

3

4 **Short title:** Early-life adversity and gene expression changes

5

6 Idan Shalev¹, Waylon J. Hastings¹, Laura Etzel¹, Salomon Israel², Michael A. Russell¹, Kelsie A.
7 Hendrick¹, Megan Zinobile¹, Sue Rutherford Siegel¹

8

9 ¹Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA,
10 USA; ²Department of Psychology, The Hebrew University of Jerusalem, Jerusalem, Israel.

11

12 *Corresponding author

13 Email: ius14@psu.edu (IS)

14

15

16

2

28

21

22

23

24

25

26 Abstract

27 **Objective:** Exposure to early-life adversity (ELA) can result in long-term changes to
28 physiological systems, which predispose individuals to negative health outcomes. This
29 biological embedding of stress-responsive systems may operate via dysregulation of
30 physiological resources in response to common stressors. The present study used a novel
31 experimental design to test how young adults' exposure to ELA influence neuroendocrine and
32 inflammatory responses to acute stress. **Materials and methods:** Participants were 12 males
33 (mean age= 21.25), half of whom endorsed at least three significant adverse events up to age
34 18 years ('ELA group'), and half who confirmed zero ('controls'). Using a randomized within-
35 subjects, between-groups experimental design, we induced acute psychosocial stress (Trier
36 Social Stress Test, TSST), and included a no-stress control condition one week apart. During
37 these sessions, we obtained repeated measurements of physiological reactivity, gene
38 expression of *NR3C1*, *FKBP5* and *NFKB1*, and plasma levels of pro-inflammatory cytokines (IL-
39 1 β , IL-6, IL-8 and TNF α) over a 4-hour window post-test. **Results:** The ELA group evinced
40 significantly higher cortisol response and lower *NR3C1* gene expression in response to the
41 TSST compared with controls, while no differences were observed in the no-stress condition.
42 Cortisol and group status interacted such that increase in cortisol predicted increase in both
43 *NR3C1* and *NFKB1* expression among controls, but decrease in the ELA group. For pro-
44 inflammatory cytokines, only IL-6 increased significantly in response to the TSST, with no
45 differences between the two groups. **Conclusion:** Overall, we provide preliminary findings for
46 the biological embedding of stress via a dynamic and dysregulated pattern evidenced in
47 response to acute psychosocial stress. ELA may program physiological systems in a
48 maladaptive manner more likely to manifest during times of duress, predisposing individuals to
49 the negative health consequences of everyday stressors. Future studies with larger sample size
50 including both males and females are needed to replicate these findings.

51 **Introduction**

52 An ever-growing body of research suggests that early-life adversity (ELA) can program
53 biological systems, which predispose individuals to later-life physical and mental-health
54 problems [1, 2]. Empirical evidence exist for associations between ELA and elevated risk of
55 depression, cardiovascular disease, diabetes, autoimmune diseases and cancer, to name a few
56 (reviewed in [3]). Despite the salient role of ELA on disease risk, the biological mechanisms that
57 play a downstream role in increased disease susceptibility are not well understood.

58 Mechanistic research on the biological embedding of ELA has emphasized maladaptive
59 programming of the hypothalamic-pituitary-adrenal (HPA) axis with the associate release of
60 cortisol through processes of allostasis [3, 4]. Specifically, studies have documented a shift in
61 HPA axis function with hyper- or hypo-secretion of cortisol in depression and post-traumatic
62 stress disorder (PTSD), respectively [5, 6]. Similar findings have been reported in individuals
63 exposed to ELA without such diagnoses [7, 8]. This programming, in turn, can result in
64 mitochondrial dysfunction, failure to down-regulate the inflammatory response and overall
65 metabolic stress, thereby increasing circulatory levels of lipids, glucose, oxidants, and pro-
66 inflammatory cytokines [9, 10]. Further mechanistic research on the biological embedding of
67 ELA suggests physiological dysregulation may be mediated at the genetic level via epigenetic
68 modifications that can persist over long periods of time [11], including evidence linking ELA and
69 cortisol responses via methylation levels in the glucocorticoid receptor (*NR3C1*) gene [12, 13].
70 Other research suggest the involvement of telomere biology in mediating the longer-term link
71 between ELA and disease risk [14]. What is less clear, however, is how target immune cells
72 respond to stress *in vivo* as a consequence of ELA, via rapid gene expression regulation [15,
73 16]. This new knowledge can provide insights into an integrated and dynamic cellular regulatory
74 system whose signal profiles could forecast disease risk associated with early adversity [17-19].

75 Cells show remarkable flexibility in response to stimuli by regulating gene expression in a
76 transient manner [16, 20]. In one of the first studies relating peripheral blood mononuclear cells
77 (PBMC) gene expression to trauma, basal gene expression signatures, both immediately
78 following trauma and four months later, distinguished survivors who met diagnostic criteria for
79 PTSD from those who did not [21]. Follow-up studies provided further support for associations
80 between chronic stress and glucocorticoid signaling, as well as induced or repressed activation
81 of pro- and anti-inflammatory genes [22-24]. Importantly, several studies have provided
82 evidence of rapid (e.g., from 30 minutes to 8 hours) gene expression activation in response to *in*
83 *vitro* stimulation [25], psychological stress [26, 27], physical stress [28] and stress-reduction
84 methods [29]. Notably, these response patterns were recently dubbed the “conserved
85 transcriptional response to adversity” [30]. Taken together, theory and evidence suggests that
86 the programmed immune cells of individuals exposed to early adversity may show compromised
87 adaptation in response to acute stress, which, if repeated, may play a downstream role in
88 disease risk.

89 In this study, we focused on the glucocorticoid-immune signaling pathway by measuring
90 differential expression of glucocorticoid receptor (*NR3C1*), FK506 binding protein 51 (*FKBP5*)
91 and Nuclear Factor Kappa B Subunit 1 (*NFKB1*) genes [22, 31, 32] in PBMC. The
92 glucocorticoid-immune signaling pathway has been implicated as a key mechanism in relation to
93 chronic stress (i.e., caregiving, poverty [23, 31]), through reduced receptor availability, ligand
94 binding affinity, and functional capacity to regulate gene expression. Specifically, chronic stress,
95 via extended exposure to cortisol, is associated with reduced *NR3C1* expression, leading to
96 glucocorticoid resistance and impaired negative feedback inhibition of the HPA axis [33].
97 Increased glucocorticoid resistance is additionally explained by increased expression levels of
98 *FKBP5*, an important regulator of the glucocorticoid receptor complex [32]. Reduced levels of
99 glucocorticoid receptors, in turn, bind less cortisol. This effectively decreases the number of
100 ligand-bound receptor complexes available to translocate to the nucleus and regulate the

101 expression of genes, including anti-inflammatory genes. Thus, reduced levels of *NR3C1*
102 expression can lead to impaired immune function. Further, nuclear factor kappa-B (Nf- κ B), a
103 highly conserved transcription factor, can increase levels of pro-inflammatory cytokines, partly
104 via reduced inhibition by the ligand-bound glucocorticoid receptor complexes [34]. Evidence
105 exists for elevated levels of pro-inflammatory cytokines in children and adults exposed to ELA
106 [35, 36]. Dysregulation of the immune system in the context of ELA, as well as the resulting
107 increase of pro-inflammatory cytokines, can increase risk for a host of diseases, from
108 autoimmune to atherosclerosis and cancer [37]. Here, in addition to the aforementioned genes,
109 we focused on four pro-inflammatory cytokines, including interleukin-1 β (IL-1 β), interleukin-6 (IL-
110 6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF- α).

111 We delineate a program of research to study ELA-related programming of biological
112 systems using a within-person, between-groups experimental design. Specifically, in this pilot
113 study we tested whether ELA leads to dysregulation of physiological, gene expression and pro-
114 inflammatory cytokines in response to a canonical laboratory stressor, compared with a resting
115 control condition, and compared with individuals without exposure to ELA. To study the
116 biological embedding of stress, we used a validated screening instrument [38] and recruited 12
117 men, 6 of whom who endorsed at least 3 significant adverse events ('ELA group') [39], and 6
118 who confirmed zero ('controls'). In a randomized within-subjects design, we induced acute
119 stress in the lab (Trier Social Stress Test, TSST) and included a no-stress control condition
120 separated by one week. During these sessions, we obtained repeated measurements of
121 physiological reactivity, plasma levels of pro-inflammatory cytokines, and PBMC gene
122 expression over a 4-hour window post-test. We examined how young adults' exposure to ELA
123 influence neuroendocrine and inflammatory responses to acute stress compared with non-
124 exposed individuals by testing the following: 1) physiological, gene expression, and pro-
125 inflammatory cytokines response to acute stress compared with a no-stress control condition,
126 and 2) stress-induced cortisol changes in gene expression and pro-inflammatory cytokines.

