repeated checks were considered as fixed effects. Three different mixed linear models were used: (i)
173 Model 1, to estimate genotypic variance components, pooling all five populations, all 517 families
174  together, within individual locations; (ii) Model 2, for estimating genotypic variance components and
175 interactions of family and location, pooling all five populations, across locations; and (iii) Model 3, for
176  estimating genetic variance and G x E interactions, among half-sib families within individual
177  populations, across locations.

178 Model 1: Mixed model for individual locations.
Yijkin = B+ i + Pn+ b+ Ty + Cre + Eijiin (1)

179 yijkin is the phenotypic value measured on half-sib family i in row j and column k of replicate [ nested
180  within population n, and i=1,..,n45 j=1,..,n,k=1,..,n,l=1,..,np,m=1,...,n,n =
181 1,..,m,, where g,7,c,b,and p are half-sib families, rows, columns, replicates and populations
182  respectively. Where, u is the overall mean; g; is the random effect of half-sib family i, N(O, aj); Dn 1S
183  the fixed effect of population n; b, is the random effect of replicate [ in population n, N(0, 67); Tij IS
184  the random effect of row j within replicate [ of population n, N(0, 62); ¢y is the random effect of
185  column k within replicate ! of population n, N(0,02); &;jxn is the residual effect of half-sib family i
186  in row r and column c of replicate b of population n, N (0, 52).

187  Model 2: Mixed model for across locations.

Yijkimn = K+ Gi + Sm+ (GS)im + Pnt+ bomi + Tumij + Camik + Eijkamn 2

188  ¥ijkimn IS the phenotypic value measured on half-sib family i in row j and column k of replicate
189 nested in location m within population n, and i=1,..,n4, j=1,..,n,k=1,..,n.,l=
190 1,..,n,,m=1,..,n,n=1,..,n, Where g,r,¢,b,s and p are half-sib families, rows, columns,
191  replicates, locations and populations respectively. In the equation, u is the overall mean; g; is the
192 random effect of half-sib family i, N(0,02); s, is the fixed effect of location m; (gs), is the random
193  effect of interaction between half-sib family i and location m, N (O, 0 ); p, is the fixed effect of
194  populationn; by, is the random effect of replicate [ within location m in population
195  n,N(0,0%); Tnmj is the random effect of row j within replicate [ in location m of population n,

196  N(0,02); Cpmu is the random effect of column k within replicate [ in location m of population n,
197 N(0,0%); &ijkimn is the residual effect of half-sib family i in row r and column ¢ of replicate b in

198  location m of population n, N(0, c2).

199  Model 3: Mixed model for individual populations.

Yijkim = U+ gi + Sm+ (GS)im + by + Tmyj + Gk + Eijram 3)

200  y;jkim is the phenotypic value measured on half-sib family i in row j and column k of replicate [ nested
201 in location m. In the equation, u is the overall mean; g; is the random effect of half-sib family i,
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202 N (0, aj); Sm 1S the fixed effect of location m; (gs);n, is the random effect of interaction between half-
203  sib family i and location m, N(O, ajs); pr 1S the fixed effect of population n; b,,; is the random effect
204 of replicate I within location m, N (0, 05); 7y, is the random effect of row j within replicate I in
205  location m, N(0, 62); Cpux is the random effect of column k within replicate [ in location m, N (0, 62);
206 &;jkimn Is the residual effect of half-sib family i in row r and column c¢ of replicate b in location m,
207  N(0,02).

208  The variance components estimated based on the mixed model analysis were used to calculate
209  repeatability (Model 2) (FALCONER 1960) and narrow sense heritability (Model 3) for each trait.
210  Repeatability was based on genotypic variance estimated across five populations, whereas narrow-
211  sense heritability is based on additive genetic variance among half-sib families within each population.
212  Repeatability and narrow sense heritability, on a family mean basis, were estimated using the equation:

2
o (4)
Ror h? = - -
0-2_|_ %4_ 0_5
g S sb

213 Where, R and h; are repeatability and narrow-sense heritability. For repeatability, o7 was the
214  genotypic variance among all the 517 half-sib families. In the estimation of narrow-sense
215  heritability, g7 was the estimated additive genetic variation among half-sib families within a specific

216  population, o/ is the variance associated with G x E interaction and ¢ is the variance of residuals.

217 2.4  Genotypic and phenotypic correlation

218  The genotypic correlation among traits was estimated as proposed by FALCONER (1960). Multivariate
219  analysis of variance (MANOVA) was performed in DeltaGen (JAHUFER AND Luo 2018), using the
220  multivariate analysis option, to estimate variance and covariance among traits:

Covg(x,y) (%)

e T 00,020

221  Where, Covgy(y,y is the genotypic covariance between trait x and y; o®(x) is the variance associated
222  with trait x, and o2 (y) is the variance associated with trait y. Phenotypic correlation was performed in
223  DeltaGen (JAHUFER AND LU0 2018) using the best linear unbiased predictors (BLUPS) estimated based
224 on Model 2.

