

1 **Genetic and molecular mechanism for distinct clinical**
2 **phenotypes conveyed by allelic truncating mutations**
3 **implicated in *FBN1***

4

5 **Mao Lin^{a,b*}, Zhenlei Liu^{c,d*}, Gang Liu^{a,c}, Sen Zhao^{a,c}, Chao Li^e, Weisheng**
6 **Chen^{a,b}, Zeynep Coban Akdemir^f, Jiachen Lin^{a,b}, Xiaofei Song^f, Shengru**
7 **Wang^{a,c}, Qiming Xu^c, Yanxue Zhao^a, Lianlei Wang^{a,b}, Yuanqiang Zhang^{a,b},**
8 **Zihui Yan^{a,b}, Sen Liu^{a,c}, Jiaqi Liu^{c,g}, Yixin Chen^h, Xu Yang^a, Tianshu Sunⁱ,**
9 **Xin-Zhuang Yangⁱ, Yuchen Niuⁱ, Xiaoxin Liⁱ, Wesley You^j, Bintao Qiuⁱ, Chen**
10 **Ding^e, Pengfei Liu^{f,k}, Shuyang Zhang^{c,l}, Claudia M. B. Carvalho^f, Jennifer E.**
11 **Posey^f, Guixing Qiu^{a,c,m}, James R. Lupski^{f,n,o,p}, Zhihong Wu^{c,i,m#}, Jianguo**
12 **Zhang^{a,c,m#}, Nan Wu^{a,c,f,m#}, on behalf of the Deciphering Disorders Involving**
13 **Scoliosis and COMorbidities (DISCO) study**

14 ^a *Department of Orthopedic Surgery, Peking Union Medical College Hospital,*
15 *Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing*
16 *100730, China*

17 ^b *Graduate School of Peking Union Medical College, Chinese Academy of Medical*
18 *Sciences, Beijing 100005, China*

19 ^c *Beijing Key Laboratory for Genetic Research of Skeletal Deformity, Beijing 100730,*
20 *China*

21 ^d *Department of Neurosurgery, Xuanwu Hospital, Capital Medical University,
22 Beijing 100053, China*

23 ^e *College of Life and Health Sciences, Northeastern University, ShenYang, LiaoNing,
24 110819, China*

25 ^f *Department of Molecular and Human Genetics, Baylor College of Medicine,
26 Houston, TX 77030, USA*

27 ^g *Department of Breast Surgical Oncology, National Cancer Center /National
28 Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical
29 Sciences and Peking Union Medical College, Beijing 100021, China*

30 ^h *Department of Cardiovascular Surgery, Fuwai Hospital, National Center for
31 Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union
32 Medical College, Beijing 100073, China*

33 ⁱ *Medical Research Center & Department of Central Laboratory, Peking Union
34 Medical College Hospital, Peking Union Medical College and Chinese Academy of
35 Medical Sciences, Beijing 100730, China*

36 ^j *Amherst College, 220 South Pleasant Street, Amherst, MA 01002, USA*

37 ^k *Baylor Genetics Laboratory, Houston, Texas 77021, USA*

38 ^l *Department of Cardiology, Peking Union Medical College Hospital, Peking Union*

39 *Medical College and Chinese Academy of Medical Sciences, No. 1 Shuaifuyuan,*
40 *Beijing 100730, China*

41 ^m *Medical Research Center of Orthopedics, Chinese Academy of Medical Sciences,*
42 *Beijing 100730, China*

43 ⁿ *Departments of Pediatrics, Baylor College of Medicine, Houston, Texas 77030,*
44 *USA*

45 ^o *Texas Children's Hospital, Houston, Texas 77030, USA*

46 ^p *Human Genome Sequencing Center, Baylor College of Medicine, Houston 77030,*
47 *Texas, USA*

48

49 [#] Corresponding authors:

50 Nan Wu, MD, E-mail: dr.wunan@pumch.cn;

51 Jianguo Zhang MD, E-mail: jgzhang_pumch@yahoo.com;

52 Zhihong Wu, MD, E-mail: orthoscience@126.com.

53

54 *These authors have contributed equally to this study

55

56

57 **Abstract**

58 The molecular and genetic mechanisms by which different single nucleotide
59 variant (SNV) alleles in specific genes, or at the same genetic locus, bring about
60 distinct disease phenotypes often remain unclear. Allelic truncating mutations of
61 *fibrillin-1(FBN1)* cause either classical Marfan syndrome (MFS) or a more severe
62 phenotype associated with Marfanoid-progeroid-lipodystrophy syndrome (MPLS). A
63 total of three Marfan syndrome/Marfanoid patients (2 singletons and 1
64 parent-offspring trio) were recruited. Targeted next-generation sequencing was
65 performed on all the participants. We analyzed the molecular diagnosis, patient
66 clinical features, and the potential molecular mechanism involved in the MPLS
67 subject in our cohort. We investigated a small cohort, consisting of two classical MFS
68 and one MPLS patient from China, whose clinical presentation included scoliosis
69 potentially requiring surgical intervention. We provide evidence that most nonsense
70 and frameshift mutations lead to *FBN1* null alleles due to mutant mRNA transcript
71 degradation. In contrast, the more severe disease phenotype, MPLS, is caused by
72 mutant mRNAs that are predicted to escape the nonsense mediated decay (NMD)
73 surveillance pathway, making a mutant protein that exerts a dominant negative

74 interference effect to *FBNI* thus generating a gain-of-function (GoF) rather than a
75 loss-of-function (LoF) allele as in MFS. Overall, we provide direct evidence that a
76 dominant negative interaction of *FBNI* potentially explains the distinct clinical
77 phenotype in MPLS patients through genetic and functional analysis of the first
78 Chinese patient with MPLS. Moreover, our study expands the mutation spectrum of
79 *FBNI* and highlights the potential molecular mechanism for MPLS patients.