127 Based on prior literature, we hypothesized that individuals exposed to ELA will evince
128 dysregulated physiological, *NR3C1*, *FKBP5*, and *NFKB1* gene expression, and pro-
129 inflammatory changes to an acute laboratory stressor, a response pattern that may reveal
130 dynamic biological signatures of early-life programming with implications for life-long health.

131

132 **Materials and Methods**

133

134 **Participants**

135 Participants were healthy male college students at the Pennsylvania State University,
136 recruited by word of mouth and advertisements on campus bulletin boards. We focused on men
137 in this exploratory study due to known sex differences in the stress response [40] and the small
138 sample size for stratified analyses. To obtain the sample who were exposed to ELA, a trained
139 clinical interviewer conducted a phone interview to screen over 100 eligible men using the
140 Stressful Life Events Screening Questionnaire (SLESQ) [38], a 13-item self-report measure that
141 assesses lifetime exposure to traumatic events. We asked respondents 11 specific and two
142 general categories of events, such as death of a parent or sibling, life-threatening accident, and
143 sexual and physical abuse. Based on evidence that three or more traumatic events confers
144 higher risk for disease [39], and considering the severity of the traumatic events, participants
145 who responded to at least 3 incidents up to age 18 years (independently reviewed and reached
146 consensus by MZ and IS) were invited to participate in the ELA group. Respondents' examples
147 for adverse exposures in this study included (unsubstantiated) child abuse and neglect, severe
148 violence exposure, parental loss, suicide of a close friend or a family member, severe illness of
149 an immediate family member or car accidents. In addition, the SLESQ was used to screen
150 participants without a history of traumatic exposures to serve as the control group. Selection
151 criteria stipulated that subjects were between 18-25 years, without current medical illness or

152 endocrine illness (for example, asthma, diabetes, thyroid disease or pituitary gland disorders
153 confirmed by self-report and physical examination), were currently non-smokers and were not
154 using medication on a regular basis, including psychiatric medication. The final sample included
155 12 men, 6 of whom experienced early adversity (i.e., 'ELA group') and 6 who did not (i.e.,
156 'controls') (mean age= 21.25, SD= 2.3). Demographics of the sample are presented in **Table 2**.
157 The study was approved by the Ethics Committee at the Pennsylvania State University and all
158 participants provided written informed consent. Participants received a modest monetary
159 incentive for participation.

160

161 **General Procedure**

162 Testing was carried out at the Pennsylvania State's Clinical Research Center (CRC).
163 Participants made two visits to the CRC during weekdays, one week apart, on the same day.
164 Testing was scheduled to begin at 11:00am and end by 4:15pm. We used a randomized
165 counter-balanced order for the two sessions (i.e., TSST and no-stress control conditions) blind
166 to participants and lab personnel. Lab personnel were also blind to group status. Participants
167 were given specific instructions to refrain from excessive physical activity on the day of the
168 testing, consuming alcohol for 12 hours before their arrival, and eating and drinking (besides
169 water) for 2 hours prior to the testing session. After arrival and consent, trained nurses
170 completed a physical examination and inserted an IV catheter into the antecubital vein 30
171 minutes after arrival (30 minutes prior to testing). The TSST session was scheduled to begin at
172 12:00pm to minimize the effects of circadian changes in cortisol, and was carried out as
173 described previously [41]. Briefly, the TSST consists of a free speech and a mental arithmetic
174 task of 10 minutes duration performed in front of a panel of two committee members (mixed
175 gender) with a camera and microphone situated between the interviewers. Participants were
176 told that they would play the role of an interviewee for a job and have 5 minutes to make an

177 argument for their candidacy. After 5 minutes, the second task emphasizing cognitive load
178 commenced. In this task, participants were asked to count backwards from 1,687 in multiples of
179 13. If a mistake was made, they were instructed to start again from the beginning. In the no-
180 stress control condition, participants were instructed to sit in a room, read magazines, and to
181 refrain from any stressful activities (e.g., cell-phone use was restricted). After the second blood
182 draw, approximately 60 minutes after the TSST session and 90 minutes after the first baseline
183 measure in the no-stress control condition, participants were administered a set of
184 questionnaires. These questionnaires were administered in both sessions and the average
185 score was calculated before analyses (see below for details). Considering the long time-frame
186 of the study and the repeated collection of multiple blood samples, a standardized low-calorie
187 meal was provided after the third blood draw (approximately at 1:45pm). Fig 1 outlines the study
188 design.

189

190 **Fig 1:** Study design for both sessions (TSST and no-stress control condition), separated by one
191 week

192

193 **Physiological Reactivity**

194 Salivary cortisol was repeatedly assessed from the 7 saliva samples at the following time-
195 points: 30 minutes after arrival (30 minutes prior to testing), 1 minutes prior to testing,
196 immediately after testing (15 minutes after last sample in the control condition), and 15, 30, 60
197 and 90 minutes post-test. Saliva samples were kept at room temperature throughout the
198 session, were immediately centrifuged at the end of the session at 3000 rpm at 24°C for 15
199 minutes, and then stored at -80°C until assayed. Systolic and diastolic blood-pressure were
200 measured at the same time points as salivary cortisol.

201 Salivette swabs (Sarstedt, Germany) were used to collect saliva. Salivary cortisol was
202 assessed, in duplicate, through an enzyme immunoassay protocol (Salimetrics) with known
203 controls. The lower detection limit of the assay is <0.007 ug/dL. Intra-assay CV was 9.88%
204 across all samples and inter-assay CV 5.79% across four plates. Participants' blood pressure
205 was measured, while seated, using an automatic monitor (Omron HEM-712C).

206

207 **RNA Extraction and Gene Expression Assays**

208 Gene expression changes were measured repeatedly from the four blood samples at each
209 session at the following time-points: 30 minutes after arrival (30 minutes prior to testing), and at
210 30 (75 minutes after the first sample in the no-stress condition), 90 and 240 minutes post-test
211 (Fig 1). Given known changes in immune cell redistribution and composition in response to
212 acute stress [20], complete blood count with differential was measured within 24 hours by Quest
213 Diagnostics using additional 4 ml EDTA collection tubes.

214 Whole blood samples were collected in 10 mL EDTA blood tubes via an IV catheter into the
215 antecubital vein, and immediately centrifuged for 10 minutes at 1500g prior to collection of
216 plasma. PBMCs were immediately isolated through density-gradient centrifugation using Ficoll.
217 Immediately following isolation, cells were suspended in RNAlater solution (Ambion) before
218 being stored at 4 °C overnight. The duration from blood sampling to stabilization of RNA never
219 exceeded 55 minutes. RNA extraction and cDNA synthesis were performed the following day
220 using QIAamp RNA Blood Mini Kit and cDNA Synthesis Kit respectively (Qiagen), and then
221 stored at -80°C until assayed. RNA purity was verified using Nanodrop 2000 spectrophotometer
222 (Thermo Scientific).

223 All assays were performed on a real-time PCR (Rotor Gene Q, Qiagen). PCR reactions
224 were set-up using the complementary QIAgility robotic pipettor (Qiagen) to ensure maximum
225 pipetting accuracy. Samples were assayed in duplicate. All repeated, within-subject samples

226 were run on the same plate. The reaction mix for gene expression assays consists of 5 uL
227 TaqMan Gene Expression Master Mix (Thermo Fisher Scientific), 1x TaqMan gene expression
228 primer, UltraPure Water (Rockland), and 100ng DNA in a 10 uL reaction. The cycling profile
229 consists of an initial denaturing at 95°C for 15 seconds and annealing/extending at 60°C for 1
230 minute followed by fluorescence reading, 55 cycles. Three hypothesis-driven genes (*NR3C1*:
231 *Hs00353740_m1*, *FKBP5*: *Hs01561006_m1* and *NFKB1*: *Hs00765730_m1*) were each
232 normalized to a housekeeping gene (*GADD45A*: *Hs00169255_m1*). Expression of a given
233 hypothesis-driven gene and the housekeeping gene were assessed on the same plate in two
234 independent PCR reactions using cDNA from the same sample aliquot. Each hypothesis-driven
235 gene was assayed in an independent batch of assays.

236 Sample normalization was done using the $\Delta\Delta Ct$ method [42]. Briefly, a cycle threshold (Ct) is
237 defined as the cycle number at which a sample's fluorescence reaches a defined threshold. The
238 same threshold was used for reactions assessing housekeeping and hypothesis-driven genes.
239 Thus, each sample on a given plate has two Ct values (e.g. Ct_{NR3C1} and $Ct_{GADD45A}$). The ΔCt is
240 calculated as the difference between the Ct of the gene of interest and the Ct of the
241 housekeeping gene (e.g. $\Delta Ct = Ct_{FKBP5} - Ct_{GADD45A}$). The $\Delta\Delta Ct$ represents the within-subject
242 normalization of the three post-test samples to expression levels at baseline. That is, $\Delta\Delta Ct =$
243 $\Delta Ct_{POST-TEST} - \Delta Ct_{BASELINE}$. Thus, the $\Delta\Delta Ct$ for the baseline sample for each session is always
244 equal to zero. Lastly, fold change is calculated by exponentiating 2 by $-\Delta\Delta Ct$ (i.e. Fold Change =
245 $2^{-\Delta\Delta Ct}$). It follows that the fold change for each baseline sample is always equal to one (i.e. 2^0).

