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Abstract

M otivation: Receptors on host cells play acritical rolein viral infection. How phages select

receptorsis still unknown.

Results: Here, we manually curated a high-quality database named phageReceptor, including

355 pairs of phage-host receptor interactions, 280 unique viral speciesor sub-species and 64

bacterial species. Sugarsand proteins were most widely used by phages as receptors. The

receptor usage of phages in Gram-positive bacteria was different from that in Gram-negative


https://doi.org/10.1101/727024
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/727024; this version posted August 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

bacteria. Most protein receptors were located on the outer membrane. The protein receptors
were highly diverse in their structures, and had little homology with mammalian virus
receptors. Further functional characterization of phage protein receptors in Escherichia coli
showed that they had larger node degrees and betweennesses in the protein-protein interaction
(PPI) network, and higher expression levels, than other outer membrane proteins, plasma
membrane proteins, or other intracellular proteins. These findings were consistent with what
observed for mammalian virus receptors, suggesting that viral protein receptors play a central
role in the host’s PPl network. The study deepens our understanding of virus-host

interactions.

Availability: The database of phageReceptor is publicly accessible at

http://www.computational biology.cn/viral Recepetor/index.html.

I ntroduction

Bacteriophages (phages) are agroup of virusesthat specifically infect bacteria or archaea!™ 2.
Phages are the most abundant entities on the earth with diverse morphology, genomes, host
range, and life cycles®“. They play akey rolein shaping bacterial population dynamics and
balancing the global ecosystem ' €. For humans, phages, on one hand, cause large economic
loss by killing engineered bacteria used in industries, such as the Lactococcus lactis!™; on the
other hand, they can be applied for therapy of bacterial infections, especially for the super
bacteria which are resistant to most antibiotics ' %. Besides, phages were also reported to

impact human health 24,
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Attachment of phagesto their specific receptors on host cellsisthe first step of phage
infection '* ™. The phage-receptor interaction is highly specific and dynamic >4, and
determines the host specificity of phagesto alarge extent 2. Receptors have been identified
for lots of phages™. Various biomolecules can be utilized by phages as their receptors, such
as carbohydrate, lipid and protein [***!. Besides, some bacterial structures, such as flagellum
and pilus, can also serve as phage receptors™® *. The carbohydrate and lipid are widely
distributed on the host cell surfaces and are easily taken as receptors by viruses ', Compared
to these molecules, proteins are more suitable as viral receptors due to stronger affinity and
higher specificity for viral attachment 1*. The viral protein receptors are highly selective.
Among over 2,000 human plasma membrane proteins, less than 100 proteins have been
reported to be viral receptors®. Previous studies have shown that the proteins abundant on
the host cell surface, or with relatively low affinity for their natural ligands, or having high
N-glycosylation and large number of interaction partnersin the PPl network are preferred by
viruses as receptors 8 2% 2 However, most research about characterizing viral protein
receptors has been done on mammalian viruses, and little is known about the molecular

characterigtics of protein receptors of phages.

Here, we systematically analyzed the phage-host receptor interactions and characterized the
phage protein receptors (PPRs) by manually curating an up-to-date and high-quality database
containing 355 pairs of phage-host receptor interactions. This study helpsto understand the
mechanism underlying phage—receptor interactions, as well as predict and identify phage

receptors.
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M aterials and methods

Database of phage-host receptor interactions

The data of phage-host receptor interactions were compiled from two sources: firstly, 109
pairs of phage-receptor interactions were directly obtained from the Phage Receptor Database
(31 on May 1%, 2019; secondly, the literatures related to phage receptors were downloaded
from NCBI PubMed database by searching “phage receptor” [TIAB] or "bacteriophage
receptor”[ TIAB] on June 4™, 2019. 246 pairs of phage-receptor interactions were manually
extracted from the literatures. In total, 355 pairs of phage-host receptor interactions were
collected for further analysis. The details of the phage-receptor interactions are public

available at the database of phageReceptor

(http://www.computational biology.cn/vira Recepetor/index.html).

