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Abstract:    (149/150   words)  
Recombinant  protein  production  in  microbial  systems  is  well-established,  yet  half  of  these                        
experiments  have  failed  in  the  expression  phase.  Failures  are  expected  for                      
‘difficult-to-express’  proteins,  but  for  others,  codon  bias,  mRNA  folding,  avoidance,  and  G+C                        
content  have  been  suggested  to  explain  observed  levels  of  protein  expression.  However,                        
determining  which  of  these  is  the  strongest  predictor  is  still  an  active  area  of  research.  We                                
used  an  ensemble  average  of  energy  model  for  RNA  to  show  that  the  accessibility  of                            
translation  initiation  sites  outperforms  other  features  in  predicting  the  outcomes  of  11,430                        
experiments  of  recombinant  protein  production  in Escherichia  coli .  We  developed  TIsigner                      
and  showed  that  synonymous  codon  changes  within  the  first  nine  codons  are  sufficient  to                            
improve  the  accessibility  of  translation  initiation  sites.  Our  software  produces  scores  for  both                          
input  and  optimised  sequences,  so  that  success/failure  can  be  predicted  and  prevented  by                          
PCR   cloning   of   optimised   sequences.  
 
 
 
Introduction  
Recombinant  protein  expression  has  numerous  applications  in  biotechnology  and  biomedical                    
research.  Despite  extensive  refinements  in  protocols  over  the  past  three  decades,  half  of  the                            
experiments  have  failed  in  the  expression  phase  (http://targetdb.rcsb.org/metrics/ ).  Notable                  
problems  are  the  low  expression  of  ‘difficult  proteins’  such  as  membrane  proteins,  and  the                            
poor  growth  of  the  expression  hosts,  which  may  relate  to  the  toxicity  of  heterologous                            
proteins 1  (reviewed  in detail  elsewhere 2,3 ).  If  these  issues  are  factored  out,  we  expect  a                            
strong  correlation  between  mRNA  and  protein  levels.  However,  this  assumption                    
oversimplifies  the  complexity  of  translation  and  turnover  of  biomolecules  because  mRNA                      
abundance  can  only  explain  up  to  40%  of  the  variation  in  protein  abundance 4–10 .                          
Furthermore,  the  strong  promoters  used  in  expression  vectors  do  not  always  lead  to  a                            
desirable   level   of   protein   expression 11 .  
 
For Escherichia  coli ,  two  main  models  were  proposed  to  explain  the  low  correlation  between                            
mRNA  and  protein  levels,  which  are  based  on  either  codon  or  mRNA  folding  analysis.                            
Codon  analysis  measures  a  bias  in  codon  usage  using  codon  adaptation  index  (CAI) 12  or                            
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tRNA  adaptation  index  (tAI) 13,14  whereas  mRNA  folding  analysis  predicts  the  presence  of                      
RNA  secondary  structures  and  their  folding  stability.  Codon  usage  bias  is  thought  to                          
correlate  with  tRNA  abundance,  translation  efficiency  and  protein  production 12–16  but  its                      
usefulness  has  been  questioned  upon 17–20 .  In  contrast,  many  findings  support  the  model                        
based  on  mRNA  folding  in  which  the  stability  of  RNA  structures  around  the  Shine-Dalgarno                            
sequence  and/or  translation  initiation  sites  inversely  correlates  with  protein                  
expression 17,18,20–23 .  We  recently  proposed  a  third  model  in  which  the  avoidance  of                        
inappropriate  interactions  between  mRNAs  and  non-coding  RNAs  has  a  strong  effect  on                        
protein  expression 24 .  The  roles  of  these  models  in  protein  expression  is  still  an  active  area  of                                
research.  
 
The common algorithms of gene optimisation samples synonymous protein-coding
sequences  using  ‘fitness’  models  based  on  CAI,  tAI,  mRNA  folding,  and/or  G+C  content                          
(%) 25–29 .  However,  these  ‘fitness’  models  are  usually  based  on  some  of  the  above  findings                            
that  relied  on  either  endogenous  proteins,  reporter  proteins  or  a  few  other  proteins  with  their                              
synonymous  variants.  It  is  unclear  whether  these  features  are  generalisable  to  explain  the                          
expression  of  various  heterologous  proteins.  To  address  this  question,  we  studied  multiple                        
large  datasets  across  species  in  order  to  extract  features  that  allow  us  to  predict  the                              
outcomes  of  11,430  experiments  of  recombinant  protein  expression  in E.  coli .  With  this                          
information,  we  propose  how  such  features  can  be  exploited  to  fine-tune  protein  expression                          
at   a   low   cost.   
 
