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Abstract

The Philippines suffered from a devastating outbreak of the coconut scale insect pest, Aspidiotus
rigidus Reyne inflicting significant economic losses to the country’s coconut industry. Despite the
massive outbreak, little is known about the population and dispersal history of this invasive pest
in the Philippines. Here, we examined the genetic diversity, structure and demographic history of
A. rigidus sampled from localities with reported outbreaks from 2014 to 2017. We analyzed the
genetic structure of seven A. rigidus outbreak populations using mitochondrial COIl and nuclear
EF-1a markers. Both markers and all methods of population genetic structure analyses indicate
clear differentiation among the A. rigidus populations separating the northern (i.e., Luzon
provinces) from the southern (i.e., Basilan and Zamboanga Peninsula) regions of the Philippines.
Very low or no genetic differentiation was observed within and amongst the populations per
geographic region indicating two unrelated outbreak events of the pest originating from two
genetically uniform populations isolated in each respective region. Historical data supports the
resurgence of an established A. rigidus population in the south which could have been driven by
sudden climatic changes or human-induced habitat imbalance. Given no historical information,
we disregard the possible resurgence from the northern population and infer that the outbreak
could have resulted from a recent introduction of a non-native A. rigidus in the region. Our study
provides valuable information on the genetic differentiation of the two A. rigidus groups that would
be useful for developing and implementing biological control strategies against this pest in the

Philippines.

Keywords: Coconut scale insect; Aspidiotus rigidus Reyne; genetic structure; insect outbreak;

mitochondrial and nuclear markers
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Introduction

Insect pest outbreaks are characterized by an explosive increase in the abundance of an
insect population occurring over a relatively short period (Berryman, 1987). Large and rapid
alterations in the environment or changes in the intrinsic genetic or physiological properties
of individual organisms within a population can result to the resurgence of insect pests to
outbreak-level status (Risch, 1987; Ziska et al., 2011). Likewise, insect outbreaks may occur
when non-native species have no or few inefficient natural enemies, and if the local beneficial
species are unable to suppress them in the area of introduction (Handley et al., 2011; Strayer
et al., 2017). The invasive success of pest species may be determined by both the biology
and environmental factors promoting its spread in a suitable area (Prentis et al., 2008;
Renault et al., 2018). A better understanding of the source population, route and the
mechanism of spread could provide valuable insights for designing and implementing
quarantine strategies to understand the invasion success and decline of outbreak populations

(Handley et al., 2011; Kobayashi et al., 2011).

In 2009, the Philippines suffered a devastating coconut scale insect (CSI) outbreak
damaging the coconut palms on the provinces of Luzon (northern region of the Philippines)
and currently on some areas in Mindanao (southern region) inflicting significant economic
losses to the country’s coconut industry. The diaspidid insect Aspidiotus rigidus Reyne
(Hemiptera: Diaspididae) resides on the underside of the leaf, blocks the stomata and sucks
plant sap strongly reducing the plant’s photosynthetic activity leading to a characteristic
yellowing and drying of the leaves. Severely infested coconut palms dry up and die within six
months or less (Reyne, 1948). Prior to the renewed interest on A. rigidus due to the outbreak
in the Philippines, historical and observational data on the spread of the invasive coconut
pest has been scarce. Other than the most recent observation published by Watson et al.
(2015), the last known study on the biology of this invasive species was conducted by Reyne

(1947, 1948) with full documentation of the outbreak in the island of Sangi (North Celebes)
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in Indonesia from mid-1925 to 1928. The recorded past outbreak by Reyne (1948) naturally
comes to an end after two years due to reduced female fecundity and high mortality of
immature stages (Reyne, 1948). The decrease in A. rigidus population may have been
associated with natural enemies that regulated the pest population overtime. However, the
outbreaks from the localities infested with A. rigidus in the Philippines took longer times to
recover (Watson et al., 2015), e.g., six years for the northern province of Batangas, or still

on-going for the southern areas, i.e., Basilan, Zamboanga Peninsula, and the Caraga Region.

