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Abstract: (149/150 words)

Recombinant protein production in microbial systems is well-established, yet half of these
experiments have failed in the expression phase. Failures are expected for
‘difficult-to-express’ proteins, but for others, codon bias, mRNA folding, avoidance, and G+C
content have been suggested to explain observed levels of protein expression. However,
determining which of these is the strongest predictor is still an active area of research. We
used an ensemble average of energy model for RNA to show that the accessibility of
translation initiation sites outperforms other features in predicting the outcomes of 11,430
experiments of recombinant protein production in Escherichia coli. We developed Tlsigner
and showed that synonymous codon changes within the first nine codons are sufficient to
improve the accessibility of translation initiation sites. Our software produces scores for both
input and optimised sequences, so that success/failure can be predicted and prevented by
PCR cloning of optimised sequences.

Introduction

Recombinant protein expression has numerous applications in biotechnology and biomedical
research. Despite extensive refinements in protocols over the past three decades, half of the
experiments have failed in the expression phase (http://targetdb.rcsb.org/metrics/). Notable
problems are the low expression of ‘difficult proteins’ such as membrane proteins, and the
poor growth of the expression hosts, which may relate to the toxicity of heterologous
proteins® (reviewed in detail elsewhere®?). If these issues are factored out, we expect a
strong correlation between mMRNA and protein levels. However, this assumption
oversimplifies the complexity of translation and turnover of biomolecules because mMRNA
abundance can only explain up to 40% of the variation in protein abundance*™.
Furthermore, the strong promoters used in expression vectors do not always lead to a
desirable level of protein expression™.

For Escherichia coli, two main models were proposed to explain the low correlation between
MRNA and protein levels, which are based on either codon or mRNA folding analysis.
Codon analysis measures a bias in codon usage using codon adaptation index (CAI)*? or
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tRNA adaptation index (tAl)**'* whereas mRNA folding analysis predicts the presence of
RNA secondary structures and their folding stability. Codon usage bias is thought to
correlate with tRNA abundance, translation efficiency and protein production®®™® but its
usefulness has been questioned upon'?. In contrast, many findings support the model
based on mMRNA folding in which the stability of RNA structures around the Shine-Dalgarno
sequence and/or translation initiation sites inversely correlates with protein
expression’’82°-2  We recently proposed a third model in which the avoidance of
inappropriate interactions between mRNAs and non-coding RNAs has a strong effect on
protein expression®. The roles of these models in protein expression is still an active area of
research.

The common algorithms of gene optimisation samples synonymous protein-coding
sequences using ‘fitness’ models based on CAI, tAl, mRNA folding, and/or G+C content
(%)*®. However, these ‘fitness’ models are usually based on some of the above findings
that relied on either endogenous proteins, reporter proteins or a few other proteins with their
synonymous variants. It is unclear whether these features are generalisable to explain the
expression of various heterologous proteins. To address this question, we studied multiple
large datasets across species in order to extract features that allow us to predict the
outcomes of 11,430 experiments of recombinant protein expression in E. coli. With this
information, we propose how such features can be exploited to fine-tune protein expression
at a low cost.

Results

Accessibility of translation initiation sites strongly correlates with protein abundance
To explore new features that could explain the expression of heterologous proteins, we first
examined an E. coli expression dataset of green fluorescent protein (GFP) fused in-frame
with a library of 96-nt upstream sequences (n=244,000)*°. We clustered these 96-nt
upstream sequences using CD-HIT-EST*3, giving rise to 14,425 representative sequences.
We calculated the accessibility that represents the opening energy for all possible
sub-sequences of these sequences (see Methods). For each sub-sequence region, we
examined the correlation between the opening energy and GFP levels. We found that the
opening energy of translation initiation sites, in particular from the nucleotide positions —30 to
18 (-30:18), showed a maximum correlation with protein abundance (Fig 1A; R;=-0.65,
P<2.2x107'°). This is stronger than the correlation between the minimum free energy —30:30
and protein abundance, which was previously reported as the highest rank feature (Fig 1A,
R.=0.51, P<2.2x107*°). The P-values of multiple testing were adjusted using Bonferroni's
correction and reported to machine precision. The datasets used and results were
summarised in Supplementary Table S1.