80 **Keywords**

81 *FBNI*, Marfan syndrome (MFS), Marfanoid-progeroid-lipodystrophy syndrome
82 (MPLS), Targeted next-generation sequencing, Dominant negative mechanism

83

84

85

86 Marfan syndrome (MFS; MIM: #154700) refers to a heritable autosomal dominant
87 disease trait of fibrous connective tissue due to heterozygous mutations in the
88 fibrillin-1 gene (*FBNI*; 134797) on chromosome 15q21. The cardinal phenotypic
89 features allowing for clinical diagnosis primarily occur in the skeletal, ocular, and
90 cardiovascular systems (DIETZ 2015). MFS is manifest by clinical features/findings
91 involving the skeletal (tall stature, disproportionately long limbs and digits
92 [arachnodactyly], anterior chest wall deformity, mild to moderate joint laxity and
93 frequent spinal deformity [especially scoliosis], cardiovascular (increased risk for
94 aortic root dilation and/or dissection), and ocular (*ectopia lentis*) systems (LOEYS *et al.*
95 2010). Marfanoid-progeroid-lipodystrophy syndrome (MPLS; MIM: #616914) is a
96 more recently-clarified fibrillinopathy, and also a complex disease characterized by
97 accelerated aging and postnatal lipodystrophy, poor postnatal weight gain and
98 characteristic dysmorphic facial features that have very rarely been clinically
99 recognized and reported (GOLDBLATT *et al.* 2011; PASSARGE *et al.* 2016). Recent
100 studies have implicated a potential hormone, named asprosin, encoded by the *FBNI*
101 locus as a mediator of the lipodystrophy phenotype (ROMERE *et al.* 2016;
102 DUERRSCHMID *et al.* 2017). All previously reported MPLS individuals consistently
103 harbor heterozygous truncating mutations in exon 64, which leads to premature stop

104 codons in the C-terminal domain of *FBN1* (GOLDBLATT *et al.* 2011; SONG *et al.* 2012;
105 GARG AND XING 2014; JACQUINET *et al.* 2014; PASSARGE *et al.* 2016; ROMERE *et al.*
106 2016).

107 In this study, we present clinical and genetic, genomic and molecular data from
108 three unrelated subjects with Marfan/Marfanoid syndrome, including the first case of
109 clinically recognized MPLS in the Chinese population. The potential effects of
110 truncating mutations of *FBN1* which are implicated in MPLS subjects conveying
111 distinct dominant negative alleles and clinically distinguishable autosomal dominant
112 (AD) disease traits were ascertained with functional assays.

113 **Materials and methods**

114 **Participant recruitment and Sample preparation**

115 A total of three Marfan syndrome/Marfanoid patients (2 singletons and 1
116 parent-offspring trio) were consecutively recruited through the Deciphering Disorders
117 Involving Scoliosis & Comorbidities (DISCO) project (www.discostudy.org) at
118 Peking Union Medical College Hospital (PUMCH). Written informed consent was
119 provided by patients or their parents. Peripheral blood samples were extracted from
120 affected probands and corresponding unaffected parents if available. Genomic DNA

121 was extracted with the QIAamp DNA Blood Mini Kit (QIAGEN, Germany) according
122 to the manufacturer's instructions.

123 **Targeted next-generation sequencing, Variant processing, filtering and**
124 **annotation**

125 To establish an NGS panel maximally covering known genes implicated in the
126 cause of Mendelian diseases with vertebral malformation phenotypes, we performed a
127 systematic literature and database search for congenital scoliosis (CS) related disease.

128 After manual review, a total of 344 genes were found, corresponding to 457 CS related
129 monogenic phenotypes. Also included was an additional set of 220 genes whose
130 protein products are involved in the pathways related to vertebral development or in
131 which pathogenic variant alleles have been reported in association with CS
132 phenotypes in animal models, but not yet linked to human diseases with CS
133 phenotypes. The target panel set comprises 564 genes, 6458 exons and flanking 30bp
134 regions, and 2.97 Mb in total genomic size. DNA Probes for target capture were
135 designed and purchased from NimbleGen (Roche, Switzerland)
136 (<https://design.nimblegen.com/nimbledesign/app>). The final set of DNA probes was
137 expected to cover 99.7% of the targeted regions. In addition to the previously
138 published *TBX6* gene featuring a compound heterozygous inheritance model (WU *et*

139 *al.* 2015), the *FBNI* gene was also targeted in the panel. A targeted sequence
140 enrichment library was prepared following a previously described protocol (ASAN *et*
141 *al.* 2011). For each sample, 1 µg of genomic DNA was used as starting material.
142 Genomic DNA was fragmented to a size of ~200-250 bp. The fragmented DNA was
143 end-repaired, capped with A-tailing and subject to ligation of indexed adaptors. After
144 5 cycles of PCR amplification, each indexed product was pooled and hybridized with
145 DNA probes for targeted capture in one solution capture reaction. The product of
146 targeted enrichment DNA was further subject to 14 cycles of PCR amplification,
147 followed by final library yield validation by Bioanalyzer analysis (Agilent, USA) and
148 qPCR quantification. Sequencing was performed with the PE100 mode on an Illumina
149 Hiseq2500 sequencer (Illumina, CA, USA).