225 2.5 Genotyping and genomic heritability

226  All maternal parents of the 517 half-sib families were genotyped using a GBS approach described in
227  FAVILLE et al. (2018), following the protocol proposed by ELSHIRE et al. (2011). Briefly, a reference
228  ryegrass genome assembly was constructed using scaffolds from a published ryegrass assembly
229  (BYRNE et al. 2015). Scaffolds were aligned to the barley genome using Lastz version 7.0.1 (HARRIS
230  2007) from Geneious 8 (https://www.geneious.com/, (KEARSE et al. 2012)) with default parameters.
231  Demultiplexing of sequencing reads was performed using the TASSEL 5.0 GBS pipeline (GLAUBITZ
232 et al. 2014) and initial quality control was based on read count statistics. The quality GBS tags were
233  aligned to the reference genome using Bowtie2 (LANGDON 2015). Genotype calling was performed
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234 using TASSEL GBS pipeline to obtain 1,093,464 SNPs, after filtering for maximum missing SNPs per
235  site (50%), minor allele frequency (> 0.05) and read depth (> 1) using VCF tools (DANECEK et al.
236  2011). Genotyped 1,093,464 SNPs were exported and filtered for Hardy-Weinberg disequilibrium
237  (HWdiseq > -0.05). The resulting 1,023,011 SNPs, with a mean read depth of 2.98, were used to
238  compute a genomic relationship matrix (KGD matrix) based on protocol proposed by DopDs et al.
239  (2015). The KGD matrix was used for genomic predictive modelling. Population structure was
240  previously analyzed using multi-dimensional scaling based on genomic relationship matrix (see Figure
241  1in FAVILLE et al. (2018))

242 Genomic heritability (%) was calculated using Eq. 4, based on variance components estimated using
243  the mixed model proposed in Eq. 2. In the model, the KGD matrix was fitted as variance-covariance
244 among genotypes (DE LOS CAMPOS et al. 2015) and the genetic variance was calculated as proportion
245  of variance explained by regressing markers on phenotypes. The model was fitted in ASreml-R
246  (BUTLER et al. 2009).

247 2.6 Genomic prediction modelling

248  Three whole-genome regression methods, with two different prior assumptions regarding the

249  distribution of marker effects, were used for generating GEBVSs. The first method was a univariate
250  linear mixed model, called GBLUP (GODDARD et al. 2011) in which markers effects were assumed to
251  have equal variance. The linear model can be expressed follows:

y=B+Zu+ ¢ (6)

252 Where y is the vector of BLUP values of the trait, g is the vector of grand mean, Z is the design matrix
253 associated with random marker effects u, with 4 ~ N(0,02G), in which G is the additive genetic
254 relationship matrix, and € ~ N(0, c2I), in which I is the identity matrix. The G matrix was calculated
255  Dbased on the method proposed by VANRADEN (2008); ENDELMAN AND JANNINK (2012) using A.mat
256  function in rrBLUP package (ENDELMAN 2011).

257  The second method is a variant of GBLUP method with KGD matrix as G in the linear mixed model.
258 The GBLUP and KGD-GBLUP models were fitted using the rrBLUP package (ENDELMAN 2011),
259  implemented through R programming language (R CorRe TEAM 2017).

260  The third method was BayesC (HABIER et al. 2011), in which markers effects can depart from
261  normality, that is, large variances are allowed for markers with larger effects.

262  The model is expressed as follows:

k (7)
y =+ szak +¢
k=1

263  Where y is the vector of BLUP values of the trait, g is the vector of grand mean, k is the number of
264  makers, Z; is the vector of genotypes at marker k, a,, is the additive effect of the marker, and ¢ is the
265  vector of residual effects with a normal distribution N(0,02). The BayesC model was implemented
266  through R programming using the BGLR package (PEREZ AND DE LOS CAMPOS 2014), with the number
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267  of burn-ins set to 2,000, total number of iterations set to 10,000, and other parameters set to default
268  (PEREz AND DE Los CAMPOS 2014).

269  The predictive ability of the models based on data from the composite training population was assessed
270 by aten-fold cross validation approach. For each cross validation, randomized data were divided into
271  ten equal parts, of which nine parts (training set) were used to train the model and to predict GEBVs
272 in the remaining one part of the data (test set). Randomization of the complete data set was repeated
273  five times and the mean of the five iterations was reported as the predictive ability of the model
274 (FAVILLE et al. 2018).

275 2.7 Evaluating predictions in individual populations

276  As the overall training population is a composite of 517 individuals and their corresponding half-sib
277  families from five discrete breeding populations, the predictive ability of the prediction models was
278  also assessed within each individual population using KGD-GBLUP. A random 50% of individuals
279  was selected from within each population (Pop | — Pop V; total = 255 individuals) as a training set in
280  order to represent each population equally. Using this set of 255 individuals to train the model, GEBVs
281  were then predicted in the remaining 50% of Pop | and the mean correlation of 500 iterations was
282  considered as the predictive ability for this population. This approach was likewise extended to each
283  of the other four populations.