We repeated the analysis for a dataset of yellow fluorescent protein (YFP) expression in
Saccharomyces cerevisiae®. This dataset corresponds to a library of 5UTR variants, in
which the 10-nt sequences preceding the YFP translation initiation site were randomly
substituted (n=2,041). In this case, the opening energy —7:89 showed a stronger correlation
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91 with protein abundance than that of the minimum free energy —15:50 reported previously
92  (Fig 1B; R;=—0.55 versus 0.46).
93
94  To examine the usefulness of accessibility in complex eukaryotes, we analysed a dataset of
95  GFP expression in Mus musculus®. The reporter library was originally designed to measure
96  the strength of translation initiation sequence context, in which the 6- and 2-nt sequences
97  upstream and downstream of the GFP translation initiation site were randomly substituted,
98 respectively (n=65,536). Here the opening energy —8:11 showed a maximum correlation with
99  expressed proteins, which again, is stronger than that of the minimum free energy —30:30
100 (Fig 1C; R;=-0.28 versus 0.12).
101
102 Taken together, our findings suggest that the accessibility of translation initiation sites
103 strongly correlates with protein abundance across species. Interestingly, our findings also
104  suggest that E. coli tends to have a longer accessible 5’'UTR region than that of S. cerevisiae
105  and H. sapiens (=30 versus -7 and —8; see Fig 1). This can be explained by the presence of
106 the Shine-Dalgarno sequence® at the region —13:-8, which should be accessible to recruit
107 ribosomes.
108
109
110 Accessibility predicts the outcome of recombinant protein expression
111 We investigated how accessibility performs in the real world in prediction of recombinant
112 protein expression. For this purpose, we analysed 11,430 expression experiments in E. coli
113 from the ‘Protein Structure Initiative:Biology’ (PSI:Biology)®**°. These PSI:Biology targets
114 were expressed using the pET21_NESG expression vector that harbours the T7lac inducible
115 promoter and a C-terminal His tag*®.
116
117 We split the experimental results of the PSI:Biology targets into protein expression 'success'
118  and 'failure' groups (n=8,780 and 2,650, respectively; see Supplementary Fig S2). These
119 PSI:Biology targets spanned more than 189 species and the failures are representative of
120 various problems in heterologous protein expression. Only 1.6% of the experiments belong
121 to homologous protein expression, which is negligible (n=179; see Supplementary Fig S2).
122
123 We calculated the opening energy for all possible sub-sequences of the PSI:Biology targets
124 as above (Fig 2). For each sub-sequence region, we used the opening energy levels to
125 predict the expression outcome and computed the prediction accuracy using the area under
126 the receiver operating characteristic curve (AUC; see Fig 2C). A closer look into the
127  correlations and AUC scores calculated for the sub-sequence regions reveals a strong
128 accessibility signal of translation initiation sites (Fig 2B and C, Cambray’s GFP and
129 PSI:Biology datasets, respectively). Although the sequences of the Cambray’'s GFP and
130 PSI:Biology datasets are different, we reasoned that the correlations and AUC scores can be
131 compared by the sub-sequence regions that are in common (see Fig 2A for an example of a
132 sub-sequence region). Based on this idea, we matched the correlations and AUC scores by
133 sub-sequence region and confirmed that sub-sequence regions that have strong correlations
134 are likely to have high AUC scores (Fig 2D). In contrast, the sub-sequence regions that have
135  zero correlations are not useful for predicting the expression outcome (AUC approximately
136 0.5).
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137

138 We then asked how accessibility manifests in the endogenous mRNAs of E. coli, for which
139 we studied the proteomics dataset of 3,725 proteins consolidated in the PaxDb*. As
140  expected, we observed a similar accessibility signal, with the region —25:16 correlated the
141 most with protein abundance (Fig 2E). However, the correlation was rather low (R=-0.17,
142 P<2.2x107*%), which might be due to the limitations of mass spectrometry®®*%. Furthermore,
143 the endogenous promoters have variable strength, which gives rise to a broad range of
144 mRNA and protein levels*“!, Taken together, our results show that the accessibility signal of
145 translation initiation site is surprisingly consistent across various datasets analysed
146 (Supplementary Fig S1 and Fig 2).

