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One in ten people are affected by rare diseases, and three out of ten children with rare dis-
eases will not live past age five. However, the small market size of individual rare diseases,
combined with the time and capital requirements of pharmaceutical R&D, have hindered
the development of new drugs for these cases. A promising alternative is drug repurposing,
whereby existing FDA-approved drugs might be used to treat diseases different from their
original indications. In order to generate drug repurposing hypotheses in a systematic and
comprehensive fashion, it is essential to integrate information from across the literature of
pharmacology, genetics, and pathology. To this end, we leverage a newly developed knowl-
edge graph, the Global Network of Biomedical Relationships (GNBR). GNBR is a large,
heterogeneous knowledge graph comprising drug, disease, and gene (or protein) entities
linked by a small set of semantic themes derived from the abstracts of biomedical litera-
ture. We apply a knowledge graph embedding method that explicitly models the uncertainty
associated with literature-derived relationships and uses link prediction to generate drug
repurposing hypotheses. This approach achieves high performance on a gold-standard test
set of known drug indications (AUROC = 0.89) and is capable of generating novel repur-
posing hypotheses, which we independently validate using external literature sources and
protein interaction networks. Finally, we demonstrate the ability of our model to produce
explanations of its predictions.
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1. Introduction

In the United States, rare diseases are defined as diseases that affect fewer than 200,000
people each. Although individually rare, the cumulative effect of all rare diseases amounts
to a significant proportion of the population there are an estimated 7,000 rare diseases that
affect 25–30 million Americans.1 A major challenge of rare disease research is that despite this
aggregate health burden, no single rare disease affects enough people to be prioritized for drug
development over other, more prevalent diseases. As a result, there has historically been a lack
of academic and pharmaceutical research for rare disease treatments, and the vast majority
of rare diseases still have no therapeutic options. One way to address this unmet clinical need
is through drug repurposing, or the use of pharmaceuticals already existing in the market to
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treat different diseases than they were developed to treat. This paradigm has been successful
in many contexts with examples including methotrexate and sildenafil (Viagra).2,3 Previously,
drug repurposing has largely been accomplished by clinical observation of drug side effects,
but a systematic, data-driven approach for identifying repurposing opportunities is needed to
improve efficiency and coverage.

Advancements in computation and machine learning have enabled natural language pro-
cessing (NLP) techniques that are effective and scalable for processing large bodies of unstruc-
tured text. Recently, NLP was applied to all ∼28.6 million PubMed abstracts to synthesize
and summarize the relationships between drugs, genes/proteins, and diseases into a heteroge-
neous knowledge graph known as the Global Network of Biomedical Relationships (GNBR).4

This dataset is powerful because (1) it is large, consisting of over 130,000 entities and over
two million edges, (2) each of these edges is represented by a set of several important, se-
mantic themes, and (3) the confidence associated with each of these themes is quantified as
a continuous value. By harnessing GNBR, we can synthesize disparate sources of knowledge
relevant to rare diseases in order to systematically generate repurposing hypotheses that can
be directly mapped back to the literature.

Previous data-driven approaches to drug repurposing have relied on gene expression, chem-
ical structure, or electronic health records data.5 For example, a gene expression–based drug
repurposing method was described by Sirota et al. to repurpose topiramate as a therapeu-
tic option for inflammatory bowel disease.6 Traditional network-based methods have focused
on identifying disease modules and using diffusion strategies to rank novel interactions.7,8

Recently, network embedding methods, which learn a mapping from nodes and edges to low-
dimensional vectors such that the proximity structure of the original network is preserved in
the embedding space, have attracted great interest. The resulting vectors provide an ideal
platform for machine learning tasks, and have been applied in pharmacological applications
such as the prediction of polypharmacy side effects and drug-drug interactions.9,10 Building
on such successes, we implement a network embedding method for drug repurposing that
explicitly models the confidence of relationships in GNBR based on their evidence in liter-
ature.11 This model is more appropriate for representing and learning from literature-based
knowledge, which is inherently noisy. As far as we know, we are the first to incorporate such
uncertainty into a literature-based graph embedding method, allowing for a more precise and
nuanced drug repurposing model. Unlike previous methods, our hypotheses do not rely on any
curated databases, allowing the model to automatically improve as the volume of literature
proliferates and GNBR expands.