The introduction of A. rigidus to the Philippines, and its spread was believed to be
either by wind or by accidental transportation of infested plants, coconut planting materials
and products (Watson et al., 2015). Infestation in the northern provinces of the Philippines
spread like wildfire from its initial local report in Tanauan, Batangas in the Calabarzon Region
(Luzon) from 2009 reaching nearby coconut planted areas throughout the region. These
outbreaks lasted for at least three years (Watson et al., 2015) and were reported manageable
by 2015 (Manohar, 2015). The more recent outbreak in the southern region, specifically in
Basilan, started early 2013 (Watson et al., 2015) implying its direct connection with the
northern outbreak. However, given the means of spread by wind wherein crawlers are
dispersed from one area to another (Watson et al., 2015), it is highly improbable for the
infestation from the northern region to reach the infested southern islands moving pass other
provinces planted with coconut palms along the way. Also, transport of infested plants from
the northern provinces was highly unlikely given the national attention focused on quarantine
and management strategies against the spread of the coconut scale insect during the

outbreak (Javier, 2014; Manohar, 2015).

It is also likely that A. rigidus has been in the country as a minor pest and regulated
by natural enemies. Based on historical reports, Lever (1969) reported sightings of A. rigidus
in the Philippines, and Velasquez (1971) recounted that the pest was probably highly

confined in the southern part of the country. It was more likely that the source of the sighted
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A. rigidus came from the island of Sangi in Indonesia given its relative closeness to Mindanao.
In time, the immigrant A. rigidus could have established a resident population complemented
by natural enemies limiting its colonization outside the area of introduction. Changes in
anthropogenic, biotic interactions or climatic factors can influence a population’s rise to an
outbreak level (Wilby & Thomas, 2002; Ziska et al., 2011). The recent outbreak observed in
the southern part of the Philippines could have been caused by a sudden rise in the
abundance of the supposedly established A. rigidus population due to factors such as human-
induced habitat imbalance e.g., excessive use of pesticide affecting the natural enemies
controlling the pest population, or climate change such as prolonged dry spell which may

induce changes in the local biotic community.

Inference of the source population, route and the mechanism of spread of A. rigidus
in the Philippines needs further assessment and confirmation. Tracing the history of an
invasion or identifying the geographic origin of a pest population can be done by
characterizing population-level genetic variation using molecular markers (e.g., Rugman-
Jones et al., 2012; Kébé et al., 2016; Yang et al., 2017; Zhang et al., 2018). Sequencing
selected gene fragments, e.g., mitochondrial COI is a traditional population genetic tool
providing insights on dispersal pathways and population structure. The mitochondrial
cytochrome oxidase (mtCOI) gene and the nuclear protein-encoding gene - elongation factor
la (EF-1a) have been commonly used in studies investigating the origin (Provencher et al.,
2005; Andersen et al., 2009), or inference of phylogenetic relationships (Andersen et al.,

2010; Schneider et al., 2018) of various invasive diaspidid species.

Here, we aim to assess the population genetic structure and demography of the
outbreak populations of the CSI, A. rigidus in the Philippines. Given the historical
documentation of the pest in the southern region and the relatively extensive and rapid
spread but faster recovery of the infestations in the northern region compared to the southern

outbreaks i.e., Basilan and Zamboanga Peninsula, we hypothesize the presence of two
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distinct genetic groups for the outbreak events isolated within each geographic region. A
population genetics approach is a useful tool to examine whether the northern and southern
CSI outbreaks originated from immigrant or resident populations. To test the hypothesis, we
utilized sequences of the mitochondrial cytochrome oxidase (mtCOI) gene and the nuclear
protein-encoding gene - elongation factor 1a (EF-1a) to investigate the genetic structure and
diversity of A. rigidus populations from localities with documented outbreak-level infestations
in the Philippines from 2014 to 2017. Furthermore, we employed a coalescent genealogy
approach to provide additional evidence on the demographic relationship of the outbreak A.

rigidus populations between the northern and southern geographic regions in the Philippines.

