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Abstract

Previous research has found evidence to support low educational attainment (EA) as
a risk factor for depression and shown that EA and depression are genetically
correlated. However, the nature of the genetic link between EA and depression
remains unknown. Recently, the environment has been suggested as a mediator of
genetic influences in a process termed Gene-Environment-Trait correlations (rGET).
As socioeconomic status (SES) is closely related to EA and has been associated with
depression, an rGET in which SES mediates an association between the genetic
influences on EA and depression is possible. Summary statistics from a recent
genome-wide association study of EA were used to calculate EA polygenic scores and
test whether they predict depressive symptoms through SES. Two independent
samples were used for the analyses: 522 non-Hispanic Caucasian university students
from the Duke Neurogenetics Study (277 women, mean age 19.78 =1.24 years) and
5,243 white British volunteers (2,669 women, mean age 62.30+7.41 years) from the
UK biobank (UKB). Results indicated a significant mediation in the DNS (indirect
effect=-.12, bootstrapped SE=.06, bootstrapped 95% Cl: -.26 to -.02), wherein higher
EA polygenic scores predicted higher SES, which in turn predicted lower depressive
symptoms. This mediation was replicated in the UKB (indirect effect=-.07,
bootstrapped SE=.01, bootstrapped 95% Cl: -.091 to -.051). These findings suggest
that the genetic correlates of depression may be environment-dependent and that
public policy that aims to reduce socioeconomic inequalities and the adverse
correlates of low SES may relieve the individual and societal burden of depression.
Keywords: Depression; Socioeconomic status (SES); Educational attainment (EA);

Gene-environment-trait correlation (rGET); Gene-environment-correlation (rGE).
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2 Depression is a major cause of disability. With a global prevalence of around 4.7%
3 (Ferrari et al., 2013), it is predicted to become one of the three leading causes of
4 illness by 2030 (Mathers and Loncar, 2006). Educational attainment (EA), which is
5 often viewed as a proxy for cognitive ability and intelligence, has been linked to
6 depression, so that the probability of experiencing depression decreases for
7 additional years of education (Crespo et al., 2014). A recent study (Wray et al., 2018)
8  further showed that the link between EA and depression is partly due to shared
9 genetic influences, and by employing a genetically informed analysis (bidirectional
10 Mendelian randomization) found evidence to support low EA as a risk factor for
11  depression. Notably, how the genetic link between EA and depression is mediated

12 has not been established.

13 Recently, | hypothesized that the environment may mediate genetic
14  correlations between two phenotypes in a process termed gene-environment-trait
15  correlation (Avinun, in press). This hypothesis stems from accumulating research
16  showing passive, active, and evocative processes that lead to correlations between
17  genetic variations and environmental measures, such as parenting and stressful life
18  events (Avinun and Knafo, 2014; Kendler and Baker, 2007). These passive, active, and
19  evocative processes, known as gene-environment correlations (Plomin et al., 1977;
20  Scarr and McCartney, 1983), occur due to genetically influenced characteristics that
21 shape the individual's environment. As the environment can in turn substantially
22 affect various outcomes, it may act as a mediator of genetic effects and contribute to
23 the widespread genetic correlations observed between numerous phenotypes

24  (Bulik-Sullivan et al., 2015), including EA and depression (Wray et al., 2018).
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25 Identifying gene-environment-depression correlations can provide modifiable targets
26  for public policy and also demonstrate the importance of context in the discovery of

27  the genetic variants that influence depression.

28 Socioeconomic status (SES), which can be defined as an individual's or group's
29  position within a social hierarchy that is determined by factors such as education,
30 occupation, income, and wealth (Calixto and Anaya, 2014), has been shown to be
31 genetically influenced (Hill et al., 2016; Marioni et al.,, 2014). In other words,
32 genetically influenced traits affect an individual's SES. One of these traits, as has
33  been found in a meta-analysis of longitudinal studies, is intelligence (Strenze, 2007),
34  which is highly heritable (Plomin and Deary, 2015) and highly genetically correlated
35  with EA (a single nucleotide polymorphism-based genetic correlation of .95; Marioni
36 etal.,, 2014). Because SES has been associated with various physiological and mental
37 disorders (e.g., Calixto and Anaya, 2014; Galobardes et al., 2004; Werner et al.,
38  2007), including depression (Everson et al., 2002), and a genetic correlation between
39  SES and depression has been also observed (Hill et al., 2016), a gene-environment-
40 trait correlation in which SES mediates the genetic correlation between EA and

41  depression, is possible.