In this work, we first prioritize rare diseases based on their potential for drug repurposing,
accounting for the availability of data and the current state of treatment need. Then, we de-
velop a knowledge graph embedding–based drug repurposing method that produces treatment
hypotheses with strong evidence in literature and evaluate our results using gold-standard drug
indications. We then apply our model to generate novel drug repurposing hypotheses and as-
sess their scientific validity using a variety of sources. Finally, for top-scoring hypotheses we
elucidate recurring network patterns that contribute to our predictions and demonstrate their
capacity to provide mechanistic interpretations.
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2. Methods

2.1. Data

GNBR contains edges or links between two entities from among the set {gene, drug, disease}
and a support score (normalized between 0 and 1) representing the literature-derived con-
fidence of the relationships between those two entities.4 The relationships are divided into
32 high-level semantic themes (Fig. 1) and are organized into four categories based on the
entities they connect. For example, the edge between metformin and type 2 diabetes, a well-
established relationship, has a support for the theme “Treatment” of 0.999. Some themes exist
in multiple categories. In some cases, the two entities have a single very clear relationship,
and in others, there is literature evidence for several relationships.

Fig. 1: Summary of all themes in GNBR, organized by category along with their reference codes.

Using rare disease information from Orphanet,12 we extracted MeSH,13 OMIM14 and
UMLS15 IDs for each rare disease in Orphanet. By directly matching MeSH and OMIM IDs
and indirectly matching UMLS IDs using the UMLS Metathesaurus, we identified 2,779 rare
diseases in GNBR. We maximize clinical utility of our method by focusing on diseases with
high prevalence and no FDA-approved indications. Prevalence was retrieved from Orphanet,
and FDA-approved indications are found on DrugCentral.16 Finally, we filtered GNBR by
identifying the largest connected component of the graph after removing any node that is not
(1) a gene node, (2) a high-priority rare disease node, or (3) a drug/disease node present in a
known indication. The resulting graph comprised a total of 63,252 nodes and 583,685 edges.

2.2. Embedding-based prediction method

We adopt an uncertain knowledge graph embedding method,11 which takes advantage of the
support scores in GNBR (i.e. the confidence of the relationship) in order to learn embedding
vectors for all nodes and themes. The geometric intuition for this model is that the proximity
between the vectors for head h, relation r, and tail t is related to the confidence score associated
with the triple (h, r, t). Concretely, for a given triple l = (h, r, t), a plausibility score, g, is defined
by the corresponding embeddings h, r, t as follows:

g(l) = r · (h ◦ t), (1)

where ◦ denotes the element-wise product. This score is mapped to the interval [0, 1] through
the bounded rectifier function

φ(x) = min(max(wx+ b, 0), 1), (2)
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where w and b are learned parameters. The final predicted confidence score, f(l), is thus:

f(l) = φ(g(l)). (3)

In order to accurately rank candidate triples and avoid ties, we remove the min-max
bounding in Eq. (2) at test time. For every triple used in training, a corresponding “negative”
triple is sampled by corrupting the tail node and resampling a random node with an assumed
support of 0. The joint objective function to be minimized is the sum of squared errors between
the prediction, f(l), and support, sl, for each triple l:

J =
∑
l∈L+

|f(l)− sl|2 +
∑
l∈L−

|f(l)|2, (4)

where L+ is the set of triples in GNBR and L− is the set of sampled negative triples. We
formalize the generation of drug repurposing hypotheses as a link prediction task in which
we predict high-confidence triples of the form (Drug, “Treatment”, Disease) using the learned
embeddings.

3. Experiments and Results

3.1. Embedding-based predictions

3.1.1. Experimental Design

As an internal validation, we quantify the ability for our model to recapitulate known gold
standard drug-disease indications in the embedding-based link prediction task. For this we use
MEDI,17 a database of drug indications compiled from SIDER 2,18 RxNorm,19 MedlinePlus,20

and Wikipedia. Drug-disease combinations were mapped from ICD9 codes to UMLS codes,
resulting in 3,329 combinations comprising 811 drugs and 360 diseases.