284 2.8 Optimising marker density

285  To evaluate the minimum number of markers needed to achieve maximum predictive ability for each
286  nutritive trait, a random set of markers ranging from 1,093,464 (100%, unfiltered) to 1,093 (0.1%) in
287 10 steps were obtained from the training population. Using each set of randomly selected markers, a G
288  matrix was computed based on the method proposed by VANRADEN (2008) using the rrBLUP package
289  (ENDELMAN 2011). Considering the computational load, KGD method was not extended to randomly
290  selected markers, to construct G matrix. FAVILLE et al. (2018) reported broadly similar predictive
291  ability for DMY in this training population, when G matrices based on DopDs et al. (2015) and
292  VANRADEN (2008) were compared. The G matrix was used in a GBLUP model to estimate predictive
293  ability for each randomly chosen marker set. The predictive ability was assessed via Monte-Carlo cross
294  validations with 500 iterations, where 80% of the data were used to train the model (training set) and
295  20% to predict the GEBVs (test set).

206 3 Results

297 3.1 Variance components, repeatability, and genomic heritability

298  There was significant (P<0.05) genotypic variation among 517 half-sib families from five populations
299  for all traits, based on mean performance across the two locations, Lincoln and Aorangi (Table 1,
300  Supplementary Table S1 and S2). There were also significant (P<0.05) G x E interactions for all the
301 traits, indicating a relative change in ranking among the 517 half-sib families between the two
302 locations. There was a high genotypic correlation (r = 0.93) between R and h?y in the across-location
303  dataset and these ranged from a low of 0.26 (R) and 0.22 (h%) for traits N and P to a high of 0.75 (R)
304 and 0.74 (h?%) for Na (Table 1) across the two locations. Genotypic correlation between R and h%; was
305  slightly lower in Aorangi (r = 0.85) compared with Lincoln (r = 0.93). Because of the high correlation
306 between R and h%; and because h?y captures marker-based additive variance, from here on results for
307  h% only are reported and discussed. Overall, h?y estimated within a location was substantially higher
308 at the Aorangi site than Lincoln (mean of all traits h?; = 0.62 and 0.43, respectively) (Supplementary
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309 Table S1 and S2), with values from the across-location analysis (h%y = 0.42) lying between those of
310 Lincoln and Aorangi. Traits with low h%; tended to have relatively large G x E, whereas those with
311  high h%; had a low G x E interaction components (Table 1). Variance component analysis within the
312  two locations (Lincoln and Aorangi) indicated significant (P<0.05) genotypic variation for all 18
313  nutritive traits. Differences in additive variance were observed for the same trait amongst the five
314  populations in the across location dataset (Supplementary Table S3-S7). For example, additive genetic
315 variance was non-significant (P > 0.05) for ADF, NDF and DOMD in Pop | & II, but was significant
316  for these traits in Pop 11l —V (Supplementary Table S3-S7). Similar observations can be made for all
317  of the analyzed traits, with no population showing significant (P < 0.05) additive genetic variance
318  component for all 18 traits. Amongst the five populations, Pop | had significant additive variance for
319  only 42% of traits (8 traits out of 19) while for Pop V that number was 84%, with the remaining
320  populations intermediate to these at 58 — 68% (Supplementary Table S3-S7).

321 3.2 Correlation among traits

322  Genotypic and phenotypic correlation coefficients for all nutritive quality traits are shown in Tables 2
323  and S8, respectively. Strong, positive genotypic correlation was observed between fibre measures ADF
324  and NDF and these in turn were negatively correlated with energy traits including ME, DOMD and
325 WSC (Tables 2 and Supplementary Table S8). A positive genotypic correlation was estimated for both
326 LMW WSC and total WSC with DOMD, however, a weak positive correlation was found between
327 HMW WSC and DOMD. A strong negative genotypic correlation was observed for both ADF and
328  NDF with both LMW WSC and total WSC. A moderate genotypic correlation was observed between
329  fibre traits (ADF and NDF) and minerals traits including K, Mg and Mn (positive), P and Ca (negative).

330 3.3 Predictive ability for nutritive traits

331  Predictive ability for all nutritive traits was evaluated using GBLUP, KGD-GBLUP and BayesC
332  genomic prediction models, and the results are summarized in Figure 1 as the Pearson correlation
333  coefficient between observed (adjusted means) and predicted values. There were no significant
334  differences (P > 0.05) in terms of predictive ability between GBLUP, KGD-GBLUP and BayesC across
335 all nutritive traits (Figure 1). Although slight differences can be noted from the Figure 1, no single
336  statistical approach consistently gave higher predictive ability for all nutritive traits. Because the results
337  from the three models were largely indistinguishable, from here on results from KGD-GBLUP are only
338 reported and discussed. Using the adjusted phenotypic trait means (BLUPS) estimated across both
339 locations, predictive ability for all traits was positive and was strongly correlated with h%; (r = 0.65).
340  The highest predictive ability observed was for Na and S (both r = 0.45), followed by CFAT (0.38)
341  (Figure 1). The lowest predictive ability was noted for P (0.16), followed by DOMD with a value of
342  0.22 (Figure 1). The bias (slope of regression) of the model for all nutritive traits was around 1, meaning
343  unbiased estimates were obtained by regressing GEBVs on adjusted means (BLUPS) (Supplementary
344  Table S9).