 
 
Results  
Accessibility   of   translation   initiation   sites   strongly   correlates   with   protein   abundance  
To  explore  new  features  that  could  explain  the  expression  of  heterologous  proteins,  we  first                            
examined  an E.  coli  expression  dataset  of  green  fluorescent  protein  (GFP)  fused  in-frame                          
with  a  library  of  96-nt  upstream  sequences  (n=244,000) 20 .  We  clustered  these  96-nt                        
upstream  sequences  using  CD-HIT-EST 30,31 ,  giving  rise  to  14,425  representative  sequences.                    
We  calculated  the  accessibility  that  represents  the  opening  energy  for  all  possible                        
sub-sequences  of  these  sequences  (see  Methods).  For  each  sub-sequence  region,  we                      
examined  the  correlation  between the  opening  energy  and  GFP  levels.  We  found  that  the                            
opening  energy  of  translation  initiation  sites,  in  particular  from  the  nucleotide  positions  −30  to                            
18  (−30:18),  showed  a  maximum  correlation  with  protein  abundance  (Fig 1A;  R s =−0.65,                        
P<2.2×10 −16 ).  This  is  stronger  than  the  correlation  between  the  minimum  free  energy  −30:30                          
and  protein  abundance,  which  was  previously  reported  as  the  highest  rank  feature  (Fig  1A;                            
R s =0.51,  P<2.2×10 −16 ).  The  P-values  of  multiple  testing  were  adjusted  using  Bonferroni's                      
correction  and  reported  to  machine  precision.  The  datasets  used  and  results  were                        
summarised   in   Supplementary   Table   S1.  
 
We  repeated  the  analysis  for a  dataset  of  yellow  fluorescent  protein  (YFP)  expression  in                            
Saccharomyces  cerevisiae 22 .  This  dataset  corresponds  to  a  library  of  5′UTR  variants,  in                        
which  the  10-nt  sequences  preceding  the  YFP  translation  initiation  site  were  randomly                        
substituted  (n=2,041).  In  this  case,  the  opening  energy  −7:89  showed  a  stronger  correlation                          
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with  protein  abundance  than  that  of  the  minimum  free  energy  −15:50  reported  previously                          
(Fig   1B;   R s =−0.55   versus   0.46).  
 
To  examine  the  usefulness  of  accessibility  in  complex  eukaryotes,  we  analysed  a  dataset  of                            
GFP  expression  in Mus  musculus 32 . The  reporter  library  was  originally  designed  to  measure                          
the  strength  of  translation  initiation  sequence  context,  in  which  the  6-  and  2-nt  sequences                            
upstream  and  downstream  of  the  GFP  translation  initiation  site  were  randomly  substituted,                        
respectively  (n=65,536).  Here  the  opening  energy  −8:11  showed  a  maximum  correlation  with                        
expressed  proteins,  which  again,  is  stronger  than  that  of  the  minimum  free  energy  −30:30                            
(Fig   1C;   R s =−0.28   versus   0.12).   
 
Taken together, our findings suggest that the accessibility of translation initiation sites
strongly  correlates  with  protein  abundance  across  species.  Interestingly,  our  findings  also                      
suggest  that E.  coli  tends  to  have  a  longer  accessible  5′UTR  region  than  that  of S.  cerevisiae                                  
and H.  sapiens  (−30  versus  −7  and  −8;  see  Fig  1).  This  can  be  explained  by  the  presence  of                                      
the  Shine-Dalgarno  sequence 33  at  the  region  −13:−8,  which  should  be  accessible  to  recruit                          
ribosomes.  
 
 
Accessibility   predicts   the   outcome   of   recombinant   protein   expression  
We  investigated  how  accessibility  performs  in  the  real  world  in  prediction  of  recombinant                          
protein  expression.  For  this  purpose,  we  analysed  11,430  expression  experiments  in E.  coli                          
from  the  ‘Protein  Structure  Initiative:Biology’  (PSI:Biology) 34–36 .  These  PSI:Biology  targets                  
were  expressed  using  the  pET21_NESG  expression  vector  that  harbours  the  T7lac  inducible                        
promoter   and   a   C-terminal   His   tag 36 .  
 
We  split  the  experimental  results  of  the  PSI:Biology  targets  into  protein  expression  'success'                          
and  'failure'  groups  (n=8,780  and  2,650,  respectively;  see  Supplementary  Fig  S2).  These                        
PSI:Biology  targets  spanned  more  than  189  species  and  the  failures  are  representative  of                          
various  problems  in  heterologous  protein  expression.  Only  1.6%  of  the  experiments  belong                        
to   homologous   protein   expression,   which   is   negligible   (n=179;   see   Supplementary   Fig   S2).  
 
We  calculated  the  opening  energy  for  all  possible  sub-sequences  of  the  PSI:Biology  targets                          
as  above  (Fig  2).  For  each  sub-sequence  region,  we  used  the  opening  energy  levels  to                              
predict  the  expression  outcome  and  computed  the  prediction  accuracy  using  the  area  under                          
the  receiver  operating  characteristic  curve  (AUC;  see  Fig  2C).  A  closer  look  into  the                            
correlations  and  AUC  scores  calculated  for  the  sub-sequence  regions  reveals  a  strong                        
accessibility  signal  of  translation  initiation  sites  (Fig  2B  and  C,  Cambray’s  GFP  and                          
PSI:Biology  datasets,  respectively).  Although  the  sequences  of  the  Cambray’s  GFP  and                      
PSI:Biology  datasets  are  different,  we  reasoned  that  the  correlations  and  AUC  scores  can  be                            
compared  by  the  sub-sequence  regions  that  are  in  common  (see  Fig  2A  for  an  example  of  a                                
sub-sequence  region).  Based  on  this  idea,  we  matched  the  correlations  and  AUC  scores  by                            
sub-sequence  region  and  confirmed  that  sub-sequence  regions  that  have  strong  correlations                      
are likely  to  have  high  AUC  scores  (Fig  2D).  In  contrast,  the  sub-sequence  regions  that  have                                
zero  correlations  are  not  useful  for  predicting  the  expression  outcome  (AUC  approximately                        
0.5).  
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We  then  asked  how  accessibility  manifests  in  the  endogenous  mRNAs  of E.  coli ,  for  which                              
we  studied  the  proteomics  dataset  of  3,725 proteins  consolidated  in  the  PaxDb 37 .  As                          
expected,  we  observed  a  similar  accessibility  signal,  with  the  region  −25:16  correlated  the                          
most  with  protein  abundance  (Fig  2E).  However,  the  correlation  was  rather  low  (R=−0.17,                          
P<2.2×10 −16 ),  which  might  be  due  to  the  limitations  of  mass  spectrometry 38,39 .  Furthermore,                        
the  endogenous  promoters  have  variable  strength,  which  gives  rise  to  a  broad  range  of                            
mRNA  and  protein  levels 40,41 .  Taken  together,  our  results  show  that  the  accessibility  signal  of                            
translation  initiation  site  is  surprisingly  consistent  across  various  datasets  analysed                    
(Supplementary   Fig   S1   and   Fig   2).  
 