147

148

149 Accessibility outperforms other features in prediction of recombinant protein
150 expression

151 To choose an accessibility region for subsequent analyses, we selected the top 200 regions
152 from the above correlation analysis on Cambray’s dataset (Fig 2B) and ranked their Gini
153 importance scores in prediction of the outcomes of the PSI:Biology targets. The region
154  -24:24 was ranked first, which is nearly identical to the region —23:24 with the top AUC
155  score (Fig 2C, AUC=0.70). We therefore used the opening energy at the region —24:24 in
156  subsequent analysis.

157

158  We asked how the other features perform compared to accessibility in prediction of
159 heterologous protein expression, for which we analysed the same PSI:Biology dataset. We
160  first calculated the minimum free energy and avoidance at the regions —-30:30 and 1:30,
161 respectively. These are the local features associated with translation initiation rate. We also
162 calculated CAI*?, tAI*?, codon context (CC)*, G+C content (%), and Ixnos scores*. CC is
163 similar to CAl except it takes codon-pair usage into account, whereas the Ixnos scores are
164  translation elongation rates predicted using a neural network model trained with ribosome
165  profiling data. These are the global features associated with translation elongation rate. The
166 AUC scores for the local features were 0.70, 0.67 and 0.62 for the opening energy, minimum
167  free energy and avoidance, respectively, whereas the global features were 0.58, 0.57, 0.54,
168  0.54 and 0.51 for Ixnos, G+C content (%), CAIl, CC and tAl, respectively (Fig 3A). The local
169  features outperform the global features, suggesting that effects on translation initiation can
170 predict the outcome of heterologous protein expression. Our findings support previous
171 reports that the effects on translation initiation are rate-limiting'"* which, interestingly,
172 correlate with the binary outcome of recombinant protein expression (Fig 3B). Importantly,
173 accessibility outperformed all other features.

174

175  To identify a good opening energy threshold, we calculated positive likelihood ratios for
176 different opening energy thresholds using the cumulative frequencies of true negative, false
177 negative, true positive and false positive derived from the above ROC analysis (Fig 4, top
178  panel). Meanwhile, we calculated the 95% confidence intervals of these positive likelihood
179 ratios using 10,000 bootstrap replicates. We reasoned that there is an upper and lower
180  bound on translation initiation rate, therefore the relationship between translation initiation
181 rate and accessibility is likely to follow a sigmoidal pattern. We fit the positive likelihood
182 ratios into a four-parametric logistic regression model (Fig 4). As a result, we are 95%
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183 confident that an opening energy of 10 or below at the region —24:24 is about two times
184  more likely belongs to the sequences which are successfully expressed than those that
185  failed.

186

187

188  Accessibility can be improved using a simulated annealing algorithm

189  The above results suggest that accessibility can, in part, explain the low expression problem
190  of heterologous protein expression, we sought to exploit this idea in gene optimisation. We
191 developed a simulated annealing algorithm to maximise the accessibility at the region
192 =24:24 using synonymous codon substitution (see Methods). Previous studies have found
193 that full-length synonymous codon-substituted transgenes may produce unexpected results,
194 in particular a reduction in mMRNA level****** Therefore, we sought to determine the
195  minimum number of codons needed for synonymous substitutions in order to achieve near
196 optimum accessibility. For this purpose, we used the PSI:Biology targets that failed to be
197  expressed. As a control, we first applied our simulated annealing algorithm such that
198  synonymous substitutions can happen at any codon of the sequences except the start and
199  stop codons (see Methods). Although full-length synonymous codon substitution was
200  allowed, the changes may not necessarily happen to all codons due to the stochastic nature
201 of our optimisation algorithm. Next, we constrained synonymous codon substitution to the
202 first 14 codons and applied the same procedure (Supplementary Fig S3). Therefore, the
203 changes may only occur at any or all of the first 14 codons. We repeated the same
204 procedure for the first nine and also the first four codons. Thus a total of four series of
205  codon-substituted sequences were generated. We then compared the distributions of
206 opening energy —24:24 for these series using the Kolmogorov-Smirnov statistic (D,; see Fig
207 5A). The distance between the distributions of the nine and full-length codon-substituted
208 series was significantly different yet sufficiently close (D,;=0.09, P=3.3 x10?®), suggesting

209  that optimisation of the first nine codons is sufficient in most cases to achieve an optimum
210 accessibility of translation initiation sites. We named our software as Translation Initiation
211 coding region designer (Tlsigner), which by default, allows synonymous substitutions up to
212 the first nine codons.