Triples in GNBR containing a known indication pair from MEDI were split into 60%
training, 20% validation, and 20% test sets. All other triples in GNBR were split into 90%
training, 5% validation, and 5% test sets. We chose an embedding dimensionality of d = 128,
and trained the model for 100 epochs with batch size 1024. We used the Adam optimizer for
training, with exponential decay rates β1 = 0.9 and β2 = 0.99.21 The validation set was used to
determine early stopping criteria based on mean squared error and to tune the learning rate
lr ∈ {0.001, 0.005, 0.01}.

To ascertain which parts of the network were most valuable to the embeddings, we con-
sidered three submodels: (1) removing all drug-disease triples with relationships other than
“Treatment”, (2) removing all gene-associated triples and taking the largest connected com-
ponent from the resulting drug-disease bipartite graph, and (3) considering only triples of
the form (Drugi, “Treatment”, Diseasej) without embedding the network at all. Our test set
consisted of 355 MEDI drug indications as positives and 355 randomly-sampled pairs as nega-
tives, where the drugs and diseases were drawn from the sets of all drugs and diseases present
in the known indications.
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Fig. 2: Treatment prediction on gold-standard test set for different submodels, including ROC (left)
and PR (right) curves.

3.1.2. Performance on gold-standard indications

To assess the capacity of our model to recapitulate known treatment indications, we cal-
culated the receiver operating characteristic (ROC) and precision-recall (PR) curves for
all submodels based on the predicted confidence score given in Eq. (3). Our full embed-
ding model performs well in discriminating between the positive and negative pairs, achiev-
ing an area under the ROC curve (AUROC) of 0.89 (Fig. 2). Removing non-Treatment
drug-disease themes decreases performance markedly, as expected because the other drug-
disease themes are semantically related and often correlated in support scores. Therefore,
many training examples that would positively contribute to the final embeddings are lost.
The “Treatment” theme alone achieves an AUROC of 0.83, indicating that the support
score for that theme is in fact a suitable proxy for confidence that a true indication ex-
ists. However, this submodel fails to capture indirect relationships and thus cannot predict
new links. Performance increases slightly when the gene-related triples are removed from
the network, most likely because the embeddings for drugs and diseases are no longer con-
strained to be consistent with the genes, which dominate the number of triples in training.

Fig. 3: 2D UMAP projection of embedded pairs com-
pared to “Treatment”

However, this is less useful for novel
drug repurposing because it takes ad-
vantage of only transitive relation-
ships between drugs and diseases and
fails to consider gene-mediated mech-
anisms. Additionally, diseases without
treatment do not exist in the largest
connected component when genes are
removed, so many rare diseases cannot
even be embedded.

We expect that the element-wise
product of drug and disease vec-
tors representing for known indica-
tions should exist closer to the “Treat-
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ment” theme in the embedding space than those of randomly-sampled negative indications.
To confirm this, we project the combined vectors for pairs in our test set into two dimen-
sions using UMAP.22 Figure 3 shows known indications (positive, red) and randomly sampled
(negative, blue) drug-disease pairs, where each point is the element-wise product of the drug
vector with the disease vector. The positive drug-disease pairs are indeed closer to the “Treat-
ment” vector (black), confirming that our embedding method was able to successfully learn
embeddings that reflect a treatment relationship.

3.1.3. Evaluation of theme contribution

We hypothesize that the themes which provide the most utility in predicting a treatment-type
edge will have embeddings that are similar to that of the “Treatment” theme. To evaluate
this, we measured the cosine similarity between the embeddings of all 32 themes in GNBR
and perform hierarchical clustering to group the themes. As shown in Fig. 4(a), the theme
clusters correspond well with edge type, as expected because the theme embeddings within
each group are learned by triples consisting of different node types. Of the two themes which
do not appear to cluster with others of the same type, one (E+) belongs to both groups drug
(Dr)–gene (G) and G-G. The sub-clusters within each edge type represent biologically relevant
internal structure, giving us confidence in the quality of our embeddings. For example, blocks
consisting of {“causal mutations” (U), “polymorphisms alter risk” (Y), “mutations affecting
disease course” (Ud)} and {“decreased expression” (E-), “antagonism” (A-), “inhibition” (N)}
represent important classes of gene-disease and drug-gene relationships, respectively.