Accessibility  outperforms  other  features  in  prediction  of  recombinant  protein                  
expression  
To  choose  an  accessibility  region  for  subsequent  analyses,  we  selected  the  top  200  regions                            
from  the  above  correlation  analysis  on  Cambray’s  dataset  (Fig  2B)  and  ranked  their  Gini                            
importance  scores in  prediction  of  the  outcomes  of  the  PSI:Biology  targets.  The  region                          
−24:24  was  ranked  first,  which  is  nearly  identical  to  the  region  −23:24  with  the  top  AUC                                
score  (Fig  2C,  AUC=0.70).  We  therefore  used  the  opening  energy  at  the  region  −24:24  in                              
subsequent   analysis.  
 
We  asked  how  the  other  features  perform  compared  to  accessibility  in  prediction  of                          
heterologous  protein  expression,  for  which  we  analysed  the  same  PSI:Biology  dataset.  We                        
first  calculated  the  minimum  free  energy  and  avoidance  at  the  regions  −30:30  and  1:30,                            
respectively.  These  are  the  local  features  associated  with  translation  initiation  rate.  We  also                          
calculated  CAI 12 ,  tAI 42 ,  codon  context  (CC) 43 ,  G+C  content  (%),  and  Iχnos  scores 44 .  CC  is                            
similar  to  CAI  except  it  takes  codon-pair  usage  into  account,  whereas  the Iχnos  scores  are                              
translation  elongation  rates  predicted  using  a  neural  network  model  trained  with  ribosome                        
profiling  data.  These  are  the  global  features  associated  with  translation  elongation  rate.  The                          
AUC  scores  for  the  local  features  were  0.70,  0.67  and  0.62  for  the  opening  energy,  minimum                                
free  energy  and  avoidance,  respectively,  whereas  the  global  features  were  0.58,  0.57,  0.54,                          
0.54  and  0.51  for  Iχnos,  G+C  content  (%),  CAI,  CC  and  tAI,  respectively  (Fig  3A).  The  local                                  
features  outperform  the  global  features,  suggesting  that  effects  on  translation  initiation  can                        
predict  the  outcome  of  heterologous  protein  expression.  Our  findings  support  previous                      
reports  that  the  effects  on  translation  initiation  are  rate-limiting 17,23  which,  interestingly,                      
correlate  with  the  binary  outcome  of  recombinant  protein  expression  (Fig  3B).  Importantly,                        
accessibility   outperformed   all   other   features.  
 
To  identify  a  good  opening  energy  threshold,  we  calculated  positive  likelihood  ratios  for                          
different  opening  energy  thresholds  using  the  cumulative  frequencies  of  true  negative,  false                        
negative,  true  positive  and  false  positive  derived  from  the  above  ROC  analysis  (Fig  4,  top                              
panel).  Meanwhile,  we  calculated  the  95%  confidence  intervals  of  these  positive  likelihood                        
ratios  using  10,000  bootstrap  replicates.  We  reasoned  that  there  is  an  upper  and  lower                            
bound  on  translation  initiation  rate,  therefore  the  relationship  between  translation  initiation                      
rate  and  accessibility  is  likely  to  follow  a  sigmoidal  pattern.  We  fit  the  positive  likelihood                              
ratios  into  a  four-parametric  logistic  regression  model  (Fig  4).  As  a  result,  we  are  95%                              
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confident  that  an  opening  energy  of  10  or  below  at  the  region  −24:24  is  about  two  times                                  
more  likely  belongs  to  the  sequences  which  are  successfully  expressed  than  those  that                          
failed.  
 