345  Predictive ability of models based on phenotypic means from Lincoln only (location-specific predictive
346  ability) was negative to low and showed a very high correlation with h%; (r = 0.93) (Supplementary
347  Table S1). The highest predictive ability was obtained for Na (0.35), similar to the across locations
348 analysis, and the lowest predictive ability was for ADF with a negative accuracy of -0.06. Predictive
349  ability of models using phenotypic data from Aorangi were generally higher than both the Lincoln and
350  across-location models (Supplementary Table S2) and the correlation between h?; and predictive ability
351 was 0.67. In this dataset the highest predictive ability was for HMW WSC (0.56) and lowest predictive
352  ability was for Ca (0.16) (Supplementary Table S2).
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353 Interms of different trait categories, for the measures of fibre content, ADF and NDF, predictive ability
354  of the across-location models was moderate, at 0.24 and 0.36 respectively. There was a strong effect
355  of location on these traits, with moderate predictive ability at Aorangi (ADF = 0.29 and NDF = 0.35)
356  whereas at Lincoln, the predictive ability was almost zero for NDF (0.02) and negative for ADF (-0.06)
357  (Supplementary Table S1 and S2).

358  The traits DOMD, CFAT, WSC (LMW, HMW and total) and ME were grouped as energy traits in this
359  study. Predictive ability for energy traits in the across location analysis was generally low to moderate,
360  with CFAT (0.38) and LMW WSC (0.34) the highest, and DOMD (0.22) and HMW WSC (0.23) low
361  (Figure 1). As with the fibre traits, the ranking of predictive ability for CFAT varied by environment
362  and was highest in Lincoln and in across-location analysis, whereas predictive ability for CFAT ranked
363  fourth highest in Aorangi. By contrast, the predictive ability estimated for DOMD was ranked similarly
364  (fifth highest) for Lincoln and Aorangi.

365  The predictive ability of genomic prediction models for mineral traits assessed in this study was
366  generally high, with Mg, Na and S consistently ranked highest in terms of predictive ability within the
367  two locations (Lincoln and Aorangi) and in across-location analysis. The lowest h?y was observed for
368 P, which was reflected in the predictive ability of prediction models for Lincoln and across-location
369 analysis. Models for tetany ratio ([K/(Ca+Mg)]), a predictor of hypomagnesaemia risk in livestock,
370  had a predictive ability of 0.34 across locations, 0.29 at Lincoln and 0.18 at Aorangi.

371  The measures CP and N are both indicative of protein content, with crude protein a derivate of
372  measured N, obtained by multiplying N by a conversion factor of 6.25 (WAGHORN 2007), hence
373  predictive ability estimated within and across locations was highly similar for both the traits. Predictive
374 ability for these traits was low to moderate, at 0.28 (CP) and 0.26 (N) in the across location analysis,
375  0.14 for both traits at Lincoln and 0.20 and 0.21 for CP and N at Aorangi.

376  Genotyping efficiency impacts the design and overall cost of implementing GS in a breeding program.
377  To investigate the minimum number of SNP markers needed to achieve maximum predictive ability
378  within the current dataset, random marker sets with varying numbers of SNPs were used to build
379  genomic prediction models for all nutritive traits, using the across locations dataset. For all nutritive
380 traits, a steady decline in predictive ability was observed from 100% (1,093,464) to 0.5% (5,467)
381  markers and a rapid decrease in predictive ability was noted from 0.5% to 0.1% (1,093) (Figure 2 and
382  Supplementary Table S9). Overall, reducing the marker number to 5% (54,673) of the total available
383  SNPs had minimal impact on overall predictive ability (Figure 2 and Supplementary Table S9). Further
384  reductions in marker number resulted in losses in predictive ability, the extent of which varied by trait
385  (Supplementary Table S9). For example, with 10,934 markers (1% of the total dataset) the predictive
386  ability for LMW WSC, HMW WSC and total WSC decreased by 3%, 7% and 4%, respectively
387  compared to the total dataset (100%) (Figure 2). At 1,093 markers (0.1%) the predictive ability for
388  these traits declined further although the absolute values were still positive, at 0.31 for LMW WSC,
389  0.18 for HMW WSC and 0.26 for total WSC (Figure 2). The decay in predictive ability was typically
390 highest for those traits which had low h?%; and low predictive ability under the full SNP dataset. For
391 example, between the highest and lowest marker number datasets there was a 36% decrease in
392  predictive ability for P (h%; = 0.22), while for S (h?y = 0.53) there was a 14% decrease in predictive
393  ability (Supplementary Table S9).