The top-left corner of Fig. 4(a), the Dr–disease (Dz) themes, is particularly relevant for
drug repurposing. Note that the similarity between all themes in this group is high, especially
“Treatment” (T) and “Inhibits cell growth (esp. cancer)” (C), because of the high literature
bias towards cancer compared to other diseases. “Side effect” (Sa) edges are slightly more
distant from T and C, which is promising because a side-effect phenotype should not be
misconstrued as a treatment indication. In general, the high similarity among all themes in
this group suggest that correlation between Dr-Dz themes is indeed the reason for the drop in
performance when non-“Treatment” edges are removed from the embedding model. Outside
of the Dr-Dz group, we see that among Dz-G themes, three stand out as quite similar to the
Dr-Dz themes, suggesting a higher utility in our drug repurposing model (excluding J, which
also belongs to the Dr-Dz group): “possible therapeutic effect” (Te), “diagnostic biomarkers”
(Md), and “overexpression in disease” (X). Surprisingly, “Drug targets” (D) appears to be less
related to treatment, suggesting that the literature references in this category are less specific
(e.g. stating that a gene can be targeted without mentioning any actual drug).

To more directly assess how different themes contribute to the prediction of treatment-type
edges, we measured the confidence f(l) for all drug-disease pairs relative to each theme using
Eq. (3). The resulting predictions for each theme refer to the likelihood that an edge represents
a relationship of that type, but by comparing these predictions to the true labels (i.e. known
treatment indications), we can assess the degree to which each contributes to the prediction of
a treatment-type edge. Figure 4(b) shows the precision at various recall levels for predicting
known treatments. We choose precision as our primary performance metric because for drug
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Fig. 4: (a) Pairwise cosine similarity (ranging from 1.00 to -0.23) between embeddings for each
theme, clustered by hierarchical clustering. (b) Precision at various recall levels for drug-disease
score predicted by each theme.

repurposing we are most concerned with minimizing false positive predictions. As expected,
the “Treatment” theme has the best performance on this task, especially at high recall levels,
while other Dr-Dz themes are also highly predictive. The segregation between Dr-Dz/Dz-G
and Dr-G/G-G edges suggests that disease nodes are the main drivers of the embeddings
and that disease-related edges contain the majority of information relevant to treatment. In
accordance with the embedding similarity results, we find that Te, Md, and X are the most
predictive non–Dr-Dz themes for disease treatment. These themes may capture recurring
semantic patterns that suggest treatment even when such a relationship is not directly stated.

3.2. Inferring novel treatments for high-priority rare diseases

The 30 highest-scoring novel drug repurposing candidates for high-priority rare diseases are
shown in Table 1. We performed a detailed survey of literature evidence and assess the va-
lidity of the prediction using six categories: (1) published treatment, where there is literature
evidence indicating the use of the drug to treat human subjects; (2) symptom management,
where the drug has been used to address symptoms of the disease; (3) co-morbidity treatment,
where the drug treats a comorbid or closely related disease; (4) potentially feasible treatment,
where there lies pre-clinical and/or biologically tractable evidence for the drug targeting the
rare disease; (5) possible contraindication, where the drug may produce a physiological effect
opposite that which is desired; and (6) unknown/no effect, where there is little or no literature
evidence to support the drug-disease combination.

Most evidence for the feasibility of drug repurposing candidates is not found in a papers
abstract or title (the inputs to our model), but within the full text itself. The examples in
category 1 provide evidence that our method is able to correctly identify treatments that
have been published but are not present in GNBR. The remaining categories represent more
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Table 1: Summary of the top 30 drug repurposing candidates. “Score”: the predicted confidence
generated by our model; “Proximal in PPI Network?”: indication of significant proximity between
drug- and disease-associated genes (Section 3.3); “Potential Mediators”: top three genes implicated in
path analysis (Section 3.4); “Assessment”: manual designation of treatment (Tx) viability; “PMID”:
literature reference supporting interpretation.