246

247 **Pro-Inflammatory Cytokines**

248 Inflammatory assays were performed on plasma isolated from whole blood. Plasma samples
249 were stored at -80°C prior to use. Plasma levels of IL-1 β , IL-6, IL-8, and TNF- α were quantified
250 using Meso Scale Discovery's Multi-Array technology (MSD, V-PLEX Human Proinflammatory

251 Panel II) and analyzed on a Meso QuickPlex SQ 120 instrument (Meso Scale Discovery,
252 Rockville, MD, USA). Sample concentrations were determined relative to standard curves
253 generated by fitting electrochemiluminescent signal from stock calibrators with known
254 concentrations using MSD Discovery Workbench® software. Samples were run in duplicate.
255 Intra-assay variability was 8.02% across all samples and inter-assay variability was 3.87%
256 across the three plates. The lower limits of detection for inflammatory markers were 0.646
257 pg/mL (IL-1 β), 0.633 pg/mL (IL-6), 0.591 pg/mL (IL-8), and 0.690 pg/mL (TNF- α). Samples with
258 concentrations below the curve fit range were assigned a value of 0 for analyses considering
259 those analytes. This occurred for 13 samples (13.5%) for IL-1 β . Samples for all other analytes
260 were within detection ranges.

261

262 **Self-Reported Measures and Other Covariates**

263 We administered several questionnaires to assess levels of adverse exposures and mental
264 health symptoms. Specifically, participants completed the following questionnaires at both
265 sessions; the Life-Event Stress Scale (LESS) [43], which consists of 42 common events
266 associated with some degree of disruption of an individual's life and provide a standardized
267 measure of the impact of a wide range of common stressors; and the Life Events Questionnaire
268 (LEQ) [44], an 82-item inventory-type questionnaire for the measurement of life changes. The
269 LEQ consists of items that are designed primarily for use with students. We further assessed
270 levels of anxiety and depressive symptoms using the Beck anxiety inventory [45], Beck
271 depression inventory [46], and State-Trait Anxiety Inventory [47]), as well as perceived stress
272 levels using the 10-item Perceived Stress Scale [48].

273 As noted above, given gene expression changes may depend on specific cell populations
274 [20], we measured complete blood cell counts during both experimental sessions, as well as
275 PBMC counts, in duplicate, using a Countess automated cell counter (Invitrogen). Other

276 potential covariates included; age, body mass index, and socioeconomic status (i.e., parental
277 education and income).

278

279 **Data Reduction and Final Measures**

280 Statistical analyses of cortisol data used log transformed cortisol values at 7 time-points and
281 area under the curve with respect to increase (AUCi) [49]. The variables were examined for
282 outliers (>3 SD) and none were detected. Blood pressure values were reduced to 4 measures,
283 from 30 minutes prior to testing to 15 minutes after (samples 1-4) to evaluate the fast
284 sympathetic response. Moreover, systolic and diastolic blood pressures were combined to
285 derive a measure of the mean arterial pressure (MAP) to describe the average response in
286 blood pressure (i.e., $MAP = [(2 \times \text{diastolic}) + \text{systolic}] / 3$). Raw gene expression data was
287 analyzed based on the $2^{-(\Delta\Delta Ct)}$ method, with normalization to a housekeeping gene, and
288 compared to the first baseline measure in each session [42]. AUCi was computed for each gene
289 to assess overall responses from baseline. Cortisol slope increase was calculated using the first
290 three measures for cortisol from baseline to peak levels and dividing by the time between
291 measures [50].

292 For the four pro-inflammatory cytokines, considering high correlations [51] (Pearson
293 correlations ranged from .30 to .72), principal component analysis (PCA) indexing *systemic*
294 *inflammation* of IL-1 β , IL-6, IL-8 and TNF- α measures was conducted for the four repeated
295 measures using data from both sessions. In each instance, the first component was extracted
296 for use in subsequent analyses. The four repeated items mapped to components with
297 eigenvalues of 2.55 for the first time point, which explained 63.81% of the variance across all
298 four cytokines, 2.29 for the second time point (57.25% of variance), 2.46 for the third time point
299 (61.54% of variance), and 2.80 for the fourth time point (69.88% of variance). PCA of AUCi for
300 all four cytokines yielded two components with eigenvalues 1.93 and 1.01, which explained

301 48.27% and 25.37% of the variance respectively. Closer inspection of the factor loading scores
302 for the PCA of AUCi revealed that the first component was largely representative of three
303 cytokines (IL1- β , IL-8, TNF- α) with the second representing IL-6 (Table 1). PCA was also
304 conducted on the four repeated measures independently within each session (TSST and no-
305 stress). The four repeated items in the TSST session mapped onto components with
306 eigenvalues 2.02-2.56, which explained 50.41%-64.01% of variance at each time point. The four
307 repeated items in the no-stress session mapped onto components with eigenvalues 1.65-2.29,
308 which explained 41.28%-57.16% of variance at each time point. The components mapped using
309 data from both sessions were used to investigate within-person differences across sessions,
310 while the components mapped within each session independently were used to investigate
311 between-person differences (i.e. ELA status) within each session. Scores in all repeated
312 questionnaires for both sessions were averaged to increase reliability (Pearson correlations
313 ranged from .72 to .93). None of the demographics measures differed significantly between the
314 ELA and control groups (Table 2), and thus were not included as covariates in the analysis.

315

316 **Table 1.** PCA of Pro-Inflammatory Cytokine AUCi: Factor Loading Scores

Cytokine	Factor 1	Factor 2
IL1- β	0.597	0.224
IL-6	0.174	0.942
IL-8	0.908	-0.080
TNF- α	0.849	-0.265

317

318 **Statistical Analysis**

319 All statistical tests were carried out using SPSS version 25 (Windows). Repeated measures
320 general linear models (GLMs), ordinary least squares multiple regression analyses, Pearson
321 product-moment correlations, and t-tests were carried out as appropriate. Statistical analyses of
322 changes in gene expression, physiological responses and cytokines levels were subjected to
323 multivariate GLMs, with salivary cortisol, cytokines and gene expression as the repeated

324 measure, condition (stress/no stress) as a within-subjects factor, and status (risk/control) as
325 between-subjects factors. In addition to these analyses, univariate tests were applied to
326 summary cortisol measures (AUCi, [49]) to ascertain reliability of findings, as well as blood
327 pressure (MAP), gene expression, and pro-inflammatory cytokine measures. Huynh-Feldt
328 corrections were applied if sphericity (significant differences in variance between groups) was
329 significant, and only adjusted results are reported.

330

331 **Results**

332

333 **Sample Characteristics and Self-Reported Measures**

334 The ELA and control group did not differ in demographics measures (i.e., age,
335 socioeconomic status and body mass index) (Table 2). As expected, the ELA group tended to
336 report more stressful life events [43] compared with controls (univariate ANOVA between-
337 subjects effect: $F=3.55$, $p=0.089$ for LESS; $F=4.10$, $p=0.070$ for LEQ), as well as higher levels of
338 anxiety [47] ($F=2.54$, $p=0.142$), and depressive symptoms [46] ($F=2.73$, $p=0.129$). Further, the
339 ELA group self-reported more perceived stress in the TSST session compared with controls
340 ($F=6.07$, $p=0.033$), as well as in the no-stress condition ($F=7.49$, $p=0.021$), and tended to report
341 more stress in response to the TSST (Likert scale from 1-10) ($F=4.02$, $p=0.080$). Overall, these
342 findings confirm previous studies indicating increased stress and anxiety levels in individuals
343 exposed to ELA, compared with non-exposed individuals.