Escherichia coli proteome and location of proteins

The reference proteome of Escherichia coli (E. coli) str. K-12 substr. MG1655 (Proteome I D:
UP000000625) was downloaded from the database of UniProt Proteome %2 on May 16, 2019.
The location of proteinsin E. coli and other species was inferred based on the field of
“Subcellular location” of proteins provided in the database of UniProtK B, or on the Gene
Ontology (GO) Cellular Component annotations of proteins. In GO annotations, the proteins
annotated with GO terms containing the case-insensitive words of “ membrane” were
considered to be located on the membrane; those annotated with GO terms containing the
case-insensitive words of “cell outer membrane” were considered to be located on the outer

membrane; those annotated with GO terms containing the case-insensitive words of “cell
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inner membrane”, “cell membrane” or * plasma membrane” were considered to be located on
the plasma membrane; and those annotated with GO terms of “ bacterial-type flagellum hook”

were considered to be located in the flagellum.

Analysisof structural features of PPRs

The transmembrane structures of the PPRs were derived from the field of “Transmembrane’
of proteinsin the database of UniProtk B. Besides, the TMHMM Server (v.2.0) @ was used
to predict the transmembrane helix of the PPRs. The Pfam domainsincluded in the PPRs were
derived from the field of “Pfam” of proteinsin the database of UniProtK B. Besides,

InterProScan (version 5) 2% was used to identify Pfam domains in PPRs.

Functional enrichment analysis

The GO function and KEGG pathway enrichment analysisfor the E. coli PPRs were
conducted with the functions of enrichGO() and enrichK EGG() in the package

“clusterProfiler” (version 3.10.0) " in R (version 3.5.1).

PPI network analysis

The E. coli PPl network (PPIN) was built based on the PPIs of the E. coli str. K-12 substr.
MG1655 (NCBI taxon-Id: 511145) downloaded from the STRING database 1*® on May 16,
2019. Only the PPIs with median confidence (combined score = 400) were kept for analysis.
The PPIN included 175,845 PPIs, and 4,121 proteins which could be mapped to UniProt
identifiers. The number of membrane proteins, plasma membrane proteins, outer membrane
proteins and phage receptor proteins included in the PPIN was 1519, 1183, 120 and 15,

respectively. Two measures were used to analyze the importance of proteinsin the E. coli


https://doi.org/10.1101/727024
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/727024; this version posted August 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

PPIN. Thefirst isthe node degree, which isdefined as the number of connectionsthe node
has to other nodes in the PPIN; the other isthe node betweenness, which is defined asthe
number of shortest paths that passthrough the node. The degree and betweenness of each
protein in the PPIN were calculated with functions of degree() and betweenness() in the
package “igraph” (version 1.2.2) ! in R (version 3.5.1). The network was displayed with

Cytoscape (version 3.7.0) 18,

Analysisof the expression level of PPRs and other genesin E. coli

The expression level of PPRs and other genes in E. coli were obtained from LaCroix’s work
(29 (GEO accession number: GSE61327), during which the expressions of genes of wild-type
E. coli gtr. K-12 substr. MG1655 (the strain used for PPI analysis) under normal conditions
were measured by RNA-seq. The average expression level of each gene in two replicates was
used. The gene expression level was measured in reads per kilobase per million mapped reads

(RPKM).

Statistical analysis

All the statistical analysis was conducted in R (version 3.5.1) *, The wilcoxon rank-sum test
was conducted with the function of wilcox.test(). P-values < 0.05 were considered to be

statistically significant.

Results

Summary of phage-host receptor interactions
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To characterize the phage receptors, we manually curated a high-quality database of 355 pairs
of phage-host receptor interactions (detailsin Materials and methods), including 280 unique
viral species or sub-species from 11 viral families and 64 bacterial species. 88.9% of the
viruses included in the database were double-stranded DNA viruses, while the remaining
viruses were single-stranded DNA viruses (7.1%), double-stranded RNA viruses (1.4%),
single-stranded RNA viruses (1.4%) and unclassified viruses (1.2%). Viruses belonging to the
families of Siphoviridae, Podoviridae and Myoviridae were most abundant and accounted for
84% of all virusesin the database (Figure S1). The bacteriaincluded 48 Gram-negative
bacteria and 16 Gram-positive bacteria, and E. coli wasthe most frequently observed bacterial

species in the database which took part in 28% of phage-receptor interactions.

