

1 **Highly accessible translation initiation sites are predictive of successful heterologous
2 protein expression**

4 Bikash K. Bhandari^{1,†}, Chun Shen Lim^{1,†,*}, Paul P. Gardner^{1,2,*}

5
6 ¹Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin,
7 New Zealand

8 ²Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand

9
10 [†]These authors contributed equally.

11 *Corresponding authors. Emails: chunshen.lim@otago.ac.nz; paul.gardner@otago.ac.nz

14 **Abstract: (149/150 words)**

15 Recombinant protein production in microbial systems is well-established, yet half of these
16 experiments have failed in the expression phase. Failures are expected for
17 'difficult-to-express' proteins, but for others, codon bias, mRNA folding, avoidance, and G+C
18 content have been suggested to explain observed levels of protein expression. However,
19 determining which of these is the strongest predictor is still an active area of research. We
20 used an ensemble average of energy model for RNA to show that the accessibility of
21 translation initiation sites outperforms other features in predicting the outcomes of 11,430
22 experiments of recombinant protein production in *Escherichia coli*. We developed TIsigner
23 and showed that synonymous codon changes within the first nine codons are sufficient to
24 improve the accessibility of translation initiation sites. Our software produces scores for both
25 input and optimised sequences, so that success/failure can be predicted and prevented by
26 PCR cloning of optimised sequences.

27
28
29
30 **Introduction**

31 Recombinant protein expression has numerous applications in biotechnology and biomedical
32 research. Despite extensive refinements in protocols over the past three decades, half of the
33 experiments have failed in the expression phase (<http://targetdb.rcsb.org/metrics/>). Notable
34 problems are the low expression of 'difficult proteins' such as membrane proteins, and the
35 poor growth of the expression hosts, which may relate to the toxicity of heterologous
36 proteins¹ (reviewed in detail elsewhere^{2,3}). If these issues are factored out, we expect a
37 strong correlation between mRNA and protein levels. However, this assumption
38 oversimplifies the complexity of translation and turnover of biomolecules because mRNA
39 abundance can only explain up to 40% of the variation in protein abundance⁴⁻¹⁰.
40 Furthermore, the strong promoters used in expression vectors do not always lead to a
41 desirable level of protein expression¹¹.

42
43 For *Escherichia coli*, two main models were proposed to explain the low correlation between
44 mRNA and protein levels, which are based on either codon or mRNA folding analysis.
45 Codon analysis measures a bias in codon usage using codon adaptation index (CAI)¹² or

46 tRNA adaptation index (tAI)^{13,14} whereas mRNA folding analysis predicts the presence of
47 RNA secondary structures and their folding stability. Codon usage bias is thought to
48 correlate with tRNA abundance, translation efficiency and protein production^{12–16} but its
49 usefulness has been questioned upon^{17–20}. In contrast, many findings support the model
50 based on mRNA folding in which the stability of RNA structures around the Shine-Dalgarno
51 sequence and/or translation initiation sites inversely correlates with protein
52 expression^{17,18,20–23}. We recently proposed a third model in which the avoidance of
53 inappropriate interactions between mRNAs and non-coding RNAs has a strong effect on
54 protein expression²⁴. The roles of these models in protein expression is still an active area of
55 research.

56
57 The common algorithms of gene optimisation samples synonymous protein-coding
58 sequences using ‘fitness’ models based on CAI, tAI, mRNA folding, and/or G+C content
59 (%)^{25–29}. However, these ‘fitness’ models are usually based on some of the above findings
60 that relied on either endogenous proteins, reporter proteins or a few other proteins with their
61 synonymous variants. It is unclear whether these features are generalisable to explain the
62 expression of various heterologous proteins. To address this question, we studied multiple
63 large datasets across species in order to extract features that allow us to predict the
64 outcomes of 11,430 experiments of recombinant protein expression in *E. coli*. With this
65 information, we propose how such features can be exploited to fine-tune protein expression
66 at a low cost.

67

68

69

70 **Results**

71 **Accessibility of translation initiation sites strongly correlates with protein abundance**
72 To explore new features that could explain the expression of heterologous proteins, we first
73 examined an *E. coli* expression dataset of green fluorescent protein (GFP) fused in-frame
74 with a library of 96-nt upstream sequences (n=244,000)²⁰. We clustered these 96-nt
75 upstream sequences using CD-HIT-EST^{30,31}, giving rise to 14,425 representative sequences.
76 We calculated the accessibility that represents the opening energy for all possible
77 sub-sequences of these sequences (see Methods). For each sub-sequence region, we
78 examined the correlation between the opening energy and GFP levels. We found that the
79 opening energy of translation initiation sites, in particular from the nucleotide positions –30 to
80 18 (–30:18), showed a maximum correlation with protein abundance (Fig 1A; $R_s = -0.65$,
81 $P < 2.2 \times 10^{-16}$). This is stronger than the correlation between the minimum free energy –30:30
82 and protein abundance, which was previously reported as the highest rank feature (Fig 1A;
83 $R_s = 0.51$, $P < 2.2 \times 10^{-16}$). The P-values of multiple testing were adjusted using Bonferroni’s
84 correction and reported to machine precision. The datasets used and results were
85 summarised in Supplementary Table S1.

86

87 We repeated the analysis for a dataset of yellow fluorescent protein (YFP) expression in
88 *Saccharomyces cerevisiae*²². This dataset corresponds to a library of 5’UTR variants, in
89 which the 10-nt sequences preceding the YFP translation initiation site were randomly
90 substituted (n=2,041). In this case, the opening energy –7:89 showed a stronger correlation

91 with protein abundance than that of the minimum free energy -15:50 reported previously
92 (Fig 1B; $R_s = -0.55$ versus 0.46).

93
94 To examine the usefulness of accessibility in complex eukaryotes, we analysed a dataset of
95 GFP expression in *Mus musculus*³². The reporter library was originally designed to measure
96 the strength of translation initiation sequence context, in which the 6- and 2-nt sequences
97 upstream and downstream of the GFP translation initiation site were randomly substituted,
98 respectively (n=65,536). Here the opening energy -8:11 showed a maximum correlation with
99 expressed proteins, which again, is stronger than that of the minimum free energy -30:30
100 (Fig 1C; $R_s = -0.28$ versus 0.12).

101
102 Taken together, our findings suggest that the accessibility of translation initiation sites
103 strongly correlates with protein abundance across species. Interestingly, our findings also
104 suggest that *E. coli* tends to have a longer accessible 5'UTR region than that of *S. cerevisiae*
105 and *H. sapiens* (-30 versus -7 and -8; see Fig 1). This can be explained by the presence of
106 the Shine-Dalgarno sequence³³ at the region -13:-8, which should be accessible to recruit
107 ribosomes.

109 110 **Accessibility predicts the outcome of recombinant protein expression**

111 We investigated how accessibility performs in the real world in prediction of recombinant
112 protein expression. For this purpose, we analysed 11,430 expression experiments in *E. coli*
113 from the 'Protein Structure Initiative:Biology' (PSI:Biology)³⁴⁻³⁶. These PSI:Biology targets
114 were expressed using the pET21_NESG expression vector that harbours the T7lac inducible
115 promoter and a C-terminal His tag³⁶.

116
117 We split the experimental results of the PSI:Biology targets into protein expression 'success'
118 and 'failure' groups (n=8,780 and 2,650, respectively; see Supplementary Fig S2). These
119 PSI:Biology targets spanned more than 189 species and the failures are representative of
120 various problems in heterologous protein expression. Only 1.6% of the experiments belong
121 to homologous protein expression, which is negligible (n=179; see Supplementary Fig S2).