213

214 We asked to what extent the existing gene optimisation tools modify the accessibility of
215  translation initiation sites. For this purpose, we first submitted the PSI:Biology targets that
216  failed to be expressed to the ExpOptimizer webserver from NovoPro Bioscience (see
217 Methods). We also optimised the PSI:Biology targets using the standalone version of Codon
218 Optimisation OnLine (COOL)®. We found that both tools increase accessibility indirectly
219 even though their algorithms are not designed as such (i.e., the 5’UTR sequence is hot taken
220 into account). In fact, a purely random synonymous codon substitution on these PSI:Biology
221 targets using our own script resulted in a similar increase in accessibility (Fig 5B). These
222 results may explain some indirect benefits from the existing gene optimisation tools.

223

224

225

226

227

228
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229 Discussion

230  Our findings show that the accessibility of translation initiation sites is the best predictor of
231 heterologous protein expression in E. coli, as originally proposed in the 1970s/80s*.
232 Increasing the accessibility of the 5' region, including the Shine-Dalgarno sequence,
233 facilitates the recruitment of ribosomes and therefore increases the translation initiation rate
234 and protein level. In a landmark study, Salis et al. designed a total of 132 synthetic ribosome
235  binding sites using minimum free energy models®®. They found that weakly structured
236 ribosome binding sites result in high red fluorescent protein levels. This was supported by
237 recent studies using the endogenous folA and adk genes*’ and a dual-reporter system in E.
238  coli*. These studies, and many others, support our finding that optimisation of the
239 accessibility of translation initiation sites is a key to improve heterologous protein production.
240

241 Previous studies have used minimum free energy models to define the accessibility of a
242 region of interest®®*’“®, However, we have discovered that the opening energy is a better
243 choice for modelling accessibility (see Fig 1A for example). Opening energy is an ensemble
244 average of energy that takes into account of suboptimal RNA structures that are not reported
245 by minimum free energy models by default***°. Currently, the modelling of accessibility using
246 opening energy is largely used for the prediction of RNA-RNA intermolecular interactions, for
247  example, as implemented in RNAup and IntaRNA®-*2, Our study has shown that this
248  approach can be used to identify the key accessibility regions that are consistent across
249 multiple large expression datasets. We have implemented our findings in Tisigner
250  webserver, which currently supports recombinant protein expression in E. coli and S.
251 cerevisiae (optimisation regions —24:24 and -7:89, respectively; see Fig 1). An independent
252 yet similar implementation is available in XenoExpressO webserver with the purpose of
253 optimising protein expression for an E. coli cell-free system®. The authors showed that an
254 increase in accessibility of a 30 bp region from the Shine-Dalgarno sequence enhances the
255  expression level of human voltage dependent anion channel, which supports our timely
256 findings.

257

258  The strengths of our approach (implemented in the TlIsigner webservice and software tool)
259 are four-fold. Firstly, the likelihood of success or failure can be assessed prior to running an
260  experiment. Users can compare the opening energy calculated for the input and optimised
261 sequences and the distributions of the 'success' and 'failure' of the PSI:Biology targets. We
262  also introduced a scoring scheme to score the input and optimised sequences based upon
263 how likely they are to be expressed (Fig 4; also see Methods). Secondly, optimised
264  sequences can have up to the first nine codons substituted (by default), meaning that gene
265  optimisation using a standard PCR cloning method is feasible. For cloning, we propose a
266 nested PCR approach, in which the final PCR reaction utilises a forward primer designed
267  according to the optimised sequence® (Fig 5C). Thirdly, the cost of gene optimisation can be
268 reduced dramatically as gene synthesis is replaced with PCR using our approach. This
269  enables high-throughput protein expression screening using the optimised sequences,
270  generated at a low cost. Finally, tunable expression is possible, i.e. high, intermediate or
271 even low expression 5' codon sequences can be designed, allowing for more control over
272 heterologous protein production. Although our study focuses largely on the expression of
273 recombinant proteins without an N-Terminal fusion tag, our findings might give meaningful
274 insights to other systems.
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275 Methods