150 After generating raw sequence data, a perl script was used to remove low-quality
151 and adaptor-contaminated reads. The remaining reads were mapped onto human
152 reference genome assembly hg19 (GRCh37, <http://genome.ucsc.edu/>) with the BWA
153 mapper. Additionally, single nucleotide variants (SNVs) and small insertions and
154 deletions (indels) were called with the GATK (v2.2-3) bioinformatics package.
155 Variants were annotated using an in-house developed annotation pipeline. We filtered
156 out variants with common and high frequencies (Minor allele frequency >1%) in the

157 public databases (the 1000 Genomes Project, the Exome Sequencing Project 6500
158 (<http://evs.gs.washington.edu/EVS/>), ExAC (<http://exac.broadinstitute.org>) or an
159 in-house WES control dataset) that were also not functionally relevant (deep intronic
160 (>30bp), untranslated regions, or synonymous SNVs, or noncoding indels). We also
161 annotated the detected variants using a customized database based on the Human
162 Gene Mutation Database (HGMD) and Online Mendelian Inheritance in Man (OMIM)
163 (<https://omim.org/>).

164 **Sanger sequencing**

165 Genomic DNA from all individuals was subjected to Sanger sequencing for
166 orthogonal confirmation of all identified variants.

167 **Prediction of probability of NMD events**

168 For allelic truncating frameshift variants identified in our cohort and previously
169 reported, *in-silico* predictions of NMD events were implemented using the online
170 NMDEscPredictor (COBAN-AKDEMIR *et al.* 2018).

171 **Plasmid construction and mutagenesis**

172 A cDNA fragment containing full-length *FBN1* (GenBank ID: NM_000138.4)
173 cDNA derived from human muscle and having suitable restriction sites was
174 PCR-amplified using KOD-Plus-Neo (Toyobo, Japan). The PCR amplicons were

175 cloned into the *NheI* and *SacII* sites of the pEGFP-N1 expression vector (Clontech,
176 Takara Bio, Japan). Mutant EGFP-FBN1 plasmids were generated by site-directed
177 mutagenesis and their construction confirmed by direct Sanger dideoxy sequencing.
178 G2003R which was previously reported in an adolescent idiopathic scoliosis (AIS)
179 case was used as a positive control (BUCHAN *et al.* 2014). Mutations of
180 Tyr2596Thrfs*86, Glu2759Cysfs*9 and G2003R were introduced into a wild-type
181 (WT) pEGFP-FBN1 QuikChange Lightning Site-directed Mutagenesis Kit (Agilent
182 Technologies, CA, USA) according to the manufacturer's instructions. The resulting
183 three mutant plasmids pEGFP-FBN1-Tyr2596Thrfs*86,
184 pEGFP-FBN1-Glu2759Cysfs*9 and pEGFP-FBN1-Gly2003Arg were used for
185 functional studies.

186 **Cell culture and transfection**

187 HEK293T cells were cultured in DMEM (Gibco, Waltham, MA, USA) + 10%
188 FCS (Biological Industries, Cromwell, USA) + 1% penicillin/streptomycin
189 (Gibco-Life Technologies, USA) at 37°C with 5% CO₂. Cells were
190 transfected/co-transfected with a mutant and/or a WT pEGFP-FBN1 using
191 Lipofectamine3000 (Invitrogen, CA, USA) according to the manufacturers'
192 instructions. Six hours after transfection, the medium was replaced with fresh

193 complete DMEM culture medium, and the cells were further incubated for 48 h. Total
194 proteins were extracted and analyzed by Western blot and SDD-AGE, respectively.

195 **Western blot**

196 Cells were lysed with modified RIPA (50 mM Tris-HCL, 1% NP40, 0.25%
197 Na-deoxycholate, 150 mM NaCl, and 1 mM EDTA; CompleteTM Protease Inhibitor
198 Cocktail [Roche]), and protein concentrations were determined with the BCA-Kit
199 (Pierce). A total amount of 5 mg protein was size separated on an 8% SDS
200 polyacrylamide gel, and proteins were electrophoresed and transferred to
201 nitrocellulose membranes. Membranes were blocked in powdered milk for 30 min at
202 room temperature (RT, 25-degrees Celsius), and primary antibodies (Phospho-Smad2
203 (Ser245/250/255) Antibody, Cell Signaling Technology; anti-GAPDH, Millipore)
204 were incubated overnight at 4°C. After washing, the corresponding
205 horseradish-peroxidase-coupled goat anti-rabbit secondary antibodies (KPL) were
206 incubated for 1h at RT. Bands were visualized with the WesternBright ECL
207 chemiluminescence system (Advansta, CA, USA). This experiment was performed
208 three times with different cell lysates. Chemiluminescent signals were quantified
209 using ImageJ (SCHNEIDER *et al.* 2012).