 
Accessibility   can   be   improved   using   a   simulated   annealing   algorithm  
The  above  results  suggest  that  accessibility  can,  in  part,  explain  the  low  expression  problem                            
of  heterologous  protein  expression,  we  sought  to  exploit  this  idea  in  gene  optimisation.  We                            
developed  a  simulated  annealing  algorithm  to  maximise  the  accessibility  at  the  region                        
−24:24  using  synonymous  codon  substitution  (see  Methods).  Previous  studies  have  found                      
that  full-length  synonymous  codon-substituted  transgenes  may  produce  unexpected  results,                  
in particular a reduction in mRNA level24,44,45 . Therefore, we sought to determine the
minimum  number  of  codons  needed  for  synonymous  substitutions  in  order  to  achieve  near                          
optimum  accessibility.  For  this  purpose,  we  used  the  PSI:Biology  targets  that  failed  to  be                            
expressed.  As  a  control,  we  first  applied  our  simulated  annealing  algorithm  such  that                          
synonymous  substitutions  can  happen  at  any  codon  of  the  sequences  except  the  start  and                            
stop  codons  (see  Methods).  Although  full-length  synonymous  codon  substitution  was                    
allowed,  the  changes  may  not  necessarily  happen  to  all  codons  due  to  the  stochastic  nature                              
of  our  optimisation  algorithm.  Next,  we  constrained  synonymous  codon  substitution  to  the                        
first  14  codons  and  applied  the  same  procedure (Supplementary  Fig  S3).  Therefore,  the                          
changes  may  only  occur  at  any  or  all  of  the  first  14  codons.  We  repeated  the  same                                  
procedure  for  the  first  nine  and  also  the  first  four  codons.  Thus  a  total  of  four  series  of                                    
codon-substituted  sequences  were  generated.  We  then  compared  the  distributions  of                    
opening  energy  −24:24  for  these  series  using  the  Kolmogorov-Smirnov  statistic  (D KS ;  see  Fig                          
5A).  The  distance  between  the  distributions  of  the  nine  and  full-length  codon-substituted                        
series  was  significantly  different  yet  sufficiently  close  (D KS =0.09,  P=3.3 10 -8 ),  suggesting                 ×    

that  optimisation  of  the  first  nine  codons  is  sufficient  in  most  cases  to  achieve  an  optimum                              
accessibility  of  translation  initiation  sites.  We  named  our  software  as T ranslation I nitiation                        
coding  region  des igner  (TIsigner),  which  by  default,  allows  synonymous  substitutions  up  to                        
the   first   nine   codons.  
 
We  asked  to  what  extent  the  existing  gene  optimisation  tools  modify  the  accessibility  of                            
translation  initiation  sites.  For  this  purpose,  we  first submitted  the  PSI:Biology  targets  that                          
failed  to  be  expressed  to  the  ExpOptimizer  webserver  from  NovoPro  Bioscience  (see                        
Methods).  We  also  optimised  the  PSI:Biology  targets  using  the  standalone  version  of  Codon                          
Optimisation  OnLine  (COOL) 28 .  We  found  that  both  tools  increase  accessibility  indirectly                      
even  though  their  algorithms  are  not  designed  as  such  (i.e.,  the  5′UTR  sequence  is  not  taken                                
into  account).  In  fact,  a  purely  random  synonymous  codon  substitution  on  these  PSI:Biology                          
targets  using  our  own  script  resulted  in  a  similar  increase  in  accessibility  (Fig  5B).  These                              
results   may   explain   some   indirect   benefits   from   the   existing   gene   optimisation   tools.  
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Discussion  
Our  findings  show  that  the  accessibility  of  translation  initiation  sites  is  the  best  predictor  of                              
heterologous  protein  expression  in E.  coli,  as  originally  proposed  in  the  1970s/80s 46 .                        
Increasing  the  accessibility  of the  5′  region,  including  the  Shine-Dalgarno  sequence,                     
facilitates  the  recruitment  of  ribosomes  and  therefore  increases  the  translation  initiation  rate                        
and  protein  level.  In  a  landmark  study,  Salis  et  al.  designed  a  total  of  132  synthetic  ribosome                                  
binding  sites  using  minimum  free  energy  models 26 .  They  found  that  weakly  structured                        
ribosome  binding  sites  result  in  high  red  fluorescent  protein  levels.  This  was  supported  by                            
recent  studies  using  the  endogenous folA  and adk  genes 47  and  a  dual-reporter  system  in E.                              
coli 48 .  These  studies,  and  many  others,  support  our  finding  that  optimisation  of  the                          
accessibility   of   translation   initiation   sites   is   a   key   to   improve   heterologous   protein   production.   

Previous  studies  have  used  minimum  free  energy  models  to  define  the  accessibility  of  a                            
region  of  interest 26,47,48 .  However,  we  have  discovered  that  the  opening  energy  is  a  better                            
choice  for  modelling  accessibility  (see  Fig  1A  for  example).  Opening  energy  is  an  ensemble                            
average  of  energy  that  takes  into  account  of  suboptimal  RNA  structures  that  are  not  reported                              
by  minimum  free  energy  models  by  default 49,50 .  Currently,  the  modelling  of accessibility  using                          
opening  energy  is  largely  used  for  the  prediction  of  RNA-RNA  intermolecular  interactions,  for                          
example,  as  implemented  in  RNAup  and  IntaRNA 51,52 .  Our  study  has  shown  that  this                          
approach  can  be  used  to  identify  the  key  accessibility  regions  that  are  consistent  across                            
multiple  large  expression  datasets.  We  have  implemented  our  findings  in  TIsigner                      
webserver,  which  currently  supports  recombinant  protein  expression in E.  coli  and S.                        
cerevisiae  (optimisation  regions  −24:24  and  −7:89,  respectively;  see  Fig  1).  An  independent                        
yet  similar  implementation  is  available  in  XenoExpressO  webserver  with  the  purpose  of                        
optimising  protein  expression  for  an E.  coli  cell-free  system 53 .  The  authors  showed  that  an                            
increase  in  accessibility  of  a  30  bp  region  from  the  Shine-Dalgarno  sequence  enhances  the                            
expression  level  of  human  voltage  dependent  anion  channel,  which  supports  our  timely                        
findings.  
 