122
123 We calculated the opening energy for all possible sub-sequences of the PSI:Biology targets
124 as above (Fig 2). For each sub-sequence region, we used the opening energy levels to
125 predict the expression outcome and computed the prediction accuracy using the area under
126 the receiver operating characteristic curve (AUC; see Fig 2C). A closer look into the
127 correlations and AUC scores calculated for the sub-sequence regions reveals a strong
128 accessibility signal of translation initiation sites (Fig 2B and C, Cambray's GFP and
129 PSI:Biology datasets, respectively). Although the sequences of the Cambray's GFP and
130 PSI:Biology datasets are different, we reasoned that the correlations and AUC scores can be
131 compared by the sub-sequence regions that are in common (see Fig 2A for an example of a
132 sub-sequence region). Based on this idea, we matched the correlations and AUC scores by
133 sub-sequence region and confirmed that sub-sequence regions that have strong correlations
134 are likely to have high AUC scores (Fig 2D). In contrast, the sub-sequence regions that have
135 zero correlations are not useful for predicting the expression outcome (AUC approximately
136 0.5).

137

138 We then asked how accessibility manifests in the endogenous mRNAs of *E. coli*, for which
139 we studied the proteomics dataset of 3,725 proteins consolidated in the PaxDb³⁷. As
140 expected, we observed a similar accessibility signal, with the region -25:16 correlated the
141 most with protein abundance (Fig 2E). However, the correlation was rather low ($R=-0.17$,
142 $P<2.2\times10^{-16}$), which might be due to the limitations of mass spectrometry^{38,39}. Furthermore,
143 the endogenous promoters have variable strength, which gives rise to a broad range of
144 mRNA and protein levels^{40,41}. Taken together, our results show that the accessibility signal of
145 translation initiation site is surprisingly consistent across various datasets analysed
146 (Supplementary Fig S1 and Fig 2).

147

148

149 **Accessibility outperforms other features in prediction of recombinant protein
150 expression**

151 To choose an accessibility region for subsequent analyses, we selected the top 200 regions
152 from the above correlation analysis on Cambray's dataset (Fig 2B) and ranked their Gini
153 importance scores in prediction of the outcomes of the PSI:Biology targets. The region
154 -24:24 was ranked first, which is nearly identical to the region -23:24 with the top AUC
155 score (Fig 2C, AUC=0.70). We therefore used the opening energy at the region -24:24 in
156 subsequent analysis.

157

158 We asked how the other features perform compared to accessibility in prediction of
159 heterologous protein expression, for which we analysed the same PSI:Biology dataset. We
160 first calculated the minimum free energy and avoidance at the regions -30:30 and 1:30,
161 respectively. These are the local features associated with translation initiation rate. We also
162 calculated CAI¹², tAI⁴², codon context (CC)⁴³, G+C content (%), and Ixnos scores⁴⁴. CC is
163 similar to CAI except it takes codon-pair usage into account, whereas the Ixnos scores are
164 translation elongation rates predicted using a neural network model trained with ribosome
165 profiling data. These are the global features associated with translation elongation rate. The
166 AUC scores for the local features were 0.70, 0.67 and 0.62 for the opening energy, minimum
167 free energy and avoidance, respectively, whereas the global features were 0.58, 0.57, 0.54,
168 0.54 and 0.51 for Ixnos, G+C content (%), CAI, CC and tAI, respectively (Fig 3A). The local
169 features outperform the global features, suggesting that effects on translation initiation can
170 predict the outcome of heterologous protein expression. Our findings support previous
171 reports that the effects on translation initiation are rate-limiting^{17,23} which, interestingly,
172 correlate with the binary outcome of recombinant protein expression (Fig 3B). Importantly,
173 accessibility outperformed all other features.

174

175 To identify a good opening energy threshold, we calculated positive likelihood ratios for
176 different opening energy thresholds using the cumulative frequencies of true negative, false
177 negative, true positive and false positive derived from the above ROC analysis (Fig 4, top
178 panel). Meanwhile, we calculated the 95% confidence intervals of these positive likelihood
179 ratios using 10,000 bootstrap replicates. We reasoned that there is an upper and lower
180 bound on translation initiation rate, therefore the relationship between translation initiation
181 rate and accessibility is likely to follow a sigmoidal pattern. We fit the positive likelihood
182 ratios into a four-parametric logistic regression model (Fig 4). As a result, we are 95%

183 confident that an opening energy of 10 or below at the region -24:24 is about two times
184 more likely belongs to the sequences which are successfully expressed than those that
185 failed.

186

187

188 **Accessibility can be improved using a simulated annealing algorithm**

189 The above results suggest that accessibility can, in part, explain the low expression problem
190 of heterologous protein expression, we sought to exploit this idea in gene optimisation. We
191 developed a simulated annealing algorithm to maximise the accessibility at the region
192 -24:24 using synonymous codon substitution (see Methods). Previous studies have found
193 that full-length synonymous codon-substituted transgenes may produce unexpected results,
194 in particular a reduction in mRNA level^{24,44,45}. Therefore, we sought to determine the
195 minimum number of codons needed for synonymous substitutions in order to achieve near
196 optimum accessibility. For this purpose, we used the PSI:Biology targets that failed to be
197 expressed. As a control, we first applied our simulated annealing algorithm such that
198 synonymous substitutions can happen at any codon of the sequences except the start and
199 stop codons (see Methods). Although full-length synonymous codon substitution was
200 allowed, the changes may not necessarily happen to all codons due to the stochastic nature
201 of our optimisation algorithm. Next, we constrained synonymous codon substitution to the
202 first 14 codons and applied the same procedure (Supplementary Fig S3). Therefore, the
203 changes may only occur at any or all of the first 14 codons. We repeated the same
204 procedure for the first nine and also the first four codons. Thus a total of four series of
205 codon-substituted sequences were generated. We then compared the distributions of
206 opening energy -24:24 for these series using the Kolmogorov-Smirnov statistic (D_{KS} ; see Fig
207 5A). The distance between the distributions of the nine and full-length codon-substituted
208 series was significantly different yet sufficiently close ($D_{KS}=0.09$, $P=3.3 \times 10^{-8}$), suggesting
209 that optimisation of the first nine codons is sufficient in most cases to achieve an optimum
210 accessibility of translation initiation sites. We named our software as Translation Initiation
211 coding region designer (Tligner), which by default, allows synonymous substitutions up to
212 the first nine codons.

213

214 We asked to what extent the existing gene optimisation tools modify the accessibility of
215 translation initiation sites. For this purpose, we first submitted the PSI:Biology targets that
216 failed to be expressed to the ExpOptimizer webserver from NovoPro Bioscience (see
217 Methods). We also optimised the PSI:Biology targets using the standalone version of Codon
218 Optimisation OnLine (COOL)²⁸. We found that both tools increase accessibility indirectly
219 even though their algorithms are not designed as such (i.e., the 5'UTR sequence is not taken
220 into account). In fact, a purely random synonymous codon substitution on these PSI:Biology
221 targets using our own script resulted in a similar increase in accessibility (Fig 5B). These
222 results may explain some indirect benefits from the existing gene optimisation tools.