Materials and Methods

Sample collection

Aspidiotus rigidus populations were sampled at seven localities with reported CSI outbreak
across the Philippines from 2014 to 2017 (Fig. 1). The northern localities sampled were Orani,
Bataan (BT; N14.769786, E120.454510), Nagcarlan (NG; N14.158930, E121.413670) and
San Pablo (SP; N14.056420, E121.333300), Laguna, Tanauan (TN; N14.098870,
E121.091330) and Talisay (TL; N214.093340, E121.010730) Batangas. The southern
localities are Basilan (BS; N06.707853, E121.983358) and Zamboanga (ZB; N06.993166,
E121.927963). See Table 1 for the more detailed information regarding location and sample
collection information. Co-existence of other Aspidiotus species on the coconut palms
sampled was possible, specifically A. destructor Sign. These two Aspidiotus species are
difficult to separate morphologically, but some features of the live specimen and biology can
be used to facilitate identification, i.e., the arrangement of eggs and egg skins relative to the
insect’s body, scale cover appearance, and cuticle attributes (Reyne, 1948; Watson et al.,

2015). Mature female scale insects were identified as A. rigidus based on the characteristic


https://doi.org/10.1101/726919
http://creativecommons.org/licenses/by-nc-nd/4.0/

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

bioRxiv preprint doi: https://doi.org/10.1101/726919; this version posted August 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

distribution of egg skins, which for this species occurs along the posterior or pygidial half of
the insect body (Fig. 2). Non-parasitized adult females were carefully selected from infested
leaves and preserved in 95% ethanol before the molecular analysis. To further confirm
identification and the purity of samples, A. rigidus collected from Orani, Bataan were reared
on Garcinia mangostana L. (mangosteen), a differential host of A. rigidus observed not to
support multiple generations of A. destructor in the rearing facility of the Biological Control
Research Unit (BCRU) located at De La Salle University (DLSU), Science and Technology
Complex, Binan City, Laguna. A phylogenetic analysis was employed (see the succeeding
molecular analysis below) to confirm the identifications of the field-collected samples by

comparing it to A. destructor and mangosteen-reared A. rigidus sequences.

DNA extraction, PCR amplification, and sequencing

Genomic DNA was extracted individually using the DNeasy Blood & Tissue Kit (QIAGEN,
Hilden Germany) following the manufacturer’s guideline. Extraction was performed by
crushing the insect body of each sample in individual microcentrifuge tubes using a
micropestle. DNA concentration and quality were assessed by spectrophotometry (NanoDrop
2000 spectrophotometer, ThermoScientific).

The mitochondrial COI gene was amplified using the forward primer PcoF1 designed
for scale insects by Park et al. (2010) and the standard reverse primer LepR1. The nuclear
gene EF-1a was amplified using the forward primer EF-1a by Morse and Normark (2006)
paired with the EF2 reverse primer (Palumbi, 1996). PCR reactions were performed in a 25
bl reaction containing 10x Buffer, 2.5 mM dNTP mixture, 25 mM MgClz, 10 pmol of each
primer, 1U of Taq DNA polymerase (TaKaRa Bio Inc.), and 2-50 ng of template DNA. PCR
thermocycling was performed in a T100™ Thermal Cycler (Bio-Rad). Following the conditions
from Park et al. (2011), the mtCOI gene was amplified with an initial denaturation step at

95°C for 5 min, followed by 5 cycles of 94°C for 40 s, annealing at 45°C for 40 s, extension
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at 72°C for 1 min and 10 s, and another 35 cycles of denaturation at 94°C for 40 s, annealing
at 51°C for 40 s, extension at 72°C for 1 min and 10 s, and a 5 min final extension at 72°C
after the last cycle. While, after an initial denaturation at 95°C, with a denaturation at 95°C
for 30 s and extension at 72°C for 2 min every cycle, a touch-down procedure was performed
for the amplification of the EF-1a gene following the protocol of Morse and Normark (2006)
in which the initial annealing temperature of 58°C was decreased by 2°C every three cycles
until a final temperature of 42°C was reached, then held for 18 cycles followed by a 5 min
final extension at 72°C. PCR products were visualized in 1.5% agarose gels stained with
Midori Green Direct (NIPPON Genetics Co. Ltd.), and cleaned using the QIAquick PCR
Purification Kit (QIAGEN, Hilden, Germany). Samples were sent to Eurofins Genomics
(Eurofins Genomics Co., Ltd.) for Sanger sequencing to produce both forward and reverse

fragments.

Genetic diversity and population structure

Sequences were assembled using CodonCode Aligner v. 5.1.5 (CodonCode Corporation).
Before the subsequent molecular analysis, the sequences were aligned via MAFFT v. 7.409
(Katoh & Standley, 2013), and the ambiguously aligned regions were excluded using GBlocks
0.91b (Castresana, 2002). Sequence polymorphisms for both mtCOI and EF-1a gene were
assessed. The number of variable sites (S) and haplotypes (h), average number of nucleotide
difference (k), haplotype diversity (Hd), and nucleotide diversity (Pi) of the two marker genes

were calculated in DnaSP v. 6.10.04 (Rozas et al., 2017).

