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Abstract 11 

Forage nutritive value impacts animal nutrition, which underpins livestock productivity, reproduction 12 

and health. Genetic improvement for nutritive traits has been limited, as they are typically expensive 13 

and time-consuming to measure through conventional methods. Genomic selection is appropriate for 14 

such complex and expensive traits, enabling cost-effective prediction of breeding values using genome-15 

wide markers. The aims of the present study were to assess the potential of genomic selection for a 16 

range of nutritive traits in a multi-population training set, and to quantify contributions of genotypic, 17 

environmental and genotype-by-environment (G x E) variance components to trait variation and 18 

heritability for nutritive traits. The training set consisted of a total of 517 half-sibling (half-sib) families, 19 

from five advanced breeding populations, evaluated in two distinct New Zealand grazing 20 

environments. Autumn-harvested samples were analyzed for 18 nutritive traits and maternal parents of 21 

the half-sib families were genotyped using genotyping-by-sequencing. Significant (P<0.05) genotypic 22 

variation was detected for all nutritive traits and genomic heritability (h2
g) was moderate to high (0.20 23 

to 0.74). G x E interactions were significant and particularly large for water soluble carbohydrate 24 

(WSC), crude fat, phosphorus (P) and crude protein. GBLUP, KGD-GBLUP and BayesC genomic 25 

prediction models displayed similar predictive ability, estimated by 10-fold cross validation, for all 26 

nutritive traits with values ranging from r = 0.16 to 0.45 using phenotypes from across two 27 

environments. High predictive ability was observed for the mineral traits sulphur (0.44), sodium (0.45) 28 

and magnesium (0.45) and the lowest values were observed for P (0.16), digestibility (0.22) and high 29 

molecular weight WSC (0.23).  Predictive ability estimates for most nutritive traits were retained when 30 

marker number was reduced from 1 million to as few as 50,000. The moderate to high predictive 31 

abilities observed suggests implementation of genomic selection is feasible for most of the nutritive 32 

traits examined. For traits with lower predictive ability, multi-trait genomic prediction approaches that 33 

exploit the strong genetic correlations observed amongst some nutritive traits may be useful. This 34 

appears to be particularly important for WSC, considered one of the primary constituent of nutritive 35 

value for forages.  36 

 37 

 38 
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 39 

1 Introduction 40 

Perennial ryegrass (Lolium perenne L.) from permanent pasture is the major feed component for 41 

ruminant production systems in temperate regions of the world. Historically, improvement of annual 42 

and seasonal dry matter yield (DMY) have been significant objectives for perennial ryegrass breeding 43 

(WILKINS AND HUMPHREYS 2003; WILLIAMS et al. 2007; VAN PARIJS et al. 2018). Today, seasonal 44 

distribution of DMY features as the major component  of economic ranking indices developed for this 45 

species in New Zealand (Forage Value Index, FVI) (CHAPMAN et al. 2017), Australia (LEDDIN et al. 46 

2018) and Ireland (Pasture Profit Index, PPI) (MCEVOY et al. 2011; MCEVOY et al. 2014). Nutritive 47 

traits in forages are also important for livestock productivity, maintenance of body weight and for 48 

supporting reproduction and health in the grazing animals (WAGHORN AND CLARK 2004). Although 49 

there is existing information that demonstrates the importance of nutritive value traits and the potential 50 

economic returns from trait improvement, the overall breeding effort for nutritive traits in ryegrass has 51 

received considerably less attention than for DMY (SMITH et al. 1997).  Increased breeding effort for 52 

nutritive traits, with validated outcomes for animal productivity, would provide enhanced on-farm 53 

value to farmers (JAFARI et al. 2003a; CHAPMAN et al. 2017).   54 

Compared to other forage grass species, perennial ryegrass is regarded as having relatively high 55 

nutritive value, providing a cost effective, nutrient rich feed for ruminant livestock (WILKINS 1991; 56 

BAERT AND MUYLLE 2016). Breeding for improved nutritive value in this species has focused 57 

principally on higher in vitro dry matter (DM) digestibility to enhance energy availability and voluntary 58 

intake from grazed pasture (JUNG AND ALLEN 1995). This is a key selection criterion in many ryegrass 59 

breeding schemes (CASLER AND VOGEL 1999; EASTON et al. 2002; MUYLLE et al. 2013), particularly 60 

in Europe, where WILKINS AND HUMPHREYS (2003) reported genetic improvement of approximately 61 

10g kg-1 per decade for DM digestibility. Breeding to increase water-soluble carbohydrate (WSC) 62 

content in ryegrass herbage, one of few reported studies of successful breeding for a nutritive trait in 63 

perennial ryegrass (HUMPHREYS 1989a; JONES AND ROBERTS 1991; SMITH et al. 1997), has been a 64 

major contributor to genetic improvement of digestibility (WILKINS AND HUMPHREYS 2003; MUYLLE 65 

et al. 2013). More recently, there has been increased emphasis on addressing digestibility through the 66 

improvement of fibre degradability per se, by targeting changes in the biochemical composition of the 67 

cell wall (FAVILLE et al. 2010; VAN PARIJS et al. 2018).   68 

Minerals and trace elements are essential elements for plant growth and are critical to various biological 69 

functions of the plant. In forages, these macro- and micronutrients are also important components of 70 

nutritive quality, critical for maintaining livestock health (WAGHORN 2007). For example, metabolic 71 

disorders can be caused or contributed to by mineral imbalances in the diet, such as hypomagnesaemia 72 

(grass tetany) which is caused by insufficient magnesium and calcium in the diet. Earlier studies have 73 

identified genetic variation amongst families (EASTON et al. 1997; SMITH et al. 1999) or genotypic 74 

variation amongst cultivars (CRUSH et al. 2018a; CRUSH et al. 2018b) for micro- and macronutrients, 75 

indicating that breeding for mineral content is a realistic opportunity.  76 

The reduced emphasis on breeding for nutritive traits in forages is affected by a number of factors, 77 

including a lack of consensus on specific breeding targets (WHEELER AND CORBETT 1989; CHAPMAN 78 

et al. 2015), ambiguous evidence for the impact of specific nutritive traits on animal production 79 

outcomes (EASTON et al. 2002; EDWARDS et al. 2007; MCEVOY et al. 2011), the confounding influence 80 

of environment and genotype x environment (G x E) interactions, and the significant additional 81 
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resources needed in a breeding program to undertake nutritive trait measurements in large panels of 82 

selection candidates (SMITH et al. 1997).  83 

Genomic selection (GS), where breeding value for a trait may be cost-effectively predicted for selection 84 

candidates using genome-wide markers, was initially proposed for animal breeding by MEUWISSEN et 85 

al. (2001). In GS, a training population combining phenotypic and genotypic information is used to 86 

develop a model that can subsequently be used to predict genomic estimated breeding values (GEBVs) 87 

for individuals in a test or selection population that have been genotyped only. In essence, GS replaces 88 

the need to phenotype the target trait. GS has been demonstrated in dairy cattle breeding, where the 89 

rate of genetic gain was doubled by reducing generation interval from 7 to 2.5 years or from 4 to 2.5 90 

years, depending upon selection strategy (GARCÍA-RUIZ et al. 2016). Over the last decade the declining 91 

cost of genotyping single nucleotide polymorphisms (SNPs), largely through reduced representation 92 

sequencing approaches such as genotyping-by-sequencing (GBS) (ELSHIRE et al. 2011), has made this 93 

tool feasible for plant breeding. GS is now being applied in major crop species, including wheat 94 

(RUTKOSKI et al. 2011; POLAND et al. 2012; LOPEZ-CRUZ et al. 2015; HAYES et al. 2017), maize (ZHAO 95 

et al. 2012; FRISTCHE-NETO et al. 2018) and barley (ZHONG et al. 2009; LORENZ et al. 2012) and is 96 

under adoption in forage species, including perennial ryegrass (FÈ et al. 2016; GRINBERG et al. 2016; 97 