223

224

225

226

227

228

229 **Discussion**

230 Our findings show that the accessibility of translation initiation sites is the best predictor of
231 heterologous protein expression in *E. coli*, as originally proposed in the 1970s/80s⁴⁶.
232 Increasing the accessibility of the 5' region, including the Shine-Dalgarno sequence,
233 facilitates the recruitment of ribosomes and therefore increases the translation initiation rate
234 and protein level. In a landmark study, Salis et al. designed a total of 132 synthetic ribosome
235 binding sites using minimum free energy models²⁶. They found that weakly structured
236 ribosome binding sites result in high red fluorescent protein levels. This was supported by
237 recent studies using the endogenous *folA* and *adk* genes⁴⁷ and a dual-reporter system in *E.*
238 *coli*⁴⁸. These studies, and many others, support our finding that optimisation of the
239 accessibility of translation initiation sites is a key to improve heterologous protein production.
240

241 Previous studies have used minimum free energy models to define the accessibility of a
242 region of interest^{26,47,48}. However, we have discovered that the opening energy is a better
243 choice for modelling accessibility (see Fig 1A for example). Opening energy is an ensemble
244 average of energy that takes into account of suboptimal RNA structures that are not reported
245 by minimum free energy models by default^{49,50}. Currently, the modelling of accessibility using
246 opening energy is largely used for the prediction of RNA-RNA intermolecular interactions, for
247 example, as implemented in RNAup and IntaRNA^{51,52}. Our study has shown that this
248 approach can be used to identify the key accessibility regions that are consistent across
249 multiple large expression datasets. We have implemented our findings in Tligner
250 webserver, which currently supports recombinant protein expression in *E. coli* and *S.*
251 *cerevisiae* (optimisation regions -24:24 and -7:89, respectively; see Fig 1). An independent
252 yet similar implementation is available in XenoExpressO webserver with the purpose of
253 optimising protein expression for an *E. coli* cell-free system⁵³. The authors showed that an
254 increase in accessibility of a 30 bp region from the Shine-Dalgarno sequence enhances the
255 expression level of human voltage dependent anion channel, which supports our timely
256 findings.
257

258 The strengths of our approach (implemented in the Tligner webservice and software tool)
259 are four-fold. Firstly, the likelihood of success or failure can be assessed prior to running an
260 experiment. Users can compare the opening energy calculated for the input and optimised
261 sequences and the distributions of the 'success' and 'failure' of the PSI:Biology targets. We
262 also introduced a scoring scheme to score the input and optimised sequences based upon
263 how likely they are to be expressed (Fig 4; also see Methods). Secondly, optimised
264 sequences can have up to the first nine codons substituted (by default), meaning that gene
265 optimisation using a standard PCR cloning method is feasible. For cloning, we propose a
266 nested PCR approach, in which the final PCR reaction utilises a forward primer designed
267 according to the optimised sequence⁵⁴ (Fig 5C). Thirdly, the cost of gene optimisation can be
268 reduced dramatically as gene synthesis is replaced with PCR using our approach. This
269 enables high-throughput protein expression screening using the optimised sequences,
270 generated at a low cost. Finally, tunable expression is possible, i.e. high, intermediate or
271 even low expression 5' codon sequences can be designed, allowing for more control over
272 heterologous protein production. Although our study focuses largely on the expression of
273 recombinant proteins without an N-Terminal fusion tag, our findings might give meaningful
274 insights to other systems.

275 **Methods**

276 **Sequence features analysis**

277 Minimum free energy, opening energy and avoidance were calculated using RNAfold,
278 RNAPlfold and RNAup from ViennaRNA package (version 2.4.11), respectively^{49–51,55–58}.
279 RNAfold was run with default parameters. For RNAPlfold, sub-sequences were generated
280 from the input sequences to calculate opening energy (using the parameters -W 210 -u 210).
281 For RNAup, we examined the stochastic interactions between the region 1:30 of each mRNA
282 and 54 non-coding RNAs (using the parameters -b -o). RNAup reports the total interaction
283 between two RNAs as the sum of energy required to open accessible sites in the interacting
284 molecules ΔG_u and the energy gained by subsequent hybridisation ΔG_h ⁴⁹. For the
285 interactions between each mRNA and 54 non-coding RNAs, we chose the most stable
286 mRNA:ncRNA pair to report an inappropriate mRNA:ncRNA interaction, i.e. the pair with the
287 strongest hybridisation energy, $(\Delta G_h)_{min}$.

288

289 CAI, tAI and CC were calculated using the reference weights from Sharp and Li¹², Tuller et
290 al.⁴² and Ang et al.⁴³, respectively. Translation elongation rate was predicted using Ixnos⁴⁴
291 trained with ribosome profiling data (SRR7759806 and SRR7759807)⁵⁹. See Supplementary
292 Table S1 for the datasets used in this study.

293

294

295 **TIsigner**

296 Finding a synonymous sequence with a maximum accessibility is a combinatorial problem
297 that spans a vast search space. For example, for a protein-coding sequence of nine codons,
298 assuming an average of 3 synonymous codons per amino acid, we can expect a total of
299 19,682 unique synonymous coding sequences. This number increases rapidly with
300 increasing number of codons. Heuristic optimisation approaches are preferred in such
301 situations because the search space can be explored more efficiently to obtain nearly
302 optimal solutions.

303

304 To optimise the accessibility of a given sequence, TIsigner uses a simulated annealing
305 algorithm^{60–63}, a heuristic optimisation technique based on the thermodynamics of a system
306 settling into a low energy state after cooling. A simulated annealing algorithm has been used
307 to solve several combinatorial optimisation problems in bioinformatics. For example, we
308 previously applied this algorithm to align and predict non-coding RNAs from multiple
309 sequences⁶⁴. Other studies use this algorithm to find consensus sequences⁶² and
310 optimise the ribosome binding sites²⁶ and mRNA folding⁶⁵ using minimum free energy
311 models.

312

313 According to statistical mechanics, the probability p_i of a system occupying energy state
314 E_i , with temperature T , follows a Boltzmann distribution of the form $e^{-E_i/T}$, which gives a set
315 of probability mass functions along every point i in the solution space. Using a Markov
316 chain sampling, these probabilities are sampled such that each point has a lower
317 temperature than the previous one. As the system is cooled from high to low temperatures (
318 $T \rightarrow 0$), the samples converge to a minimum of E , which in many cases might be the global
319 minimum⁶². A frequently used Markov chain sampling technique is Metropolis-Hastings

320 algorithm in which a 'bad' move E_2 from initial state E_1 such that $E_2 > E_1$, is accepted if
321 $R(0, 1) \geq p_2 / p_1$, where $R(0, 1)$ is a uniformly random number between 0 and 1.

322
323 In our implementation, each iteration consists of a move that may involve multiple
324 synonymous codon substitutions. The algorithm begins at a high temperature where the first
325 move is drastic, synonymous substitutions occur in all replaceable codons. At the end of the
326 first iteration, a new sequence is accepted if the opening energy is smaller than that of the
327 input sequence. However, if the opening energy of a new sequence is greater than that of the
328 input sequence, acceptance depends on the Metropolis-Hastings criteria. The accepted
329 sequence is used for the next iteration, which repeats the above process. As the
330 temperature cools, the moves get milder with fewer synonymous codon changes
331 (Supplementary Fig S3). Simulated annealing stops upon reaching a near optimum solution.
332

333 For the web version of Tligner, the default number of replaceable codons is restricted to the
334 first nine codons. However, this default setting can be reset to range from the first four to
335 nine codons, or the full length of the coding sequence. Furthermore, Tligner runs multiple
336 simulated annealing instances, in parallel, to obtain multiple possible sequence solutions.
337 There is a possibility to select tunable expression levels when the T7lac promoter is selected
338 (as the expression scores were calculated based on the PSI:Biology dataset; see below).
339 Among the solutions, the sequence that matches most closely to the users' selected target
340 expression score is chosen as the optimum. The option for tunable expression is not
341 available for custom UTRs, the sequence with minimum opening energy is chosen as the
342 optimum.
343