Drug Disease Score Proximal in Potential Mediators Assessment PMID

PPI Network?

cortisone myelodysplastic syndrome 1.336 CD34, p53, EPO published Tx 23483702

everolimus sarcoidosis 1.196 3 ACE, LYZ, IL-18 potentially feasible Tx 28216612

rifampicin mesothelioma 1.168 hGF, THBD, p53 comorbidity Tx 21150470

citalopram myeloma 1.140 IL-6, BDNF, ABCB1 comorbidity Tx 17002797

streptomycin meningiomas 1.125 N/A MMP9, p53, VEGF comorbidity Tx 23374258

cimetidine Prader-Willi Syndrome 1.107 GH, BDNF, GBP-28 symptom management 29685165

hydroxychloroquine familial Mediterranean fever 1.079 SAA, IL-18, TNFα potentially feasible Tx 15720245

capsaicin non-Hodgkin’s lymphoma 1.055 IL-6, IL-2, WT1 potentially feasible Tx 12208886

trifluoperazine Wilms tumor 1.053 3 CTNB1, p53, PD-L1 potentially feasible Tx 31058089

amantadine carcinoid syndrome 1.052 N/A GH, mTOR, MLN unknown/no effect —

lidocaine biliary atresia 1.050 3 LFA-1, CD4, HAMP symptom management 21531533

ketoconazole acromegaly 1.047 GH, INS, IGF1 unknown/no effect —

acetazolamide amyotrophic lateral sclerosis 1.043 3 OPTN, GM-CSF, TGFβ possible contraindication 23754387

famotidine leishmaniasis 1.036 N/A IL-4, TNFα, FOXP3 published Tx 28491373,

27600041

idarubicin osteosarcoma 1.034 3 ABCB1, p53, VEGF potentially feasible Tx 20979639

hydroxyurea MALT lymphoma 1.032 N/A BCL10, MYD88, MYC potentially feasible Tx 25904378

citalopram thymoma 1.026 N/A IL-2, EGFR, PD-L1 potentially feasible Tx 28356024

acetazolamide systemic sclerosis 1.024 3 ET-1, VEGF, IL-17 symptom management 23541012

cortisone carcinoid syndrome 1.021 GH, HES1, GOT1 unknown/no effect —

cortisone trigeminal neuralgia 1.017 N/A ACTH, VIP published Tx 16762570

danazol adrenocortical carcinoma 1.011 3 p53, IGF-2, AGT2 potentially feasible Tx 25932386

budesonide biliary atresia 1.009 3 CD4, PCNA, IL-18 published Tx 25847799

chloramphenicol mesothelioma 1.002 3 CAT, hGF, p53 potentially feasible Tx 24939899

hydroxyurea familial Mediterranean fever 1.002 FMF, SAA, IL-18 unknown/no effect —

metoclopramide giant cell arteritis 1.000 3 IL-6, CRP, YKL-40 symptom management 21926152

dapsone sarcoidosis 0.996 3 IL-18, CD4, AAT published Tx 12588536,

11176663

vinblastine lymphoproliferative disorders 0.995 N/A BCL6, AID, BCL-2 published Tx 17243127

prednisone biliary atresia 0.995 3 LFA-1, CD4, hGF published Tx 26590818

acetazolamide porphyria cutanea tarda 0.992 3 INS, EPO symptom management 15464657

dextromethorphan carcinoid syndrome 0.989 GRIN1, HES1, mTOR unknown/no effect —

complicated cases and demonstrate the additional inductive capacity of our model. Symptom
management is one such category; while these drugs do not treat the underlying condition,
they can be effective in rare disease patients. For instance, cimetidine, an H2 antagonist
that reduces acid in the stomach, may alleviate the gastric reflux symptoms that accompany
Prader-Willi syndrome. Other common forms of symptom management drugs include pain
relievers, diuretics, and anti-arrhythmic drugs.

Likewise, common comorbidities of rare diseases are not direct treatments, but these cases
demonstrate that the model is able to learn patterns in disease co-occurrence and identify
drugs that may have a secondary benefit for the rare disease. In some cases, treating the
comorbidity may even prevent the onset of the rare disease in question. For example, it is
known that tuberculosis (TB) is associated with an increased risk for cancers of the respiratory
system such as mesothelioma. As such, drugs that treat TB such as rifampicin may indirectly
be protective against mesothelioma.