BYRNE et al. 2017; AROJJU et al. 2018; FAVILLE et al. 2018; PEMBLETON et al. 2018), and alfalfa 98 

(ANNICCHIARICO et al. 2015; LI et al. 2015; BIAZZI et al. 2017; JIA et al. 2018). 99 

GS can accelerate genetic gain particularly for complex traits, which are controlled by many genes 100 

with small effects and for traits which are difficult to measure and expensive (HESLOT et al. 2015). GS 101 

is therefore a very attractive tool for nutritive traits, given the barriers, described above, to routine 102 

integration of nutritive traits into forage breeding programs. The success of GS primarily depends on 103 

predictive ability, which is influenced by trait heritability (h2
n), training population size, marker 104 

density, extent of linkage disequilibrium (LD) and relatedness between training and test population 105 

(DAETWYLER et al. 2013). While the heritability of a trait and the extent of LD in a training population 106 

cannot be easily optimized, the density of markers and the size and composition of the training 107 

population are two factors that can be controlled. Several methods have been developed for genomic 108 

prediction and can be broadly classified as whole-genome regression methods (discussed by DE LOS 109 

CAMPOS et al. (2013)) or machine learning methods (outlined by GONZÁLEZ-CAMACHO et al. (2018)). 110 

Based on simulation and empirical results, DAETWYLER et al. (2013) concluded that genomic best 111 

linear unbiased predictor (GBLUP) and Bayesian variable selection methods (BayesB and BayesC) 112 

were the benchmark for genomic prediction, as these methods are appropriate for a range of genetic 113 

architectures, from traits which are controlled by many genes with small effects (infinitesimal model) 114 

to traits with large SNP effects (variable selection model). 115 

The principle aim of the current study was to assess genomic predictive ability for 18 nutritive quality 116 

traits, measured in a large multi-population training set in two key New Zealand grazing environments, 117 

and to investigate the impact of marker density and of genomic prediction models with different prior 118 

assumptions regarding the distribution of SNP effects. The study also provided an opportunity to assess 119 

the magnitude of genetic variation and to estimate heritability for a large range of nutritive traits under 120 

New Zealand grazing environments. 121 

2 Materials and Methods 122 

2.1 Plant material and experimental design 123 

The half-sibling (half-sib) families used in this study were derived from five different advanced 124 

breeding populations (Pop I – Pop V), which are part of the Grassland Innovation Ltd breeding 125 
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program. From each population, 102 to 117 plants that tested positive for endophyte infection (Epichloё 126 

festucae var lolli) by immunoblotting (HAHN et al. 2003), were polycrossed in isolation during spring 127 

2012 in Palmerston North, New Zealand (FAVILLE et al. 2018). Polycrosses were performed separately 128 

for each population, without admixing, and seeds from the maternal parents were harvested and 129 

cleaned. In total 543 half-sib families were harvested for seed, however only 517 families had sufficient 130 

seed (≥ 3.6g) for sowing field trials. 131 

A total of six trials were sown (FAVILLE et al. 2018), of which two were used for the current study. 132 

These were trials established at Lincoln (Canterbury region, southern New Zealand, 43.38°S 172.62°E; 133 

Wakanui silt loam) and Aorangi (Manawatu region, central New Zealand, 40.34°S 175.46°E; Kairanga 134 

sandy loam), during the autumn of 2013. The experimental design at each site was row-column with 135 

three replicates. Within each replicate, populations were blocked, and families randomized within 136 

blocks. Multiple repeated checks (clonal replicates) were also randomly allocated within and across 137 

the replicated blocks. Half-sib families were evaluated as a 1m row of plants (referred to from now as 138 

plots), by sowing 0.2 g of seed (which is equivalent to 14 kg ha-1, if a sward was sown at 7 rows m-1). 139 

Nitrogen and phosphate fertilizer was applied at the rate of 15-30 kg N ha-1 and 8.8 kg P ha-1, in late 140 

autumn each year (FAVILLE et al. 2018).    141 

2.2 Phenotypic measurements 142 

Plot harvests were undertaken at Lincoln starting 14 April 2014 and at Aorangi starting 29 April 2014, 143 

during the southern hemisphere autumn.  At each site a single harvest was undertaken over three days, 144 

between 10:30 am and 3:00 pm on each day to minimize the influence of diurnal variation on levels of 145 

measured constituents. Split harvesting of populations or replicate blocks over two days was avoided. 146 

Plots were cut to a height of approximately 5 cm, above the pseudostem, meaning that only leaf lamina 147 

material was harvested. Harvested foliage was placed into micro-perforated plastic bread bags and 148 

immediately snap frozen in liquid nitrogen. Samples were subsequently maintained at ca. -80°C on 149 

frozen CO2 to preserve labile components and then freeze-dried at one of two commercial facilities - 150 

Genesis Biolaboratory Ltd (Christchurch, New Zealand) or Horowhenua Freeze-Dry (Levin, New 151 

Zealand). Freeze-dried samples were milled to powder through a 1mm sieve and thoroughly mixed to 152 

homogenize the sample. Sub-samples were weighed out and transferred to Hill Laboratories (Hamilton, 153 

New Zealand) for near-infrared spectroscopy (NIRS) and minerals analysis and to AgResearch 154 

(Palmerston North, New Zealand) for analysis of water‐soluble carbohydrate (WSC). A total of 3082 155 

samples (n = 1476 from Lincoln and n = 1606 from Manawatu) were provided for analysis. Hill 156 

Laboratories provided NIRS data for a range of nutritional traits, as outlined in Table 1. Data for 157 

mineral concentrations (Table 1) were based on inductively coupled plasma-optical emission (ICP-158 

OES) analysis of plant material digested with nitric acid: hydrogen peroxide (2:1). Grass tetany ratio 159 

was calculated as [K/(Mg + Ca)] using the data provided for the individual minerals. WSC was 160 

extracted and quantified as described by HUNT et al. (2005). Briefly, 25 mg of milled leaf material was 161 

extracted twice with 1mL of 80% ethanol (low‐molecular‐weight fraction; LMW WSC WSC) and then 162 

twice with 1 mL water (high‐molecular‐weight fraction; HMW WSC WSC), for 30 min at 65°C. 163 

Extracts were centrifuged, and supernatants of the respective fractions were analyzed using anthrone 164 

as a colorimetric reagent (JERMYN 1956). 165 

2.3 Statistical models and variance components 166 

Data analyses were performed across the five populations, for individual locations and across the two 167 

locations, using the restricted maximum likelihood (REML) method, by fitting a linear mixed model 168 

in GenStat (PAYNE et al. 2009). Analyses were also performed on the five populations individually, by 169 

fitting linear mixed models in DeltaGen (JAHUFER AND LUO 2018). Genotype, G x E interaction, 170 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2019. ; https://doi.org/10.1101/727958doi: bioRxiv preprint 

https://doi.org/10.1101/727958
http://creativecommons.org/licenses/by-nd/4.0/


  Genomic selection for nutritive traits 

 
5 

replicates, rows and columns were considered as random effects, whereas location, population and 171 

repeated checks were considered as fixed effects. Three different mixed linear models were used: (i) 172 

Model 1, to estimate genotypic variance components, pooling all five populations, all 517 families 173 

together, within individual locations; (ii) Model 2, for estimating genotypic variance components and 174 

interactions of family and location, pooling all five populations, across locations; and (iii) Model 3, for 175 

estimating genetic variance and G x E interactions, among half-sib families within individual 176 

populations, across locations. 177 

Model 1: Mixed model for individual locations. 178 

 𝑦𝑖𝑗𝑘𝑙𝑛 =  𝜇 + 𝑔𝑖 + 𝑝𝑛 +  𝑏𝑛𝑙 +  𝑟𝑛𝑙𝑗 + 𝑐𝑛𝑙𝑘 +  𝜀𝑖𝑗𝑘𝑙𝑛 (1) 