276 Sequence features analysis

277 Minimum free energy, opening energy and avoidance were calculated using RNAfold,
278  RNAplfold and RNAup from ViennaRNA package (version 2.4.11), respectively*9->1%558,
279 RNAfold was run with default parameters. For RNAplfold, sub-sequences were generated
280  from the input sequences to calculate opening energy (using the parameters -W 210 -u 210).
281 For RNAup, we examined the stochastic interactions between the region 1:30 of each mRNA
282 and 54 non-coding RNAs (using the parameters -b -0). RNAup reports the total interaction
283 between two RNAs as the sum of energy required to open accessible sites in the interacting
284 molecules AG, and the energy gained by subsequent hybridisation AG,*. For the

285  interactions between each mRNA and 54 non-coding RNAs, we chose the most stable
286 MRNA:ncRNA pair to report an inappropriate mRNA:ncRNA interaction, i.e. the pair with the
287 strongest hybridisation energy, (AG,)
288

289 CAl, tAl and CC were calculated using the reference weights from Sharp and Li*?, Tuller et
290  al.*? and Ang et al.**, respectively. Translation elongation rate was predicted using Ixnos**
291 trained with ribosome profiling data (SRR7759806 and SRR7759807)°°. See Supplementary
292  Table S1 for the datasets used in this study.

293

294

295  Tisigner

296 Finding a synonymous sequence with a maximum accessibility is a combinatorial problem
297  that spans a vast search space. For example, for a protein-coding sequence of nine codons,
298  assuming an average of 3 synonymous codons per amino acid, we can expect a total of
299 19,682 unique synonymous coding sequences. This number increases rapidly with
300 increasing number of codons. Heuristic optimisation approaches are preferred in such
301 situations because the search space can be explored more efficiently to obtain nearly
302  optimal solutions.

303

304  To optimise the accessibility of a given sequence, Tlsigner uses a simulated annealing
305  algorithm®-3, a heuristic optimisation technique based on the thermodynamics of a system
306  settling into a low energy state after cooling. A simulated annealing algorithm has been used
307  to solve several combinatorial optimisation problems in bioinformatics. For example, we
308  previously applied this algorithm to align and predict non-coding RNAs from multiple
309  sequences®. Other studies use this algorithm to find consensus sequences® and

310  optimise the ribosome binding sites® and mRNA folding® using minimum free energy
311 models.

312

313 According to statistical mechanics, the probability p, of a system occupying energy state

min *

314 E ,,with temperature T, follows a Boltzmann distribution of the form e £/ | which gives a set
315  of probability mass functions along every point i in the solution space. Using a Markov

316 chain sampling, these probabilites are sampled such that each point has a lower
317  temperature then the previous one. As the system is cooled from high to low temperatures (
318 T - 0), the samples converge to a minimum of E, which in many cases might be the global

319 minimum®. A frequently used Markov chain sampling technique is Metropolis-Hastings
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320 algorithm in which a ‘bad’ move E, from initial state E, such that E, > E,, is accepted if
321 R(0,1) > p,/p,,where R(0, 1) is a uniformly random number between 0 and 1.

322

323 In our implementation, each iteration consists of a move that may involve multiple
324 synonymous codon substitutions. The algorithm begins at a high temperature where the first
325  move is drastic, synonymous substitutions occur in all replaceable codons. At the end of the
326 first iteration, a new sequence is accepted if the opening energy is smaller than that of the
327 input sequence. However, if the opening energy of a new sequence is greater than that of
328  the input sequence, acceptance depends on the Metropolis-Hastings criteria. The accepted
329  sequence is used for the next iteration, which repeats the above process. As the
330  temperature cools, the moves get milder with fewer synonymous codon changes
331 (Supplementary Fig S3). Simulated annealing stops upon reaching a near optimum solution.

332

333 For the web version of Tlsigner, the default number of replaceable codons is restricted to the
334 first nine codons. However, this default setting can be reset to range from the first four to
335  nine codons, or the full length of the coding sequence. Furthermore, Tlsigner runs multiple
336 simulated annealing instances, in parallel, to obtain multiple possible sequence solutions.
337  There is a possibility to select tunable expression levels when the T7lac promoter is selected
338  (as the expression scores were calculated based on the PSI:Biology dataset; see below).
339 Among the solutions, the sequence that matches most closely to the users’ selected target
340  expression score is chosen as the optimum. The option for tunable expression is not
341 available for custom UTRs, the sequence with minimum opening energy is chosen as the
342 optimum.