210 **SDD-AGE**

211 For Semi-Denaturing Detergent-Agarose Gel Electrophoresis (SDD-AGE)

212 (BERCHOWITZ *et al.* 2015), HEK293T cells were co-transfected with wildtype

213 (pEGFP-FBN1) and mutants (pEGFP-FBN1-Tyr2596Thrfs*86;

214 pEGFP-FBN1-Glu2759Cysfs*9) for 6 h, and then incubated for 48 h. After 48 h

215 incubation at 37°C with 5% CO₂ in the thermotank, cells were harvested by

216 centrifugation at 3000 rcf for 2 min, resuspension in 200 μL water, and subsequent

217 centrifugation. Approximately 100 μl of acid-washed cells were then added to each

218 well followed by 120 μL lysis buffer (100 mM Tris pH 8, 1% Triton X-100, 50 mM

219 β-mercaptoethanol, 3% HALT protease inhibitor cocktail, 30 mM N-ethylmaleimide,

220 and 12.5 U/mL Benzonase nuclease). Blocks were then sealed with a rubber mat

221 (Nunc 276002) and shaken at max speed two times for 3 min on a Qiagen Tissuelyzer

222 2. To each well was then added 35 μL 4X sample buffer (2X TAE, 20% glycerol, 8%

223 SDS, 0.01% bromophenol blue). The blocks were then vortexed briefly and allowed to

224 incubate at RT for three minutes, followed by centrifugation for 2 min at 3000 rcf to

225 remove cell debris. Electrophoresis and capillary blotting to Hybond ECL

226 nitrocellulose were performed as described. Proteins were transferred to a

227 polyvinylidene difluoride membrane and probed with well-characterized monoclonal

228 antibody of anti-Fibrillin 1 (Abcam ab124334, Cambridge, UK).

229 **Statistical analysis**

230 SPSS software, version 17.0 (IBM Corporation; USA), was used to conduct
231 student's two-tailed t-test comparing values of test and control samples. *P*-values of
232 less than 0.05 were considered statistically significant.

233 **Data availability statement**

234 All reagents and plasmids are available upon request. Table S1 and S2 contain a
235 list and descriptions of summary statistics of targeted genes for CS panel and targeted
236 sequencing of 564 genes, respectively. Supplemental files have been submitted to
237 figshare. All mutations identified in this study have been submitted to the Clinvar
238 database (Accession ID: VCV000617941, VCV000617942, VCV000617943).

239

240 **Results**

241 **Clinical characterization and novel allelic variants of individuals with**
242 **MFS/Marfanoid disease**

243 **Subject XH253.** The proband was a 10-year-old Chinese girl (**Fig.1A-D**) who
244 presented with kyphoscoliosis confirmed by radiologic imaging. She was referred to
245 our orthopedic spine specialist for further evaluation and management. Whole-spine
246 X ray examination revealed scoliosis with three curves. Cobb angle of the major

247 curvature was 43 degrees, and she displayed a flat back and thoracolumbar kyphosis.

248 Transthoracic echocardiographic evaluation revealed moderate mitral valve

249 insufficiency and an aortic root measurement of 3.6 cm (Z-score=4.5 when

250 standardized to age and body surface area). Skeletal system abnormalities such as long

251 and thin limbs, and arachnodactyly were observed in the proband.

252 Diminution of vision (myopia) occurred when she was 5 years old. The proband

253 fulfilled the clinical criteria for classical MFS according to Ghent classification

254 (**Table.1**), with a total of 7 points for the score in the revised Ghent Criteria (LOEYS *et*

255 *al.* 2010).A heterozygous frameshift deletion c.7785delC (p.Tyr2596Thrfs*86) was

256 identified in *FBN1* (RefSeq transcript number: NM_000138.4) in the proband via

257 targeted NGS, and subsequently confirmed by further validation using an orthogonal

258 experimental approach of Sanger sequencing (**Fig.1E**).

259 **Subject XH474.** The proband was a 16-year-old Chinese girl (**Fig.1F, G**) who

260 presented with *pectus excavatum* and scoliosis confirmed by radiologic imaging.

261 Transthoracic echocardiographic evaluation revealed anterior mitral leaflet prolapse

262 and moderate mitral valve insufficiency and an aortic root diameter measurement at

263 the level of the sinuses of Valsalva of 2.6 cm (Z-score=1.3 when standardized to age

264 and body surface area). Skeletal system abnormalities were present, such as tall stature