344

345

346

347

Table 2. Sample Characteristics

Variable, mean (SD)	Total (N=12)	Control (N=6)	ELA (N=6)	P value diff
Age	21.25 (2.3)	20.83 (1.6)	21.67 (2.9)	0.56
SES (average)	2.83	2.83	2.83	0.23 ¹
1. Working class	1	0	1	
2. Lower middle	2	1	1	
3. Middle	7	5	2	
4. Upper middle	2	0	2	
BMI	25.40 (3.7)	26.26 (3.7)	24.55 (4.0)	0.46
BAI	8.83 (8.2)	6.00 (5.8)	11.67 (9.8)	0.25
BDI	5.79 (6.3)	3.00 (1.3)	8.58 (8.2)	0.13
STAI	70.38 (20.4)	61.58 (9.0)	79.17 (25.5)	0.14
LESS	156.50 (84.9)	114.92 (60.9)	198.08 (89.4)	0.09
LEQ	20.21 (12.5)	13.75 (5.0)	26.67 (14.8)	0.07
PSS- TSST	16.08 (8.6)	11.00 (5.3)	21.67 (8.6)	0.03
PSS- no-stress	15.75 (10.0)	9.50 (4.9)	22.00 (10.1)	0.02

348 ¹p-value from Chi-square

349 SES- socioeconomic status; BMI- body mass index; BAI- Beck anxiety inventory; BDI- Beck
350 depression inventory; STAI- state-trait anxiety inventory; LESS- life-event stress scale; LEQ- life
351 events questionnaire; PSS- perceived stress scale.

352

353 **Physiological, Gene Expression, and Pro-Inflammatory**

354 **Cytokines Response to Acute Psychosocial Stress**

355 **Compared with a No-Stress Control Condition**

356 ***Physiological***

357 In the whole sample, repeated measures GLMs indicated significant within-subjects effect
358 for salivary cortisol in response to the TSST, compared with a no-stress condition (Time x
359 Session, $F=4.47$, $p=0.003$, estimated effect size $\eta^2= 0.17$), as well as for mean arterial pressure
360 (Time x Session, $F=5.31$, $p=0.003$, $\eta^2= 0.20$). Compared with controls, the ELA group exhibited
361 significantly higher mean arterial pressure response to the TSST (Time x Status, $F=8.59$,
362 $p<0.001$, $\eta^2= 0.46$), and a trend towards a higher cortisol response in the TSST relative to no-

363 stress (Δ AUCi: $F=3.58$, $p=0.088$) (Fig 2). Notably, no significant differences were observed
364 between the ELA and control groups in the no-stress condition (Time x Status, $F=1.38$, $p=0.257$
365 for salivary cortisol; $F=1.01$, $p=0.402$ for MAP). Overall, these findings confirm some [52], but
366 not all studies [7], indicating increased physiological reactivity to acute stress in young adults
367 exposed to early adversity, compared with non-exposed individuals.

368

369 **Fig 2:** Normalized change score for physiological, gene expression, and pro-inflammatory
370 cytokine response to the TSST relative to the no-stress session for ELA group, control group
371 and full sample. Change scores were calculated by standardizing summary AUCi using data
372 from both sessions and subtracting participant values from the no-stress session from those in
373 the TSST session. Error bars represent standard error of the mean. Change scores are
374 expressed for the full sample (grey), ELA group (red), and control group (green).

375

376 *Gene Expression*

377 In the whole sample, there was a significant within-subjects effect of TSST vs. no-stress
378 condition on *NR3C1* gene expression with increased levels in the TSST (Time x Session,
379 $F=4.85$, $p=0.006$, estimated effect size $\eta^2= 0.19$). Group analysis revealed increased levels in
380 the control group (Time x Session, $F=5.09$, $p=0.013$, estimated effect size $\eta^2= 0.36$), but not in
381 the ELA group, which had a blunted response to the TSST (Time x Session, $F=1.00$, $p=0.406$,
382 estimated effect size $\eta^2= 0.09$) (Fig 3A), suggestive of *NR3C1* expression resistance and lower
383 levels to inhibit the HPA axis. Notably, no differences were observed in *NR3C1* expression
384 between the ELA and control groups in the no-stress condition (Time x Session, $F=0.78$,
385 $p=0.491$) (Fig 3B). *FKBP5* and *NFKB1* expression did not change significantly in response to
386 the TSST vs. no-stress condition, and responses did not differ by group status.

387

388 **Fig 3:** Fold change in NR3C1 for ELA (dashed lines) and control groups (solid lines) in
389 response to the TSST (left) and during the no-stress sessions (right). Error bars represent
390 standard error of the mean.

391

392 ***Pro-Inflammatory Cytokines***

393 In the whole sample, PCA for the four repeated measures of IL-1 β , IL-6, IL-8 and TNF- α did
394 not reveal a significant within-subjects effect of TSST vs. no-stress condition using repeated
395 measures GLM analysis (Time x Session, $F=0.29$, $p=0.831$). Similarly, an analysis of the first
396 AUCi component did not reveal significant differences in systemic inflammation between the
397 TSST and no-stress conditions ($F=2.09$, $p=0.165$). However, an analysis of the second AUCi
398 component (largely representing IL-6) showed significantly greater pro-inflammatory responses
399 to the TSST relative to the no-stress condition ($F=5.85$, $p=0.026$) (Fig 2). No differences were
400 observed between the ELA and control groups in response to the TSST relative to no-stress
401 using either AUCi PCA components.

402 Exploratory analyses of each pro-inflammatory cytokine revealed a significant within-
403 subjects effect for IL-6 in response to the TSST (Time x Session, $F=2.97$, $p=0.044$, AUCi:
404 $F=7.70$, $p=0.018$), but not for the other three cytokines (IL-1 β , Time x Session, $F=0.80$, $p=0.500$,
405 AUCi, $F=1.37$, $p=0.257$; IL-8, Time x Session, $F=0.85$, $p=0.470$, AUCi, $F=0.93$, $p=0.434$; TNF- α ,
406 Time x Session, $F=0.25$, $p=0.863$, AUCi, $F=0.40$, $p=0.537$). Again, responses did not differ by
407 group status.

408

409 **Stress-Induced Cortisol Changes in Gene Expression and**
410 ***Pro-Inflammatory Cytokines***

411 Ordinary least squares multiple regression analyses tested whether stress-induced cortisol
412 increase in response to the TSST predicted changes in gene expression and cytokines, and
413 whether the responses differ between the ELA and control groups. Specifically, we used cortisol
414 slope increase from baseline to peak levels (from 30 minutes prior to testing to 15 minutes after
415 stress onset) to predict summary changes in gene expression and cytokines in response to the
416 TSST (Fig 4).

417

418 **Fig 4:** Scatterplot and fit lines for summary gene expression changes in *NR3C1* (top), *NFKB1*
419 (middle), and *FKBP5* (bottom) in response to stress induced cortisol increase for ELA group
420 (red) and control group (green). Cortisol increase calculated as the slope from baseline to peak
421 levels, and then standardized for figure construction. Gene expression changes expressed as
422 AUCi summary measure, which was then standardized for ease of comparison across genes.
423 R^2 shown are from models with cortisol slope as the only predictor.

424

425 In the whole sample, cortisol increase did not predict significant changes in gene expression
426 over time ($p= 0.728$ for *NR3C1*; $p= 0.156$ for *NFKB1*, $p= 0.832$ for *FKBP5*). When group status
427 was included in the regression analyses, cortisol increase predicted significant changes in
428 *NR3C1* and *NFKB1* gene expression in response to the TSST ($\beta= -2.66$, $t= -2.90$, $p=0.023$ for
429 *NR3C1*; $\beta= -3.61$, $t= -3.67$, $p=0.008$ for *NFKB1*). Moreover, cortisol increase interacted with
430 group status such that increase in cortisol predicted increase in both *NR3C1* and *NFKB1*
431 expression among controls, but decrease in the ELA group (*NR3C1*, Group x Cortisol Increase
432 $\beta= 2.74$, $t= 3.35$, $p=0.012$; *NFKB1*, Group x Cortisol Increase $\beta= 2.86$, $t= 3.25$, $p=0.014$). For
433 *FKBP5*, group status and cortisol interaction did not reach statistical significance (Group x
434 Cortisol Increase $\beta= -1.84$, $t= -1.36$, $p=0.215$).

435 For pro-inflammatory cytokines, in the whole sample, cortisol increase did not predict
436 significant changes in cytokines using a PCA for the repeated measures ($\beta= -0.12$, $t= -0.36$,

437 p=0.730). Further, there was no interaction by group status (Group x Cortisol Increase, $\beta= 1.00$,
438 $t= 0.67$, $p=0.525$) (Fig 4).

439

440 Sensitivity Analyses

441 Sensitivity analyses were conducted using the 'leave-one-out' method. Overall, results were
442 robust to the removal of any individual participant. Differences in sample characteristics and
443 self-report measures remained consistent upon removal of any given participant, as did
444 physiological, inflammatory, and gene expression responses to the TSST relative to the no-
445 stress session. Likewise, the ELA group continued to display increased MAP responses to the
446 TSST relative to the control group. Differences between ELA and control groups in cortisol
447 response to the TSST relative to no-stress (ΔAUC_i) were modestly attenuated by removal of
448 any given participant, but not appear to be driven by a single individual.