The hierarchical analysis of molecular variance (AMOVA) was implemented in
Arlequin v. 3.5.2.2 (Excoffier & Lischer, 2010). Two geographic groups were defined: The
northern (Luzon) and the southern (Mindanao) groups prior to the analysis. Population

pairwise Fst was computed in Arlequin v. 3.5.2.2 using 1,000 permutations.
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Demographic inference

Tajima’s D and Fu's Fs statistic tests were estimated to infer demographic history and
dynamics in each population, for the two geographic groups, and for all populations grouped
together in Arlequin v. 3.5.2.2 for both mtCOI and EF-1a datasets. Also, Fu and Li’s D* and
F* test statistics were computed in DnaSP v. 5.0 to determine departures from the mutation-
drift equilibrium (Fu & Li, 1993). Parameters of demographic expansion such as the moment
estimators of time to the expansion Tau, effective population size before expansion (ThetaO,
6o), effective population size after expansion (Thetal, 6:) between the observed and
expected mismatches. The adjustment to a model of population expansion was estimated

from the sum of squared deviation (SSD) and the raggedness index (r) in Arlequin v. 3.5.2.2.

Gene flow analysis and median-joining networks of haplotypes

To test migration history between the two geographic groups, we calculated Bayes factors
from the marginal likelihoods estimated in MIGRATE v. 4.4.0 (Beerli, 2005; Beerli &
Palczewski, 2010) based on both mtCOI and EF-1a datasets. Migrate-n utilizes marginal
likelihoods to compare and order structured population models (Beerli & Palczewski, 2010).
The program provides estimates of historic gene-flow with the assumption that populations
have reached mutation-migration-drift equilibrium. We tested eight possible models of
migration history. Model 1 allows migration between the two groups, with the populations
assumed to exist since a very long time. Model 2 presents a migration from northern to
southern group, while model 3 presents vice versa with the populations assumed to exist
since a very long time. Model 4 was one panmictic population encompassing the northern
and southern groups. Model 5 allows divergence among populations within southern group
splitting from the northern group, and migration from north to south, with the northern group

existing for a long time and the southern group recently splitting off. Model 6 is a mirror image
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of model 5. Model 7 is similar to model 5 except that no interaction occurred between the two
groups after the split. Model 8 is the vice versa of model 7. Similar parameters were used to
run all models. A Bayesian search strategy was performed with the following parameters:
one long chain (10,000 trees) with a burn-in of 5,000 iterations. A static heating scheme with
4 chains was applied using temperature parameters set by default with a swapping interval
of one. Bayes factors were calculated via “BF” implemented in carlopacioni/mtraceR, a
package for analyzing migrate-n outputs in R v. 3.5.2. Log Bayes factors of all models were
calculated by comparing against the model that has the highest log-likelihood. The models

are ranked based on LBF and calculated model probability.

Median-joining (MJ) networks (Bandelt, Forster, & Rohl, 1999) for the two markers
were constructed to estimate the genealogical relationship in A. rigidus haplotypes via

PopART v. 1.7 (Leigh & Bryant, 2015).

Phylogenetic Analysis

Since no site variation was observed between the sequences in each population (except for
the EF-1a sequences from Basilan), six representative samples per population, a total of 48
mtCOIl sequences and 42 plus all 16 Basilan EF-1la sequences were chosen for the
phylogenetic analysis. Sequences of A. destructor collected from coconut palms, identified
based on the circular distribution of egg skins were selected as an outgroup (accession
number: XX000000 for mtCOI and XX000000 for EF-1a). The Akaike information criterion
corrected for sample size (AICc) was implemented to find the best fitting evolutionary model
for phylogenetic reconstruction via jModelTest v. 2.1.10 (Darriba et al., 2012). The
evolutionary model for the mtCOI sequences was TIM2+G, while TrNef was the model for
the EF-1a sequences. Maximum likelihood (ML) tree inference was performed in RAXML-NG

v. 0.5.1 (Kozlov at al., 2018) with 1,000 bootstrap replicates.
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Results