265 with a height of 171 cm (P₉₇; +3SD), slender body habitus with a weight of 48 kg (P₂₅,
266 -1SD), and very thin and long upper and lower limbs. Both of her hands indicated an
267 appearance of arachnodactyly; wrist sign and thumb sign were positive. According to
268 the revised Ghent nosology in 2010, an *FBN1* mutation is identified in this sporadic
269 case but aortic root measurements are still below Z score=3 (Z=1.3), the term
270 'potential MFS' should be proposed to use until the aorta reaches threshold. Herein,
271 the second patient here should be categorized as 'potential MFS' (**Table.1**), with a
272 total of 8 points for the systemic score according to the revised Ghent Criteria (LOEYS
273 *et al.* 2010). Heterozygous *FBN1* missense variants c.4890_4891delGTinsTG
274 (p.Gln1630_Cys1631delinsHisGly) were identified in the proband via targeted NGS
275 and validated by Sanger sequencing (**Fig.1H**). The missense variants were confirmed
276 to be *in cis* and comprising a complex allele resulting from a dinucleotide variant by
277 visualizing read alignment views from the Integrative Genomics Viewer (IGV)
278 (**Fig.1I**). Notably, the missense variant of c.4891T>G (p.Cys1631Gly) has been
279 previously reported as a disease-causing mutation in a classical MFS individual,
280 whose clinical course and phenotype was characterized by aortic root dissection,
281 aortic root dilation, mitral valve regurgitation, tricuspid valve prolapse, *ectopia lentis*
282 (ARBUSTINI *et al.* 2005). Conservation analysis of amino acid residues of Gln1630

283 and Cys1631 in *FBNI* demonstrate that they are highly conserved throughout
284 evolution and across many selected species, suggesting they are required for the
285 normal function of the protein. Thus, the monoallelic missense variants were most
286 likely damaging and putatively deleterious and possibly accounted for 'potential MFS'
287 in this proband (**Fig.1J**).

288 **Subject XH601.** The proband was a 9-year-old Chinese girl (**Fig.1K, L**). When
289 she was 4 years old at the time of her first evaluation, she presented with a height of
290 101 cm (P₂₅; -1SD), an extremely thin body habitus with a weight of 12 kg (P₃, -3SD).
291 Physical examination revealed bilateral arachnodactyly (**Fig.1M, N**), uneven
292 asymmetric back whilst bending and congenital dislocation of the hip joint.
293 Whole-spine X ray examination displayed severe right thoracic scoliosis with a main
294 Cobb angle of 117 degrees (**Fig.1O, P**). Transthoracic echocardiogram demonstrated
295 anterior and posterior mitral leaflet prolapse and moderate mitral valve insufficiency
296 without apparent aortic diameter enlargement at the sinuses of Valsalva or aortic root
297 dissection. Ocular system abnormalities indicated bilateral down-slanting palpebral
298 fissures, epicanthus and astigmatism. However, there were no signs or symptoms of
299 ectopia lentis. The predominant features in this patient were an extreme congenital
300 lack of subcutaneous fat, consistent with a lipodystrophy by physical exam, and a

301 subsequent bodily progeroid appearance. However, this proband did not meet revised
302 Ghent Criteria for classical MFS. Consecutive follow-ups and assessment of the
303 proband were conducted. Upon genotype driven reverse phenotyping of the proband
304 when she was 9, the proportion of upper and lower segment lengths was basically
305 normal with a ratio of 0.87. The proband had a height of 136 cm (P_{50} ,0). For
306 comparison, her father's height measurement was 170 cm and her mother's was 160
307 cm. The body mass index (BMI) of the proband was extremely low (11.1 kg/m^2)
308 potentially due to disproportionate weight gain by age. More specifically, the patient
309 had an extremely thin habitus with a weight of 20.5 Kg (P_3 , -3SD). Furthermore, hand
310 and foot radiographs to potentially assess 'bone age' suggested bilateral
311 metacarpophalangeal joint dislocation, interosseous atrophy and dolichostenomelia
312 (**Fig.1Q, R**). The proband was eventually diagnosed with
313 Marfanoid-progeroid-lipodystrophy syndrome (**Table.2**). Through targeted NGS, a
314 heterozygous variant of c.8275_8291delGAGAAGACAGCCATCTT
315 (c.8275_8291del; p.Glu2759Cysfs*9) in *FBNI* was identified in the proband. We
316 consequently confirmed this variant in subject XH601 and it was indeed *de novo*
317 through parental Sanger sequencing and trio analysis (**Fig.1S**). In addition to Sanger

318 sequencing validation, we also performed cloning sequencing on Subject XH601 to
319 further verify that this indel is subject to frame-shift variation (data not shown).

320 Moreover, these two allelic truncating variants of p.Tyr2596Thrfs*86 and
321 p.Glu2759Cysfs*9 were not present in ExAC, 1000 Genome, ESP6500 database,
322 universal mutation database (UMD) (COLLOD-BEROUUD *et al.* 2003) and our in-house
323 database (with 2000+ Chinese exomes). Clinical and genetic characteristics of subject
324 XH253 with classical MFS and XH474 with 'potential MFS' based on the revised
325 Ghent Criteria (LOEYS *et al.* 2010) are presented in Table 1.