The  strengths  of  our  approach  (implemented  in  the  TIsigner  webservice  and  software  tool)                        
are four-fold.  Firstly,  the  likelihood  of  success  or  failure  can  be  assessed  prior  to  running  an                                
experiment.  Users  can  compare  the  opening  energy  calculated  for  the  input  and  optimised                          
sequences  and  the  distributions  of  the  'success'  and  'failure'  of  the  PSI:Biology  targets.  We                            
also  introduced  a  scoring  scheme to  score  the  input  and  optimised  sequences  based  upon                            
how  likely  they  are  to  be  expressed  (Fig  4;  also  see  Methods).  Secondly,  optimised                            
sequences  can  have  up  to  the  first  nine  codons  substituted  (by  default),  meaning  that  gene                              
optimisation  using  a  standard  PCR  cloning  method  is  feasible.  For  cloning,  we  propose  a                            
nested  PCR  approach,  in  which  the  final  PCR  reaction  utilises  a  forward primer  designed                            
according  to  the  optimised  sequence 54  (Fig  5C).  Thirdly,  the  cost  of  gene  optimisation  can  be                              
reduced  dramatically  as  gene  synthesis  is  replaced  with  PCR  using  our  approach.  This                          
enables  high-throughput  protein  expression  screening  using  the  optimised  sequences,                  
generated  at  a  low  cost.  Finally,  tunable  expression  is  possible,  i.e.  high,  intermediate  or                            
even  low  expression  5′  codon  sequences  can  be  designed,  allowing  for  more  control  over                            
heterologous  protein  production.  Although  our  study  focuses  largely  on  the  expression  of                        
recombinant  proteins  without  an  N-Terminal  fusion  tag,  our  findings  might  give  meaningful                        
insights   to   other   systems.   
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Methods  
Sequence   features   analysis  
Minimum  free  energy,  opening  energy  and  avoidance  were  calculated  using  RNAfold,                      
RNAplfold  and  RNAup  from  ViennaRNA  package  (version  2.4.11),  respectively 49–51,55–58 .                 
RNAfold  was  run  with  default  parameters.  For  RNAplfold,  sub-sequences  were  generated                      
from  the  input  sequences  to  calculate  opening  energy  (using  the  parameters  -W  210  -u  210).                              
For  RNAup,  we  examined  the  stochastic  interactions  between  the  region  1:30  of  each  mRNA                            
and  54  non-coding  RNAs  (using  the  parameters  -b  -o).  RNAup  reports  the  total  interaction                            
between  two  RNAs  as  the  sum  of energy  required  to  open  accessible  sites  in  the  interacting                                
molecules  and  the  energy  gained  by  subsequent  hybridisation 49 .  For  the   GΔ u                 GΔ h      

interactions  between  each  mRNA  and  54  non-coding  RNAs,  we  chose  the  most  stable                          
mRNA:ncRNA  pair  to  report  an  inappropriate  mRNA:ncRNA  interaction,  i.e.  the  pair  with  the                          
strongest   hybridisation   energy,   . ΔG ) ( h min   

 
CAI,  tAI  and  CC  were  calculated  using  the  reference  weights  from  Sharp  and  Li 12 ,  Tuller  et                                
al. 42  and  Ang  et  al. 43 ,  respectively.  Translation  elongation  rate  was  predicted  using  Iχnos 44                          
trained  with  ribosome  profiling  data  (SRR7759806  and  SRR7759807) 59 .  See  Supplementary                    
Table   S1   for   the   datasets   used   in   this   study.  
 
 
TIsigner  
Finding  a  synonymous  sequence  with  a  maximum  accessibility  is  a  combinatorial  problem                        
that  spans  a  vast  search  space.  For  example,  for  a  protein-coding  sequence  of  nine  codons,                              
assuming  an  average  of  3  synonymous  codons  per  amino  acid,  we  can  expect  a  total  of                                
19,682  unique  synonymous  coding  sequences.  This  number  increases  rapidly  with                    
increasing  number  of  codons.  Heuristic  optimisation  approaches  are  preferred  in  such                      
situations  because  the  search  space  can  be  explored  more  efficiently  to  obtain  nearly                          
optimal   solutions.   
 
To  optimise  the  accessibility  of  a  given  sequence,  TIsigner  uses  a  simulated  annealing                          
algorithm 60–63 ,  a  heuristic  optimisation  technique  based  on  the  thermodynamics  of  a  system                        
settling  into  a  low  energy  state  after  cooling.  A  simulated  annealing  algorithm  has  been  used                              
to  solve  several  combinatorial  optimisation  problems  in  bioinformatics.  For  example,  we                      
previously  applied  this  algorithm  to  align  and  predict  non-coding  RNAs  from  multiple                        
sequences 64 .   Other   studies   use   this   algorithm   to   find   consensus   sequences 62    and  
optimise  the  ribosome  binding  sites 26  and  mRNA  folding 65  using  minimum  free  energy                        
models.  
 