42 A recent genome wide association study (GWAS) of EA (Lee et al., 2018)
43  included about 1.1 million European-descent participants, making it one of the most
44  powerful, and consequently prevalently used, GWASs in psychology. A polygenic
45  score based on the summary statistics from this GWAS explained about 11% of the
46  variance in EA. In the current study, | tested whether a polygenic score derived from

47  the latter EA GWAS will be associated with an individual's SES, which in turn will be
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48  associated with their depressive symptoms. Two independent samples were used: a
49  discovery sample of 522 non-Hispanic Caucasian university students from the Duke
50 Neurogenetics Study and a replication sample of 5,243 adult white British volunteers
51  from the UK Biobank (UKB). As the GWAS included data from the UKB and this may
52  bias the results, in the analyses of the UKB data | also used EA polygenic scores that
53  were based on summary statistics from a GWAS that did not include the UKB as a
54  discovery sample (obtained from Dr. Aysu Okbay, who is one of the authors of the

55  original GWAS).

56

57 Materials and Methods

58  Participants

59 The discovery sample consisted of 522 self-reported non-Hispanic Caucasian
60 participants (277 women, mean age 19.781+1.24 vyears) from the Duke
61  Neurogenetics Study (DNS) who were not related and for whom there was complete
62 data on genotypes, SES, depressive symptoms, and all covariates. Participants were
63  recruited through posted flyers on the Duke University campus and through a Duke
64  University listserv. All procedures were approved by the Institutional Review Board
65 of the Duke University Medical Center, and participants provided informed consent
66  before study initiation. All participants were free of the following study exclusions: 1)
67 medical diagnoses of cancer, stroke, diabetes requiring insulin treatment, chronic
68 kidney or liver disease, or lifetime history of psychotic symptoms; 2) use of
69  psychotropic, glucocorticoid, or hypolipidemic medication; and 3) conditions

70  affecting cerebral blood flow and metabolism (e.g., hypertension).
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71 The replication sample consisted of 5,243 white British volunteers (2,669
72  women, mean age 62.30+7.41 years), who participated in the UKB's first assessment
73  and the imaging wave, completed an online mental health questionnaire (Davis et
74 al.,, 2018), and had complete genotype, SES, depressive symptoms and covariate
75 data. The UKB (www.ukbiobank.ac.uk; Sudlow et al., 2015) includes over 500,000
76  participants, between the ages of 40 and 69 years, who were recruited within the UK
77  between 2006 and 2010. The UKB study has been approved by the National Health
78  Service Research Ethics Service (reference: 11/NW/0382), and current analyses were
79  conducted under UKB application 28174.

80

81  Race/Ethnicity

82  Because self-reported race and ethnicity are not always an accurate reflection of
83  genetic ancestry, an analysis of identity by state of whole-genome SNPs in the DNS
84  was performed in PLINK (Purcell et al., 2007). Before running the multidimensional
85 scaling components analysis, SNPs were pruned for high LD (r’>0.1), and the
86  following were removed: C/G and A/T SNPs, SNPs with a missing rate >.05 or a minor
87 allele frequency <.01, SNPs that did not pass the Hardy-Weinberg equilibrium test
88 (p<le-6), sex chromosomes, and regions with long range LD (the MHC and 23
89 additional regions; Price et al.,, 2008). The first two multidimensional scaling
90 components computed for the non-Hispanic Caucasian subgroup, as determined by
91  both self-reports and the multidimensional scaling components of the entire mixed
92  race/ethnicity DNS sample, were used as covariates in analyses of data from the
93 DNS. The decision to use only the first two components was based on an