343

344 We allow users to select desirable target expression scores for the experiments using the
345  T7lac inducible promoter. To implement this criterion, the posterior probabilities of success
346 for input and optimised sequences are evaluated using the following equations from
347 Bayesian statistics:

348

349 positive posterior odds = prior odds x fitted positive likelihood ratio Q)

positive posterior odds (2)
(1 + positive posterior odds)

350 positive posterior probability =
351

352  The fitted positive likelihood ratios in equation (1) were obtained from the following
353  4-parametric logistic regression equation:

354

. ops . . . —d
355 fitted positive likelihood ratio = d + ™ asi,,,ve,‘fkec,,.,mdrm)b (3)
356

357  with parameters a, b, ¢, and d. The prior probability was set to 0.49, which is the proportion
358  of ‘Expressed’ (n=21,046) divided by ‘Cloned’ (n=42,774) of the PSI:Biology targets reported
359 as of 28 June 2017°%. Posterior probabilities were scaled as percentages to score the input
360  and optimised sequences.

361

362  The presence of terminator-like elements® in the protein-coding region may result in
363  expression of truncated mRNAs due to early transcription termination. Therefore, we
364  implemented an optional check for putative terminators in the input and optimised
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365  sequences by cmsearch (INFERNAL version 1.1.2)°® using the covariance models of
366  terminators from RMfam® ", We also allow users to filter the output sequences for the
367 presence of restriction sites. Restriction modification sites (Aarl, Bsal, and BsmBl) are
368  avoided by default.

369

370

371 Sequence optimisation

372 We submitted the PSI:Biology targets that failed to be expressed (n=2,650) to the
373 ExpOptimizer webserver from NovoPro Bioscience
374 (https://www.novoprolabs.com/tools/codon-optimization). A total of 2,573 sequences were
375  optimised. The target sequences were also optimised using a local version of COOL? and
376 Tlsigner using default settings. We also ran a random synonymous codon substitution as a
377  control for these 2,573 sequences.

378

379

380  Statistical analysis

381  AUC and Gini importance scores were calculated using scikit-learn (version 0.20.2)"*. The
382  95% confidence intervals for AUC scores were calculated using DelLong’s method™.
383 Spearman’s correlation coefficients and Kolmogorov-Smirnov statistics were calculated
384  using Pandas (version 0.23.4)" and scipy (version 1.2.1)"*"®, respectively. Positive likelihood
385  ratios with 95% confidence intervals were calculated using bootLR package’®’’. The
386 P-values of multiple testing were adjusted using Bonferroni's correction and reported to
387 machine precision. Plots were generated using Matplotlib (version 3.0.2)”® and Seaborn
388  (version 0.9.0)°.

389

390

391 Code and data availability

392 Our code and data can be found in our GitHub repository
393 (https://github.com//Gardner-BinfLab/Tlsigner_paper_2019). These include the scripts and
394 Jupyter notebooks to reproduce our results and figures. Tlsigner is written in Python 3.6 and
395  the source code is available on (https://github.com/Gardner-BinfLab/TIsigner). The public
396  web version of this tool runs at https://tisigner.otago.ac.nz.