According  to  statistical  mechanics,  the  probability  of  a system  occupying  energy  state             pi              

with  temperature  follows  a  Boltzmann  distribution  of  the  form ,  which  gives  a  set   ,E i   ,T                 e−E  /Ti          

of  probability  mass  functions  along  every  point  in  the  solution  space.  Using  a  Markov               i                

chain  sampling,  these  probabilities  are  sampled  such  that  each  point  has  a  lower                          
temperature  then  the  previous  one.  As  the  system  is  cooled  from  high  to  low  temperatures  (                              

,  the  samples  converge  to  a  minimum  of ,  which  in  many  cases  might  be  the  global )T → 0                E                  

minimum 62 .  A  frequently  used  Markov  chain  sampling  technique  is  Metropolis-Hastings                    
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algorithm  in  which  a  ‘bad’  move from  initial  state  such  that ,  is  accepted  if           E2        E1       E2  > E1        

,   where     is   a   uniformly   random   number   between   0   and   1. (0, )  p / pR 1 ≥   2 1 (0, )R 1  

 
In  our  implementation,  each  iteration  consists  of  a  move  that  may  involve  multiple                          
synonymous  codon  substitutions.  The  algorithm  begins  at  a  high  temperature  where  the  first                          
move  is  drastic,  synonymous  substitutions  occur  in  all  replaceable  codons.  At  the  end  of  the                              
first  iteration,  a  new  sequence  is  accepted  if  the  opening  energy  is  smaller  than  that  of  the                                  
input  sequence.  However,  if  the  opening  energy  of  a  new  sequence  is  greater  than  that  of                                
the  input  sequence,  acceptance  depends  on  the  Metropolis-Hastings  criteria.  The  accepted                      
sequence  is  used  for  the  next  iteration,  which  repeats  the  above  process.  As  the                            
temperature  cools,  the  moves  get  milder  with  fewer  synonymous  codon  changes                      
(Supplementary   Fig   S3).   Simulated   annealing   stops   upon   reaching   a   near   optimum   solution.   
 
For  the  web  version  of  TIsigner,  the  default  number  of  replaceable  codons  is  restricted  to  the                                
first  nine  codons.  However,  this  default  setting  can  be  reset  to  range  from  the  first  four  to                                  
nine  codons,  or  the  full  length  of  the  coding  sequence.  Furthermore,  TIsigner  runs  multiple                            
simulated  annealing  instances,  in  parallel,  to  obtain  multiple  possible  sequence  solutions.                      
There  is  a  possibility  to  select  tunable  expression  levels  when  the  T7lac  promoter  is  selected                              
(as  the  expression  scores  were  calculated  based on  the  PSI:Biology  dataset;  see  below).                          
Among  the  solutions,  the  sequence  that  matches  most  closely  to  the  users’  selected  target                            
expression  score  is  chosen  as  the  optimum.  The  option  for  tunable  expression  is  not                            
available  for  custom  UTRs,  the  sequence  with  minimum  opening  energy  is  chosen  as  the                            
optimum.   
 
We  allow  users  to  select  desirable  target  expression  scores  for  the  experiments  using  the                            
T7lac  inducible  promoter.  To  implement  this  criterion,  the  posterior  probabilities  of  success                        
for  input  and  optimised  sequences  are  evaluated  using  the  following  equations  from                        
Bayesian   statistics:  
 
ositive posterior odds  prior odds  f itted positive likelihood ratiop =   ×   (1)  

ositive posterior probability p =   positive posterior odds
(1 + positive posterior odds) (2)  

 
The  fitted  positive  likelihood  ratios  in  equation  (1)  were  obtained  from  the  following                          
4-parametric   logistic   regression   equation:  
 
f itted positive likelihood ratio  d   =   +   a−d

1+( ) c
positive likelihood ratio b (3)  

 
with  parameters  a,  b,  c,  and  d.  The  prior  probability  was  set  to  0.49,  which  is  the  proportion                                    
of  ‘Expressed’  (n=21,046)  divided  by  ‘Cloned’  (n=42,774)  of  the  PSI:Biology  targets  reported                        
as  of  28  June  2017 66 .  Posterior  probabilities  were  scaled  as  percentages  to  score  the  input                              
and   optimised   sequences.  
 
The  presence  of  terminator-like  elements 67  in  the  protein-coding  region  may  result  in                        
expression  of  truncated  mRNAs  due  to  early  transcription  termination.  Therefore,  we                      
implemented  an  optional  check  for  putative  terminators  in  the  input  and  optimised                        
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sequences  by  cmsearch  (INFERNAL  version  1.1.2) 68  using  the  covariance  models  of                      
terminators  from  RMfam 69,70 .  We  also  allow  users  to  filter  the  output  sequences  for  the                            
presence  of  restriction  sites.  Restriction  modification  sites  (AarI,  BsaI,  and  BsmBI)  are                        
avoided   by   default.  
 
 
Sequence   optimisation  
We  submitted  the  PSI:Biology  targets  that  failed  to  be  expressed  (n=2,650)  to  the                          
ExpOptimizer  webserver  from  NovoPro  Bioscience          
( https://www.novoprolabs.com/tools/codon-optimization ).  A  total  of  2,573  sequences  were            
optimised.  The  target  sequences  were  also  optimised  using  a  local  version  of  COOL 28  and                          
TIsigner using default settings. We also ran a random synonymous codon substitution as a
control   for   these   2,573   sequences.   
 