326

327 **NMD-degradation prediction**

328 The variant of Y2596Tfs*86 identified in XH253 was a single nucleotide
329 frameshift deletion leading to a premature termination codon (PTC) in Exon 64, while
330 E2759Cfs*9 identified in XH601 was a frameshift deletion leading to a PTC in Exon
331 66, the final exon of *FBNI* (**Fig. 2A**). Although both variants are very close in linear
332 space, they may lead to distinct alterations to the *FBNI* transcript. To investigate this
333 hypothesis, we performed NMD predictions of the two truncating variants on
334 NMDescPredictor (COBAN-AKDEMIR *et al.* 2018). The result showed that
335 Y2596Tfs*86 is predicted to be degraded by NMD, i.e. NMD⁺, while E2759Cfs*9 is

336 predicted to escape NMD, i.e. NMD⁻ (**Fig. 2B**). Using the same analytical tools, we
337 further tested whether previously reported protein-truncating *FBN1* frameshift
338 variants implicated in MPLS subjects (GRAUL-NEUMANN *et al.* 2010; GOLDBLATT *et*
339 *al.* 2011; TAKENOUCHI *et al.* 2013; GARG AND XING 2014) uniformly shared the
340 mechanism of escaping NMD. Our analysis shows that all of the truncating *FBN1*
341 frameshift variants within the C-terminal gene region may escape NMD, supporting
342 the contention that the underlying disease mechanism in MPLS is the same and
343 distinct from MFS (**Fig. 2B**). These findings implicate a mechanism distinct from
344 loss-of-function (LoF) alleles, and potentially gain-of-function (GoF) variant alleles
345 (COBAN-AKDEMIR *et al.* 2018), at the *FBN1* locus causing MPLS.

346

347 **Perturbation of native aggregation process by MPLS-causative truncating**
348 **mutation**

349 To further determine if the mutant FBN1 protein in MPLS is able to lead to
350 dominant negative or GoF effects, plasmids expressing mutants
351 (pEGFP-FBN1-Tyr2596Thrs*86; pEGFP-FBN1-Glu2759Cysfs*9) and WT plasmid
352 (pEGFP-FBN1) were co-transfected into HEK293T cells at a 1:1 ratio. After 48h of
353 expression, lysates from cells expressing EGFP-FBN1 fusions were analyzed by
354 SDD-AGE. Detection of SDS-resistant aggregates by SDD-AGE in cell lysates of

355 HEK293T transiently expressing EGFP-FBN1 fusions were investigated with
356 SDD-AGE and Western blot. Protein expression was induced for 48 h and detected
357 with a monoclonal FBN1-specific antibody. Remarkably, WT plasmid (EGFP-FBN1
358 fusions) had the SDS-resistance properties of an amyloidogenic protein structure.
359 Since amyloid formation is time- and concentration-dependent, we set the time of
360 transient expression to 48 h. WT plasmid (EGFP-FBN1 fusions) were aggregated after
361 48 h expression, whereas co-transfection of pEGFP-FBN1-Glu2759Cysfs*9 and WT
362 plasmid resulted in the presence of a small fraction of monomer protein. This suggests
363 that pEGFP-FBN1-Glu2759Cysfs*9 apparently prohibited the native aggregation
364 process of WT plasmid, possibly revealing an intracellular dominant-negative
365 mechanism. In addition, we observed that co-transfection of
366 pEGFP-FBN1-Tyr2596Thrfs*86 and WT plasmid presented a small fraction of
367 aggregated protein. As this fraction was less than that of the WT plasmid, it can be
368 suggested that Tyr2596Thrfs*86 may undergo an NMD mechanism thus leading to
369 *FBN1* haploinsufficiency (**Fig.3A**). Moreover, these variations in the range of particle
370 sizes were observed, and again were reproducible for individual EGFP-FBN1 fusions
371 validated by another two independent replication experiments.
372

373 **Disruption of downstream TGF- β signaling**

374 Previous studies have demonstrated that deleterious *FBN1* mutations causing
375 Marfan syndrome result in upregulated endogenous transforming growth factor β
376 (TGF- β) receptor signaling (ANDELFINGER *et al.* 2016). Such signaling can be
377 measured in plasma or indirectly measured through aberrant activation of downstream
378 targets, including excessive phosphorylation of SMAD2 (pSMAD2) (VERSTRAETEN
379 *et al.* 2016). To determine the functional consequences of the novel truncating *FBN1*
380 variant of E2759Cfs*9 in the MLPS patient, plasmids expressing mutant EGFP-FBN1
381 cDNAs were transfected into HEK293T cells. Transfected cells with truncating *FBN1*
382 variants of Y2596Tfs*86 (P=0.007), E2759Cfs*9 (P=0.017) and Gly2003Arg
383 (P=0.006) showed significantly elevated phosphorylation of SMAD2 (pSMAD2) in
384 Western blots compared to the WT plasmid (**Fig.3B, C**). This observation is consistent
385 with the contention that the TGF- β signaling pathway is perturbed in a
386 SMAD-dependent manner in all 3 subjects.

387

388 **Genotypic and phenotypic features of reported MPLS patients**

389 Intriguingly, the mechanism underlying *FBN1*-related diseases involves either
390 loss-of-function (LoF) or NMD surveillance pathway escape as conveyed by allelic
391 truncating mutations. Such distinct mechanisms could contribute to distinct disease