Multiple types of receptors were observed for phages, including proteins, sugar, acid and
bacterial structures such asflagellum, pilus and exopolysaccharide capsular. Sugars were
most frequently used by phages as receptors (49%), followed by proteins (33%), bacterial
structures (14%) and acid (4%). Most viruses (92%) used only one type of receptors. The
receptor usage was further analyzed for three largest viral families, i.e., Siphoviridae,
Podoviridae and Myoviridae. Virusesin these families had similar preferences towards
receptors, with sugar used mostly widely (Figure 1A). Interestingly, virusesinfecting
Gram-negative and Gram-positive bacteria had different preferences towards receptors. For
example, in the family of Siphoviridae, most viruses infecting Gram-negative bacteria used
proteins (blue) as receptors, and none of them used acid (cyan) as receptors; while most
viruses infecting the Gram-positive bacteria used sugars (red) as receptors, and none of them

used bacterial structures (yellow) as receptors.
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Figure 1. The receptor usage in three largest viral families (A) and the location of PPRs (B).

A total of 48 protein receptors were identified for the phages (Table S1). They were
distributed in 15 bacterial species, anong which E. coli had the largest number of protein
receptors (18/48) (Figure S2). Analysis of the association between phages and their protein
receptors showed 84% of phages used one specific receptor only (Figure S3). Next, the
protein receptor usage on the level of viral family was analyzed. For three largest viral
familiesin the database, the virusesin each of them used two or more sets of protein receptors
(Figure S3), suggesting that different viruses of the same family tend to use different
receptors. For example, in the family of Siphoviridae, atotal of 22 protein receptors were
used. On the contrary, some viruses of different families shared the same protein receptor. For
example, Phage 434 and Escherichiavirus T4, from the family of Siphoviridae and
Myoviridae respectively, both took the outer membrane porin C (ompC) (marked by a star in
Figure S3) asthe receptor in infecting the E. coli. Twenty protein receptors were used by
more than one virus (Figure S3). Especially, some proteins, such as ompC and ferrichrome

outer membrane transporter in E. coli, were used by more than five phages as receptors.
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L ocation of PPRs

We continued our study to analyze the location of PPRs (Figure 1B). Among PPRsin the
Gram-negative bacteria, 80% were located on the outer membrane, among which 12 receptors
had a transmembrane beta barrel and 2 receptors had a transmembrane helix, and the
remaining 20% were located on the plasma membrane or flagellum. Asfor five PPRsin the
Gram-positive bacteria, four of them were located in the plasma membrane, each of which
had six transmembrane helixes, and the rest was located in the S-layer, which isa

paracrystalline protein thin layer attached to the outermost portion of the cell wall.

PPRswerediversein structure

Next, we investigated the structural characteristics of PPRs by analyzing the protein domains.
The PPRs consisted of 69 domains based on the Pfam database (Table S2), which can be
categorized into 33 Pfam families. Especially, Gram-negative porin, TonB-dependent
Receptor and TonB-dependent Receptor Plug Domain were observed in more than five PPRs.
Comparison of the Pfam domains included in the PPRs and mammalian virus protein
receptors showed no overlap. Besides, little sequence homology was observed between PPRs

and mammalian virus protein receptors (data not shown).

Functional enrichment analysis of PPRsin E. coli

We next characterized the functions of PPRs in E. coli, since E. coli isthe most characterized
bacterial species, and as mentioned above, E. coli had most PPRs in our database (18/48)
while 12 of the remaining 30 PPRs in other species were homologs of PPRs in E. coli (Table

S3). The function enrichment analysis was conducted based on the databases of GO and
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Kyoto Encyclopedia of Genes and Genomes (KEGG). According to the results of GO analysis,
in the domain of Cellular Component, the PPRs in E. coli were mainly enriched in the outer
membrane and envelope; in the domain of Biological Process, the PPRs were mainly enriched
in GO terms related to transport, localization and virus's entry into host cells; in the domain of
Molecular Function, the PPRs were mainly enriched in GO terms related to binding, channel
and transporter activity. For the KEGG pathway, only the beta-L actam resistance and

Two-component system pathways were significantly enriched in the PPRsin E. cali.
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Figure 2. The GO and KEGG pathway enrichment analysis of PPRsin E. coli. Only the top

10 enriched GO terms were shown.