𝑦𝑖𝑗𝑘𝑙𝑛 is the phenotypic value measured on half-sib family 𝑖 in row 𝑗 and column 𝑘 of replicate 𝑙 nested 179 

within population 𝑛, and 𝑖 = 1, … , 𝑛𝑔, 𝑗 = 1, … , 𝑛𝑟 , 𝑘 = 1, … , 𝑛𝑐 , 𝑙 = 1, … , 𝑛𝑏 , 𝑚 = 1, … , 𝑛𝑠, 𝑛 =180 

1, … , 𝑛𝑝, where 𝑔, 𝑟, 𝑐, 𝑏, and 𝑝 are half-sib families, rows, columns, replicates and populations 181 

respectively. Where, 𝜇 is the overall mean; 𝑔𝑖 is the random effect of half-sib family 𝑖, 𝑁(0, 𝜎𝑔
2); 𝑝𝑛 is 182 

the fixed effect of population 𝑛; 𝑏𝑛𝑙 is the random effect of replicate 𝑙 in population 𝑛, 𝑁(0, 𝜎𝑏
2);  𝑟𝑛𝑙𝑗 is 183 

the random effect of row 𝑗 within replicate 𝑙 of population 𝑛, 𝑁(0, 𝜎𝑟
2); 𝑐𝑛𝑙𝑘 is the random effect of 184 

column 𝑘 within replicate 𝑙 of population 𝑛, 𝑁(0, 𝜎𝑐
2); 𝜀𝑖𝑗𝑘𝑙𝑛 is the residual effect of half-sib family 𝑖 185 

in row 𝑟 and column 𝑐 of replicate 𝑏 of population 𝑛, 𝑁(0, 𝜎𝜀
2). 186 

Model 2: Mixed model for across locations. 187 

 𝑦𝑖𝑗𝑘𝑙𝑚𝑛 =  𝜇 + 𝑔𝑖 +  𝑠𝑚 +  (𝑔𝑠)𝑖𝑚 +  𝑝𝑛 +  𝑏𝑛𝑚𝑙 + 𝑟𝑛𝑚𝑙𝑗 +  𝑐𝑛𝑚𝑙𝑘 +  𝜀𝑖𝑗𝑘𝑙𝑚𝑛 (2) 

𝑦𝑖𝑗𝑘𝑙𝑚𝑛 is the phenotypic value measured on half-sib family 𝑖 in row 𝑗 and column 𝑘 of replicate 𝑙 188 

nested in location 𝑚 within population 𝑛, and 𝑖 = 1, … , 𝑛𝑔, 𝑗 = 1, … , 𝑛𝑟 , 𝑘 = 1, … , 𝑛𝑐 , 𝑙 =189 

1, … , 𝑛𝑏 , 𝑚 = 1, … , 𝑛𝑠, 𝑛 = 1, … , 𝑛𝑝, where 𝑔, 𝑟, 𝑐, 𝑏, 𝑠 and 𝑝 are half-sib families, rows, columns, 190 

replicates, locations and populations respectively. In the equation, 𝜇 is the overall mean; 𝑔𝑖 is the 191 

random effect of half-sib family 𝑖, 𝑁(0, 𝜎𝑔
2);  𝑠𝑚 is the fixed effect of location 𝑚; (𝑔𝑠)𝑖𝑚 is the random 192 

effect of interaction between half-sib family 𝑖 and location 𝑚, 𝑁(0, 𝜎𝑔𝑠
2  );  𝑝𝑛 is the fixed effect of 193 

population 𝑛; 𝑏𝑛𝑚𝑙 is the random effect of replicate 𝑙 within location 𝑚 in population 194 

𝑛, 𝑁(0, 𝜎𝑏
2);  𝑟𝑛𝑚𝑙𝑗  is the random effect of row 𝑗 within replicate 𝑙 in location 𝑚 of population 𝑛, 195 

𝑁(0, 𝜎𝑟
2); 𝑐𝑛𝑚𝑙𝑘 is the random effect of column 𝑘 within replicate 𝑙 in location 𝑚 of population 𝑛, 196 

𝑁(0, 𝜎𝑐
2); 𝜀𝑖𝑗𝑘𝑙𝑚𝑛 is the residual effect of half-sib family 𝑖 in row 𝑟 and column 𝑐 of replicate 𝑏 in 197 

location 𝑚 of population 𝑛, 𝑁(0, 𝜎𝜀
2). 198 

Model 3: Mixed model for individual populations.  199 

 𝑦𝑖𝑗𝑘𝑙𝑚 =  𝜇 + 𝑔𝑖 +  𝑠𝑚 + (𝑔𝑠)𝑖𝑚 +  𝑏𝑚𝑙 +  𝑟𝑚𝑙𝑗 +  𝑐𝑚𝑙𝑘 +  𝜀𝑖𝑗𝑘𝑙𝑚 (3) 

𝑦𝑖𝑗𝑘𝑙𝑚 is the phenotypic value measured on half-sib family 𝑖 in row 𝑗 and column 𝑘 of replicate 𝑙 nested 200 

in location 𝑚. In the equation, 𝜇 is the overall mean; 𝑔𝑖 is the random effect of half-sib family 𝑖, 201 
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𝑁(0, 𝜎𝑔
2); 𝑠𝑚 is the fixed effect of location 𝑚; (𝑔𝑠)𝑖𝑚 is the random effect of interaction between half-202 

sib family 𝑖 and location 𝑚, 𝑁(0, 𝜎𝑔𝑠
2 ); 𝑝𝑛 is the fixed effect of population 𝑛; 𝑏𝑚𝑙 is the random effect 203 

of replicate 𝑙 within location 𝑚, 𝑁(0, 𝜎𝑏
2); 𝑟𝑚𝑙𝑗 is the random effect of row 𝑗 within replicate 𝑙 in 204 

location 𝑚, 𝑁(0, 𝜎𝑟
2); 𝑐𝑚𝑙𝑘 is the random effect of column 𝑘 within replicate 𝑙 in location 𝑚, 𝑁(0, 𝜎𝑐

2); 205 

𝜀𝑖𝑗𝑘𝑙𝑚𝑛 is the residual effect of half-sib family 𝑖 in row 𝑟 and column 𝑐 of replicate 𝑏 in location 𝑚, 206 

𝑁(0, 𝜎𝜀
2). 207 

The variance components estimated based on the mixed model analysis were used to calculate 208 

repeatability (Model 2) (FALCONER 1960) and narrow sense heritability (Model 3) for each trait. 209 

Repeatability was based on genotypic variance estimated across five populations, whereas narrow-210 

sense heritability is based on additive genetic variance among half-sib families within each population. 211 

Repeatability and narrow sense heritability, on a family mean basis, were estimated using the equation: 212 

 
𝑅 𝑜𝑟 ℎ𝑛

2 =  
𝜎𝑔

2 

𝜎𝑔
2 +  

𝜎𝑔𝑠
2

𝑠 + 
𝜎𝜀

2

𝑠𝑏

 
(4) 

Where, 𝑅 and ℎ𝑛
2  are repeatability and narrow-sense heritability. For repeatability, 𝜎𝑔

2 was the 213 

genotypic variance among all the 517 half-sib families. In the estimation of narrow-sense 214 

heritability, 𝜎𝑔
2 was the estimated additive genetic variation among half-sib families within a specific 215 

population, 𝜎𝑔𝑠
2  is the variance associated with G x E interaction and 𝜎𝜀

2 is the variance of residuals.  216 

2.4  Genotypic and phenotypic correlation 217 

The genotypic correlation among traits was estimated as proposed by FALCONER (1960). Multivariate 218 

analysis of variance (MANOVA) was performed in DeltaGen (JAHUFER AND LUO 2018), using the 219 

multivariate analysis option, to estimate variance and covariance among traits: 220 

 
𝑟𝑔(𝑥,𝑦) =

𝐶𝑜𝑣𝑔(𝑥,𝑦)