449 Removal of one participant in the ELA group did modify associations between stress-
450 induced cortisol changes and *NR3C1* and *NFKB1* gene expression. Specifically, cortisol
451 increase and group status no longer interacted to predict gene expression over time (Group x
452 Cortisol Increase, $\beta= 1.637$, $t= 0.626$, $p=0.554$ for *NR3C1*; $\beta= 1.537$, $t= 0.474$, $p=0.652$ for
453 *NFKB1*). Instead, removal of this participant increased the contribution of group status in the
454 model, such that both cortisol slope and group status were independently associated with gene
455 expression changes, without an interactive effect (Group Status, $\beta= 3.524$, $t=3.671$, $p=0.008$ for
456 *NR3C1*; $\beta= 2.845$, $t=2.418$, $p=0.046$ for *NFKB1*). By contrast, removal of a different participant
457 from the control group resulted in associations between stress induced cortisol increase and
458 *FKBP5* gene expression that were previously unobserved. Specifically, models run without this
459 participant showed a significant association between cortisol increase and *FKBP5* gene
460 expression ($\beta= 3.177$, $t=2.534$, $p=0.044$) as well as an interactive effect between group status
461 and cortisol slope (Group x Cortisol Increase, $\beta= -3.114$, $t= -2.750$, $p=0.033$).

462

463 Discussion

464 To our knowledge, this is the first investigation of stress-induced gene expression and pro-
465 inflammatory cytokines changes within-individuals, comparing stratified groups of ELA-exposed
466 and control individuals. By comparing a validated laboratory-based stressor to a no-stress
467 condition within the same individuals, we were able to disentangle the effects of acute stress
468 from noisy measurements in the same individuals. Further, this design allowed us to distinctly
469 identify if/when differences between ELA-exposed and control individuals were context
470 dependent (i.e. manifesting only during stress). Results provide preliminary evidence in humans
471 of a dysregulated pattern of *NR3C1*, *FKBP5* and *NFKB1* gene expression activation as a
472 consequence of ELA. Importantly, these changes manifest more acutely in the presence of
473 stress-induced cortisol release as compared to a no-stress resting condition.

474 As predicted by previous research, the ELA group evince higher cortisol response and lower
475 *NR3C1* gene expression in response to the TSST compared with controls, with no difference
476 between groups in the no-stress condition. Moreover, cortisol-induced changes in gene
477 expression revealed a decoupling between the stress-induced cortisol release and nuclear
478 signaling in the ELA group. Cortisol reactivity was associated with increased *NR3C1* and
479 *NFKB1* expression in the control group, but in the ELA group these associations were blunted.
480 Findings for cortisol-induced *FKBP5* expression revealed the hypothesized pattern of increased
481 activation in the ELA group, and decrease among control individuals, although results did not
482 reach statistical significance in the full sample. For pro-inflammatory cytokines, only IL-6
483 increased significantly in response to the laboratory-induced stressor, however, stress-induced
484 cortisol release did not predict changes in cytokines levels, contrary to hypothesized prediction.
485 Overall, we provide preliminary findings for the biological embedding of ELA via a dynamic and

486 dysregulated pattern spanning multiple levels of analysis (genomic and physiological), and
487 which presents more acutely in response to psychosocial stress.

488 Findings concur with the receptor-mediated model of glucocorticoid signaling resistance
489 [53]. First, ELA was associated with increased cortisol response to the TSST compared with
490 controls, confirming some [52], but not all studies [7], indicating increased physiological
491 reactivity in young adults exposed to early adversity. Second, chronic exposure to cortisol, as a
492 consequence of ELA, can lead to a compensatory response whereby glucocorticoid sensitivity
493 decreases (e.g. via decreased receptor availability). Here we replicated prior evidence of
494 reduced *NR3C1* expression levels in ELA-exposed individuals, but only in response to acute
495 laboratory stress. We also provide preliminary evidence that the reduced *NR3C1* expression is
496 driven by decreased responsiveness to stress-induced cortisol release into the periphery. Third,
497 *FKBP5* has been implicated in the glucocorticoid resistance model whereby overexpression of
498 *FKBP5* reduces cortisol binding affinity to glucocorticoid receptors and further translocation to
499 the nucleus [54]. Here, we do not confirm previous findings. Future studies employing larger
500 sample sizes may be required to test for *FKBP5* response as these effects may be more subtle
501 and/or sensitive to outliers (i.e. sensitivity analyses without a given control participant were in
502 line with predictions). Fourth, diminished availability of the ligand-bound glucocorticoid receptor
503 complexes in immune cells is suggested to contribute to reduced inhibition of Nf- κ B signaling,
504 leading to increased pro-inflammatory cytokines [34]. Here, we tested whether ELA is
505 associated with increased activation of *NFKB1* gene, a DNA binding subunit of the Nf- κ B protein
506 complex. In line with expectations, stress-induced cortisol increase was associated with
507 increased *NFKB1* expression among controls, suggesting decreased inhibitory action on Nf- κ B
508 signaling [55]. In the ELA group, however, stress-induced cortisol increase was associated with
509 decrease *NFKB1* expression. Fifth, in vitro studies have established a connection between
510 glucocorticoid exposure and diminished capacity of immune cells to inhibit pro-inflammatory
511 cytokines in individuals exposed to psychological stress. Here, only pro-inflammatory cytokine

512 IL-6 increased significantly in response to acute stress, replicating previous studies [56].
513 However, contrary to expectation, stress-induced cortisol release did not predict increased pro-
514 inflammatory profile among individuals exposed to ELA.

515 The methodological strengths of this study include a laboratory-based within-subjects
516 experimental design, which allows stronger causal inferences. We collected repeated
517 measurements over a relatively long time scale to document changes in gene expression and
518 pro-inflammatory cytokines. Our within-subjects, between-groups design, combined with four
519 repeated measurements in each session, reduced biological variability and increased power to
520 detect true associations. Finally, we tested the moderating effects of ELA, which enables tests
521 of potential programming of biological systems.

522 We acknowledge limitations. First, this was a pilot study with a small sample size. Although
523 comparable to similar prior investigations [26, 31, 57], the results from this study still need to be
524 interpreted with caution. Notwithstanding, the strength of the within-subjects experimental
525 design combined with the leave-one-out sensitivity analysis alleviate concerns about spurious
526 findings. We focused on men in this exploratory study due to known sex differences in the
527 stress response [40] and the small sample size for stratified analyses. Future studies with larger
528 sample size including both males and females are needed to replicate these findings. Second,
529 gene expression changes are tissue-specific. As a first test, we isolated PBMC from whole
530 blood to measure gene expression changes. The exclusion of granulocytes cells provides a
531 cleaner measure of the more active populations of lymphocytes and monocytes. Nevertheless,
532 future studies will benefit by measuring gene expression changes in specific sub-populations of
533 leukocytes. Third, we focused on three hypothesis-driven genes. There are multiple biological
534 pathways that are activated in response to stress that may play a downstream role in disease
535 susceptibility, such as the conserved transcriptional response to adversity pathway [30]. Prior
536 research has investigated multiple genes using microarrays [23, 26-28, 31]. Future studies with
537 adequate sample size will benefit by testing larger groups of genes/pathways. Fourth, this study

538 did not consider specific types of ELA, or timing of exposure. Here, we focused specifically on
539 severity of multiple (i.e., minimum of three) ELA exposures up to age 18 years. Future research
540 can explore specific types of ELA in different populations and settings. Further, our study
541 included non-Hispanic white males and thus future research need to test whether the
542 association generalizes to other populations. Finally, although we included a no-stress condition
543 to control for the higher degree of noise associated with gene expression measurements, the
544 control session did include the stress of venipuncture. However, this is unavoidable technical
545 limitation for collecting sufficient immune cells for gene expression research.

546 In conclusion, ELA may program physiological systems in a maladaptive manner more likely
547 to manifest during times of duress, predisposing individuals to the negative health
548 consequences of everyday stressors. Although increased activation of the glucocorticoid-
549 immune signaling in response to acute stress is considered adaptive in the short-term,
550 persistent activation can increase risk for mental and physical health problems. These results
551 could potentially identify new targets for therapeutic interventions mitigating the negative effects
552 of early adversity, such as pharmacological agents acting on the glucocorticoid receptor and
553 FKBP5 [32]. Further, while previous risk factors and biomarkers of stress contributed to our
554 understanding of biological embedding processes, these are nevertheless static characteristics
555 that have not explained health outcomes very well. For example, considering high failure rates
556 for depression treatments, and in order to tailor individual interventions, identifying objective
557 changes in stress-induced gene expression may help to predict short-term intervention efficacy
558 in clinical and non-clinical settings. An example for such an effort could be to utilize models of
559 dynamic cellular markers as individual-level factors to account for variation in intervention
560 response and clinical outcomes [17-19]. Thus, future research in this area can have a range of
561 impacts for basic science, intervention studies and clinical practice that will influence treatments
562 to match the specific cellular processes operating within an individual.