344 We allow users to select desirable target expression scores for the experiments using the
345 T7lac inducible promoter. To implement this criterion, the posterior probabilities of success
346 for input and optimised sequences are evaluated using the following equations from
347 Bayesian statistics:

349
$$\text{positive posterior odds} = \text{prior odds} \times \text{fitted positive likelihood ratio} \quad (1)$$

350
$$\text{positive posterior probability} = \frac{\text{positive posterior odds}}{(1 + \text{positive posterior odds})} \quad (2)$$

351
352 The fitted positive likelihood ratios in equation (1) were obtained from the following
353 4-parametric logistic regression equation:
354

355
$$\text{fitted positive likelihood ratio} = d + \frac{a-d}{1 + \left(\frac{\text{positive likelihood ratio}}{c} \right)^b} \quad (3)$$

356
357 with parameters a, b, c, and d. The prior probability was set to 0.49, which is the proportion
358 of 'Expressed' (n=21,046) divided by 'Cloned' (n=42,774) of the PSI:Biology targets reported
359 as of 28 June 2017⁶⁶. Posterior probabilities were scaled as percentages to score the input
360 and optimised sequences.
361

362 The presence of terminator-like elements⁶⁷ in the protein-coding region may result in
363 expression of truncated mRNAs due to early transcription termination. Therefore, we
364 implemented an optional check for putative terminators in the input and optimised

365 sequences by cmsearch (INFERNAL version 1.1.2)⁶⁸ using the covariance models of
366 terminators from RMfam^{69,70}. We also allow users to filter the output sequences for the
367 presence of restriction sites. Restriction modification sites (AarI, BsaI, and BsmBI) are
368 avoided by default.

369

370

371 **Sequence optimisation**

372 We submitted the PSI:Biology targets that failed to be expressed (n=2,650) to the
373 ExpOptimizer webserver from NovoPro Bioscience
<https://www.novoprolabs.com/tools/codon-optimization>). A total of 2,573 sequences were
374 optimised. The target sequences were also optimised using a local version of COOL²⁸ and
375 Tligner using default settings. We also ran a random synonymous codon substitution as a
376 control for these 2,573 sequences.

377

378

379 **Statistical analysis**

380 AUC and Gini importance scores were calculated using scikit-learn (version 0.20.2)⁷¹. The
381 95% confidence intervals for AUC scores were calculated using DeLong's method⁷².
382 Spearman's correlation coefficients and Kolmogorov-Smirnov statistics were calculated
383 using Pandas (version 0.23.4)⁷³ and scipy (version 1.2.1)^{74,75}, respectively. Positive likelihood
384 ratios with 95% confidence intervals were calculated using bootLR package^{76,77}. The
385 P-values of multiple testing were adjusted using Bonferroni's correction and reported to
386 machine precision. Plots were generated using Matplotlib (version 3.0.2)⁷⁸ and Seaborn
387 (version 0.9.0)⁷⁹.

388

389

390 **Code and data availability**

391 Our code and data can be found in our GitHub repository
392 (https://github.com/Gardner-BinfLab/Tligner_paper_2019). These include the scripts and
393 Jupyter notebooks to reproduce our results and figures. Tligner is written in Python 3.6 and
394 the source code is available on (<https://github.com/Gardner-BinfLab/Tligner>). The public
395 web version of this tool runs at <https://tisigner.otago.ac.nz>.

396

397

398

399

400 **Acknowledgements**

401 We thank Professor Ivo Hofacker for fruitful discussions at the Benasque RNA Meeting, and
402 Dr Ronny Lorenz for helpful discussions about RNAPlfold. We are grateful to Dr Craig van
403 Dolleweerd and members of the Biomolecular Interaction Centre at the University of
404 Canterbury for supporting this research. This work was supported by the Ministry of
405 Business, Innovation and Employment, New Zealand (MBIE grant: UOOX1709).

406

407

408

409

410

411 **References**

- 412 1. Kimelman, A. *et al.* A vast collection of microbial genes that are toxic to bacteria.
Genome Res. **22**, 802–809 (2012).
- 413 2. Berlec, A. & Strukelj, B. Current state and recent advances in biopharmaceutical
414 production in *Escherichia coli*, yeasts and mammalian cells. *J. Ind. Microbiol.*
Biotechnol. **40**, 257–274 (2013).
- 415 3. Rosano, G. L. & Ceccarelli, E. A. Recombinant protein expression in *Escherichia coli*:
416 advances and challenges. *Front. Microbiol.* **5**, 172 (2014).
- 417 4. Abreu, R. de S., de Sousa Abreu, R., Penalva, L. O., Marcotte, E. M. & Vogel, C. Global
418 signatures of protein and mRNA expression levels. *Molecular BioSystems* (2009).
419 doi:10.1039/b908315d
- 420 5. Hanson, G. & Coller, J. Codon optimality, bias and usage in translation and mRNA
421 decay. *Nat. Rev. Mol. Cell Biol.* **19**, 20–30 (2018).
- 422 6. Lim, C. S., Wardell, S. J. T., Kleffmann, T. & Brown, C. M. The exon–intron gene
423 structure upstream of the initiation codon predicts translation efficiency. *Nucleic Acids*
424 *Research* **46**, 4575–4591 (2018).
- 425 7. Stevens, S. G. & Brown, C. M. In silico estimation of translation efficiency in human cell
426 lines: potential evidence for widespread translational control. *PLoS One* **8**, e57625
427 (2013).
- 428 8. Schwahnhäuser, B. *et al.* Global quantification of mammalian gene expression control.
Nature **473**, 337–342 (2011).
- 429 9. Bernstein, J. A., Khodursky, A. B., Lin, P.-H., Lin-Chao, S. & Cohen, S. N. Global
430 analysis of mRNA decay and abundance in *Escherichia coli* at single-gene resolution
431 using two-color fluorescent DNA microarrays. *Proc. Natl. Acad. Sci. U. S. A.* **99**,
432 9697–9702 (2002).
- 433 10. Taniguchi, Y. *et al.* Quantifying *E. coli* proteome and transcriptome with single-molecule
434 sensitivity in single cells. *Science* **329**, 533–538 (2010).
- 435 11. Tegel, H., Ottosson, J. & Hober, S. Enhancing the protein production levels in
436 *Escherichia coli* with a strong promoter. *FEBS J.* **278**, 729–739 (2011).
- 437 12. Sharp, P. M. & Li, W. H. The codon Adaptation Index--a measure of directional
438 synonymous codon usage bias, and its potential applications. *Nucleic Acids Res.* **15**,
439 1281–1295 (1987).
- 440 13. Reis, M. d. & d. Reis, M. Solving the riddle of codon usage preferences: a test for
441 translational selection. *Nucleic Acids Research* **32**, 5036–5044 (2004).
- 442 14. Sabi, R. & Tuller, T. Modelling the Efficiency of Codon–tRNA Interactions Based on
443 Codon Usage Bias. *DNA Research* **21**, 511–526 (2014).
- 444 15. Gutman, G. A. & Hatfield, G. W. Nonrandom utilization of codon pairs in *Escherichia*
445 *coli*. *Proc. Natl. Acad. Sci. U. S. A.* **86**, 3699–3703 (1989).
- 446 16. Brule, C. E. & Grayhack, E. J. Synonymous Codons: Choose Wisely for Expression.
Trends Genet. **33**, 283–297 (2017).
- 447 17. Kudla, G., Murray, A. W., Tollervey, D. & Plotkin, J. B. Coding-sequence determinants of
448 gene expression in *Escherichia coli*. *Science* **324**, 255–258 (2009).
- 449 18. Plotkin, J. B. & Kudla, G. Synonymous but not the same: the causes and consequences
450 of codon bias. *Nature Reviews Genetics* **12**, 32–42 (2011).
- 451 19. Boël, G. *et al.* Codon influence on protein expression in *E. coli* correlates with mRNA
452 levels. *Nature* **529**, 358–363 (2016).