√𝜎2(𝑥), 𝜎2(𝑦)  
 

(5) 

Where,  𝐶𝑜𝑣𝑔(𝑥,𝑦) is the genotypic covariance between trait 𝑥 and 𝑦; 𝜎2(𝑥) is the variance associated 221 

with trait 𝑥, and 𝜎2(𝑦) is the variance associated with trait 𝑦. Phenotypic correlation was performed in 222 

DeltaGen (JAHUFER AND LUO 2018) using the best linear unbiased predictors (BLUPS) estimated based 223 

on Model 2.  224 

2.5 Genotyping and genomic heritability 225 

All maternal parents of the 517 half-sib families were genotyped using a GBS approach described in 226 

FAVILLE et al. (2018), following the protocol proposed by ELSHIRE et al. (2011). Briefly, a reference 227 

ryegrass genome assembly was constructed using scaffolds from a published ryegrass assembly 228 

(BYRNE et al. 2015). Scaffolds were aligned to the barley genome using Lastz version 7.0.1 (HARRIS 229 

2007) from Geneious 8 (https://www.geneious.com/, (KEARSE et al. 2012)) with default parameters. 230 

Demultiplexing of sequencing reads was performed using the TASSEL 5.0 GBS pipeline (GLAUBITZ 231 

et al. 2014) and initial quality control was based on read count statistics. The quality GBS tags were 232 

aligned to the reference genome using Bowtie2 (LANGDON 2015). Genotype calling was performed 233 
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using TASSEL GBS pipeline to obtain 1,093,464 SNPs, after filtering for maximum missing SNPs per 234 

site (50%), minor allele frequency (> 0.05) and read depth (> 1) using VCF tools (DANECEK et al. 235 

2011). Genotyped 1,093,464 SNPs were exported and filtered for Hardy-Weinberg disequilibrium 236 

(HWdiseq > -0.05). The resulting 1,023,011 SNPs, with a mean read depth of 2.98, were used to 237 

compute a genomic relationship matrix (KGD matrix) based on protocol proposed by DODDS et al. 238 

(2015). The KGD matrix was used for genomic predictive modelling. Population structure was 239 

previously analyzed using multi-dimensional scaling based on genomic relationship matrix (see Figure 240 

1 in FAVILLE et al. (2018))   241 

Genomic heritability (h2
g) was calculated using Eq. 4, based on variance components estimated using 242 

the mixed model proposed in Eq. 2. In the model, the KGD matrix was fitted as variance-covariance 243 

among genotypes (DE LOS CAMPOS et al. 2015) and the genetic variance was calculated as proportion 244 

of variance explained by regressing markers on phenotypes. The model was fitted in ASreml-R 245 

(BUTLER et al. 2009). 246 

2.6 Genomic prediction modelling 247 

Three whole-genome regression methods, with two different prior assumptions regarding the 248 

distribution of marker effects, were used for generating GEBVs. The first method was a univariate 249 

linear mixed model, called GBLUP (GODDARD et al. 2011) in which markers effects were assumed to 250 

have equal variance.  The linear model can be expressed follows: 251 

 𝑦 =  𝛽 + 𝑍𝜇 +  𝜀 (6) 

Where 𝑦 is the vector of BLUP values of the trait, 𝛽 is the vector of grand mean, 𝑍 is the design matrix 252 

associated with random marker effects 𝜇, with 𝜇 ~ 𝑁(0, 𝜎𝜇
2𝐺), in which 𝐺 is the additive genetic 253 

relationship matrix, and 𝜀 ~ 𝑁(0, 𝜎𝜀
2𝐼), in which 𝐼 is the identity matrix. The 𝐺 matrix was calculated 254 

based on the method proposed by VANRADEN (2008); ENDELMAN AND JANNINK (2012) using A.mat 255 

function in rrBLUP package (ENDELMAN 2011).  256 

The second method is a variant of GBLUP method with KGD matrix as 𝐺 in the linear mixed model. 257 

The GBLUP and KGD-GBLUP models were fitted using the rrBLUP package (ENDELMAN 2011), 258 

implemented through R programming language (R CORE TEAM 2017). 259 

 The third method was BayesC (HABIER et al. 2011), in which markers effects can depart from 260 

normality, that is, large variances are allowed for markers with larger effects.  261 

The model is expressed as follows: 262 

 

𝑦 =  𝛽 +  ∑ 𝑧𝑘𝛼𝑘 +

𝑘

𝑘=1

𝜀 

(7) 

Where 𝑦 is the vector of BLUP values of the trait, 𝛽 is the vector of grand mean, 𝑘 is the number of 263 

makers, 𝑍𝑘 is the vector of genotypes at marker 𝑘, 𝛼𝑘 is the additive effect of the marker, and 𝜀 is the 264 

vector of residual effects with a normal distribution 𝑁(0, 𝜎𝜀
2). The BayesC model was implemented 265 

through R programming using the BGLR package (PÉREZ AND DE LOS CAMPOS 2014), with the number 266 
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of burn-ins set to 2,000, total number of iterations set to 10,000, and other parameters set to default 267 

(PÉREZ AND DE LOS CAMPOS 2014).     268 

The predictive ability of the models based on data from the composite training population was assessed 269 

by a ten-fold cross validation approach. For each cross validation, randomized data were divided into 270 

ten equal parts, of which nine parts (training set) were used to train the model and to predict GEBVs 271 

in the remaining one part of the data (test set). Randomization of the complete data set was repeated 272 

five times and the mean of the five iterations was reported as the predictive ability of the model 273 

(FAVILLE et al. 2018).  274 

2.7 Evaluating predictions in individual populations 275 

As the overall training population is a composite of 517 individuals and their corresponding half-sib 276 

families from five discrete breeding populations, the predictive ability of the prediction models was 277 

also assessed within each individual population using KGD-GBLUP. A random 50% of individuals 278 

was selected from within each population (Pop I – Pop V; total = 255 individuals) as a training set in 279 

order to represent each population equally. Using this set of 255 individuals to train the model, GEBVs 280 

were then predicted in the remaining 50% of Pop I and the mean correlation of 500 iterations was 281 

considered as the predictive ability for this population. This approach was likewise extended to each 282 

of the other four populations.    283 

2.8 Optimising marker density 284 

To evaluate the minimum number of markers needed to achieve maximum predictive ability for each 285 

nutritive trait, a random set of markers ranging from 1,093,464 (100%, unfiltered) to 1,093 (0.1%) in 286 

10 steps were obtained from the training population. Using each set of randomly selected markers, a 𝐺 287 

matrix was computed based on the method proposed by VANRADEN (2008) using the rrBLUP package 288 

(ENDELMAN 2011). Considering the computational load, KGD method was not extended to randomly 289 

selected markers, to construct 𝐺 matrix. FAVILLE et al. (2018) reported broadly similar predictive 290 

ability for DMY in this training population, when 𝐺 matrices based on DODDS et al. (2015) and 291 

VANRADEN (2008) were compared. The 𝐺 matrix was used in a GBLUP model to estimate predictive 292 

ability for each randomly chosen marker set. The predictive ability was assessed via Monte-Carlo cross 293 

validations with 500 iterations, where 80% of the data were used to train the model (training set) and 294 

20% to predict the GEBVs (test set).  295 

3 Results 296 

3.1 Variance components, repeatability, and genomic heritability 297 

There was significant (P<0.05) genotypic variation among 517 half-sib families from five populations 298 

for all traits, based on mean performance across the two locations, Lincoln and Aorangi (Table 1, 299 