Genetic diversity and population structure

All samples identified based on the characteristic distribution of egg skins were confirmed as
A. rigidus by comparing the sequences with the A. rigidus reared on mangosteen and A.
destructor sequences. DNA sequence analysis of all the concatenated 647-bp mtCOI
sequences of 305 individuals from seven A. rigidus outbreak populations collected from 2014
to 2017 in the Philippines, with the mangosteen-reared samples revealed only two distinct
haplotypes (h), separated by 31 polymorphic sites (s). Haplotype diversity (Hd) was
calculated to be 0.050 +/- 0.005 SD. Average number of nucleotide difference (k) was 15.447
and nucleotide diversity (Pi) was 0.024 +/- 0.00025 SD. No sequence variation was found in
the sequences of samples collected per populations. Reared A. rigidus and samples collected
from the five populations of northern group, i.e., Orani, Bataan (BT), Nagcarlan (NG) and San
Pablo (SP), Laguna, Tanauan (TN) and Talisay (TL), Batangas are grouped into one
haplotype. Samples from the two populations of southern group, i.e., Basilan (BS) and
Zamboanga (ZB) were grouped together in the second mtCOI haplotype. For the nuclear EF-
la gene, 75 concatenated sequences of 1007-bp length generated 14 polymorphic sites (s),
with four haplotypes (h). Similar to the mtCOI sequences, all samples from the northern group
clustered into one haplotype. For the southern group, samples from ZB grouped into one
while BS were separated into two haplotypes. Haplotype diversity (Hd) was calculated to be
0.048 +/- 0.064 SD. Average number of nucleotide difference (k) was 5.707 and nucleotide
diversity (Pi) was 0.057 +/- 0.00061 SD. Except for BS, all other localities have no sequence

variation per locality.

Additionally, genetic diversity parameters have been calculated per geographic group.
The mtCOI sequences for both groups, and the EF-1a sequence of the northern group

showed no sequence variation. The EF-la sequences from northern group had three
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haplotypes with an estimated Hd of 0.688 +/- 0.039 SD, with a k value of 0.087 and a low Pi
value of 0.00086 +/- 0.00010 (Table 2). Both the median-joining haplotype network and ML
inferred trees present distinct two and four haplotypes for the mtCOIl and EF-1lo dataset,

respectively (Fig. 3 and S1).

AMOVA analysis indicated a highly structured genetic variability of 100% and 97.63%
variations among the groups for mtCOIl and EF-1a dataset, respectively. There were zero, or
a relatively small percentage of variation among populations within groups and within
populations. Except for the source of variation among populations within groups in the mtCOI
data, AMOVA showed that significant genetic structure occurred in A. rigidus at various
hierarchical levels (Table 3). Pairwise Fst values varied from 0.00 to 1.00 for mtCOI, and 0.00
to 0.98 for the EF-1a dataset. The differentiation between populations was only significant
when the comparison was between a northern and a southern population (Table S2).
Moreover, pairwise Fst values between the two groups showed a high value of 1.00 and 0.97
for the mtCOIl and EF-1a dataset, respectively. As shown in the ML trees (Fig. S1), the
phylogenetic analyses of both markers were consistent with the results of the analyses above.
Samples clustered according to their geographic group, with the BS and ZB EF-la

sequences in three separate nodes.

Demographic history and gene flow

For both datasets, neutrality tests computation for all samples showed positive values for
Tajima’s D, Fu and Li’'s D*, Fu’s Fs, and Fu and Li’'s F*, and were significant for the first two
parameters (Table 2). Estimations per population for these parameters were mostly zero or
positive but not significant, suggesting neither population expansion or purifying selection in
these populations. Estimations of the SSD and r parameters both returns zero values, except

for the EF-1a sequences from Basilan, with a significant SSD of 0.0283 (p < 0.001) and a not
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significant r of 0.2871. Other demographic parameters such as Tau, 6o and 6: index, are
presented in Table S1. Results of the analysis in migrate-n were presented in Table S3. We
found contrasting results for the two markers employed using Bayes factors to compare the
eight models of dispersal. For the mtCOI dataset, model 7 was ranked best with a probability

of 0.996. For the EF-1a dataset, model 3 was ranked best with a probability of 1.000.