457 20. Cambray, G., Guimaraes, J. C. & Arkin, A. P. Evaluation of 244,000 synthetic sequences
458 reveals design principles to optimize translation in *Escherichia coli*. *Nat. Biotechnol.* **36**,
459 1005–1015 (2018).

460 21. de Smit, M. H. & van Duin, J. Secondary structure of the ribosome binding site
461 determines translational efficiency: a quantitative analysis. *Proc. Natl. Acad. Sci. U. S.*
462 **A**. **87**, 7668–7672 (1990).

463 22. Dvir, S. *et al.* Deciphering the rules by which 5'-UTR sequences affect protein
464 expression in yeast. *Proc. Natl. Acad. Sci. U. S. A.* **110**, E2792–801 (2013).

465 23. Tuller, T. & Zur, H. Multiple roles of the coding sequence 5' end in gene expression
466 regulation. *Nucleic Acids Research* **43**, 13–28 (2015).

467 24. Umu, S. U., Poole, A. M., Dobson, R. C. & Gardner, P. P. Avoidance of stochastic RNA
468 interactions can be harnessed to control protein expression levels in bacteria and
469 archaea. *Elife* **5**, (2016).

470 25. Villalobos, A., Ness, J. E., Gustafsson, C., Minshull, J. & Govindarajan, S. Gene
471 Designer: a synthetic biology tool for constructing artificial DNA segments. *BMC*
472 *Bioinformatics* **7**, 285 (2006).

473 26. Salis, H. M., Mirsky, E. A. & Voigt, C. A. Automated design of synthetic ribosome binding
474 sites to control protein expression. *Nature Biotechnology* **27**, 946–950 (2009).

475 27. Raab, D., Graf, M., Notka, F., Schödl, T. & Wagner, R. The GeneOptimizer Algorithm:
476 using a sliding window approach to cope with the vast sequence space in
477 multiparameter DNA sequence optimization. *Syst. Synth. Biol.* **4**, 215–225 (2010).

478 28. Chung, B. K.-S. & Lee, D.-Y. Computational codon optimization of synthetic gene for
479 protein expression. *BMC Syst. Biol.* **6**, 134 (2012).

480 29. Terai, G., Kamegai, S. & Asai, K. CDSfold: an algorithm for designing a protein-coding
481 sequence with the most stable secondary structure. *Bioinformatics* **32**, 828–834 (2016).

482 30. Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of
483 protein or nucleotide sequences. *Bioinformatics* **22**, 1658–1659 (2006).

484 31. Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the
485 next-generation sequencing data. *Bioinformatics* **28**, 3150–3152 (2012).

486 32. Noderer, W. L. *et al.* Quantitative analysis of mammalian translation initiation sites by
487 FACS-seq. *Mol. Syst. Biol.* **10**, 748 (2014).

488 33. Shine, J. & Dalgarno, L. The 3'-terminal sequence of *Escherichia coli* 16S ribosomal
489 RNA: complementarity to nonsense triplets and ribosome binding sites. *Proc. Natl.*
490 *Acad. Sci. U. S. A.* **71**, 1342–1346 (1974).

491 34. Chen, L., Oughtred, R., Berman, H. M. & Westbrook, J. TargetDB: a target registration
492 database for structural genomics projects. *Bioinformatics* **20**, 2860–2862 (2004).

493 35. Seiler, C. Y. *et al.* DNASU plasmid and PSI:Biology-Materials repositories: resources to
494 accelerate biological research. *Nucleic Acids Res.* **42**, D1253–60 (2014).

495 36. Acton, T. B. *et al.* Robotic cloning and Protein Production Platform of the Northeast
496 Structural Genomics Consortium. *Methods Enzymol.* **394**, 210–243 (2005).

497 37. Wang, M., Herrmann, C. J., Simonovic, M., Szklarczyk, D. & von Mering, C. Version 4.0
498 of PaxDb: Protein abundance data, integrated across model organisms, tissues, and
499 cell-lines. *Proteomics* **15**, 3163–3168 (2015).

500 38. Tabb, D. L. *et al.* Repeatability and reproducibility in proteomic identifications by liquid
501 chromatography- tandem mass spectrometry. *J. Proteome Res.* **9**, 761–776 (2009).

502 39. Nilsson, T. *et al.* Mass spectrometry in high-throughput proteomics: ready for the big

503 time. *Nat. Methods* **7**, 681–685 (2010).

504 40. Deuschle, U., Kammerer, W., Gentz, R. & Bujard, H. Promoters of *Escherichia coli*: a
505 hierarchy of in vivo strength indicates alternate structures. *EMBO J.* **5**, 2987–2994
506 (1986).

507 41. Delvigne, F. et al. Taking control over microbial populations: Current approaches for
508 exploiting biological noise in bioprocesses. *Biotechnol. J.* **12**, (2017).

509 42. Tuller, T., Waldman, Y. Y., Kupiec, M. & Ruppin, E. Translation efficiency is determined
510 by both codon bias and folding energy. *Proc. Natl. Acad. Sci. U. S. A.* **107**, 3645–3650
511 (2010).

512 43. Ang, K. S., Kyriakopoulos, S., Li, W. & Lee, D.-Y. Multi-omics data driven analysis
513 establishes reference codon biases for synthetic gene design in microbial and
514 mammalian cells. *Methods* **102**, 26–35 (2016).

515 44. Tunney, R. et al. Accurate design of translational output by a neural network model of
516 ribosome distribution. *Nat. Struct. Mol. Biol.* **25**, 577–582 (2018).

517 45. Ben-Yehezkel, T. et al. Rationally designed, heterologous *S. cerevisiae* transcripts
518 expose novel expression determinants. *RNA Biol.* **12**, 972–984 (2015).

519 46. Pelletier, J. & Sonenberg, N. The involvement of mRNA secondary structure in protein
520 synthesis. *Biochem. Cell Biol.* **65**, 576–581 (1987).

521 47. Bhattacharyya, S. et al. Accessibility of the Shine-Dalgarno Sequence Dictates
522 N-Terminal Codon Bias in *E. coli*. *Mol. Cell* **70**, 894–905.e5 (2018).

523 48. Nieuwkoop, T., Claassens, N. J. & van der Oost, J. Improved protein production and
524 codon optimization analyses in *Escherichia coli* by bicistronic design. *Microb.*
525 *Biotechnol.* **12**, 173–179 (2019).

526 49. Mückstein, U. et al. Thermodynamics of RNA–RNA binding. *Bioinformatics* **22**,
527 1177–1182 (2006).

528 50. Bernhart, S. H., Mückstein, U. & Hofacker, I. L. RNA Accessibility in cubic time.
529 *Algorithms Mol. Biol.* **6**, 3 (2011).

530 51. Lorenz, R. et al. ViennaRNA Package 2.0. *Algorithms Mol. Biol.* **6**, 26 (2011).

531 52. Mann, M., Wright, P. R. & Backofen, R. IntaRNA 2.0: enhanced and customizable
532 prediction of RNA–RNA interactions. *Nucleic Acids Res.* **45**, W435–W439 (2017).

533 53. Zayni, S. et al. Enhancing the cell-free expression of native membrane proteins by
534 in-silico optimization of the coding sequence – an experimental study of the human
535 voltage-dependent anion channel. *Molecular Biology* **144** (2018).

536 54. Sambrook, J. & Russell, D. W. *Molecular cloning: a laboratory manual*. Vol. 3. (CSHL
537 Press, 2001).