PPI analysis of PPRsin E. coli

Then, therole of PPRsin the E. coli PPIN was investigated. Firstly, an E. coli PPIN was
congructed which included 4,121 E. coli proteinsand 175,845 interactions (M aterials and

methods). To evaluate the role of proteinsin the E. coli PPIN, the degree of each protein was
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calculated, which is defined asthe number of connectionsthe protein hasto other proteinsin
the E. coli PPIN. Because the PPRsin E. coli were exclusively located on the outer membrane
(16/18) and the plasma membrane (2/18), the degrees of PPRs were compared to those of
other outer membrane and plasma membrane proteins. As was shown in Figure 3A, the
degrees of outer membrane proteins were slightly higher than those of plasma membrane
proteins, membrane proteins, and whole proteinsin E. coli. While the PPRs, which were part
of outer membrane and plasma membrane proteins, had a median of 124 interaction partners
in the PPIN (Figure 3A), which was 2 timesthat of outer membrane proteins, plasma

membrane proteins, membrane proteins and all proteinsin E. coli.

For robustness of the results, the node betweenness (another measure of node centrality in
network) of each protein was also calculated based on the E. coli PPIN. The results showed
the betweennesses of E. coli PPRs were significantly higher than those of other sets of

proteins (Figure $4), further demonstrating the importance of PPRsin E. coli PPIN.


https://doi.org/10.1101/727024
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/727024; this version posted August 6, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

A B
C

lex %% | * %k
O [+]
| %%k %k l * k% |* | * %%k o °
Q —_—
8 E 8 : o ——
© - " — —— ==
. ! w |
[} : . ]
2 | N - .
o <
@ o
© : 4
§ < i c
— 1 : e =
= : :
- i : 5
o :
o - o -3 o w -
% & & B/ & S
‘4 e i . 5
6,\0 ofo 04- 0)& Q- ®@ C‘O{o C‘O/, 6\0 O/\o CIO& /bG %4 ,’)@ 04 004,
%, @ %, %.% %.% N %, %%, % %%, %
O 2, S @ 5.8 % On 9, % e T 2
D @& [ % 5. ® %, By O "
% % o % $ e, e S
%, Y 0, o %y T 0y 4
" @ /"o fb ’{9 (2] ’b /‘-o
%, Y Y (Y
o
25 % % %

Figure 3. Digribution of the node degrees of PPRs in the E. coli PPIN (A) and the expression
levels of PPRsin E. coli (B), and its comparison to other sets of proteins, including E. coli
outer membrane proteins, plasma membrane proteins, membrane proteins and all E. coli
proteins. The expression level was measured in RPKM. Both the node degree and expression
level were transformed in natural logarithm for clarity. “***” “**” “* refer to p-values of

smaller than 0.001, 0.01, 0.05, respectively, in the Wilcoxon rank-sum test.

High expression of PPRsin E. coli

As viruses compete with host proteinsin binding to receptors, proteins with relatively high
expressions are supposed to be preferred by phages as receptors. Therefore, the expressions of
E. coli PPRs, and those of outer membrane proteins, plasma membrane proteins, membrane
proteinsand all proteinsin E. coli were collected and compared with each other (Materials

and methods). As shown in Figure 3B, the expressions of outer membrane proteins were
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slightly larger than those of plasma membrane proteins, membrane proteins and all proteinsin
E. coli. Asexpected, the expression level of PPRs was nearly 100% higher than that of outer
membrane proteins, with amedian of 675,299.5 RPKM (13.4 in transformed natural

logarithm).