94  examination of a scree plot of the variance explained by each component. For
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95 analyses of data from the UKB, only those who were ‘white British’ based on both
96 self-identification and a genetic principal components analysis were included.
97  Additionally, the first 10 multidimensional scaling components received from the
98  UKB's data repository (unique data identifiers: 22009-0.1-22009-0.10) were included
99  as covariates as previously done (e.g., Avinun and Hariri, 2019; Whalley et al., 2016).
100  Further details on the computation of the multidimensional scaling components can
101  be found elsewhere (http://www.ukbiobank.ac.uk/wp-
102  content/uploads/2014/04/UKBiobank_genotyping_QC_documentation-web.pdf).
103
104  Socioeconomic status
105 Inthe DNS, SES was assessed using the "social ladder" instrument (Adler et al., 2000),
106  which asks participants to rank themselves relative to other people in the United
107  States (or their origin country) on a scale from 0-10, with people who are best off in
108  terms of money, education, and respected jobs, at the top (10) and people who are
109  worst off at the bottom (0). In the UKB, SES was assessed based on the report of
110  average household income before tax, coded as: 1 - Less than 18,000; 2 - 18,000 to
111 31,000; 3 - 31,000 to 52,000; 4 - 52,000 to 100,000; and 5 - Greater than 100,000.
112  The reports made during the first assessment (i.e., before the evaluation of

113  depressive symptoms), between 2006 and 2010, were used.

114
115  Depressive symptoms
116  In the DNS, the 20-item Center for Epidemiologic Studies Depression Scale (CES-D)

117  was used to asses depressive symptoms in the past week (Radloff, 1977). All items
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118  were summed to create a total depressive symptoms score. In the UKB, the Patient
119  Health Questionnaire 9-question version (PHQ-9) was used to asses depressive
120 symptoms in the past 2 weeks (Kroenke et al., 2001). The participants answered
121  these questions during a follow-up between 2016 and 2017. All items were summed
122 to create a total depressive symptoms score.

123

124  Genotyping

125 In the DNS, DNA was isolated from saliva using Oragene DNA self-collection kits (DNA
126  Genotek) customized for 23andMe (www.23andme.com). DNA extraction and
127  genotyping were performed through 23andMe by the National Genetics Institute
128  (NGI), a CLIA-certified clinical laboratory and subsidiary of Laboratory Corporation of
129  America. One of two different lllumina arrays with custom content was used to
130 provide genome-wide SNP data, the HumanOmniExpress (N=328) or
131  HumanOmniExpress-24 (N=194; Do et al., 2011; Eriksson et al., 2010; Tung et al.,
132 2011). In the UKB, samples were genotyped using either the UK BiLEVE (N=501) or
133  the UKB axiom (N=4,742) array. Details regarding the UKB's quality control can be
134  found elsewhere (Bycroft et al., 2017).

135

136  Quality control and polygenic scoring

137  For genetic data from both the DNS and UKB, PLINK v1.90 (Purcell et al., 2007) was
138  used to apply quality control cutoffs and exclude SNPs or individuals based on the
139  following criteria: missing genotype rate per individual >.10, missing rate per SNP
140 >.10, minor allele frequency <.01, and Hardy-Weinberg equilibrium p<le-6.

141  Additionally, in the UKB, quality control variables that were provided with the
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142  dataset were used to exclude participants based on a sex mismatch (genetic sex
143  different from reported sex), a genetic relationship to another participant, outliers
144  for heterozygosity or missingness (unique Data Identifier 22010-0.0), and UKBILEVE
145  genotype quality control for samples (unique Data Identifiers 22050-0.0-22052-0.0).

146 Polygenic scores were calculated using PLINK's (Purcell et al., 2007) "--score"
147  command based on published SNP-level summary statistics from the most recent EA
148  GWAS (Lee et al., 2018). Published summary statistics do not include the data from
149  23andMe per the requirements of this company. SNPs from the GWAS of EA were
150 matched with SNPs from the DNS and the UKB. For each SNP the number of the
151  alleles (0, 1, or 2) associated with EA was multiplied by the effect estimated in the
152  GWAS. The polygenic score for each individual was an average of weighted EA-
153  associated alleles. All SNPs matched with SNPs from the DNS and UKB were used
154  regardless of effect size and significance in the original GWAS, as previously

155 recommended and shown to be effective (Dudbridge, 2013; Ware et al., 2017).