392 phenotypes of varying severity. According to a previous report, *FBNI* LOF mutations
393 led to classical MFS (PARK *et al.* 2017), while predicted NMD surveillance pathway
394 escape in *FBNI* can cause a MPLS phenotype (ROMERE *et al.* 2016), Patient XH601
395 in our cohort harbored a heterozygous *de novo* variant of E2759Cfs*9 in *FBNI*, which
396 is located in the final exon. Notably, our MPLS patients presented with
397 bilateral down-slanting palpebral fissures, epicanthus and eye astigmatism. The main
398 clinical features of this complicated disorder, clustered in Table 2, include accelerated
399 aging and postnatal lipodystrophy, poor weight gain since birth, premature birth,
400 hyperextensible digits and generalized subcutaneous fat reduction leading to a
401 progeroid appearance of the body in all patients. Mental and motor development
402 remain mostly normal. Overlapping clinical features of MPLS with MFS are
403 phenotypically diverse. Ocular system involvement like myopia have been observed
404 in all individuals, although hyperextensible joints, arachnodactyly, and other
405 significant signs of classical MFS are not always present, i.e. mitral valve prolapse in
406 4/8, lumbosacral dural ectasia in 2/3 (5 data points unavailable), *pectus excavatum* in
407 3/8, and ectopia lentis in 3/8. Scoliosis was reported in two patients aged 23 and 17
408 years, and kyphosis was reported in a patient aged 27 years, but not described in the
409 others (**Table.2**). Remarkably, the major Cobb angles of Subject XH253 with classical

410 MFS and Subject XH474 with MASS were 43 degrees and 85 degrees, respectively.

411 Our MPLS patient presented a thoracic scoliosis with a major Cobb angle magnitude

412 of 117 degrees—a condition much more severe compared to the MFS patients,

413 counterparts.

414 **Discussion**

415 In the present report, we provide direct evidence for potential dominant negative

416 alleles in MPLS patients caused by truncating *FBN1* variants escaping NMD. These

417 genetic and functional investigations also include description of the first patient with

418 MPLS of Chinese ancestry.

419 Several case reports previously identified an association between monogenic

420 *FBN1* mutations and reduction of subcutaneous fat and/or progeroid features

421 (GRAUL-NEUMANN *et al.* 2010; GOLDBLATT *et al.* 2011; TAKENOUCHI *et al.* 2013;

422 JACQUINET *et al.* 2014; PASSARGE *et al.* 2016). Here, we have provided further

423 evidence for the existence of a distinct genetic disease, MPLS, caused by *FBN1*

424 mutations. The MPLS patient in our study is characterized by accelerated aging and

425 postnatal lipodystrophy, disproportionate weight gain since birth, severe scoliosis,

426 downslanting palpebral fissures, bilateral metacarpophalangeal joint dislocation,

427 mitral valve prolapse, bilateral interosseous atrophy, and congenital dislocation of the
428 hip. Intriguingly, this patient was previously diagnosed with Marfanoid disease
429 (**Table.1**) due to an unclear molecular diagnosis. We consequently performed targeted
430 NGS on the affected proband and her unaffected parents. As a result, we identified
431 c.8275_8291del(p.Glu2759Cysfs*9) in *FBN1* as the responsible variant for the
432 proband. Sanger sequencing was then conducted on genomic DNA from both parents
433 to confirm the *de novo* occurrence and segregation with phenotypes. Subsequently, we
434 proceeded with a comprehensive phenotypic analysis of all family members through
435 intensive clinical follow-up. By combining genetic data with reverse phenotyping, we
436 eventually diagnosed the proband with MPLS. Notably, the severity of spinal
437 deformity in the MPLS individual was significantly more severe than that in Subject
438 XH253 and XH474 (with classical MFS and potential MFS, respectively). We
439 consider that MPLS is a distinct fibrillinopathy because it can be clinically
440 distinguished from other fibrillinopathies, including classical MFS. To our knowledge,
441 there are no other syndromes that simultaneously comprise the clinical phenotypes of
442 marfanoid features, accelerated aging, postnatal lipodystrophy, poor weight gain since
443 birth, and progeroid appearance. Particularly, the involvement of both reduced
444 subcutaneous fat tissue and progeroid appearance is a prominent characteristic of

445 MPLS. These comprehensive findings predominate in determining the severity of
446 defects in individuals and thus significantly influence the prognosis: lipodystrophic
447 disorders are frequently associated with metabolic disturbance, such as insulin
448 resistance and life-threatening hypertriglyceridemia (VANTYGHEM *et al.* 2012). Such
449 potential metabolic disturbances are particularly important to note prior to surgical
450 intervention as has been noted for the ocular-scoliotic form of Ehlers Danlos
451 syndrome due to lysyl hydroxylase deficiency (YEOWELL *et al.* 1995). Secondly,
452 elucidation of the phenotype of MPLS has been limited due to the paucity of prior
453 clinical reports, with only seven relevant patients previously described. Up to now, it
454 is known only to be caused by a single gene with a monogenic AD inheritance pattern
455 for the disease trait. Finally, we have shown that, in terms of pathogenic mechanisms,
456 the truncating *FBN1* mutations that cause MPLS cluster in 3' gene regions encoding
457 the extreme C-terminal domains and these variant alleles represent a subset that differ
458 from those that cause classical MFS. Most of such mutations will be anticipated to
459 escape NMD and we propose these to function via a potential mechanism between
460 GoF and dominant negative and not a LoF mechanism.