397
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595  Figures

596 Translation initiation site Fig 1. Correlations between the opening
597 ~ More accessible Less structural ~ energy of translation initiation sites and
598 A E<cherichia coli protein abundance are stronger than
599 Cambray et al. GFP dataset (n=14,425) that of minimum free energy. (A) For E.
600 ..U, . AAUGNAN. N NN fusion> COli. the opening energy at the region
601 : 1 —-30:18 shows the strongest correlation with
602 /\ protein abundance (also see Fig 2B or
603 o Mrcosr Supplementary Fig S1A, sub-sequence
604 §1:Z | 1 ] |=48 at position i=18). For this analysis, we
605 § ool | | used a representative GFP expression
606 § a0 ] ] dataset from Cambray et al. (2018). The
607 2 201 ‘ reporter library consists of GFP fused
608 Y in-frame with a library of 96-nt upstream
609 5 10 15 20 25 —20 -15 -10 -5 sequences (n=14,425). The minimum free
610 openingeneray - Minimum fee eneray energy —30:30 shown was determined by
611 B B eral Vrp dataset (ne2,041) Cambray et al. (right panel). (B) For S.
612 x. . .NNNI’GNNNNN-I:IE\UG. : .: : Bé > cerevisiae, the opening 'energy —7.89
613 L ; shows the strongest correlation with protein
614 ~ abundance (also see Supplementary Fig
615 : ‘\‘7 — ‘ : : S1B, sub-sequence =96 at position i= 89).
616 L Ra=m0:55 1| Re=040 4 For this analysis, we used the YFP
617 éiiz ‘ ' expression dataset from Dvir et al. (2013).
618 3. _ ] The YFP reporter library consists of 2,041
619 g 501 ] ] random decameric nucleotides inserted at
620 < s . : the upstream of YFP start codon. The
621 6T 25 2o 75 W = B o —1!5 minimum  free  energy -15:50 was
622 Opening energy Minimum free energy previously shown to correlate the best with
623 C  Mus musculus protein abundance (right panel). (C) For M.
Noderer et al. GFP dataset (n=65,536) .
624 o s a1 1 s musculus, the opening energy —8:11 shows
625 ---C---?UNNNNNNV\UGNNCGMUH---G > the strongest correlation with protein
626 abundance (also see Supplementary Fig
627 : ' | LN S1C, sub-sequence =19 at position i=11).
628 150+ R,=-0.28 1| R.=0.12 1 For this analysis, we used the GFP
629 %125' expression dataset from Noderer et al.
630 £ 1001 ‘ 1 ‘ 1 (2014). The GFP reporter library consists of
631 5 ;Z 65,536 random hexameric and dimeric
632 g 25 nucleotides inserted at the upstream and
633 ol , R | R downstream of GFP start codon,
634 % opening eneray Miniaum fras eneay respectively. The minimum free energy
635 -30:30 was shown (right panel). R,

636  Spearman’s rho. Bonferroni adjusted P-values are statistically significant (<2.2x107%) for the
637 correlations between opening energy and protein abundance shown in the left panels.
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641 ) Fig 2. Strong correlations between the
642 opening energy and protein abundance are
643 predictive of the outcomes of recombinant
644 protein expression in E. coli. (A) Schematic
645 representation of a transcript sub-sequence | at
646 position i for the calculation of opening energy.
647 For example, sub-sequence I=10 at position
648 i=10 corresponds to the region 1:10. (B)
649 Correlation between the opening energy for the
650 sub-sequences of GFP transcripts and protein
651 abundance. The opening energy at the region
652 -30 to 18 nt (sub-sequence |=48 at position
653 Position ¢ centered at the start codon i=18, green crosshair) shows the strongest
C PSl:Biology targets (n=11,430) e . .
654 170 _ auc  correlation with protein abundance [R;=-0.65;
655 1551 : n=14,425, GFP expression dataset of Cambray
656 ?15;’; et al. (2018)]. For this dataset, the reporter
657 g 95 plasmid used is pGC4750, in which the
658 g 5 promoter and ribosomal binding site are
659 @ 35 0FAB1806 inducible promoter and
660 54 et s 0FAB1173/BCD7, respectively. (C) Prediction

28838820288882888 :
661 PR TTAS A accuracy of the expression outcomes of the
Position ¢ centered at the start codon

662 PSI:Biology targets using opening energy

663 D ‘ Jk (n=11,430). The opening energy at the region
664 0.7 ] -23:24 (sub-sequence |=47 at position =24,
665 '§ \ green crosshair) shows the highest prediction
666 306- 1 accuracy score (AUC=0.70). For this dataset,
667 £ . the expression vector used is pET21_NESG, in
668 505 ] which the promoter and fusion tag are T7lac and
669 oal | | ] C-terminal His tag, respectively. (D) Comparison
670 Spearmans tho (Consbray's GFP) between the correlations and AUC scores by
671 E  PaxDb proteomics dataset (n=3,725) sub-sequence region taken fro.m the above
672 150 R analyses. The sub-sequence regions that have
673 %EZ: 004 strong correlations are likely to have high AUC
674 @ 105 %% scores, whereas the sub-sequence regions that
675 el ~*® have no correlations are likely not useful in
676 i %01 “9% prediction of the expression outcome. (E)
677 ? 30 ~%12 Correlation between the opening energy for the
678 15;’ e ~%1¢ sub-sequences of E. coli transcripts and protein
679 s comtarad ot the st codon, abundance. The transcripts used for this
680 analysis are  protein-coding  sequences