394  The training population used in this study is a composite of five different breeding populations, with

395  differing genetic relationships (see Figure 1 in FAVILLE et al. (2018). The predictive ability of a model,
396  constructed based on a composite training set, for each of the individual populations is therefore an
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397  important consideration. Cross-validations were conducted within the individual populations using the
398  protocol reported by FAVILLE et al. (2018). Predictive ability varied amongst the populations (Figure
399  3). For example, predictive ability for ADF ranged from 0.13 to 0.24 amongst the five populations
400  (Figure 3). The majority of predictions were positive across all populations, with the exception of K
401  for Pop I, and only LMW WSC and P in Pop Il had notably poor predictive ability (Figure 3). No
402  population was superior for genomic prediction of all nutritive traits. However, Pop V returned the
403  highest predictive ability overall (mean predictive ability of Pop V = 0.29, compared with 0.30 in the
404  training set, TP), followed by Pop 111, Pop I, Pop 1V, and Pop |1 (Figure 3).

405 4 Discussion

406  Nutritive quality traits in forages are important for animal productivity and for maintaining livestock
407  health and are therefore important targets for genetic improvement in perennial ryegrass. Nutritive
408 traits can be expensive to measure and are labour-intensive, hindering the improvement of these traits
409 by conventional breeding methods. Genomic selection (GS), the use of genome-wide molecular
410  markers for the prediction of breeding values in selection candidates, is well suited for traits that are
411  costly and difficult to phenotype (HEFFNER et al. 2009; JANNINK et al. 2010) and therefore represents
412  a promising approach for enabling cost-effective improvement of nutritive traits in forages. In this
413  study we demonstrate that GS is a strong prospect for improvement of nutritive quality traits as assessed
414 by cross-validation predictive abilities estimated for 18 nutritive traits in a multi-population training
415  set. Furthermore, the extensive phenotypic dataset, collected from two contrasting environments, has
416 enabled the contribution of genotypic, environment, and genotype-by-environment variance
417  components to be estimated across a large range of nutritive traits.

418  Several methods for GS have been proposed for both plant and animal breeding, including GBLUP,
419  Bayesian alphabets (BayesA, BayesB and BayesC), Ridge Regression (RR) BLUP, Random Forest,
420  Support Vector Machine and deep learning through Multilayer Perceptron’s and Convolutional Neural
421  Networks (DE LOoS CAMPOS et al. 2013; CROSSA et al. 2017). Both simulations and empirical data
422  suggests that linear models are superior in terms of predicting GEBVs at higher accuracy (DAETWYLER
423 etal. 2010; DE LoS CAMPOS et al. 2013; BYRNE et al. 2017; BELLOT et al. 2018; FAVILLE et al. 2018).
424 Inthis study, we compared three linear models characterized by two different assumptions with respect
425  to the distribution of variance for marker effects. In GBLUP and KGD-GBLUP all marker effects are
426  shrunkequally, assuming the predicted trait is controlled by many markers with small effect (GODDARD
427  etal. 2011), whereas BayesC assumes that the trait is a mixture of distributions with large and small
428  effect markers (HABIER et al. 2011). Even with different prior assumptions, Figure 1 illustrates the
429  similarity in predictive ability amongst the three methods for all nutritive traits, with only minor
430  differences (Figure 1). Through simulation and empirical data, DE LOS CAMPOS et al. (2013) pointed
431  out that the superiority of Bayesian variable selection models can be illustrated when applied to a trait
432  with large effect quantitative trait loci (QTL). The lack of improvement in predictive ability under the
433  BayesC model observed here may reflect a complex genetic architecture for the nutritive traits studied,
434 which are likely controlled by many genes with small effects. For instance, QTL studies in perennial
435  ryegrass reported 25 loci for WSC (CoGAN et al. 2005; TURNER et al. 2006; SHINOZUKA et al. 2012;
436  GALLAGHER et al. 2015), however genetic variation explained by the multiple QTLs was no more than
437  20%, suggesting that genetic control of WSC may tend towards an infinitesimal model.

438  The success of GS primarily depends on the predictive ability of the genomic prediction model, which
439 s influenced by h2, training population size, linkage disequilibrium (LD), genetic diversity within the
440  training population and relatedness between training and test set (DAETWYLER et al. 2013; CROSSA et
441  al. 2017; AroJu et al. 2018). Traits with low h2 need a larger training population to achieve the same
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442  level of predictive ability as a trait with higher hZ. Results from our study indicate that predictive ability
443  estimated by cross-validation and h2 will not be a limiting factor for implementing GS for nutritive
444 traits in perennial ryegrass, as predictive ability and various measures of heritability (R, h7 and h})
445  were moderate to high for most traits (Table 1, Supplementary Table S1-S7 and Figure 1). A strong
446  positive correlation was observed between predictive ability and h? for traits at the individual locations
447  (Aorangi and Lincoln) and in the across-location analysis, confirming previous findings (CROSSA et al.
448  2017) and suggesting that genomic prediction can be more accurate for highly heritable traits. A
449  positive correlation between predictive ability and heritability was also previously observed for
450  nutritive traits in switchgrass (FIEDLER et al. 2018) and alfalfa (JIA et al. 2018), as well as for crown
451  rust and heading date in perennial ryegrass (ARoJJU et al. 2018) and for fruit quality traits in apple
452  (MURANTY et al. 2015).