Supplementary Table S1 and S2). There were also significant (P<0.05) G x E interactions for all the 300 

traits, indicating a relative change in ranking among the 517 half-sib families between the two 301 

locations. There was a high genotypic correlation (r = 0.93) between R and h2
g in the across-location 302 

dataset and these ranged from a low of 0.26 (R) and 0.22 (h2
g) for traits N and P to a high of 0.75 (R) 303 

and 0.74 (h2
g) for Na (Table 1) across the two locations. Genotypic correlation between R and h2

g was 304 

slightly lower in Aorangi (r = 0.85) compared with Lincoln (r = 0.93). Because of the high correlation 305 

between R and h2
g and because h2

g captures marker-based additive variance, from here on results for 306 

h2
g only are reported and discussed. Overall, h2

g estimated within a location was substantially higher 307 

at the Aorangi site than Lincoln (mean of all traits h2
g = 0.62 and 0.43, respectively) (Supplementary 308 
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Table S1 and S2), with values from the across-location analysis (h2
g = 0.42) lying between those of 309 

Lincoln and Aorangi. Traits with low h2
g tended to have relatively large G x E, whereas those with 310 

high h2
g had a low G x E interaction components (Table 1). Variance component analysis within the 311 

two locations (Lincoln and Aorangi) indicated significant (P<0.05) genotypic variation for all 18 312 

nutritive traits. Differences in additive variance were observed for the same trait amongst the five 313 

populations in the across location dataset (Supplementary Table S3-S7). For example, additive genetic 314 

variance was non-significant (P > 0.05) for ADF, NDF and DOMD in Pop I & II, but was significant 315 

for these traits in Pop III – V (Supplementary Table S3-S7). Similar observations can be made for all 316 

of the analyzed traits, with no population showing significant (P < 0.05) additive genetic variance 317 

component for all 18 traits. Amongst the five populations, Pop I had significant additive variance for 318 

only 42% of traits (8 traits out of 19) while for Pop V that number was 84%, with the remaining 319 

populations intermediate to these at 58 – 68% (Supplementary Table S3-S7). 320 

3.2 Correlation among traits 321 

Genotypic and phenotypic correlation coefficients for all nutritive quality traits are shown in Tables 2 322 

and S8, respectively. Strong, positive genotypic correlation was observed between fibre measures ADF 323 

and NDF and these in turn were negatively correlated with energy traits including ME, DOMD and 324 

WSC (Tables 2 and Supplementary Table S8). A positive genotypic correlation was estimated for both 325 

LMW WSC and total WSC with DOMD, however, a weak positive correlation was found between 326 

HMW WSC and DOMD. A strong negative genotypic correlation was observed for both ADF and 327 

NDF with both LMW WSC and total WSC. A moderate genotypic correlation was observed between 328 

fibre traits (ADF and NDF) and minerals traits including K, Mg and Mn (positive), P and Ca (negative).  329 

3.3 Predictive ability for nutritive traits 330 

Predictive ability for all nutritive traits was evaluated using GBLUP, KGD-GBLUP and BayesC 331 

genomic prediction models, and the results are summarized in Figure 1 as the Pearson correlation 332 

coefficient between observed (adjusted means) and predicted values. There were no significant 333 

differences (P > 0.05) in terms of predictive ability between GBLUP, KGD-GBLUP and BayesC across 334 

all nutritive traits (Figure 1). Although slight differences can be noted from the Figure 1, no single 335 

statistical approach consistently gave higher predictive ability for all nutritive traits. Because the results 336 

from the three models were largely indistinguishable, from here on results from KGD-GBLUP are only 337 

reported and discussed. Using the adjusted phenotypic trait means (BLUPs) estimated across both 338 

locations, predictive ability for all traits was positive and was strongly correlated with h2
g (r = 0.65). 339 

The highest predictive ability observed was for Na and S (both r = 0.45), followed by CFAT (0.38) 340 

(Figure 1). The lowest predictive ability was noted for P (0.16), followed by DOMD with a value of 341 

0.22 (Figure 1). The bias (slope of regression) of the model for all nutritive traits was around 1, meaning 342 

unbiased estimates were obtained by regressing GEBVs on adjusted means (BLUPs) (Supplementary 343 

Table S9). 344 

Predictive ability of models based on phenotypic means from Lincoln only (location-specific predictive 345 

ability) was negative to low and showed a very high correlation with h2
g (r = 0.93) (Supplementary 346 

Table S1). The highest predictive ability was obtained for Na (0.35), similar to the across locations 347 

analysis, and the lowest predictive ability was for ADF with a negative accuracy of -0.06. Predictive 348 

ability of models using phenotypic data from Aorangi were generally higher than both the Lincoln and 349 

across-location models (Supplementary Table S2) and the correlation between h2
g and predictive ability 350 

was 0.67. In this dataset the highest predictive ability was for HMW WSC (0.56) and lowest predictive 351 

ability was for Ca (0.16) (Supplementary Table S2). 352 
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In terms of different trait categories, for the measures of fibre content, ADF and NDF, predictive ability 353 

of the across-location models was moderate, at 0.24 and 0.36 respectively. There was a strong effect 354 

of location on these traits, with moderate predictive ability at Aorangi (ADF = 0.29 and NDF = 0.35) 355 

whereas at Lincoln, the predictive ability was almost zero for NDF (0.02) and negative for ADF (-0.06) 356 

(Supplementary Table S1 and S2). 357 

The traits DOMD, CFAT, WSC (LMW, HMW and total) and ME were grouped as energy traits in this 358 

study. Predictive ability for energy traits in the across location analysis was generally low to moderate, 359 

with CFAT (0.38) and LMW WSC (0.34) the highest, and DOMD (0.22) and HMW WSC (0.23) low 360 

(Figure 1). As with the fibre traits, the ranking of predictive ability for CFAT varied by environment 361 

and was highest in Lincoln and in across-location analysis, whereas predictive ability for CFAT ranked 362 

fourth highest in Aorangi. By contrast, the predictive ability estimated for DOMD was ranked similarly 363 

(fifth highest) for Lincoln and Aorangi. 364 

The predictive ability of genomic prediction models for mineral traits assessed in this study was 365 

generally high, with Mg, Na and S consistently ranked highest in terms of predictive ability within the 366 

two locations (Lincoln and Aorangi) and in across-location analysis. The lowest h2
g was observed for 367 

P, which was reflected in the predictive ability of prediction models for Lincoln and across-location 368 

analysis. Models for tetany ratio ([K/(Ca+Mg)]), a predictor of hypomagnesaemia risk in livestock, 369 

had a predictive ability of 0.34 across locations, 0.29 at Lincoln and 0.18 at Aorangi. 370 

The measures CP and N are both indicative of protein content, with crude protein a derivate of 371 

measured N, obtained by multiplying N by a conversion factor of 6.25  (WAGHORN 2007), hence 372 

predictive ability estimated within and across locations was highly similar for both the traits. Predictive 373 

ability for these traits was low to moderate, at 0.28 (CP) and 0.26 (N) in the across location analysis, 374 

0.14 for both traits at Lincoln and 0.20 and 0.21 for CP and N at Aorangi. 375 

Genotyping efficiency impacts the design and overall cost of implementing GS in a breeding program. 376 

To investigate the minimum number of SNP markers needed to achieve maximum predictive ability 377 

within the current dataset, random marker sets with varying numbers of SNPs were used to build 378 

genomic prediction models for all nutritive traits, using the across locations dataset. For all nutritive 379 

traits, a steady decline in predictive ability was observed from 100% (1,093,464) to 0.5% (5,467) 380 

markers and a rapid decrease in predictive ability was noted from 0.5% to 0.1% (1,093) (Figure 2 and 381 

Supplementary Table S9). Overall, reducing the marker number to 5% (54,673) of the total available 382 

SNPs had minimal impact on overall predictive ability (Figure 2 and Supplementary Table S9). Further 383 

reductions in marker number resulted in losses in predictive ability, the extent of which varied by trait 384 

(Supplementary Table S9). For example, with 10,934 markers (1% of the total dataset) the predictive 385 

ability for LMW WSC, HMW WSC and total WSC decreased by 3%, 7% and 4%, respectively 386 

compared to the total dataset (100%) (Figure 2). At 1,093 markers (0.1%) the predictive ability for 387 

these traits declined further although the absolute values were still positive, at 0.31 for LMW WSC, 388 