563

564 Acknowledgments

565 We thank all nurses at the CRC and the participants in this study. Research reported in this
566 publication was supported by the National Institutes of Health, National Institutes of Aging
567 through R21AG055621 grant (I.S.) and by the National Center for Advancing Translational
568 Sciences through UL1 TR002014 grant. W.J.H. and L.E. were supported by National Institute on
569 Aging T32 AG049676 to The Pennsylvania State University. The content is solely the
570 responsibility of the authors and does not necessarily represent the official views of the National
571 Institutes of Health.

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589 **References**

- 590 1. Widom, C.S., et al., *A prospective investigation of physical health outcomes in abused*
591 *and neglected children: New findings from a 30-year follow-up.* American journal of
592 public health, 2012. **102**(6): p. 1135-1144.
- 593 2. Ben-Shlomo, Y. and D. Kuh, *A life course approach to chronic disease epidemiology: conceptual models, empirical challenges and interdisciplinary perspectives.* 2002, Oxford University Press.
- 596 3. Cohen, S., D. Janicki-Deverts, and G.E. Miller, *Psychological stress and disease.* JAMA, 597 2007. **298**(14): p. 1685-7.
- 598 4. Danese, A. and B.S. McEwen, *Adverse childhood experiences, allostasis, allostatic load, and age-related disease.* Physiology & behavior, 2012. **106**(1): p. 29-39.
- 600 5. Meewisse, M.-L., et al., *Cortisol and post-traumatic stress disorder in adults: systematic*
601 *review and meta-analysis.* The British Journal of Psychiatry, 2007. **191**(5): p. 387-392.
- 602 6. Burke, H.M., et al., *Depression and cortisol responses to psychological stress: a meta-*
603 *analysis.* Psychoneuroendocrinology, 2005. **30**(9): p. 846-856.
- 604 7. Bunea, I.M., A. Szentágotai-Tătar, and A.C. Miu, *Early-life adversity and cortisol*
605 *response to social stress: a meta-analysis.* Translational psychiatry, 2017. **7**(12): p. 606 1274.
- 607 8. Hunter, A.L., H. Minnis, and P. Wilson, *Altered stress responses in children exposed to*
608 *early adversity: a systematic review of salivary cortisol studies.* Stress, 2011. **14**(6): p. 609 614-626.
- 610 9. Miller, G.E., E. Chen, and K.J. Parker, *Psychological stress in childhood and*
611 *susceptibility to the chronic diseases of aging: moving toward a model of behavioral and*
612 *biological mechanisms.* Psychological bulletin, 2011. **137**(6): p. 959.

613 10. Picard, M., R.P. Juster, and B.S. McEwen, *Mitochondrial allostatic load puts the 'gluc'*
614 *back in glucocorticoids*. Nat Rev Endocrinol, 2014. **10**(5): p. 303-10.

615 11. Anacker, C., K.J. O'Donnell, and M.J. Meaney, *Early life adversity and the epigenetic*
616 *programming of hypothalamic-pituitary-adrenal function*. Dialogues in clinical
617 neuroscience, 2014. **16**(3): p. 321.

618 12. Alexander, N., et al., *Glucocorticoid receptor gene methylation moderates the*
619 *association of childhood trauma and cortisol stress reactivity*.
620 Psychoneuroendocrinology, 2018. **90**: p. 68-75.

621 13. Edelman, S., et al., *Epigenetic and genetic factors predict women's salivary cortisol*
622 *following a threat to the social self*. PLoS One, 2012. **7**(11): p. e48597.

623 14. Shalev, I., *Early life stress and telomere length: investigating the connection and*
624 *possible mechanisms: a critical survey of the evidence base, research methodology and*
625 *basic biology*. Bioessays, 2012. **34**(11): p. 943-52.

626 15. Lopez-Maury, L., S. Marguerat, and J. Bahler, *Tuning gene expression to changing*
627 *environments: from rapid responses to evolutionary adaptation*. Nat Rev Genet, 2008.
628 **9**(8): p. 583-93.

629 16. de Nadal, E., G. Ammerer, and F. Posas, *Controlling gene expression in response to*
630 *stress*. Nat Rev Genet, 2011. **12**(12): p. 833-45.

631 17. Antoni, M.H., et al., *Cognitive-behavioral stress management reverses anxiety-related*
632 *leukocyte transcriptional dynamics*. Biological psychiatry, 2012. **71**(4): p. 366-372.

633 18. West, M., et al., *Predicting the clinical status of human breast cancer by using gene*
634 *expression profiles*. Proceedings of the National Academy of Sciences of the United
635 States of America, 2001. **98**(20): p. 11462-11467.

636 19. van't Veer, L.J., et al., *Gene expression profiling predicts clinical outcome of breast*
637 *cancer*. Nature, 2002. **415**(6871): p. 530-536.

638 20. Cole, S.W., *Elevating the perspective on human stress genomics*.
639 Psychoneuroendocrinology, 2010. **35**(7): p. 955-962.

640 21. Segman, R.H., et al., *Peripheral blood mononuclear cell gene expression profiles identify*
641 *emergent post-traumatic stress disorder among trauma survivors*. Mol Psychiatry, 2005.
642 **10**(5): p. 500-13, 425.

643 22. Miller, G., N. Rohleder, and S.W. Cole, *Chronic interpersonal stress predicts activation*
644 *of pro-and anti-inflammatory signaling pathways six months later*. Psychosomatic
645 medicine, 2009. **71**(1): p. 57.

646 23. Miller, G.E., et al., *Low early-life social class leaves a biological residue manifested by*
647 *decreased glucocorticoid and increased proinflammatory signaling*. Proceedings of the
648 National Academy of Sciences, 2009. **106**(34): p. 14716-14721.

649 24. Cole, S.W., et al., *Social regulation of gene expression in human leukocytes*. Genome
650 biology, 2007. **8**(9): p. R189.

651 25. Moriconi, F., et al., *Quantitative gene expression of cytokines in peripheral blood*
652 *leukocytes stimulated in vitro: modulation by the anti-tumor nerosis factor-alpha antibody*
653 *infliximab and comparison with the mucosal cytokine expression in patients with*
654 *ulcerative colitis*. Translational Research, 2007. **150**(4): p. 223-232.

655 26. Nater, U.M., et al., *Impact of acute psychosocial stress on peripheral blood gene*
656 *expression pathways in healthy men*. Biological psychology, 2009. **82**(2): p. 125-132.

657 27. Schwaiger, M., et al., *Altered stress-induced regulation of genes in monocytes in adults*
658 *with a history of childhood adversity*. Neuropsychopharmacology, 2016. **41**(10): p. 2530.

659 28. Carlson, L.A., et al., *Changes in transcriptional output of human peripheral blood*
660 *mononuclear cells following resistance exercise*. European journal of applied physiology,
661 2011. **111**(12): p. 2919-2929.

662 29. Kaliman, P., et al., *Rapid changes in histone deacetylases and inflammatory gene*
663 *expression in expert meditators*. Psychoneuroendocrinology, 2014. **40**: p. 96-107.

664 30. Cole, S.W., *Human social genomics*. PLoS genetics, 2014. **10**(8): p. e1004601.

665 31. Miller, G.E., et al., *A functional genomic fingerprint of chronic stress in humans: blunted*
666 *glucocorticoid and increased NF- κ B signaling*. Biological psychiatry, 2008. **64**(4): p. 266-
667 272.

668 32. Binder, E.B., *The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the*
669 *pathogenesis and therapy of affective and anxiety disorders*.
670 Psychoneuroendocrinology, 2009. **34**: p. S186-S195.

671 33. Silverman, M.N. and E.M. Sternberg, *Glucocorticoid regulation of inflammation and its*
672 *functional correlates: from HPA axis to glucocorticoid receptor dysfunction*. Annals of the
673 New York Academy of Sciences, 2012. **1261**(1): p. 55-63.

674 34. Beck, I.M., et al., *Crosstalk in inflammation: the interplay of glucocorticoid receptor-*
675 *based mechanisms and kinases and phosphatases*. Endocrine reviews, 2009. **30**(7): p.
676 830-882.

677 35. Danese, A., et al., *Childhood maltreatment predicts adult inflammation in a life-course*
678 *study*. Proc Natl Acad Sci U S A, 2007. **104**(4): p. 1319-24.

679 36. Danese, A., et al., *Biological embedding of stress through inflammation processes in*
680 *childhood*. Molecular psychiatry, 2011. **16**(3): p. 244.

681 37. Elenkov, I.J. and G.P. Chrousos, *Stress hormones, Th1/Th2 patterns, pro/anti-*
682 *inflammatory cytokines and susceptibility to disease*. Trends in Endocrinology &
683 Metabolism, 1999. **10**(9): p. 359-368.