538 55. Hofacker, I. L. et al. Fast folding and comparison of RNA secondary structures.
539 *Monatshefte für Chemie / Chemical Monthly* **125**, 167–188 (1994).

540 56. Bernhart, S., Hofacker, I. L. & Stadler, P. F. Local Base Pairing Probabilities in Large
541 RNAs. *Bioinformatics*

542 57. Bompfünnewerer, A. F. et al. Variations on RNA folding and alignment: lessons from
543 Benasque. *J. Math. Biol.* **56**, 129–144 (2008).

544 58. Lorenz, R., Hofacker, I. L. & Stadler, P. F. RNA folding with hard and soft constraints.
545 *Algorithms Mol. Biol.* **11**, 8 (2016).

546 59. Mohammad, F., Green, R. & Buskirk, A. R. A systematically-revised ribosome profiling
547 method for bacteria reveals pauses at single-codon resolution. *Elife* **8**, (2019).

548 60. Kirkpatrick, S., Gelatt, C. D. & Vecchi, M. P. Optimization by Simulated Annealing.

549 *Science* **220**, 671–680 (1983).

550 61. Ingber, L. Adaptive simulated annealing (ASA): Lessons learned. (2000).

551 62. Keith, J. M. *et al.* A simulated annealing algorithm for finding consensus sequences. *Bioinformatics* **18**, 1494–1499 (2002).

552 63. Brownlee, J. *Clever Algorithms: Nature-inspired Programming Recipes*. (Jason Brownlee, 2011).

553 64. Lindgreen, S., Gardner, P. P. & Krogh, A. MASTR: multiple alignment and structure prediction of non-coding RNAs using simulated annealing. *Bioinformatics* **23**, 3304–3311 (2007).

554 65. Gaspar, P., Moura, G., Santos, M. A. S. & Oliveira, J. L. mRNA secondary structure optimization using a correlated stem-loop prediction. *Nucleic Acids Res.* **41**, e73 (2013).

555 66. Home : Metrics. *PSI* Available at: <http://targetdb.rcsb.org/metrics/>. (Accessed: 14th June 2019)

556 67. Chen, Y.-J. *et al.* Characterization of 582 natural and synthetic terminators and quantification of their design constraints. *Nat. Methods* **10**, 659–664 (2013).

557 68. Nawrocki, E. P. & Eddy, S. R. Infernal 1.1: 100-fold faster RNA homology searches. *Bioinformatics* **29**, 2933–2935 (2013).

558 69. Gardner, P. P. & Eldai, H. Annotating RNA motifs in sequences and alignments. *Nucleic Acids Res.* **43**, 691–698 (2015).

559 70. Kalvari, I. *et al.* Rfam 13.0: shifting to a genome-centric resource for non-coding RNA families. *Nucleic Acids Res.* **46**, D335–D342 (2018).

560 71. Pedregosa, F. *et al.* Scikit-learn: Machine Learning in Python. *J. Mach. Learn. Res.* **12**, 2825–2830 (2011).

561 72. DeLong, E. R., DeLong, D. M. & Clarke-Pearson, D. L. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. *Biometrics* **44**, 837–845 (1988).

562 73. McKinney, W. Data Structures for Statistical Computing in Python. in *Proceedings of the 9th Python in Science Conference* 51–56 (2010).

563 74. Oliphant, T. E. Python for Scientific Computing. *Computing in Science Engineering* **9**, 10–20 (2007).

564 75. Millman, K. J. & Aivazis, M. Python for Scientists and Engineers. *Computing in Science Engineering* **13**, 9–12 (2011).

565 76. Marill, K. A., Chang, Y., Wong, K. F. & Friedman, A. B. Estimating negative likelihood ratio confidence when test sensitivity is 100%: A bootstrapping approach. *Stat. Methods Med. Res.* **26**, 1936–1948 (2017).

566 77. R Core Team. *R: A Language and Environment for Statistical Computing*. (R Foundation for Statistical Computing, 2019).

567 78. Matplotlib: A 2D Graphics Environment - IEEE Journals & Magazine. Available at: <https://doi.org/10.1109/MCSE.2007.55>. (Accessed: 17th June 2019)

568 79. Waskom, M. *et al.* mwaskom/seaborn: v0.9.0 (July 2018). (2018). doi:10.5281/zenodo.1313201