0.18 for HMW WSC and 0.26 for total WSC (Figure 2). The decay in predictive ability was typically 389 

highest for those traits which had low h2
g and low predictive ability under the full SNP dataset. For 390 

example, between the highest and lowest marker number datasets there was a 36% decrease in 391 

predictive ability for P (h2
g = 0.22), while for S (h2

g = 0.53) there was a 14% decrease in predictive 392 

ability (Supplementary Table S9). 393 

The training population used in this study is a composite of five different breeding populations, with 394 

differing genetic relationships (see Figure 1 in FAVILLE et al. (2018).  The predictive ability of a model, 395 

constructed based on a composite training set, for each of the individual populations is therefore an 396 
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important consideration. Cross-validations were conducted within the individual populations using the 397 

protocol reported by FAVILLE et al. (2018). Predictive ability varied amongst the populations (Figure 398 

3).  For example, predictive ability for ADF ranged from 0.13 to 0.24 amongst the five populations 399 

(Figure 3). The majority of predictions were positive across all populations, with the exception of K 400 

for Pop I, and only LMW WSC and P in Pop II had notably poor predictive ability (Figure 3). No 401 

population was superior for genomic prediction of all nutritive traits.  However, Pop V returned the 402 

highest predictive ability overall (mean predictive ability of Pop V = 0.29, compared with 0.30 in the 403 

training set, TP), followed by Pop III, Pop I, Pop IV, and Pop II (Figure 3). 404 

4 Discussion 405 

Nutritive quality traits in forages are important for animal productivity and for maintaining livestock 406 

health and are therefore important targets for genetic improvement in perennial ryegrass. Nutritive 407 

traits can be expensive to measure and are labour-intensive, hindering the improvement of these traits 408 

by conventional breeding methods. Genomic selection (GS), the use of genome-wide molecular 409 

markers for the prediction of breeding values in selection candidates, is well suited for traits that are 410 

costly and difficult to phenotype (HEFFNER et al. 2009; JANNINK et al. 2010) and therefore represents 411 

a promising approach for enabling cost-effective improvement of nutritive traits in forages. In this 412 

study we demonstrate that GS is a strong prospect for improvement of nutritive quality traits as assessed 413 

by cross-validation predictive abilities estimated for 18 nutritive traits in a multi-population training 414 

set. Furthermore, the extensive phenotypic dataset, collected from two contrasting environments, has 415 

enabled the contribution of genotypic, environment, and genotype-by-environment variance 416 

components to be estimated across a large range of nutritive traits.  417 

Several methods for GS have been proposed for both plant and animal breeding, including GBLUP, 418 

Bayesian alphabets (BayesA, BayesB and BayesC), Ridge Regression (RR) BLUP, Random Forest, 419 

Support Vector Machine and deep learning through Multilayer Perceptron’s and Convolutional Neural 420 

Networks (DE LOS CAMPOS et al. 2013; CROSSA et al. 2017). Both simulations and empirical data 421 

suggests that linear models are superior in terms of predicting GEBVs at higher accuracy (DAETWYLER 422 

et al. 2010; DE LOS CAMPOS et al. 2013; BYRNE et al. 2017; BELLOT et al. 2018; FAVILLE et al. 2018). 423 

In this study, we compared three linear models characterized by two different assumptions with respect 424 

to the distribution of variance for marker effects. In GBLUP and KGD-GBLUP all marker effects are 425 

shrunk equally, assuming the predicted trait is controlled by many markers with small effect (GODDARD 426 

et al. 2011), whereas BayesC assumes that the trait is a mixture of distributions with large and small 427 

effect markers (HABIER et al. 2011). Even with different prior assumptions, Figure 1 illustrates the 428 

similarity in predictive ability amongst the three methods for all nutritive traits, with only minor 429 

differences (Figure 1). Through simulation and empirical data, DE LOS CAMPOS et al. (2013) pointed 430 

out that the superiority of Bayesian variable selection models can be illustrated when applied to a trait 431 

with large effect quantitative trait loci (QTL). The lack of improvement in predictive ability under the 432 

BayesC model observed here may reflect a complex genetic architecture for the nutritive traits studied, 433 

which are likely controlled by many genes with small effects. For instance, QTL studies in perennial 434 

ryegrass reported 25 loci for WSC (COGAN et al. 2005; TURNER et al. 2006; SHINOZUKA et al. 2012; 435 

GALLAGHER et al. 2015), however genetic variation explained by the multiple QTLs was no more than 436 

20%, suggesting that genetic control of WSC may tend towards an infinitesimal model.  437 

The success of GS primarily depends on the predictive ability of the genomic prediction model, which 438 

is influenced by ℎ𝑛
2 , training population size, linkage disequilibrium (LD), genetic diversity within the 439 

training population and relatedness between training and test set (DAETWYLER et al. 2013; CROSSA et 440 

al. 2017; AROJJU et al. 2018). Traits with low ℎ𝑛
2  need a larger training population to achieve the same 441 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 7, 2019. ; https://doi.org/10.1101/727958doi: bioRxiv preprint 

https://doi.org/10.1101/727958
http://creativecommons.org/licenses/by-nd/4.0/


  Genomic selection for nutritive traits 

 
12 

 

level of predictive ability as a trait with higher ℎ𝑛
2 . Results from our study indicate that predictive ability 442 

estimated by cross-validation and ℎ𝑛
2  will not be a limiting factor for implementing GS for nutritive 443 

traits in perennial ryegrass, as predictive ability and various measures of heritability (R, ℎ𝑔
2 and ℎ𝑛

2) 444 

were moderate to high for most traits (Table 1, Supplementary Table S1-S7 and Figure 1). A strong 445 

positive correlation was observed between predictive ability and h2
g for traits at the individual locations 446 

(Aorangi and Lincoln) and in the across-location analysis, confirming previous findings (CROSSA et al. 447 

2017) and suggesting that genomic prediction can be more accurate for highly heritable traits. A 448 

positive correlation between predictive ability and heritability was also previously observed for 449 

nutritive traits in switchgrass (FIEDLER et al. 2018) and alfalfa (JIA et al. 2018), as well as for crown 450 

rust and heading date in perennial ryegrass (AROJJU et al. 2018) and for fruit quality traits in apple 451 

(MURANTY et al. 2015).  452 

For most traits, ℎ𝑔
2 at Aorangi was consistently higher compared to Lincoln, and consequently higher 453 

predictive abilities were observed. This difference between locations was due to a combination of the 454 

genotypic variance component estimated at Aorangi being higher and estimates of trait-associated 455 

experimental error being higher at Lincoln (Supplementary Table S1 and S2). While it is not possible 456 

to conclusively determine the basis of this disparity in experimental error, it may be explained by 457 

greater within-environment variability at Lincoln, due to factors that such as climatic variations over 458 

the sampling period (Figure S1 in FAVILLE et al. (2018)), soil heterogeneity or operator-to-operator 459 

variations.  460 

In contrast to switchgrass (FIEDLER et al. 2018) and alfalfa (JIA et al. 2018), prior to this study, genomic 461 

predictive ability for nutritive traits has been evaluated in perennial ryegrass for limited set of traits. 462 

FÈ et al. (2016) reported high predictive abilities of 0.68 for NDF and 0.45 for fructan in a large training 463 

set of 1918 F2 families, evaluated at multiple environments. In another study, GRINBERG et al. (2016) 464 

reported similarly high predictive abilities for WSC (0.59), DMD (0.41) and N (0.31) from prediction 465 

models applied in F14 generation families after training using a set of 364 families from earlier 466 

generations, phenotyped at a single location. Predictive ability for nutritive traits in the present study 467 

were overall lower compared to those reported by FÈ et al. (2016) and GRINBERG et al. (2016) with 468 

predictive abilities of 0.35, 0.29 and 0.22 for NDF, total WSC and HMW WSC (fructan), respectively. 469 