Possible contraindications represent cases in which our model fails to accurately recognize
the nature of the relationship between biological entities. The only possible contraindication
noted in the top 30 was between acetazolamide (ACZ) and amyotrophic lateral sclerosis (ALS).
To understand why this potential mistake was made, we enumerated all paths of four or fewer
nodes containing ACZ and ALS in the largest connected component GNBR graph. Each edge
in these paths was reduced to its highest-scoring theme, and the minimum across these theme
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support scores was used to rank the paths. The highest-ranking path by this method was the
following: (ACZ) – [T (0.937)] – (Glaucoma) – [U (0.904)] – (OPTN) – [U (0.906)] – (ALS).
In other words, ACZ treats glaucoma, which shares a causal mutation in the OPTN gene with
ALS. This suggests that the model correctly identified a mechanistic similarity between the two
diseases, but in this case, the conclusion that ACZ would treat both was inaccurate since ACZ
does not target OPTN. This is an inherent limitation of high-level semantic knowledge graphs,
and incorporating more granular phenotypic effects (e.g. Drug A increases blood pressure) and
directionality in edges could lead to a greater ability to learn true mechanistic hypotheses.

Our final category, which we denote as “potentially feasible treatment”, consists of drugs
which have been used in pre-clinical or animal studies of the disease, or those that target
biological mechanisms influential to the cause or progression of the disease. These examples
could lead to novel discoveries and thus represent the most promising candidates for further
clinical study. We explore two such cases in more detail.

3.2.1. Case Study 1: Trifluoperazine as a treatment of Wilms tumor

Wilms tumor is a childhood cancer of the kidney. Mutations of the WT1 gene (Wilms Tumor
transcription factor gene 1) are responsible for about 20% of Wilms tumor cases.23 In particu-
lar, WT1 is believed to regulator proto-oncogenes such as MYC in renal development.24 Thus,
aberrant expression of WT1 can precipitate MYC-mediated cancers. Trifluoperazine is tradi-
tionally an antipsychotic but has recently been shown to have anticancer growth properties.25

In particular, it is believed to inhibit MYC-induced cell transformation.26 We hypothesize
that trifluoperazine’s anti-cancer properties can therefore be used to treat cancers in which
MYC is dysregulated, such as Wilms tumors. The ability of our method to capture this off-
label indication is promising and suggests that the model is learning information from genes
proximal to the drug and disease when predicting treatment relationships.

3.2.2. Case Study 2: mTOR inhibition as a treatment of sarcoidosis

Sarcoidosis is a multi-system autoimmune disease with unknown etiology that leads to clusters
of inflammatory cells called granulomas in several organs including lungs, skin, and lymph
nodes.27 mTORC1 pathways activation is a hallmark of these clinical findings. In fact, in-
hibiting mTOR via drugs, such as everolimus and rapamycin, has slowed down granuloma
formation in preclinical animal studies.28 To our knowledge, no papers have specifically refer-
enced a relationship between everolimus to sarcoidosis; nonetheless, our method was able to
generate a treatment hypothesis based on previous treatment mechanism (mTOR inhibition)
and the pathogenesis of the disease (granuloma formation). This suggests that the model is
able to synthesize the heterogeneous types of information in the knowledge graph in a way
that is meaningful for evaluating treatment potential.

3.3. External validation using network proximity

To externally validate the pairs in Table 1, we calculated the network proximity between
sets of drug target genes derived from DGIdb29 and disease-associated genes derived from
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OrphaNet and OMIM. The underlying assumption is that gene sets corresponding to true
drug-disease combinations will be closer to each other in a protein-protein interaction (PPI)
network than expected by random chance. We represented every node in the STRINGdb
v1030 PPI network as a 128-dimensional embedding vector using Node2Vec31 with default
parameters and calculated the median cosine similarity between proteins in the drug and
disease sets.32 We calculated an empirical p-value based on 10,000 samples of genes drawn
randomly with replacement into two sets of the same size as the true drug and disease sets.
Seven pairs from Table 1 could not be calculated because either the drug or disease did
not have a corresponding gene set. Thirteen of the remaining 23 pairs were found to be
significant under a Bonferroni-adjusted p-value threshold of 0.05, demonstrating that many
of our predictions can be corroborated by independent data under this network proximity
hypothesis. Those that do not pass the significance threshold may simply not be related by
a known genetic mechanism; failure to identify network proximity does not preclude a true
treatment, especially for entirely novel predictions.