 
Statistical   analysis  
AUC  and  Gini  importance  scores  were  calculated  using  scikit-learn  (version  0.20.2) 71 .  The                      
95%  confidence  intervals  for  AUC  scores  were  calculated  using  DeLong’s  method 72 .                      
Spearman’s  correlation  coefficients  and  Kolmogorov-Smirnov  statistics  were  calculated                
using  Pandas  (version  0.23.4) 73  and  scipy  (version  1.2.1) 74,75 ,  respectively.  Positive  likelihood                      
ratios  with  95%  confidence  intervals  were  calculated  using  bootLR  package 76,77 .  The                      
P-values  of  multiple  testing  were  adjusted  using  Bonferroni's  correction  and  reported  to                        
machine  precision.  Plots  were  generated  using  Matplotlib  (version  3.0.2) 78  and  Seaborn                      
(version   0.9.0) 79 .   
 
 
Code   and   data   availability  
Our  code  and  data  can  be  found  in  our  GitHub  repository                      
( https://github.com/ /Gardner-BinfLab/TIsigner_paper_2019 ).  These  include  the  scripts  and            
Jupyter  notebooks  to  reproduce  our  results  and  figures.  TIsigner  is  written  in  Python  3.6  and                              
the  source  code  is  available  on  ( https://github.com/Gardner-BinfLab/TIsigner ).  The  public                  
web   version   of   this   tool   runs   at    https://tisigner.otago.ac.nz .  
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Figures  
Fig  1.  Correlations  between  the  opening            
energy  of  translation  initiation  sites  and            
protein  abundance  are  stronger  than          
that  of  minimum  free  energy. (A)  For E.                
coli ,  the  opening  energy  at  the  region              
−30:18  shows  the  strongest  correlation  with            
protein  abundance  (also  see  Fig  2B  or              
Supplementary  Fig  S1A,  sub-sequence        
l=48  at  position  i=18).  For  this  analysis,  we                
used  a  representative  GFP  expression          
dataset from Cambray et al. (2018). The
reporter  library  consists  of  GFP  fused            
in-frame  with  a  library  of  96-nt  upstream              
sequences  (n=14,425).  The  minimum  free          
energy  −30:30  shown  was  determined  by            
Cambray  et  al.  (right  panel). (B)  For S.                
cerevisiae ,  the  opening  energy  −7:89          
shows  the  strongest  correlation  with  protein          
abundance  (also  see  Supplementary  Fig          
S1B,  sub-sequence  l=96  at  position  i=  89).              
For  this  analysis,  we  used  the  YFP              
expression  dataset  from  Dvir  et  al.  (2013).              
The  YFP  reporter  library  consists  of  2,041              
random  decameric  nucleotides  inserted  at          
the  upstream  of  YFP  start  codon.  The              
minimum  free  energy  −15:50  was          
previously  shown  to  correlate  the  best  with              
protein  abundance  (right  panel). (C)  For M.              
musculus ,  the  opening  energy  −8:11  shows            
the  strongest  correlation  with  protein          
abundance  (also  see  Supplementary  Fig          
S1C,  sub-sequence  l=19  at  position  i=11).            
For  this  analysis,  we  used  the  GFP              
expression  dataset  from  Noderer  et  al.            
(2014).  The  GFP  reporter  library  consists  of              
65,536  random  hexameric  and  dimeric          
nucleotides  inserted  at  the  upstream  and            
downstream  of  GFP  start  codon,          
respectively.  The  minimum  free  energy          
−30:30  was  shown  (right  panel).  R s ,            

Spearman’s  rho.  Bonferroni  adjusted  P-values  are  statistically  significant  (<2.2×10 −16 )  for  the                      
correlations   between   opening   energy   and   protein   abundance   shown   in   the   left   panels.  
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Fig  2.  Strong  correlations  between  the            
opening  energy  and  protein  abundance  are            
predictive  of  the  outcomes  of  recombinant          
protein  expression  in E.  coli .  (A)  Schematic              
representation  of  a  transcript  sub-sequence l  at              
position  i  for  the  calculation  of  opening  energy.                
For  example,  sub-sequence  l=10  at  position            
i=10  corresponds  to  the  region  1:10. (B)              
Correlation  between  the  opening  energy  for  the              
sub-sequences  of  GFP  transcripts  and  protein            
abundance.  The  opening  energy  at  the  region              
−30 to 18 nt (sub-sequence l=48 at position
i=18,  green  crosshair)  shows  the  strongest            
correlation  with  protein  abundance  [R s =−0.65;          
n=14,425,  GFP  expression  dataset  of  Cambray            
et  al.  (2018)].  For  this  dataset,  the  reporter                
plasmid  used  is  pGC4750,  in  which  the              
promoter  and  ribosomal  binding  site  are            
oFAB1806  inducible  promoter  and        
oFAB1173/BCD7,  respectively. (C)  Prediction        
accuracy  of  the  expression  outcomes  of  the              
PSI:Biology  targets  using  opening  energy          
(n=11,430).  The  opening  energy  at  the  region              
−23:24  (sub-sequence  l=47  at  position  i=24,            
green  crosshair)  shows  the  highest  prediction            
accuracy  score  (AUC=0.70).  For  this  dataset,            
the  expression  vector  used  is  pET21_NESG,  in              
which  the  promoter  and  fusion  tag  are  T7lac  and                  
C-terminal  His  tag,  respectively. (D)  Comparison            
between  the  correlations  and  AUC  scores  by              
sub-sequence  region  taken  from  the  above            
analyses.  The  sub-sequence  regions  that  have            
strong  correlations  are  likely  to  have  high  AUC                
scores,  whereas  the  sub-sequence  regions  that            
have  no  correlations  are  likely  not  useful  in                
prediction  of  the  expression  outcome. (E)            
Correlation  between  the  opening  energy  for  the              
sub-sequences  of E.  coli  transcripts  and  protein              
abundance.  The  transcripts  used  for  this            
analysis  are  protein-coding  sequences        