The lower predictive ability was likely affected by the smaller training population used in this study 470 

compared to FÈ et al. (2016), as well as its composite nature. Although, GRINBERG et al. (2016) 471 

reported high predictive ability for nutritive trait models, these values were based on a single 472 

environment and therefore unaffected by G x E, which might decrease the reliability of predictions. 473 

Overall, the values in the current study, based on a relatively small, composite training set were 474 

sufficiently high to support prediction of GEBVs and implementation of genomic selection to 475 

accelerate genetic gain for nutritive traits across environments in perennial ryegrass. 476 

Determining the magnitude and genetic basis of G x E interactions for a trait is important, as it can 477 

assist in making appropriate breeding design decisions for the development of cultivars that are adapted 478 

to a broad range of target environments. In the current study G x E interactions were significant for all 479 

nutritive quality traits. The majority of traits displayed a G x E variance component that was small in 480 

comparison to genotypic variance, when nutritive traits were evaluated at two distinct locations (Table 481 

1). This was reflected in the ratio of g to gs, which was > 1 for 60% of the traits, indicating that the 482 

genotypic variance was predominant. However, the ratio for CFAT, CP, total WSC, LMW WSC, 483 

HMW WSC, P and N were < 1, indicating a greater influence of G x E interactions.  The identification 484 

of high G x E interactions for WSC contrasts with results reported by EASTON et al. (2009) and are at 485 

variance with propositions by CASLER AND VOGEL (1999) and JAFARI (2012), that G x E for WSC are 486 

minimal to negligible. Our results are based on relatively large populations of half-sib families, 487 
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compared to previous studies and may therefore be a more accurate reflection of the influence of G x 488 

E on these traits, particularly in New Zealand environments.  However, it should be noted that the G x 489 

E interactions estimated here were based on only two locations, and a more robust estimation would 490 

be derived if based on a larger number of locations, representing the full target population of 491 

environments. The presence of G x E interactions may negatively influence ability to improve these 492 

traits for broad adaptation and represents a challenge during selections (HOLLAND et al. 2003).  493 

Where G x E effects are large and significant, genetic improvement for a trait may only be achieved 494 

through selection based on multi-year, multi-environment evaluation. Considering the relatively high 495 

costs associated with phenotyping of nutritive quality traits, this approach might not always be feasible, 496 

and decisions will be based on available resources. Genomic selection, however, represents a promising 497 

approach to more directly tackle G x E. Models such as marker-by-environment interactions proposed 498 

by LOPEZ-CRUZ et al. (2015) and further developed by CROSSA et al. (2016), can be used to identify 499 

genomic regions that are stable across environments and other regions that are associated with specific 500 

environments that contribute to G x E interactions. These marker effects can be fixed in GS models to 501 

assist the selection of stable genotypes. However, these models were primarily developed for wheat, 502 

and a detailed investigation is needed to assess models perform in outcrossing species such as perennial 503 

ryegrass.  504 

Traits with high G x E interactions displayed both lower ℎ𝑔
2 and comparatively low predictive abilities 505 

(Table 1, Supplementary Table S1-S2 and Figure 1). For such traits multi-trait genomic prediction 506 

models (JIA AND JANNINK 2012) may be one way of improving predictive ability and thereby genetic 507 

gain. The concept of multi-trait genomic prediction approaches is to improve the predictive ability of 508 

a primary target trait (which may be difficult and expensive to phenotype) by utilizing the genetic 509 

correlation with a secondary trait which is highly heritable and significantly less expensive to 510 

phenotype. Heritability and genotypic correlation data generated in the current study may assist in 511 

designing multi-trait prediction models for key nutritive traits. For example, a negative genetic 512 

correlation was observed between fibre and WSC traits, as reported previously in Italian ryegrass 513 

(WANG et al. 2015), and a positive genetic correlation was observed between DOMD and WSC traits 514 

as described previously by HUMPHREYS (1989b); JAFARI et al. (2003b) (Table 4). These secondary 515 

traits (ADF, NDF and DOMD) are measured routinely and relatively inexpensively by NIRS and may 516 

therefore be useful in multi-trait genomic prediction models to more accurately predict WSC traits that 517 

are most accurately measured using more expensive wet chemistry methodologies.  518 

Mineral composition of forages is of interest from a perspective of livestock health and, as with 519 

nutritive traits overall, there has been little or no emphasis on selection for mineral composition in 520 

forage breeding programs (MASTERS et al. 2019). Significant genotypic variation was observed for all 521 

minerals in this study, with relatively low influence of G x E, moderate to high heritability and genomic 522 

prediction models with predictive abilities high in comparison to the other nutritive quality traits 523 

assessed (Figure 1). This indicates that selective breeding for levels of micro- and macro-minerals is 524 

feasible and that genomic selection represents a strong option for pursuing improvement in these traits. 525 

In general, ryegrass cultivars that grow well under low soil P will compete less for P in the sward, 526 

increasing P availability for uptake to support legume growth (EASTON et al. 1997; MCDOWELL et al. 527 

2011). For instance, CRUSH et al. (2006), reported that in a mixed sward of ryegrass and clover (18% 528 

clover content), net annual flux of P into ryegrass was 4.7 times higher compared to clover. A small 529 

improvement in ryegrass phosphate use efficiency (PUE), can significantly change these proportions 530 

and may have large environmental and economic benefits (CRUSH et al. 2018a). In the current dataset 531 

predictive ability for P was very low (0.13), underpinned by a significant G x E interaction component 532 

to total phenotypic variation. This indicates that breeding for this P levels in perennial ryegrass foliage 533 
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needs to be designed to account for G x E interaction effects. Alternatively, moderate to high genetic 534 

correlation with high ℎ𝑔
2 traits, such as Mg (genotypic correlation -0.62), might support an indirect 535 

multi-trait genomic selection strategy, as discussed earlier. 536 

Hypomagnesaemia or grass tetany is a metabolic disorder in ruminants, caused by inadequate supply 537 

of Ca and Mg. This is often described in terms of a tetany index ([K/Ca+Mg]), for which values 538 

exceeding 2.2 (KEMP AND T HART 1957) are associated with increased risk of the disorder. We observed 539 

a moderate predictive ability for the ratio and the magnitude of G x E was low compared to genotypic 540 

variation, suggesting that tetany ratio could be used successfully as a selection criteria for developing 541 

cultivars with reduced potential for the incidence of hypomagnesaemia. This is in contrast to the results 542 

of SMITH et al. (1999), who reported large G x E variance for the tetany ratio evaluated at two locations 543 

in Australian environments and suggested the use Mg alone as a selection criteria to improve tetany 544 

ratio. Results from the current study showed a high predictive ability for Mg, making genomic selection 545 

a viable strategy for this trait. Although, increasing Mg concentration alone may be sufficient to 546 

decrease the incidence of hypomagnesaemia, the presence of a positive correlation between Mg and K 547 

observed in the current study (Table 2) and reported by SMITH et al. (1999), suggests that selections 548 

based on Mg concentration alone should be monitored and might not always give the expected 549 

outcome. 550 

Using approximately 50k random markers the predictive ability of genomic prediction models for all 551 

nutritive traits was similar to using the full dataset of ca. 1M markers (Figure 2 and Supplementary 552 

Table S9).  This reflects observations made in the same training set for herbage accumulation, a proxy 553 

for DM yield (Faville et al. 2018) except in that instance the marker subsets were not selected randomly. 554 