Discussion

We aim to describe the genetic structure and demography of the coconut scale insect pest
A. rigidus from selected localities in the Philippines with reported heavy infestations collected
from 2014 to 2017. Both the mtCOIl and EF-1a markers and all methods of population
structure analyses revealed strong differentiation among the A. rigidus populations
separating the northern (Luzon) outbreak from the southern (Mindanao) region. The
separation of the populations by geographic region and the observed lack of genetic
variability within populations were represented graphically in the median-joining network and

phylogenetic analysis employed in the study.

Genetic structure of A. rigidus: Evidence of CSI “superclones” in the Philippines

Our results indicate the existence of two mitochondrial, and four nuclear haplotypes (one
northern and three southern). Genetic population clusters result from multiple source
populations contributing to an insect pest outbreak (Kobayashi et al., 2011). However, we
only observed two clusters separating the outbreak populations into their respective
geographic regions. Also, genetic variation was either absent or very low within and amongst
the populations of the northern and the southern region, implying that populations from each

region consisted of a single genotype. Hence, the presence of two distinct A. rigidus single
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genotype populations or “superclones” (Abbot, 2011) in the Philippines which supports our

hypothesis on the occurrence of two genetically unrelated outbreak events in the country.

Several aspidiotine insects have obligate parthenogenetic populations (Normark &
Johnson, 2011; Schneider et al., 2018). Accordingly, A. rigidus was observed to reproduce
parthenogenetically. Yellow winged adult males are seen in outbreak populations but the sex
ratio varies widely with males thought to be non-functional (Reyne, 1948; Watson et al., 2015).
Parthenogenetic reproduction has been thought to be the leading driver to the dominance of
“superclones” across space and time (Abbot, 2011). Similar to our findings, some invasive
insect pests have been found to depend on clonal population structures to successfully
invade and multiply in a broad range of niches. A highly specialized clonal genotype of a
strictly asexual population of the pea aphid, Acyrthosiphon pisum Harris in central Chile was
the main reason influencing the demographic success of the pest (Peccoud et al., 2008).
Cifuentes, Chynoweth, and Bielza (2011) found no genetic variation and identified one single
genetic type of the tomato leaf miner, Tuta absoluta Meyrick populations spreading through
South America reaching the Mediterranean Basin. Likewise, a well-established invasive
population of the oleander aphid, Aphis nerii B. de F. were reported having extremely low
genetic diversity in the southern United States, with a “superclone” population supposedly
obligatorily asexual (Harrison & Mondor, 2011). Caron, Ede and Sunnucks (2014) reported
two widespread, invasive and strictly parthenogenetic “superclones” of the sawfly, Nematus
oligospilus Forster dominating willows in three countries in the southern hemisphere i.e.,

South Africa, New Zealand, and Australia.

Demographic history: Resurgence of resident population or recent introduction?

From historical reports, Lever (1969) claimed that the more invasive coconut scale insect A.

destructor rigidus (now A. rigidus) reported by Reyne (1948) in Indonesia was also present
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in the Philippines. However, Velasquez (1971) did not disclose its occurrence across the
archipelago and reported a highly probable confinement of the pest in the southern region of
the country. Given this historical evidence, we assume that the southern populations have
been existing for a long time. It could have supported our dispersal model for the
mitochondrial sequences, except that the first reported sighting of A. rigidus in Tanauan,
Batangas, Luzon was in 2009 (Watson et al., 2015) with no historical evidence of resident
populations from the past. This suggests that the northern populations were most probably a

recent introduction event from a different source.

A Bayesian search strategy was performed to assess the migration history between
the northern and southern populations. However, our results from the mitochondrial and
nuclear datasets are difficult to reconcile. We reiterate that in this historic gene-flow analysis,
the two groups were assumed to have reached mutation-migration-drift equilibrium. Despite
the contrasting results, both models indicate that sequences from the two groups do not
belong to one panmictic population. However, given the difference in the divergence or
migration pattern of the models for each marker, we were inconclusive in inferring the source
of each outbreak population. Methodological assumptions (Knowles, Carstens & Keat, 2007)
in the program Migrate-n, just like other coalescent-based approaches did not take into
account another source of migrants, or that ancestral variation may come from populations
that were not considered in the analysis. Hence, the inference of the possible source of the

northern outbreak population needs further exploration.