453  For most traits, kg at Aorangi was consistently higher compared to Lincoln, and consequently higher
454 predictive abilities were observed. This difference between locations was due to a combination of the
455  genotypic variance component estimated at Aorangi being higher and estimates of trait-associated
456  experimental error being higher at Lincoln (Supplementary Table S1 and S2). While it is not possible
457  to conclusively determine the basis of this disparity in experimental error, it may be explained by
458  greater within-environment variability at Lincoln, due to factors that such as climatic variations over
459  the sampling period (Figure S1 in FAVILLE et al. (2018)), soil heterogeneity or operator-to-operator
460  variations.

461 In contrast to switchgrass (FIEDLER et al. 2018) and alfalfa (JiA et al. 2018), prior to this study, genomic
462  predictive ability for nutritive traits has been evaluated in perennial ryegrass for limited set of traits.
463  Feetal. (2016) reported high predictive abilities of 0.68 for NDF and 0.45 for fructan in a large training
464  set of 1918 F, families, evaluated at multiple environments. In another study, GRINBERG et al. (2016)
465  reported similarly high predictive abilities for WSC (0.59), DMD (0.41) and N (0.31) from prediction
466  models applied in Fis generation families after training using a set of 364 families from earlier
467  generations, phenotyped at a single location. Predictive ability for nutritive traits in the present study
468  were overall lower compared to those reported by FE et al. (2016) and GRINBERG et al. (2016) with
469  predictive abilities of 0.35, 0.29 and 0.22 for NDF, total WSC and HMW WSC (fructan), respectively.
470  The lower predictive ability was likely affected by the smaller training population used in this study
471  compared to FE et al. (2016), as well as its composite nature. Although, GRINBERG et al. (2016)
472  reported high predictive ability for nutritive trait models, these values were based on a single
473  environment and therefore unaffected by G x E, which might decrease the reliability of predictions.
474  Overall, the values in the current study, based on a relatively small, composite training set were
475  sufficiently high to support prediction of GEBVs and implementation of genomic selection to
476  accelerate genetic gain for nutritive traits across environments in perennial ryegrass.

477  Determining the magnitude and genetic basis of G x E interactions for a trait is important, as it can
478  assist in making appropriate breeding design decisions for the development of cultivars that are adapted
479  toabroad range of target environments. In the current study G x E interactions were significant for all
480  nutritive quality traits. The majority of traits displayed a G x E variance component that was small in
481  comparison to genotypic variance, when nutritive traits were evaluated at two distinct locations (Table
482  1). This was reflected in the ratio of o4 to Ggs, which was > 1 for 60% of the traits, indicating that the
483  genotypic variance was predominant. However, the ratio for CFAT, CP, total WSC, LMW WSC,
484 HMW WSC, P and N were < 1, indicating a greater influence of G x E interactions. The identification
485  of high G x E interactions for WSC contrasts with results reported by EASTON et al. (2009) and are at
486  variance with propositions by CASLER AND VOGEL (1999) and JAFARI (2012), that G x E for WSC are
487  minimal to negligible. Our results are based on relatively large populations of half-sib families,
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488  compared to previous studies and may therefore be a more accurate reflection of the influence of G x
489  E on these traits, particularly in New Zealand environments. However, it should be noted that the G x
490 E interactions estimated here were based on only two locations, and a more robust estimation would
491  be derived if based on a larger number of locations, representing the full target population of
492  environments. The presence of G x E interactions may negatively influence ability to improve these
493 traits for broad adaptation and represents a challenge during selections (HOLLAND et al. 2003).

494  Where G x E effects are large and significant, genetic improvement for a trait may only be achieved
495  through selection based on multi-year, multi-environment evaluation. Considering the relatively high
496  costs associated with phenotyping of nutritive quality traits, this approach might not always be feasible,
497  and decisions will be based on available resources. Genomic selection, however, represents a promising
498  approach to more directly tackle G x E. Models such as marker-by-environment interactions proposed
499 by Lopez-CRrRuz et al. (2015) and further developed by CROSSA et al. (2016), can be used to identify
500 genomic regions that are stable across environments and other regions that are associated with specific
501 environments that contribute to G x E interactions. These marker effects can be fixed in GS models to
502 assist the selection of stable genotypes. However, these models were primarily developed for wheat,
503  and adetailed investigation is needed to assess models perform in outcrossing species such as perennial
504  ryegrass.

505  Traits with high G x E interactions displayed both lower h3 and comparatively low predictive abilities
506 (Table 1, Supplementary Table S1-S2 and Figure 1). For such traits multi-trait genomic prediction
507  models (JIA AND JANNINK 2012) may be one way of improving predictive ability and thereby genetic
508 gain. The concept of multi-trait genomic prediction approaches is to improve the predictive ability of
509 a primary target trait (which may be difficult and expensive to phenotype) by utilizing the genetic
510 correlation with a secondary trait which is highly heritable and significantly less expensive to
511 phenotype. Heritability and genotypic correlation data generated in the current study may assist in
512  designing multi-trait prediction models for key nutritive traits. For example, a negative genetic
513  correlation was observed between fibre and WSC traits, as reported previously in Italian ryegrass
514  (WANG et al. 2015), and a positive genetic correlation was observed between DOMD and WSC traits
515 as described previously by HUMPHREYS (1989b); JAFARI et al. (2003b) (Table 4). These secondary
516  traits (ADF, NDF and DOMD) are measured routinely and relatively inexpensively by NIRS and may
517  therefore be useful in multi-trait genomic prediction models to more accurately predict WSC traits that
518  are most accurately measured using more expensive wet chemistry methodologies.