681 concatenated with 50 and 10 nt located upstream and downstream, respectively. The
682  opening energy at the region —25:16 (sub-sequence I=41 at position i=16, green crosshair)
683 shows the strongest correlation with protein abundance (R;=-0.17; n=3,725, PaxDb
684  integrated proteomics dataset). R, Spearman’s rho.
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685 A Translation initiation Translation elongation B CAI R?
associated features associated features N 0.6¢
1.0 — — 0.45
s % i G+C (%) 0.140,15 050
= ’ B
n 0.8 o <= IXnos
S / e *" 0.58 (0.56-0.59) IXnos 0'010'040'14 - 015
> 06 L —orCla L, Avoidance 0.040.040.130.25 000
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= = Opening energy CAl energy O c d . . .
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= O. ~ w c
00 02 04 06 08 1000 02 04 06 0.8 1.0 Q = S £ g2
False positive rate (1—specificity) o £ E°
[ =
=

686  Fig 3. Accessibility is a strong predictor of heterologous protein expression. (A) ROC
687  analysis for prediction of the expression outcomes of the PSI:Biology targets (n=8,780 and
688 2,650, ‘success’ and ‘failure’ groups, respectively). The features associated with translation
689 initiation rate analysed are the opening energy —24:24, minimum free energy —-30:30 and
690  avoidance 1:30 (left panel). The feature associated with translation elongation rate are tRNA
691 adaptation index (tAl), codon context (CC), codon adaptation index (CAl), G+C content (%)
692  and Ixnos (right panel). The Ixnos scores are translation elongation rates predicted using a
693 neural network model trained with ribosome profiling data. The AUC scores with 95%
694  confidence intervals are shown. (B) Relationships between the features and expression
695  outcome represented as squared Spearman’s correlations (R.%). The opening energy —24:24
696 is the best feature in explaining the expression outcome.
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721 - Fig 4. Opening energy of 10 or below at
722 § . the region -24:24 is about two times
723 3 7500 — True negative (TN) - py5pe Jikely to come from the target
b False negative (FN)
724 qa:) 5000 — True positive (TP) genes that are successfully expressed
725 2 5500 False positive (FP) than those that failed (with 95%
726 g 1 | confidence). Cumulative frequency
727 g 0 distributions of the true positive and false
728 © positive (less than type), and true negative
16.0 - Positive likelihood ratio (LR+) .

729 95% confidence interval band and false negative (more than type)
730 2 1557 — 4-parameter logistic curve (R?=0.95)  derived from the ROC analysis in Fig 2A
731 g 3:5° (left panel, opening energy —24:24). These
732 g 3.0- . - values were used to estimate positive
733 = . Sensitivity=25 N likelihood ratios with 95% confidence
734 = Specificity= —1N__ intervals using 10,000 bootstrap replicates.
735 2 20- Sensi;'\\l,gp The estimated ratios and/or confidence
736 § 1s- "= T-specificty  intervals are inaccurate at low numbers of
737 & true positives or true negatives. Therefore,
738 1.0- o a four-parameter logistic curve was fitted to
739 5 10 15 20 »5 the positive likelihood ratios. Fitted values
740 Opening energy are useful to estimate the posterior
741 probability of protein expression.
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Fig 5. Accessibility of translation
initiation sites can be increased by
synonymous codon substitution within
the first nine codons using simulated
annealing. (A) Accessibility of translation
initiation sites increases with increasing
number of the first N replaceable codons.
The PSI:Biology targets that failed to be
expressed were optimised using simulated
annealing (n=2,650). The
Kolmogorov-Smirnov distance between the
distributions of ‘9" and ‘full-length’ was
significantly different but sufficiently close
(Dys=0.09, P<107), indicating  that
optimisation of the first nine codons can
achieve nearly optimum accessibility. For
comparison, the distribution of the
PSI:Biology targets that were successfully
expressed are shown (n=8,780). (B)
Accessibility of translation initiation sites can
be increased indirectly using the existing
gene optimisation tools and random
synonymous codon substitution. ‘Tlsigner
(9)' refers to the default settings of our tool,
which allows synonymous substitutions up to
the first nine codons (as above). (C)
Accessibility of translation initiation sites can
be optimised using PCR cloning. The
forward primer should be designed
according to TIsiger optimised sequences.
For example, using a nested PCR approach,
the optimised sequence can be produced
using the forward primer designed with
appropriate  mismatches (gold bulges) to

amplify the amplicon from the initial PCR reaction.
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