On the other hand, lower genetic variation is expected for younger populations due to
founder effects and genetic bottlenecks during colonization and establishment (Hewitt, 2004).
Invasive or recently introduced species have been reported to exhibit reduced genetic
variation (e.g., Tsutsui et al., 2000; Navia et al., 2005). Introduced populations are usually
small so decreased genetic diversity is expected, and are often less variable than the source

population which contributes to the invasive success of the species (Cifuentes, Chynoweth
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& Bielza, 2011). The nuclear marker revealed the existence of three southern haplotypes,
with samples from Basilan having two distinct haplotypes. Genetic variation amongst the
populations was very low and the Zamboanga EF-1a sequences are differentiated against

Basilan with few nucleotide substitutions.

Genetic variation was already relatively low amongst the southern populations for the
nuclear DNA, but in comparison to the uniformly genetic northern population, it indicates that
the southern A. rigidus was relatively older in comparison to the northern region. Alongside
previous historical reports, the level of genetic variation between the geographic regions
supports our hypothesis of an existing resident A. rigidus population in the southern part of
the Philippines. Local insect populations have the potential to outbreak due to anthropogenic
and environmental changes (Berryman, 1987; Ziska et al., 2011). Similar observations on
insect pests have been reported in literature. A notable example was by Kobayashi et al.
(2011) which presented that the multiple nationwide outbreaks of the native populations of
the mirid bug, Stenotus rubrovittatus Matsumura in Japan were induced by changes in the
agro-ecosystem without invasion of populations from other areas. Populations of the pest
were also genetically isolated by distance separated into genetic clusters occupying spatially
segregated regions. Additionally, temporal fluctuations of pest insects in agroecosystems
could be driven by various factors (Risch, 1987). Pesticide application may induce the
resurgence of native pest insect populations by reducing the abundance of natural enemies
or by the removal of competitive species in the area (e.g., Lu et al., 2010; Bommarco et al.,
2011). Weather conditions can also trigger insect outbreaks due to the dramatic changes in
pest abundance. Ward and Aukema (2019) reported that the cyclic outbreaks of the native
tree-killing bark beetle, Dendroctonus simplex LeConte on tamarack in Minnesota, USA are
climate-driven specifically associated with warmer and dryer years, more likely in areas with
prior defoliation. Schwartzberg et al. (2014) simulated climate warming and observed

warming-induced phenological shifts in the forest tent caterpillar, Malacosoma disstria
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Hubner about the phenology of its host trees. These findings illustrate the mechanisms by

which anthropogenic and climatic changes induce outbreaks from native insect pests.

Conclusion

The current opinion for the origin of the coconut scale insect outbreak in the Philippines was
a recent introduction of A. rigidus from other countries of native range and spread via wind
dispersal or importation of infested planting material from the northern region to the south
given the timeline of the outbreak reports. However, our results indicate the separation of two
distinct groups, the northern and southern A. rigidus from the outbreak populations collected
from 2014 to 2017 in the Philippines. Very low or no genetic differentiation was observed
within and amongst the populations per geographic region indicating two unrelated outbreak
events of the pest species originating from two genetically uniform or “superclone”
populations currently isolated in each respective region. Historical data supports our
assumption on the current resurgence of an established A. rigidus population in the south.
Given no historical information supporting the existence of an established A. rigidus
populations in the northern region, we disregard the possible resurgence of a native
population and suggest that the outbreak possibly resulted from a recent introduction of a
non-native population. Assessment of the possible source population of the northern

outbreaks needs further exploration.

The use of mtCOI and the nuclear EF-1a markers showed no or very low genetic
differentiation for all A. rigidus populations. Other robust and more informative genetic
markers such as microsatellites could provide further genetic information in studying the
invasive coconut scale population. Further studies should also include more expansive
sampling, taking into consideration other possible sources of A. rigidus such as Indonesia

(Watson et al., 2015) and Vietnam (Schneider et al., 2018). This would provide a more robust
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and stringent population and gene flow estimation of A. rigidus in the Philippines.
Nevertheless, our findings provided an initial important genetic basis and information for
designing and implementing biological control strategies against the invasive CSI pest A.