684 38. Goodman, L.A., et al., *Assessing traumatic event exposure: general issues and*
685 *preliminary findings for the Stressful Life Events Screening Questionnaire*. J Trauma
686 Stress, 1998. **11**(3): p. 521-42.

687 39. Felitti, V.J., et al., *Relationship of childhood abuse and household dysfunction to many of*
688 *the leading causes of death in adults: The Adverse Childhood Experiences (ACE) Study*.
689 American journal of preventive medicine, 1998. **14**(4): p. 245-258.

690 40. Kirschbaum, C., et al., *Impact of gender, menstrual cycle phase, and oral contraceptives*
691 *on the activity of the hypothalamus-pituitary-adrenal axis*. Psychosomatic medicine,
692 1999. **61**(2): p. 154-162.

693 41. Shalev, I., et al., *BDNF Val66Met polymorphism is associated with HPA axis reactivity to*
694 *psychological stress characterized by genotype and gender interactions*.
695 Psychoneuroendocrinology, 2009. **34**(3): p. 382-388.

696 42. Livak, K.J. and T.D. Schmittgen, *Analysis of relative gene expression data using real-*
697 *time quantitative PCR and the 2(T)(-Delta Delta C) method*. Methods, 2001. **25**(4): p.
698 402-408.

699 43. Holmes, T.H. and R.H. Rahe, *The Social Readjustment Rating Scale*. J Psychosom Res,
700 1967. **11**(2): p. 213-8.

701 44. Sarason, I.G., J.H. Johnson, and J.M. Siegel, *Assessing the impact of life changes:*
702 *development of the Life Experiences Survey*. Journal of consulting and clinical
703 psychology, 1978. **46**(5): p. 932.

704 45. Beck, A.T., et al., *An inventory for measuring clinical anxiety: psychometric properties*. J
705 Consult Clin Psychol, 1988. **56**(6): p. 893-7.

706 46. Beck, A.T., et al., *Comparison of Beck Depression Inventories -IA and -II in psychiatric*
707 *outpatients*. J Pers Assess, 1996. **67**(3): p. 588-97.

708 47. Spielberger, C.D., R.L. Gorsuch, and R.E. Lushene, *Manual for the state-trait anxiety*
709 *inventory*. 1970.

710 48. Cohen, S., T. Kamarck, and R. Mermelstein, *A global measure of perceived stress*. J
711 Health Soc Behav, 1983. **24**(4): p. 385-96.

712 49. Pruessner, J.C., et al., *Two formulas for computation of the area under the curve*
713 *represent measures of total hormone concentration versus time-dependent change*.
714 Psychoneuroendocrinology, 2003. **28**(7): p. 916-31.

715 50. Miller, R., et al., *How to disentangle psychobiological stress reactivity and recovery: A*
716 *comparison of model-based and non-compartmental analyses of cortisol concentrations.*
717 *Psychoneuroendocrinology*, 2018. **90**: p. 194-210.

718 51. Muylle, L., et al., *Increased tumor necrosis factor alpha (TNF alpha), interleukin 1, and*
719 *interleukin 6 (IL-6) levels in the plasma of stored platelet concentrates: relationship*
720 *between TNF alpha and IL-6 levels and febrile transfusion reactions.* *Transfusion*, 1993.
721 **33**(3): p. 195-199.

722 52. Miller, G.E., E. Chen, and E.S. Zhou, *If it goes up, must it come down? Chronic stress*
723 *and the hypothalamic-pituitary-adrenocortical axis in humans.* *Psychological bulletin*,
724 2007. **133**(1): p. 25.

725 53. Miller, G.E., S. Cohen, and A.K. Ritchey, *Chronic psychological stress and the regulation*
726 *of pro-inflammatory cytokines: a glucocorticoid-resistance model.* *Health psychology*,
727 2002. **21**(6): p. 531.

728 54. Wochnik, G.M., et al., *FK506-binding proteins 51 and 52 differentially regulate dynein*
729 *interaction and nuclear translocation of the glucocorticoid receptor in mammalian cells.*
730 *Journal of Biological Chemistry*, 2005. **280**(6): p. 4609-4616.

731 55. Bierhaus, A., et al., *A mechanism converting psychosocial stress into mononuclear cell*
732 *activation.* *Proceedings of the National Academy of Sciences*, 2003. **100**(4): p. 1920-
733 1925.

734 56. Steptoe, A., M. Hamer, and Y. Chida, *The effects of acute psychological stress on*
735 *circulating inflammatory factors in humans: a review and meta-analysis.* *Brain, behavior,*
736 *and immunity*, 2007. **21**(7): p. 901-912.

737 57. Rohleder, N., et al., *No response of plasma substance P, but delayed increase of*
738 *interleukin-1 receptor antagonist to acute psychosocial stress.* *Life Sciences*, 2006.
739 **78**(26): p. 3082-3