3.4. Drug-disease path analysis

To better understand how our model makes novel link predictions, we analyzed the four-node
paths connecting drug-disease pairs in the original GNBR graph, ranked using the procedure
described in the ACZ-ALS example above. There are three possible metapath motifs based
on node type: drug-disease-gene-disease (DzG-mediated), drug-disease-drug-disease (DzDr-
mediated), and drug-gene-gene-disease (GG-mediated). In the first, the drug treats a different
disease with the same genetic mechanism; in the second, the drug treats a different disease
which shares a treatment with the disease of interest; and in the third, the drug affects the
disease via two interacting genes. A representative example of each is shown in Fig. 5(a).

Fig. 5: (a) Examples of each drug-disease path motif. Edges are labeled with their highest-supported
themes and corresponding support scores. (b) Distribution of motifs across the six interpretation
categories in Table 1 as determined by the occurrence of each motif across the top 100 ranked paths
per drug-disease prediction.

In particular, GG-mediated paths demonstrate the models ability to automatically identify
biological mechanisms that do not rely transitively on other diseases. In the example shown
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in Fig. 5, we show an alternative, immunological hypothesis for the relationship in Case
Study 1 (section 3.2.1). Here, trifluoroperazine is known to antagonize calmodulin (CALM1),
a calcium-binding protein that induces expression of the inflammatory cytokine interleukin-6
(IL-6). Improper regulation of IL-6 is implicated in the progression of Wilms tumor,33 suggest-
ing that antagonizing calmodulin could indirectly help slow tumor progression by reducing
IL-6 expression. Cases such as this exemplify the capacity of our model to not only identify
new treatment opportunities, but also develop a more nuanced understanding of how these
treatments may manifest if they are successful.

Finally, we analyzed the distribution of path motifs for each of our defined feasibility cate-
gories to discover any systematic patterns in how the model infers link predictions (Fig. 5(b)).
We observe a relative enrichment in the DzG-mediated motif for pairs classified as comor-
bidity treatment. This is because two diseases that share a common genetic mechanism are
frequently comorbid, and the model predicts that a drug that treats one of the conditions also
treats the other. This can be a useful inference, especially in cases where the drug affects the
mediating gene, but if not it can result in mistakes like the ACZ-ALS case. Such errors could
be mitigated by incorporating information about the drugs mechanism of action (e.g. drug
class) during inference to rule out obvious mismatches. Published treatments had fewer gene-
mediated connecting paths because the evidence for these relationships is mostly contained in
clinical journals, which do not typically discuss mechanism in the abstract. GG-mediated mo-
tifs were also infrequent in the top-ranked paths, most likely because a drug’s target genes are
not referenced in abstracts as much as its disease indications, and thus drug-gene edges tend
to have lower scores in GNBR. This suggests that a GNBR-like knowledge graph derived from
full texts as well as abstracts could provide even more power to discover novel relationships.

More generally, the capacity of our approach to learning new treatment is dependent on
the information represented in the underlying knowledge graph. In the case of GNBR, we
rely on a fixed set of themes extracted from unsupervised clustering in a manner agnostic
to the downstream task. Our method may benefit from a more granular, fine-tuned set of
themes that better encapsulate important information for drug repurposing. Additionally,
as NLP tools improve in their ability to capture complex relationships across unstructured
text (e.g. dependencies across sentences), knowledge graphs such as GNBR will become more
comprehensive, and our methods capacity to learn patterns across the literature will increase.

4. Conclusion

We describe a method for generating drug repurposing hypotheses for these rare diseases using
embeddings learned from the GNBR knowledge graph. Our approach is fully automated and
takes advantage of the vast amount of unstructured information across the medical literature,
while explicitly modeling the confidence in this information. We demonstrate high performance
on a gold standard set of drug indications, as well as the ability to generate novel drug
repurposing hypotheses. We further provide evidence to support our treatment predictions
using independent sources, and identify specific motifs in the original knowledge graph which
help explain model behavior. Our model was able to successfully learn biologically-relevant
patterns from noisy knowledge-based data, but in the absence of experimental validation these
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predictions remain simply hypotheses. However, our approach of automatically synthesizing
literature knowledge helps to narrow the search space of clinical research and thus accelerate
the discovery of new treatment options for patients with rare diseases.
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