Below the 50k marker number there was a decrease in predictive ability, and this was particularly 555 

evident for traits with low ℎ𝑔
2. Considering the low levels of LD (r2 decaying to 0.25 after 366-1750 556 

base pairs (FAVILLE et al. 2018)) observed in the component populations of the training set, the major 557 

proportion of predictive ability is likely a result of capturing relationship among individuals, rather 558 

than historical LD with QTL. In perennial ryegrass, to capture genetic variance associated with all 559 

causative QTL a very large number of markers and a large training population are needed, due to rapid 560 

decay of LD as a result of a very large past effective population size (𝑁𝑒) (HAYES et al. 2013; FIEDLER 561 

et al. 2018). Predictive ability based on relatedness between training and selection population can 562 

deteriorate after a few selection cycles (HABIER et al. 2007), and to maintain adequate predictive 563 

ability, either the training population should be very large and highly diverse or some form of 564 

relatedness should exit between training and selection population (HAYES et al. 2013; NORMAN et al. 565 

2018). 566 

In conclusion, genotypic variation and G x E interactions were significant for all nutritive quality traits 567 

evaluated in two distinct New Zealand environments. The predictive ability of genomic prediction 568 

models reported in this study for most of the traits would be sufficient to implement GS for nutritive 569 

traits in perennial ryegrass. Although a major proportion of this predictive ability is the result of 570 

capturing relatedness among individuals, maintaining relatedness between training and selection 571 

population would be an option to implement GS in perennial ryegrass. Predictive ability for most of 572 

the nutritive traits was retained even with as few as 50,000 markers. A next step would be to simulate 573 

a cost-benefit analysis to study the implications of manipulating marker number for cost-effective GS. 574 

For traits with low G x E interactions, single-trait genomic prediction models can be considered and 575 

for traits with large G x E, and consequently lower predictive ability, multi-trait approaches may be 576 

useful to explore as a method for obtaining high levels of prediction. This appears to be particularly 577 

important for WSC, which is considered to be one of the primary constituents of nutritive value for 578 

forages. 579 
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12 Tables  887 

Table 1: Trait genotypic (σ2
g), genotype-by-location interaction (σ2

gl) and residual error (σ2
ε) variance components and their associated 888 

standard errors (SE), repeatability (R) and genomic heritability (h2g), estimated for the range of nutritive traits, among 517 half-sib families of 889 

perennial ryegrass evaluated across the two locations in Lincoln and Aorangi. All σ2
g for nutritive traits were significant (P < 0.05). 890 

                      Trait Abbreviation     σ2
g ± SE     σ2

gl ± SE     σ2
ε ± SE      R h2

g 

Acid detergent fibre ADF 0.16 ± 0.036 0.083 ± 0.04 1.11 ± 0.042 0.42 0.32 

Neutral detergent fibre NDF 0.50 ± 0.068 0.16 ± 0.057 1.36 ± 0.054 0.62 0.48 

Digestible organic matter in dry-matter  DOMD 0.41 ± 0.088 0.22 ± 0.096 2.49 ± 0.097 0.44 0.35 

Crude fat CFAT 4.99 ± 1.380†  9.38 ± 1.630†  30.0 ± 0.001† 0.34 0.29 

Metabolisable energy  ME 0.01 ± 0.002 0.005 ± 0.002  0.06 ± 0.002 0.45 0.36 

Crude protein  CP 0.15 ± 0.052 0.148 ± 0.065 1.64 ± 0.064 0.31 0.27 

Calcium Ca 0.57 ± 0.073† 0.17 ± 0.058†  1.48 ± 0.058†  0.63 0.60 

Potassium K 10.0 ± 0.001† 5.19 ± 1.890† 48.0 ± 0.002† 0.49 0.46 

Magnesium Mg 0.11 ± 0.014† 0.03 ± 0.010† 0.25 ± 0.010†  0.65 0.62 

Manganese (mg/kg) Mn  64.6 ± 10.10 22.1 ± 9.70 240.5 ± 9.4 0.56 0.55 

Sodium Na 2.32 ± 0.236† 0.25 ± 0.128† 3.93 ± 0.015†  0.75 0.74 

Phosphorus P 0.04 ± 0.016† 0.04 ± 0.021† 0.58 ± 0.022†  0.26 0.22 

Sulphur S 0.33 ± 0.050† 0.15 ± 0.045† 1.04 ± 0.041†  0.57 0.53 

Nitrogen  N 3.08 ± 1.250†  3.0 ± 0.001† 40.0 ± 0.001† 0.26 0.22 

Tetany ratio (K/Ca+Mg) Tetany ratio 0.01 ± 0.002 0.005 ± 0.001 0.04 ± 0.001 0.61 0.63 

Total water soluble carbohydrates  Total WSC 51.7 ± 12.8 51.6 ± 14.6 325.2 ± 13 0.39 0.31 

Low molecular weight carbohydrates  LMW WSC 19.6 ± 4.6 19.3 ± 5.1 105.1 ± 4.2 0.42 0.20 

High molecular weight carbohydrates HMW WSC 13.7 ± 4.3 11.9 ± 5.1 141.3 ± 5.5 0.32 0.34 

† 
x10-3 891 

 892 

 893 
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Table 2: Genotypic correlations amongst a range of nutritive quality traits measured from 517 half-sib families, estimated using data from 894 

across two locations (Lincoln and Aorangi).    895 

  
ADF NDF DOMD CFAT CP ME P N K S Ca Mg Na Mn  

Tetany 

ratio 

LMW 

WSC 

HMW 

WSC 

Total 

WSC 

ADF 1 0.84 -0.88 0.12 -0.65 -0.87 -0.51 -0.69 0.47 -0.26 -0.72 0.20 0.03 0.30 0.61 -0.49 -0.04 -0.35 

NDF  1 -0.77 -0.05 -0.53 -0.77 -0.43 -0.54 0.60 -0.09 -0.79 0.41 -0.23 0.54 0.67 -0.60 -0.38 -0.59 

DOMD   1 0.05 0.36 1.00 0.57 0.43 -0.29 0.15 0.46 -0.45 -0.01 -0.55 -0.32 0.73 0.21 0.60 

CFAT    1 -0.10 0.03 0.73 -0.06 0.02 -0.61 0.00 -0.67 0.32 -0.57 0.14 0.41 0.59 0.55 

CP     1 0.36 0.27 0.99 -0.49 0.06 0.68 0.14 0.02 0.10 -0.65 -0.19 0.11 -0.08 

ME      1 0.55 0.44 -0.29 0.18 0.46 -0.42 0.01 -0.55 -0.32 0.72 0.22 0.59 

P       1 0.34 -0.15 -0.20 0.29 -0.62 0.13 -0.53 -0.13 0.58 0.33 0.55 

N        1 -0.45 0.08 0.65 0.10 0.01 0.07 -0.60 -0.13 0.11 -0.04 

K         1 0.25 -0.69 0.34 -0.61 0.45 0.92 -0.29 -0.55 -0.46 

S          1 -0.08 0.55 -0.50 0.47 0.10 -0.19 -0.67 -0.44 

Ca           1 -0.07 0.35 -0.34 -0.89 0.31 0.34 0.37 

Mg            1 -0.43 0.82 0.09 -0.75 -0.66 -0.82 

Na             1 -0.58 -0.47 0.32 0.73 0.55 

Mn               1 0.29 -0.89 -0.83 -1.00 

Tetany ratio              1 -0.20 -0.37 -0.31 

LMW WSC                1 0.50 0.92 

HMW WSC                 1 0.80 

Total WSC                                 1 

 896 

 897 

 898 

 899 
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13 Figures  900 

 901 

902 
Figure 1:  Predictive ability (Pearson correlation coefficient between observed and predicted values) for nutritive traits and their 903 

associated standard deviation, assessed using three genomic prediction models (BayesC, KGD-GBLUP and GBLUP), based on adjusted 904 

means (BLUP’s) measured among five populations across two locations. 905 
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Figure 2: Random subsets of markers ranging from 0.1% (1,093) to 100% (1,093,464) of the marker set, used in GBLUP model to estimate 906 

predictive ability for HMW WSC, LMW WSC and Total WSC.  907 

 908 
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909 
Figure 3: Predictive ability for 18 nutritive traits in each individual population (Pop I – Pop V) and in complete training population 910 

(TP) 911 
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