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595 **Figures**

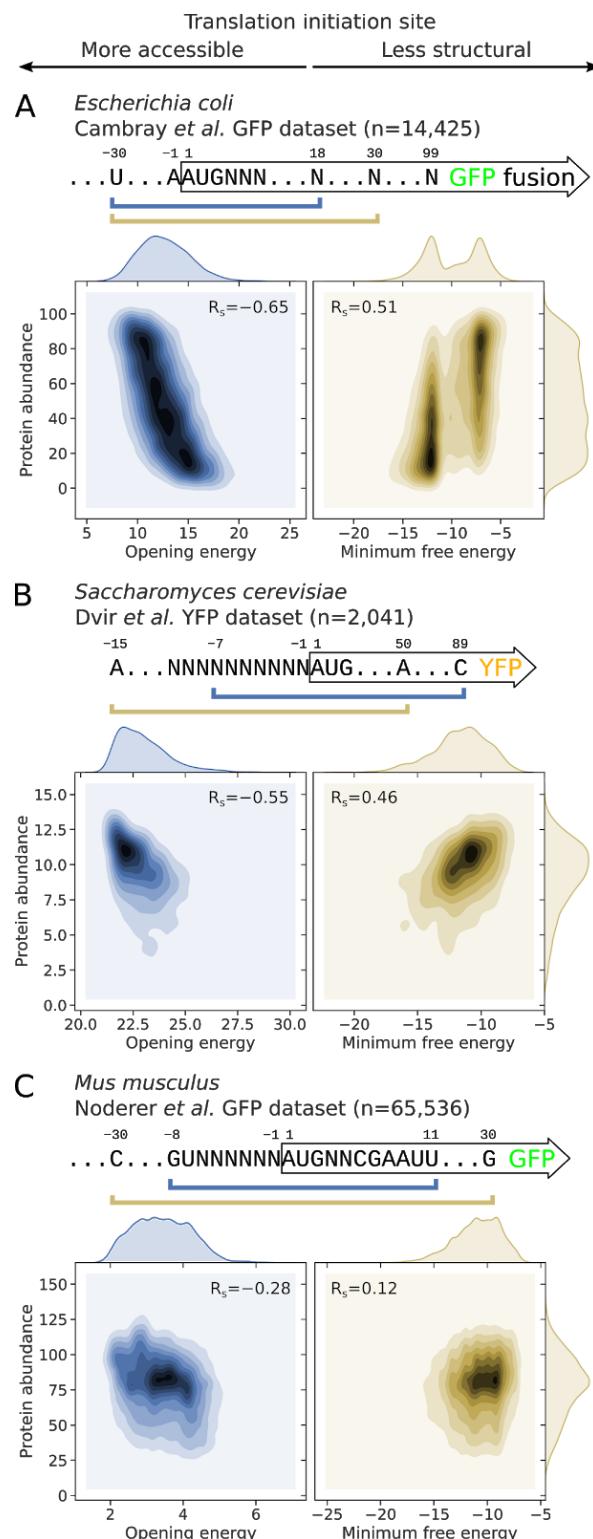


Fig 1. Correlations between the opening energy of translation initiation sites and protein abundance are stronger than that of minimum free energy. **(A)** For *E. coli*, the opening energy at the region $-30:18$ shows the strongest correlation with protein abundance (also see Fig 2B or Supplementary Fig S1A, sub-sequence $I=48$ at position $i=18$). For this analysis, we used a representative GFP expression dataset from Cambray et al. (2018). The reporter library consists of GFP fused in-frame with a library of 96-nt upstream sequences (n=14,425). The minimum free energy $-30:30$ shown was determined by Cambray et al. (right panel). **(B)** For *S. cerevisiae*, the opening energy $-7:89$ shows the strongest correlation with protein abundance (also see Supplementary Fig S1B, sub-sequence $I=96$ at position $i=89$). For this analysis, we used the YFP expression dataset from Dvir et al. (2013). The YFP reporter library consists of 2,041 random decameric nucleotides inserted at the upstream of YFP start codon. The minimum free energy $-15:50$ was previously shown to correlate the best with protein abundance (right panel). **(C)** For *M. musculus*, the opening energy $-8:11$ shows the strongest correlation with protein abundance (also see Supplementary Fig S1C, sub-sequence $I=19$ at position $i=11$). For this analysis, we used the GFP expression dataset from Noderer et al. (2014). The GFP reporter library consists of 65,536 random hexameric and dimeric nucleotides inserted at the upstream and downstream of GFP start codon, respectively. The minimum free energy $-30:30$ was shown (right panel). R_s , Spearman's rho. Bonferroni adjusted P-values are statistically significant ($<2.2 \times 10^{-16}$) for the correlations between opening energy and protein abundance shown in the left panels.

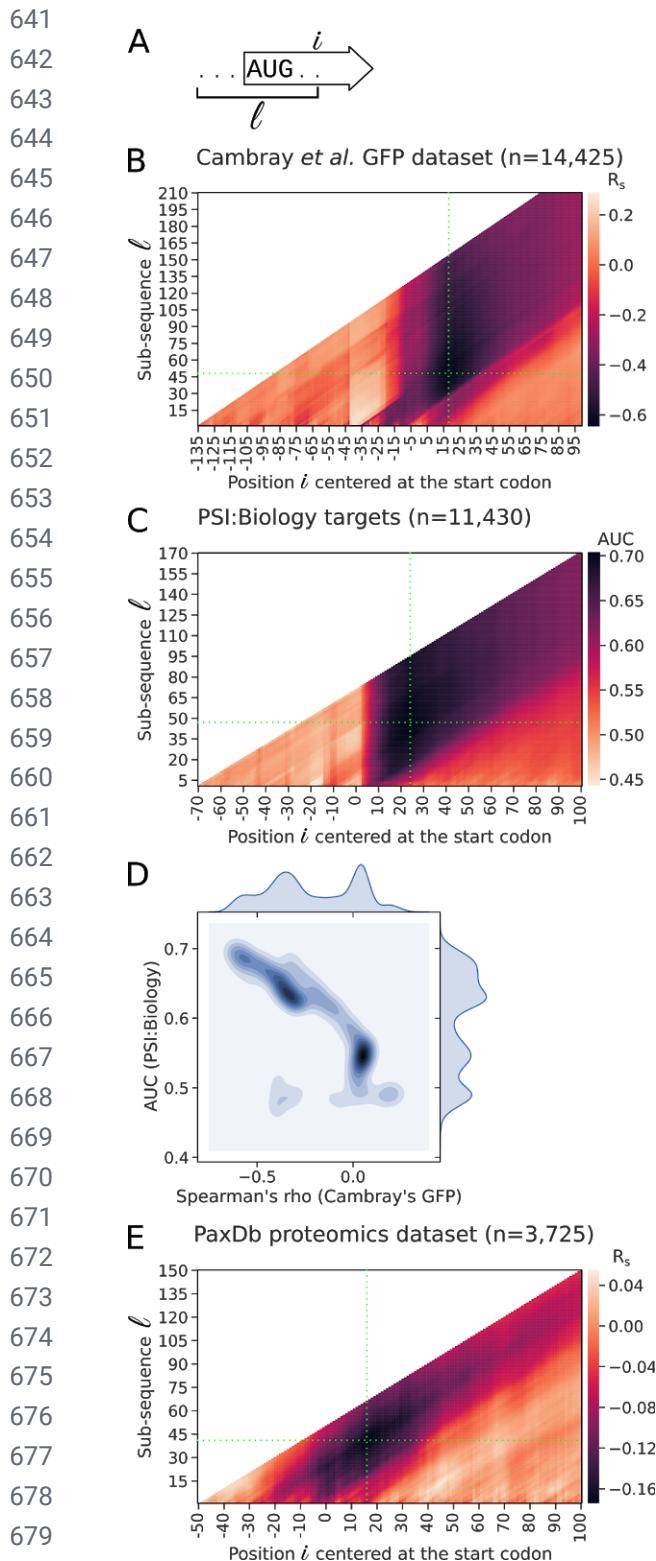
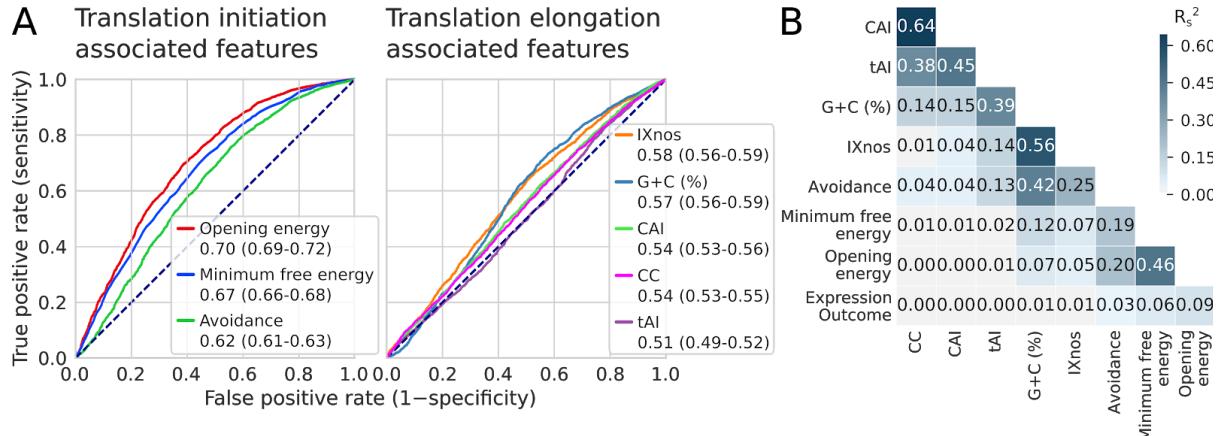


Fig 2. Strong correlations between the opening energy and protein abundance are predictive of the outcomes of recombinant protein expression in *E. coli*. (A) Schematic representation of a transcript sub-sequence l at position i for the calculation of opening energy. For example, sub-sequence $l=10$ at position $i=10$ corresponds to the region 1:10. (B) Correlation between the opening energy for the sub-sequences of GFP transcripts and protein abundance. The opening energy at the region -30 to 18 nt (sub-sequence $l=48$ at position $i=18$, green crosshair) shows the strongest correlation with protein abundance [$R_s=-0.65$; $n=14,425$, GFP expression dataset of Cambray et al. (2018)]. For this dataset, the reporter plasmid used is pGC4750, in which the promoter and ribosomal binding site are oFAB1806 inducible promoter and oFAB1173/BCD7, respectively. (C) Prediction accuracy of the expression outcomes of the PSI:Biology targets using opening energy ($n=11,430$). The opening energy at the region -23:24 (sub-sequence $l=47$ at position $i=24$, green crosshair) shows the highest prediction accuracy score ($AUC=0.70$). For this dataset, the expression vector used is pET21_NESG, in which the promoter and fusion tag are T7lac and C-terminal His tag, respectively. (D) Comparison between the correlations and AUC scores by sub-sequence region taken from the above analyses. The sub-sequence regions that have strong correlations are likely to have high AUC scores, whereas the sub-sequence regions that have no correlations are likely not useful in prediction of the expression outcome. (E) Correlation between the opening energy for the sub-sequences of *E. coli* transcripts and protein abundance. The transcripts used for this analysis are protein-coding sequences concatenated with 50 and 10 nt located upstream and downstream, respectively. The opening energy at the region -25:16 (sub-sequence $l=41$ at position $i=16$, green crosshair) shows the strongest correlation with protein abundance ($R_s=-0.17$; $n=3,725$, PaxDb integrated proteomics dataset). R_s , Spearman's rho.