156

157  Statistical analysis

158 The PROCESS SPSS macro, version 3.1 (Hayes, 2017), was used to conduct the
159  mediation analyses in SPSS version 26. Participants' sex (coded as O=males,
160 1=females), age, and genetic principal components (two for the DNS and 10 for the
161 UK biobank) were entered as covariates in all analyses. In the mediation analyses,
162  bias-corrected bootstrapping (set to 5,000) was used to allow for non-symmetric
163  95% confidence intervals (Cls). Specifically, indirect effects are likely to have a non-
164 normal distribution, and consequently the use of non-symmetric Cls for the

165 determination of significance is recommended (MacKinnon et al., 2004). However,
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166  bias-corrected bootstrapping also has its faults (Hayes and Scharkow, 2013) and,
167  consequently, as supportive evidence for the indirect effect, | also present the test of
168  joint significance, which examines whether the a path (EA polygenic scores to SES)
169 and the b path (SES to depressive symptoms, while controlling for the EA polygenic
170  scores) are significant. The EA polygenic scores were standardized (i.e., M=0, SD=1)
171  in SPSS to make interpretability easier. The mediation was first tested in the DNS,
172  and then a replication was tested in the UKB. As a validation of the indirect effect in
173  the UKB, it was also tested with EA polygenic scores that were not based on a GWAS
174  that included the UKB. Notably, as these polygenic scores are based on a smaller
175 sample GWAS, they are weaker predictors of EA. Additionally, to further test the
176  robustness of the effect, in the UKB it was possible to analyze the longitudinal data
177  while excluding those who reported on ever seeing a general physician (N=1,843) or
178  a psychiatrist (N=501) "for nerves, anxiety, tension or depression", at the first
179  assessment.

180

181 Results

182  Descriptive statistics

183 In the DNS, the SES measure ranged between 2 and 10 (M=7.34, SD=1.43) and
184  depressive symptoms ranged between 0 and 43 (M=8.94, SD=7.13). In the UKB, the
185  SES measure ranged between 1 and 5 (M=2.92, SD=1.11), and depressive symptoms,
186  estimated about 6 years later, ranged between 0 and 27 (M=2.50, SD=3.43).

187

188  EA polygenic scores and SES (a path) in the DNS
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189 The EA polygenic scores were significantly associated with SES (b=.20, SE=.06,
190 p=.0016; R?=0.018), so that higher scores predicted higher SES. Of the covariates, age
191 and sex were significantly associated with SES, so that older participants (b=.13,
192  SE=.05, p=.008) and men (b=-.45, SE=.12, p=.0003) were characterized by higher SES.
193

194  SES and depressive symptoms (b path) in the DNS

195  With the EA polygenic scores in the model, SES significantly and negatively predicted
196  depressive symptoms (b=-.61, SE=.22, p=.007; R’=0.014), such that higher SES
197 predicted lower depressive symptoms. Of the covariates, age was significantly
198  associated with depressive symptoms, so that being younger was associated with
199  higher depressive symptoms (b=-.53, SE=.25, p=.037).

200

201  EA polygenic scores and depressive symptoms in the DNS

202  The EA polygenic scores did not significantly predict depressive symptoms (b=-.11,
203  SE=.32, p=.74). Notably, however, the significance of a direct path from X (EA
204  polygenic scores) to Y (depressive symptoms) or the 'total effect' (the 'c' path), is not
205 a prerequisite for the testing of a mediation/indirect effect (Hayes, 2009; MacKinnon
206 et al., 2000; Rucker et al., 2011), which was the main interest of the current study.
207

208 Indirect Effects in the DNS

209 The indirect path (a*b), EA polygenic scores to depressive symptoms via SES was
210  significant as indicated by the bias corrected bootstrapped 95% Cl not including zero
211 (Figure 1a; indirect effect=-.12, bootstrapped SE=.06, bootstrapped 95% Cl: -.26 to -

212 .02).
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213

214  Indirect Effects in the UBK

215 The a path, from the EA polygenic scores to SES, and the b path, from SES to
216  depressive symptoms while controlling for EA polygenic scores, were significant (a
217  path: b=.17, SE=.01, p<.0001, R°=0.022; b path: b=-.42, SE=.04, p<.0001, R*=0.016).
218 The indirect path also replicated (Figure 1b; indirect effect=-.07, bootstrapped
219  SE=.01, bootstrapped 95% Cl: -.091 to -.051). Similar results were obtained with the
220  EA polygenic scores that were based on a GWAS that did not include the UKB as a
221  discovery sample (a path: b=.10, SE=.01, p<.0001, R%=0.008; b path: b=-.43, SE=.04,
222 p<.0001, R*=0.017; indirect effect=-.04, bootstrapped SE=.008, bootstrapped 95% ClI:
223 -.06 to -.03). An analysis that excluded participants who, at the first assessment,
224  reported on ever seeing a professional for nerves or depression (leaving 3,447
225  participants), and that relied on the EA polygenic scores that were based on a GWAS
226  that excluded the UKB, further supported a causal mediation, in which higher EA
227  polygenic scores predicted higher SES, which in turn predicted lower depressive
228 symptoms (a path: b=.08, SE=.02, p<.0001, R2=0.005; b path: b=-.15, SE=.04,
229  p=.0003, R?=0.004; indirect effect=-.012, bootstrapped SE=.004, bootstrapped 95%
230 Cl:-.022 to -.005).