519  Mineral composition of forages is of interest from a perspective of livestock health and, as with
520 nutritive traits overall, there has been little or no emphasis on selection for mineral composition in
521  forage breeding programs (MASTERS et al. 2019). Significant genotypic variation was observed for all
522  minerals in this study, with relatively low influence of G x E, moderate to high heritability and genomic
523  prediction models with predictive abilities high in comparison to the other nutritive quality traits
524  assessed (Figure 1). This indicates that selective breeding for levels of micro- and macro-minerals is
525  feasible and that genomic selection represents a strong option for pursuing improvement in these traits.
526  In general, ryegrass cultivars that grow well under low soil P will compete less for P in the sward,
527  increasing P availability for uptake to support legume growth (EASTON et al. 1997; McDOWELL et al.
528  2011). For instance, CRUSH et al. (2006), reported that in a mixed sward of ryegrass and clover (18%
529  clover content), net annual flux of P into ryegrass was 4.7 times higher compared to clover. A small
530 improvement in ryegrass phosphate use efficiency (PUE), can significantly change these proportions
531 and may have large environmental and economic benefits (CRUsH et al. 2018a). In the current dataset
532  predictive ability for P was very low (0.13), underpinned by a significant G x E interaction component
533 to total phenotypic variation. This indicates that breeding for this P levels in perennial ryegrass foliage
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534  needs to be designed to account for G x E interaction effects. Alternatively, moderate to high genetic
535  correlation with high hj traits, such as Mg (genotypic correlation -0.62), might support an indirect
536  multi-trait genomic selection strategy, as discussed earlier.

537  Hypomagnesaemia or grass tetany is a metabolic disorder in ruminants, caused by inadequate supply
538 of Ca and Mg. This is often described in terms of a tetany index ([K/Ca+Mg]), for which values
539  exceeding 2.2 (KEMP AND THART 1957) are associated with increased risk of the disorder. We observed
540 a moderate predictive ability for the ratio and the magnitude of G x E was low compared to genotypic
541  variation, suggesting that tetany ratio could be used successfully as a selection criteria for developing
542  cultivars with reduced potential for the incidence of hypomagnesaemia. This is in contrast to the results
543  of SMITH et al. (1999), who reported large G x E variance for the tetany ratio evaluated at two locations
544  in Australian environments and suggested the use Mg alone as a selection criteria to improve tetany
545  ratio. Results from the current study showed a high predictive ability for Mg, making genomic selection
546 a viable strategy for this trait. Although, increasing Mg concentration alone may be sufficient to
547  decrease the incidence of hypomagnesaemia, the presence of a positive correlation between Mg and K
548  observed in the current study (Table 2) and reported by SmITH et al. (1999), suggests that selections
549  based on Mg concentration alone should be monitored and might not always give the expected
550  outcome.

551  Using approximately 50k random markers the predictive ability of genomic prediction models for all
552  nutritive traits was similar to using the full dataset of ca. 1M markers (Figure 2 and Supplementary
553  Table S9). This reflects observations made in the same training set for herbage accumulation, a proxy
554  for DM yield (Faville et al. 2018) except in that instance the marker subsets were not selected randomly.
555  Below the 50k marker number there was a decrease in predictive ability, and this was particularly
556  evident for traits with low hZ. Considering the low levels of LD (r? decaying to 0.25 after 366-1750
557  base pairs (FAVILLE et al. 2018)) observed in the component populations of the training set, the major
558  proportion of predictive ability is likely a result of capturing relationship among individuals, rather
559 than historical LD with QTL. In perennial ryegrass, to capture genetic variance associated with all
560 causative QTL a very large number of markers and a large training population are needed, due to rapid
561 decay of LD as a result of a very large past effective population size (N,) (HAYES et al. 2013; FIEDLER
562 et al. 2018). Predictive ability based on relatedness between training and selection population can
563 deteriorate after a few selection cycles (HABIER et al. 2007), and to maintain adequate predictive
564  ability, either the training population should be very large and highly diverse or some form of
565 relatedness should exit between training and selection population (HAYES et al. 2013; NORMAN et al.
566  2018).