concatenated  with  50  and  10  nt  located  upstream  and  downstream,  respectively.  The                        
opening  energy  at  the  region  −25:16  (sub-sequence  l=41  at  position  i=16,  green  crosshair)                          
shows  the  strongest  correlation  with  protein abundance  (R s =−0.17;  n=3,725,  PaxDb                    
integrated   proteomics   dataset).   R s ,   Spearman’s   rho.  
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Fig  3.  Accessibility  is  a  strong  predictor  of  heterologous  protein  expression.  ( A)  ROC                          
analysis  for  prediction  of  the  expression  outcomes  of  the  PSI:Biology  targets  (n=8,780  and                          
2,650,  ‘success’  and  ‘failure’  groups,  respectively).  The  features  associated  with  translation                      
initiation  rate  analysed  are  the  opening  energy  −24:24,  minimum  free  energy  −30:30  and                          
avoidance  1:30  (left  panel).  The  feature  associated  with  translation  elongation  rate  are  tRNA                          
adaptation  index  (tAI),  codon  context  (CC),  codon  adaptation  index  (CAI),  G+C  content  (%)                          
and  Iχnos  (right  panel).  The  Iχnos  scores  are  translation  elongation  rates  predicted  using  a                            
neural  network  model  trained  with  ribosome  profiling  data.  The  AUC  scores  with  95%                          
confidence  intervals  are  shown. (B)  Relationships  between  the  features  and  expression                      
outcome  represented  as  squared  Spearman’s  correlations  (R s 

2 ).  The  opening  energy  −24:24                      
is   the   best   feature   in   explaining   the   expression  outcome.  
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Fig  4.  Opening  energy  of  10  or  below  at                  
the  region − 24:24  is  about  two  times              
more  likely  to  come  from  the  target              
genes  that  are  successfully  expressed          
than  those  that  failed  (with  95%            
confidence). Cumulative  frequency      
distributions  of  the  true  positive  and  false              
positive  (less  than  type),  and  true  negative              
and  false  negative  (more  than  type)            
derived  from  the  ROC  analysis  in  Fig  2A                
(left  panel,  opening  energy  −24:24).  These            
values were used to estimate positive
likelihood  ratios  with  95%  confidence          
intervals  using  10,000  bootstrap  replicates.          
The  estimated  ratios  and/or  confidence          
intervals  are  inaccurate  at  low  numbers  of              
true  positives  or  true  negatives.  Therefore,            
a  four-parameter  logistic  curve  was  fitted  to              
the  positive  likelihood  ratios.  Fitted  values            
are  useful  to  estimate  the  posterior            
probability   of   protein   expression.  
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Fig  5.  Accessibility  of  translation        
initiation  sites  can  be  increased  by            
synonymous  codon  substitution  within        
the  first  nine  codons  using  simulated            
annealing. (A)  Accessibility  of  translation          
initiation  sites  increases  with  increasing          
number  of  the  first  N  replaceable  codons.              
The  PSI:Biology  targets  that  failed  to  be              
expressed  were  optimised  using  simulated        
annealing  (n=2,650).  The      
Kolmogorov-Smirnov  distance  between  the        
distributions  of  ‘9’  and  ‘full-length’  was            
significantly  different  but  sufficiently  close          
(D KS =0.09,  P<10 -7 ),  indicating  that        
optimisation  of  the  first  nine  codons  can              
achieve  nearly  optimum  accessibility.  For          
comparison,  the  distribution  of  the          
PSI:Biology  targets  that  were  successfully          
expressed  are  shown  (n=8,780). (B)        
Accessibility  of  translation  initiation  sites  can            
be  increased  indirectly  using  the  existing            
gene  optimisation  tools  and  random          
synonymous  codon  substitution.  ‘TIsigner        
(9)’  refers  to  the  default  settings  of  our  tool,                  
which  allows synonymous  substitutions  up  to            
the  first  nine  codons  (as  above). (C)              
Accessibility  of  translation  initiation  sites  can            
be  optimised  using  PCR  cloning.  The            
forward  primer  should  be  designed          
according  to  TIsiger  optimised  sequences.          
For  example,  using  a  nested  PCR  approach,              
the  optimised  sequence  can  be  produced            
using  the  forward  primer  designed  with            
appropriate  mismatches  (gold  bulges)  to          

amplify   the   amplicon   from   the   initial   PCR   reaction.  
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