rigidus in the Philippines.
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se5  Fig. 1. Map of the seven localities with reported Aspidiotus rigidus Reyne outbreak in the
ss6  Philippines from 2014 to 2017. The insect rearing facility of the Biological Control Research
s87  Unit of De La Salle University labeled “AR”. Dots indicate sampling locations. Northern
ses  localities: Orani, Bataan (BT), Nagcarlan (NG) and San Pablo (SP), Laguna, Tanauan (TN)
se9 and Talisay (TL), Batangas; Southern localities: Basilan (BS) and Zamboanga (ZB). See
s90 Table 1 for the more detailed information regarding location and sample collection
591  information.
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s04  Fig. 2. Representative adult female Aspidiotus rigidus Reyne from different outbreak areas:
595  (A) Southern Tagalog Region (Laguna, Cavite, and Batangas); (B) Orani, Bataan; (C)
s96  Basilan; and (D) Zamboanga City. The arrows point to the egg skins, which for this species
s97 IS characteristically distributed along the posterior or pygidial half of the insect body.
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599

600 Fig. 3. Median-joining network of the Aspidiotus rigidus Reyne populations from 305
601 individuals for the mtCOI gene (A), and 75 individuals for the protein-coding EF-1a gene (B),
602  showing location and frequency of haplotypes. Each circle represents an observed haplotype;
603  circle size indicates the number of individuals observed; the colors correspond to sampling
604 localities. The total number of mutations, Eta presented as hatch marks.
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Tables

Table 1. Sampling localities of the outbreak Aspidiotus rigidus Reyne populations. N, number of
individuals with mtCOI and EF-1a sequences; H, haplotypes indicated in Fig. 3.

. . mtCOl EF-la
Locality Code Collection Date
N H N H
DLSU-STC, Laguna? AR July2017 35 H: 8 Hi
Orani, Bataan BT September 2015 21 Ha 0 Hi
. Nagcarlan, Laguna NG January 2015 24 Hi 11 Ha
Northern Region
g San Pablo, Laguna SP December 2014 21 Ha 8 Hi
Talisay, Batangas TL December 2014 35 Hi 18 Hi
Tanauan, Batangas TN December 2014 29 Hi 8 Hi
. Isabela, Basilan BS November 2016 44 Ho 16  H2; Hs
Southern Region ) i
Zamboanga City, Zamboanga ZB April2017 96 H2 6 Ha

aAspidiotus rigidus Reyne reared on Garcinia mangostana L. at the DLSU-STC BCRU rearing facility from samples collected on the outbreak

population in Orani, Bataan.
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610 Table 2. Parameters of genetic diversity and demographic analysis of the two population groups.
Gene Group N1 S h Haplotype® k Hd (SD) Pi (SD) Tajima's D? Fu's Fs Fu and Li's D*2 Fu and Li's F*
Northern 165 — — Hi — — — — — — —
mtCOIl  Southern 140 — — H2 — — — — — — —
All 305 31 2 — 15.4465 0.4980 (0.005) 0.0239 (0.00025) 5.8452%** 59.5900 2.0420** 4.4298
Northern 583 — — Hi — — — — — — —
EF-la Southern 22 2 3 H2; Hs; Ha 0.8701 0.6880 (0.039) 0.0009 (0.00010) 1.3276 0.9930 0.8506 1.1274
All 75 14 4 — 5.7067 0.4770 (0.064) 0.0057 (0.00061) 2.8256** 12.8070 1.5502* 2.3755
aParameters with statistical test: * indicates p < 0.05; ** indicates p < 0.02; *** indicates p < 0.01.
PHaplotype data by DnaSP v. 6.10.04.
611
612  Table 3. Partitioning of genetic variation at different hierarchical levels. * indicates p < 0.05; ** indicates p < 0.01.
Gene Source of Variation d.f. Sum of squares Variance components Percentage of variation Fixation indices
Among groups 1 2347.869 15.50000 Va 100 Fcr=1.00000*
mtCOIl  Among populations within groups 6 0 0.00000 Vb 0 Fsc=0.00000
Within populations 297 0 0.00000 Vc 0 Fst=1.00000**
Among groups 1 202.010 6.45405 Va 97.63 Fcr=0.97630*
EF-la  Among populations within groups 5 5.199 0.09876 Vb 1.49 Fsc=0.63040**
Within populations 68 3.938 0.05790 Vc 0.88 Fs1=0.99124**
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