Discussion

This study systematically analyzed the associations between phage and host receptors.
Multiple types of receptors were identified, including sugars, proteins, acid and bacteria
structures. Sugars and proteins are widely used by phages as receptors. Interestingly, the
receptor usage of phages in Gram-positive bacteriais different from that in Gram-negative
bacteria, for which a potential explanation is due to different cell-wall structures of the two
types of bacteria!®. For example, no viruses take acid as receptors when infecting the
Gram-negative bacteria, because there is no acid on the cell wall of the Gram-negative
bacteria; virusesinfecting the Gram-positive bacteria use a smaller ratio of proteins as
receptors than those infecting the Gram-negative bacteria, because there is few proteinsin the

cell wall of the Gram-positive bacteria.

The PPRs were systematically characterized by location, structure, function, protein-protein
interaction and gene expression. Similar to the mammalian virus protein receptors, the PPRs
were structurally diverse. They had no common protein domains with mammalian virus
protein receptors. For the functional enrichment analysis, besides the molecular function of

binding and biological process of viral entry into host cell which were also enriched in the
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human virus protein receptors!?®, the molecular functions of channel and transporter activity,
and the biological processes of transport and location, were enriched in PPRs in E. coli. This

suggests PPRs may be involved in transportation of viral genetic materials into host cells.

The PPRsin E. coli have much larger node degrees and betweennesses than other E. coli
proteins. Thisindicates the important roles of viral receptors in the host cells. In addition, the
expression level of E. coli RPRs is higher than other proteins, which can facilitate their
interactions with more proteins. These features are similar to those observed for the human
virus protein receptors which also have multiple interaction partners in the human PPIN and
are highly expressed in common human tissues®”. Considering the huge difference between
bacteria and mammals, and the diversity of phages and mammalian viruses used in this study
and previous studies'®, centrality in the host PPIN may be a common feature of viral host
receptors. Since viruses have to compete with host proteins for binding to the receptors, the
proteins with less interaction partners are supposed to be more suitable receptors for viruses.
Previously we hypothesized the virus receptor proteins are closely related to the “door” of the
host cell, so that viruses have to interact with them for entry into the host cell ?%. This
hypothesis is supported by the functional analysis of the PPRs in E. cali, asthey have
significantly enriched functions of channel and transporter activity. Actually, 13 of 18 PPRsin

E. coli belong to transporter, channel or porin proteins, which may facilitate viral entry.

Phage therapy, i.e., the therapeutic use of phagesto treat pathogenic bacterial infections, has
been considered as a promising strategy for treatment of drug-resistant bacterial infectionsin
human medicine, veterinary science, and agriculture *?. Better understanding of the

phage-host receptor interactions would promote the development and application of phage
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therapy. This study shows that phages can take multiple types of molecules as receptors.
Genetic modification of phages, such as recombination of receptor-binding protein domains
from multiple phages *>*!, may help them recognize novel types of receptors and broaden
the host range. Besides, most PPRs in Gram-negative bacteria are located on the outer
membrane. Considering the small number of outer membrane proteins, the ratio of receptor
proteinsis relatively high in the outer membrane proteins, which suggests phagestend to take
outer membrane proteins as receptors when infecting Gram-negative bacteria. This can help

identify PPRs in the drug-resistant bacteria.

Nevertheless, this study has several limitations. Firstly, the database of phage-host receptor
interactions, especially the PPRs, was till limited in its size due to the difficultiesin
identifying phage receptors. Fortunately, several common features were identified for the
PPRs, such as the structure diversity and centrality in PPIN. These features may help identify
novel PPRs. Secondly, the phage-host receptor interactions and PPRs used in this study were
biased towards the Gram-negative bacteria. Thus, more efforts are needed to identify the

interactions between phages and host receptors in Gram-positive bacteria.

In conclusion, this study systematically analyzed the phage-host receptor interactions and
characterized the PPRs. The PPRs were found to be structurally diverse, play a central rolein
PPIN and are highly expressed, which are similar to mammalian virus protein receptors.
These features could help development of effective methods for phage receptor identification.
This study can not only help understand the mechanisms underlying virus-host interactions,

but also help for development and application of phage therapy.
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