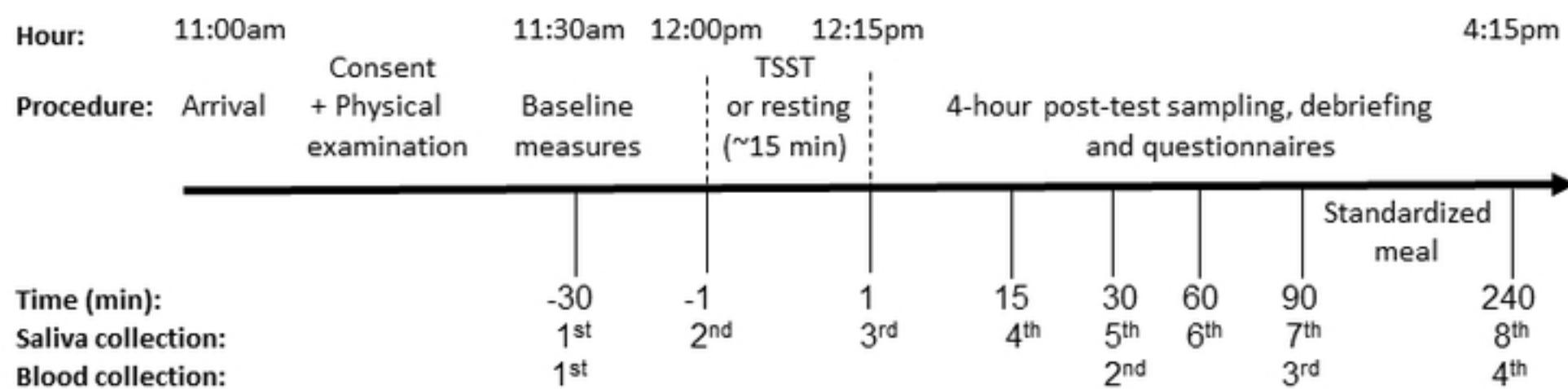


Figure 1

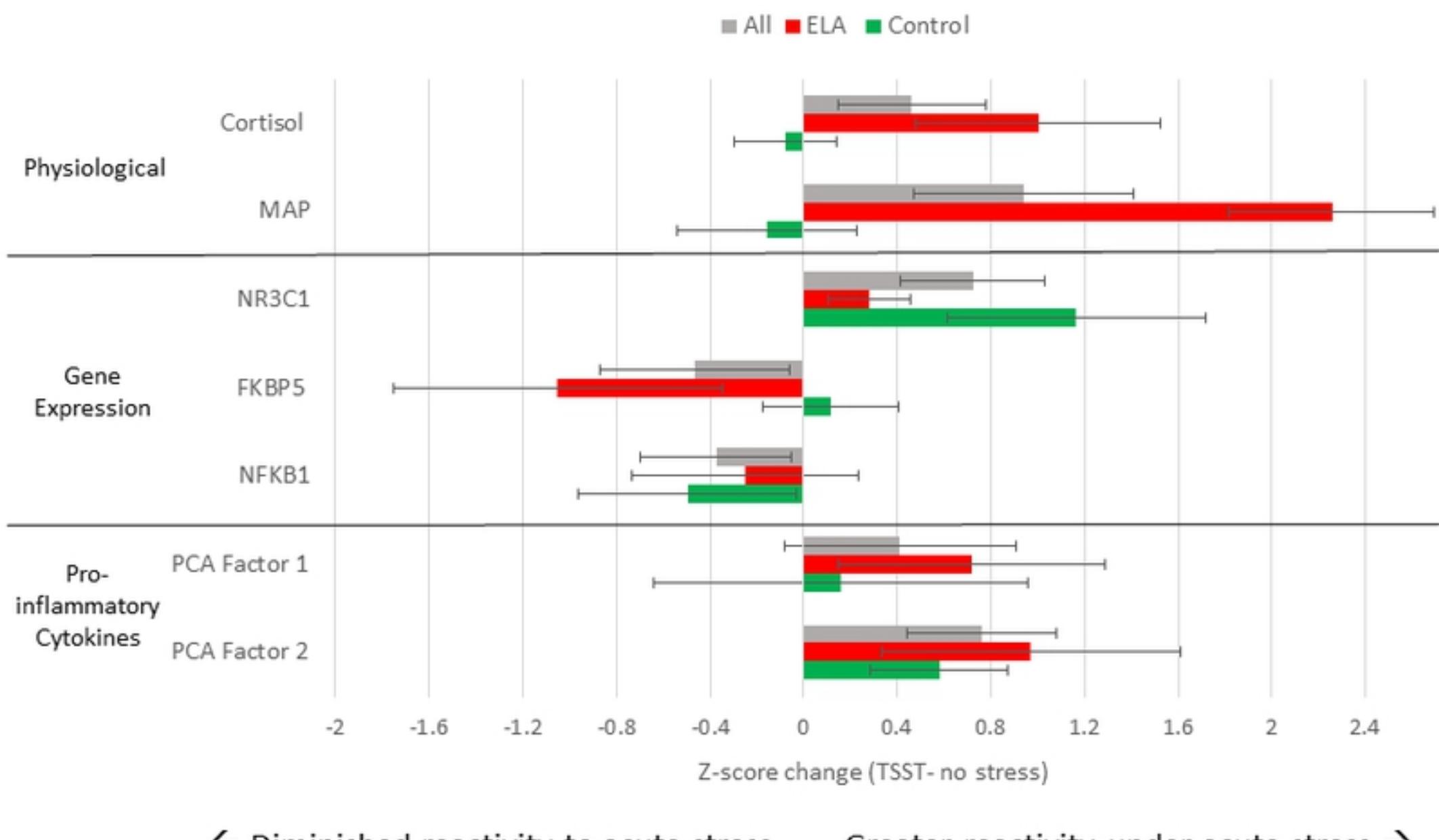


Figure 2

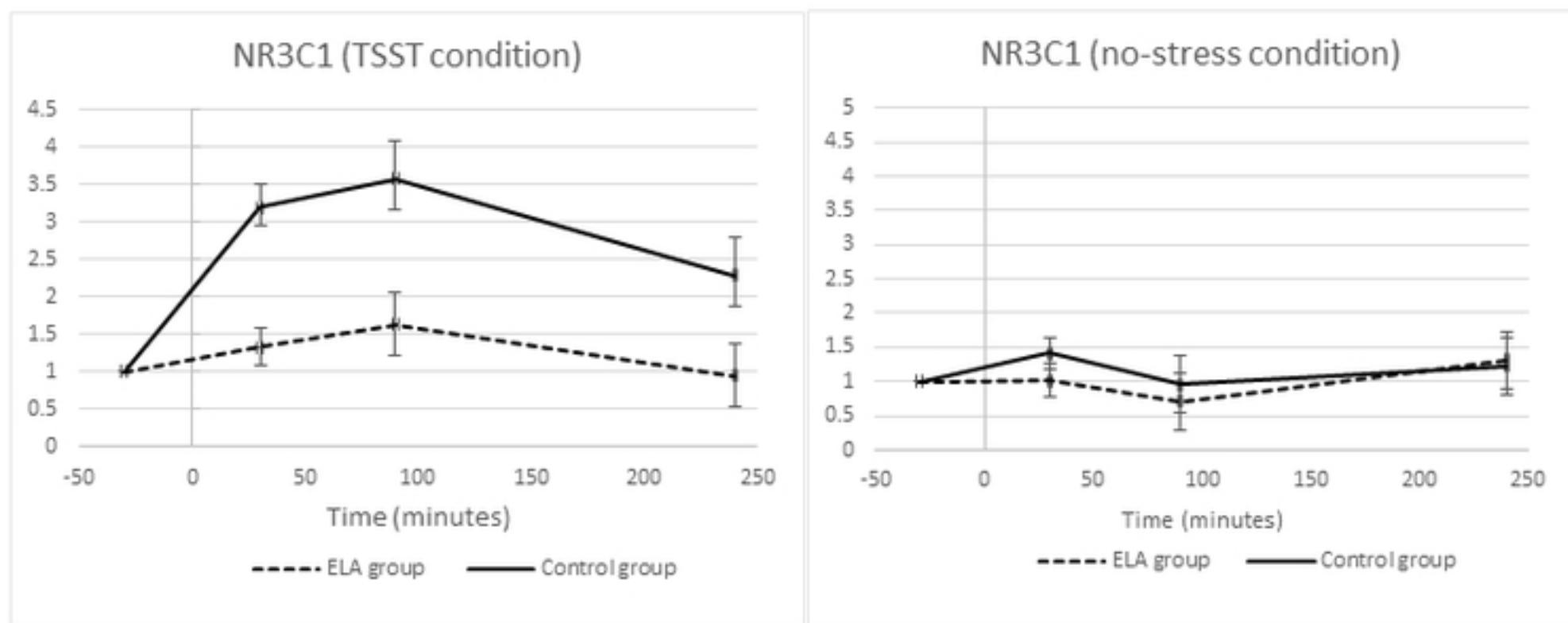


Figure 3

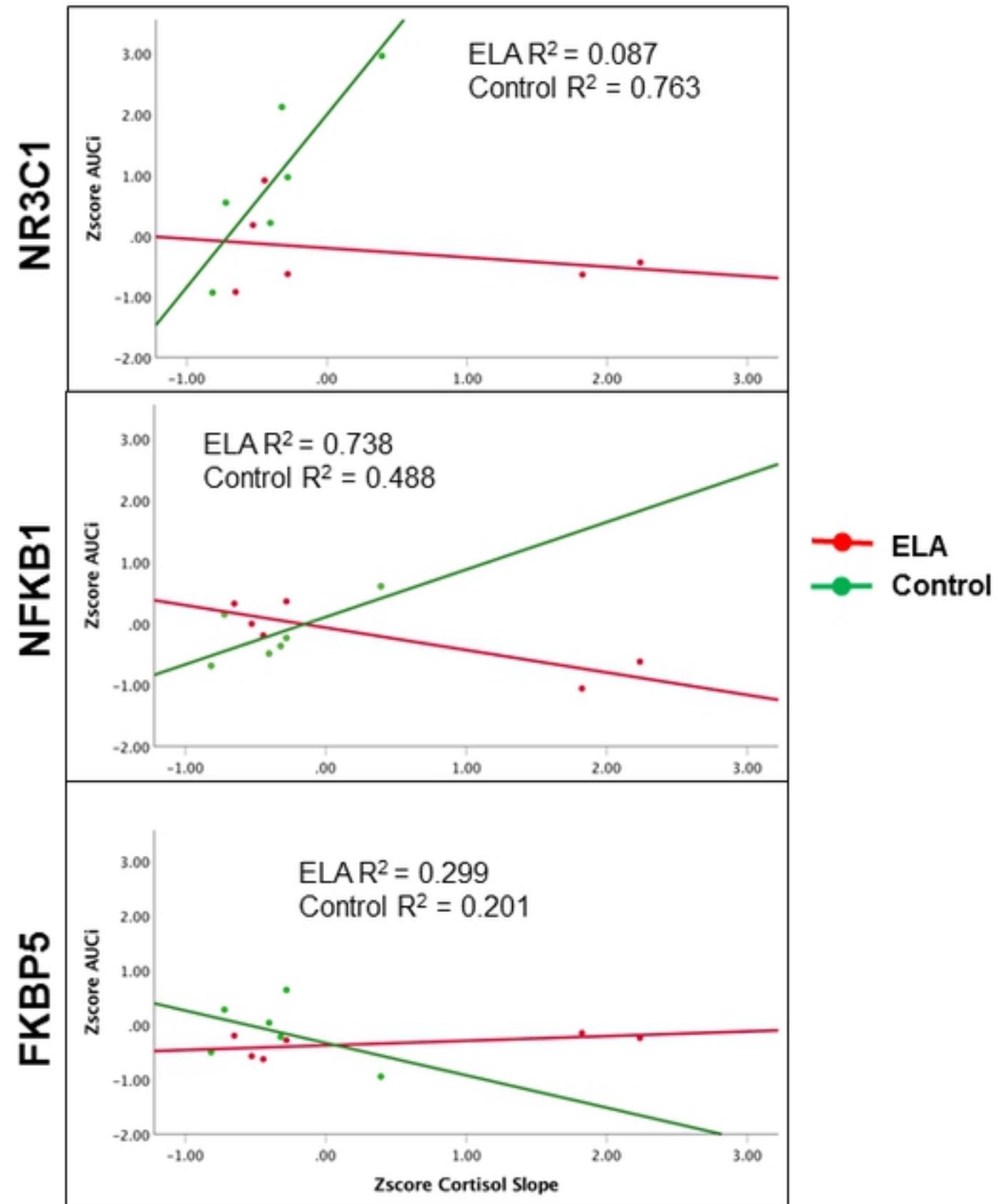


Figure 4