567  Inconclusion, genotypic variation and G x E interactions were significant for all nutritive quality traits
568 evaluated in two distinct New Zealand environments. The predictive ability of genomic prediction
569  models reported in this study for most of the traits would be sufficient to implement GS for nutritive
570 traits in perennial ryegrass. Although a major proportion of this predictive ability is the result of
571  capturing relatedness among individuals, maintaining relatedness between training and selection
572  population would be an option to implement GS in perennial ryegrass. Predictive ability for most of
573  the nutritive traits was retained even with as few as 50,000 markers. A next step would be to simulate
574  acost-benefit analysis to study the implications of manipulating marker number for cost-effective GS.
575  For traits with low G x E interactions, single-trait genomic prediction models can be considered and
576  for traits with large G x E, and consequently lower predictive ability, multi-trait approaches may be
577  useful to explore as a method for obtaining high levels of prediction. This appears to be particularly
578 important for WSC, which is considered to be one of the primary constituents of nutritive value for
579  forages.
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887 12 Tables

888  Table 1: Trait genotypic (c?%), genotype-by-location interaction (%) and residual error (c%) variance components and their associated
889  standard errors (SE), repeatability (R) and genomic heritability (h’g), estimated for the range of nutritive traits, among 517 half-sib families of
890  perennial ryegrass evaluated across the two locations in Lincoln and Aorangi. All 6% for nutritive traits were significant (P < 0.05).

891

892
893

Trait Abbreviation 029 + SE 629 = SE 62 + SE R h?
Acid detergent fibre ADF 0.16 £ 0.036 0.083 £ 0.04 1.11 £0.042 0.42 0.32
Neutral detergent fibre NDF 0.50 £ 0.068 0.16 £ 0.057 1.36 + 0.054 0.62 0.48
Digestible organic matter in dry-matter DOMD 0.41£0.088 0.22 £ 0.096 2.49 £ 0.097 0.44 0.35
Crude fat CFAT 4.99 + 1.3807 9.38 + 1.630" 30.0 £ 0.001" 0.34 0.29
Metabolisable energy ME 0.01 £ 0.002 0.005 = 0.002 0.06 £ 0.002 0.45 0.36
Crude protein CP 0.15 £ 0.052 0.148 = 0.065 1.64 + 0.064 0.31 0.27
Calcium Ca 0.57 +£0.073" 0.17 +0.058" 1.48 + 0.058" 0.63 0.60
Potassium K 10.0 £0.001" 5.19 + 1.8907 48.0 + 0.002° 0.49 0.46
Magnesium Mg 0.11 +0.014" 0.03 +0.010° 0.25 +0.010° 065  0.62
Manganese (mg/kg) Mn 64.6 £ 10.10 22.1+£9.70 2405+94 0.56 0.55
Sodium Na 2.32 +£0.236" 0.25 +0.1287 3.93 +0.015° 0.75 0.74
Phosphorus P 0.04 + 0.016" 0.04 +0.0217 0.58 + 0.022f 0.26 0.22
Sulphur S 0.33 +0.050" 0.15 + 0.045° 1.04 +£0.0417 0.57 0.53
Nitrogen N 3.08 + 1.2507 3.0 +0.001" 40.0 + 0.001° 0.26 0.22
Tetany ratio (K/Ca+Mg) Tetany ratio 0.01 £ 0.002 0.005 = 0.001 0.04 £ 0.001 0.61 0.63
Total water soluble carbohydrates Total WSC 51.7+12.8 51.6 +14.6 325.2+13 0.39 0.31
Low molecular weight carbohydrates LMW WSC 19.6 +4.6 19.3+5.1 105.1+4.2 0.42 0.20
High molecular weight carbohydrates HMW WSC 13.7+4.3 119+5.1 141.3+£55 0.32 0.34

Tx10%
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894  Table 2: Genotypic correlations amongst a range of nutritive quality traits measured from 517 half-sib families, estimated using data from
895 across two locations (Lincoln and Aorangi).

Tetany LMW HMW  Total
ADF NDF DOMD CFAT CP ME P N Mn ratio WSC  WSC WSC

ADF -0.65 -0.87 -0.51 -0.69 -0.26  -0.72 -0.49 -0.35
NDF -0.53 -0.77 -043 -0.54 -0.79 -0.60 -0.38 -0.59
DOMD
CFAT
CpP
ME

Ca
Mg
Na
Mn

Tetany ratio

LMW WSC
HMW WSC
Total WSC

896

897

898

899
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13  Figures

Model
. BayesC
B cBLUP
| ] kep-GBLUP

DOMD CFAT Ca Mg Na Mn Tetany ratio LMW WSC HMW WSC Total WSC
Trait

05

04

o
w

Predictive ability

o
N

0.

0.0

Figure 1: Predictive ability (Pearson correlation coefficient between observed and predicted values) for nutritive traits and their
associated standard deviation, assessed using three genomic prediction models (BayesC, KGD-GBLUP and GBLUP), based on adjusted
means (BLUP’s) measured among five populations across two locations.
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906  Figure 2: Random subsets of markers ranging from 0.1% (1,093) to 100% (1,093,464) of the marker set, used in GBLUP model to estimate
907  predictive ability for HMW WSC, LMW WSC and Total WSC.
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910 Figure 3: Predictive ability for 18 nutritive traits in each individual population (Pop | — Pop V) and in complete training population
911 (TP)
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