231

232 Discussion

233  The results of the current study show that EA polygenic scores are associated with
234  depressive symptoms partly through SES, such that individuals with higher EA
235  polygenic scores, are more likely to be of higher SES, and in turn less likely to

236  experience depressive symptoms. This indirect effect was found in two independent
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237  samples with different characteristics and measures, demonstrating the robustness
238  of the associations. Notably, in the UKB the indirect effect was tested longitudinally,
239  with data on SES that was collected about 6 years before the assessment of
240  depressive symptoms. A supplementary analysis that excluded participants who
241  reported ever seeing a professional for nerves or depression at time point 1, was
242 also significant, further supporting a causal mediation.

243 The found mediation supports the gene-environment-trait correlations
244  hypothesis (rGET; Avinun, in press), which suggests that certain genetic correlations
245 may be mediated, at least in part, by the environment, i.e., an environmentally
246  mediated pleiotropy. The found EA polygenic scores—>SES—>depressive symptoms
247  mediation stresses the importance of context in genetic studies of depression. In
248  other words, the current results suggest that, for example, a GWAS of depression
249  that relies mostly on participants with a higher SES, may miss the genetic influences
250 that contribute to depression through lower SES. Consequently, polygenic scores
251  that will be based on such a GWAS will be weaker predictors of depression in low SES
252  samples. Furthermore, the current results imply that social policies aimed at
253  reducing socioeconomic inequalities and the negative factors that correlate with low
254  SES may weaken the genetic effects on depression.

255 Low SES may lead to depression by adding stress to one's life. Stress that stems
256  from having to make ends meet and from living in a disadvantaged neighborhood,
257  which is associated with higher crime and fewer resources (Santiago et al., 2011).
258  Low SES has also been associated with poorer access to green spaces (Dai, 2011),
259 and with health damaging behaviors, such as physical inactivity, higher alcohol

260 consumption, and poor nutrition (Nandi et al., 2014; Pampel et al., 2010), which are
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261  thought to affect mental health (e.g., Avinun and Hariri, 2019; Beyer et al., 2014;
262 Boden and Fergusson, 2011). All of these risk factors can be possible targets for
263 policy makers.

264 The strengths of the current study include the use of two independent
265 samples with markedly different measures and characteristics (e.g., young university
266  students versus older community volunteers) and a GWAS-derived polygenic score,
267  but it is also limited in ways that can be addressed in future studies. First, the
268  findings are limited to populations of European descent and to the Western culture.
269  Second, both samples consisted of volunteers and consequently do not fully
270  represent the general population. However, it may be speculated that the observed
271  associations would strengthen with the inclusion of more individuals from low SES
272  backgrounds, which are usually characterized by higher levels of depression (Lorant
273 et al., 2003). Third, the mediation model should be replicated within longitudinal
274  designs in which measures of SES and depressive symptoms are available at multiple
275  time points.

276 In conclusion, the current results shed light on the genetic associations that
277  have been observed between EA and depression (Wray et al., 2018), and suggest
278  that a part of this association may be mediated by SES. The mediation by SES is
279  important because it suggests that the genetic influences on depression may be
280 moderated by public policy. In addition, the current findings suggest that the genetic
281  composition of depression is likely to depend on the social context in which it is

282  examined.

283
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Figure 1. Mediation model linking genetic influences on EA to depressive symptoms, via socioeconomic status

1a. Duke Neurogenetics Study: Discovery sample
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1b. UK Biobank: Replication sample
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Note. *p<.01, **p<.0001. c- the total effect of the EA polygenic scores on depressive symptoms; c'-the effect of EA polygenic scores on depressive
symptoms, while controlling for SES.
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