685



686

Fig 3. Accessibility is a strong predictor of heterologous protein expression. (A) ROC analysis for prediction of the expression outcomes of the PSI:Biology targets (n=8,780 and 2,650, 'success' and 'failure' groups, respectively). The features associated with translation initiation rate analysed are the opening energy -24:24, minimum free energy -30:30 and avoidance 1:30 (left panel). The feature associated with translation elongation rate are tRNA adaptation index (tAI), codon context (CC), codon adaptation index (CAI), G+C content (%) and IXnos (right panel). The IXnos scores are translation elongation rates predicted using a neural network model trained with ribosome profiling data. The AUC scores with 95% confidence intervals are shown. **(B)** Relationships between the features and expression outcome represented as squared Spearman's correlations (R_s^2). The opening energy -24:24 is the best feature in explaining the expression outcome.

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

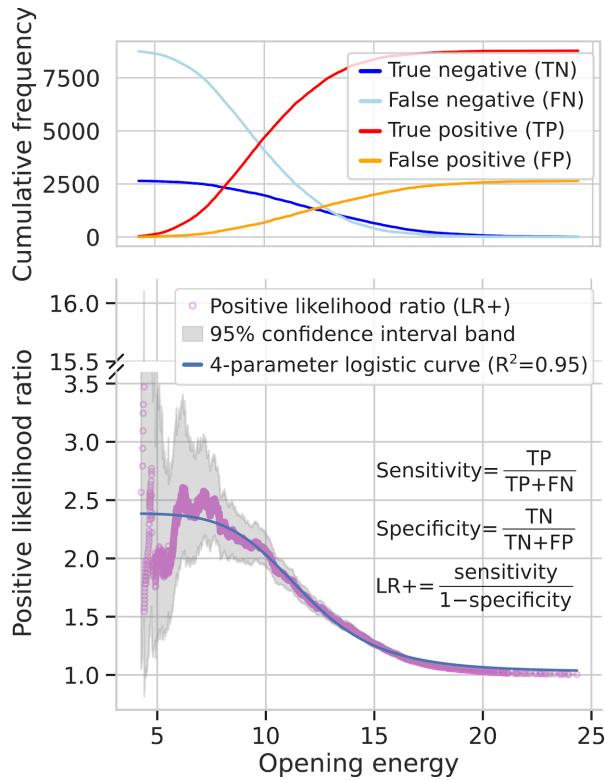
717

718

719

720

Fig 4. Opening energy of 10 or below at the region -24:24 is about two times more likely to come from the target genes that are successfully expressed than those that failed (with 95% confidence). Cumulative frequency distributions of the true positive and false positive (less than type), and true negative and false negative (more than type) derived from the ROC analysis in Fig 2A (left panel, opening energy -24:24). These values were used to estimate positive likelihood ratios with 95% confidence intervals using 10,000 bootstrap replicates. The estimated ratios and/or confidence intervals are inaccurate at low numbers of true positives or true negatives. Therefore, a four-parameter logistic curve was fitted to the positive likelihood ratios. Fitted values are useful to estimate the posterior probability of protein expression.



767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802

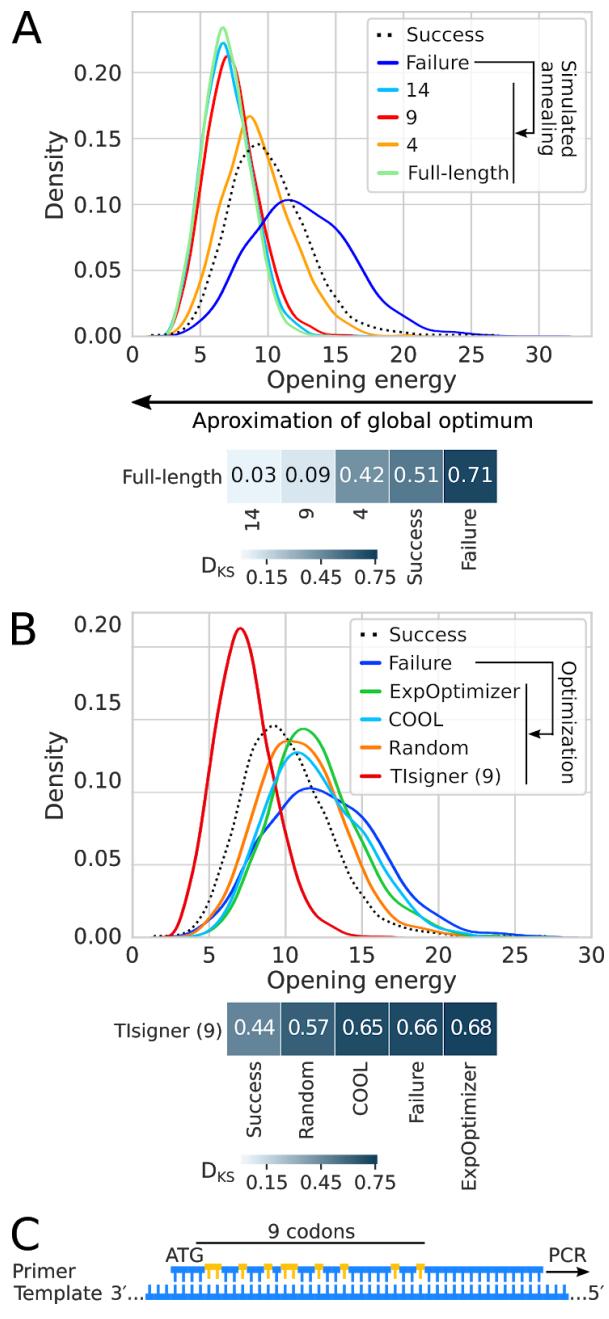


Fig 5. Accessibility of translation initiation sites can be increased by synonymous codon substitution within the first nine codons using simulated annealing. (A) Accessibility of translation initiation sites increases with increasing number of the first N replaceable codons. The PSI:Biology targets that failed to be expressed were optimised using simulated annealing ($n=2,650$). The Kolmogorov-Smirnov distance between the distributions of '9' and 'full-length' was significantly different but sufficiently close ($D_{KS}=0.09$, $P<10^{-7}$), indicating that optimisation of the first nine codons can achieve nearly optimum accessibility. For comparison, the distribution of the PSI:Biology targets that were successfully expressed are shown ($n=8,780$). **(B)** Accessibility of translation initiation sites can be increased indirectly using the existing gene optimisation tools and random synonymous codon substitution. 'Tligner (9)' refers to the default settings of our tool, which allows synonymous substitutions up to the first nine codons (as above). **(C)** Accessibility of translation initiation sites can be optimised using PCR cloning. The forward primer should be designed according to Tligner optimised sequences. For example, using a nested PCR approach, the optimised sequence can be produced using the forward primer designed with appropriate mismatches (gold bulges) to amplify the amplicon from the initial PCR reaction.