461 Fibrillin-1 acts as the precursor to a recently-described glucogenic hormone:
462 aprosin (DAVIS *et al.* 2016a). Specifically, Exon 65 of *FBN1* encodes 11 amino acids,

463 while Exon 66 of *FBNI* encodes 129 amino acids of asprosin (ROMERE *et al.* 2016).
464 Recently, Chen et.al. have successfully constructed a gene-edited rabbit model with a
465 truncated C-terminus of fibrillin-1 involving the ultimate two exons which could
466 recapitulate the histopathological alterations and functional defects associated with
467 MPLS (CHEN *et al.* 2018). Since individuals with low fibrillin-1 level may fail to
468 differentiate adipocytes and/or to accumulate adipocyte lipids, truncating variants
469 located adjacent to the two exons of *FBNI* are prone to cause lipodystrophic
470 phenotypes (DAVIS *et al.* 2016b).

471 PTCs located in the final coding exon are specifically prone to escape NMD and so
472 are processed distinctly from those in internal exons in terms of transcript degradation,
473 leading to the stable translation of truncated proteins (BAYRAM *et al.* 2017). Excessive
474 amounts of mutated protein are therefore produced (INOUE *et al.* 2004), leading to a
475 dominant negative molecular mechanism and the severe MPLS disease phenotype.
476 Consistent with this interpretation, all truncating mutations associated with MPLS are
477 located adjacent to the penultimate exon (Exon 65) and are predicted to escape NMD
478 (**Figure.4**). From this perspective, it is perhaps most parsimonious to postulate that the
479 incorporation of relatively few mutant monomers would be sufficient to impair the
480 systemic processes of microfibrillar assembly and function.

481 Aberrant activation of the TGF- β pathway has been observed in MFS and may
482 account for some of the musculoskeletal deformities, such as scoliosis (BUCHAN *et al.*
483 2014). The MPLS patient with a truncating *FBN1* variant presented with severe
484 scoliosis, which suggests that the protein change also alters TGF- β signaling. Our
485 results showed upregulation of the TGF- β pathway in plasmids expressing mutant
486 EGFP-*FBN1* cDNAs, confirming that the variant of E2759Cfs*9 identified in the
487 MPLS patient has functional effects in a SMAD-dependent manner in all 3 subjects.

488 Our study indicated that the two phenotypes associated with *FBN1* mutations,
489 MPLS and MFS are caused by two distinct molecular mechanisms. The more severe
490 phenotype of MPLS, which had its first report in the Chinese population, is caused by
491 nonsense mutations that produce truncated *FBN1* mutant proteins. These proteins
492 disrupt the process of native amyloid-like structure conformation and exert potent
493 intracellular dominant-negative activity. In this view, abnormal protein derived from
494 the mutant allele interacts and interferes with protein derived from the normal allele,
495 consequently resulting in substantial loss of function. Supportive evidence includes (a)
496 *de novo* monogenic AD inheritance pattern, and (b) aggregation of fibrillin-1 in which
497 the mutated monomer derived from the mutant allele impairs the fundamental
498 structure of its wildtype protein derived from the normal allele counterpart. This

499 deficiency could be supported by SDD-AGE analysis, suggesting that dominant
500 negative interference is not restricted to enhanced proteolytic clearance of mutant
501 microfibrils over time (BRENN *et al.* 1996), but rather could also occur at the level of
502 intracellular aggregate formation processes. The more moderate phenotype, classical
503 MFS, is caused by nonsense mutations that activate the NMD RNA surveillance
504 pathway, thereby degrading mutant transcripts and resulting in *FBNI*
505 haploinsufficiency. The data support the concept of distinct pathogenetic mechanisms,
506 GoF *versus* LoF (BAYRAM *et al.* 2017; COBAN-AKDEMIR *et al.* 2018; POLI *et al.* 2018),
507 for each well-established subgroup of fibrillinopathy, which mostly hinges on the
508 intrinsic features of fibrillin-1 mutations. It is of crucial significance to pinpoint and
509 appreciate the locus heterogeneity, clinical relevance and overlapping clinical features
510 with other syndromes/disorders in a phenotype-oriented approach that characterizes
511 much of clinical medicine practice (WHITE *et al.* 2018).

512 In conclusion, we provide direct evidence of dominant negative effects of
513 truncating *FBNI* variants predicted to escape NMD in MPLS patients. Our study
514 expands the mutational spectrum of *FBNI* and highlights the potential molecular
515 mechanism for MPLS patients, which facilitates our understanding of
516 genotype-phenotype correlations in terms of *FBNI* to provide effective genetic

517 counseling, implementation and timing of therapy (e.g. mitigation of TGF- β
518 hypersignaling, surgical intervention for cardiovascular complications or for
519 scoliosis), or early intervention.

520 **Acknowledgments**

521 We are grateful to the patients, their families, and genetic counselors for
522 providing samples and clinical histories. This research was funded in part by the
523 National Natural Science Foundation of China (81672123 to JG.Z, 81822030 to
524 N.W., 81772299 to ZH.W., 81772301 to GX.Q. ,), Beijing Natural Science
525 Foundation (7172175 to N.W.; 7184232 for S.L., 5184037 to TS.S.), CAMS
526 Initiative for Innovative Medicine (2016-I2M-3-003 to GX.Q. and N.W.,
527 2016-I2M-2-006 and 2017-I2M-2-001 to ZH.W.), the Central Level Public Interest
528 Program for Scientific Research Institute (2018RC31003 to N.W. and M.L.), the
529 National Key Research and Development Program of China (No. 2018YFC0910506
530 to N.W. and ZH.W., 2016YFC0901501 to SY.Z.), the US National Institutes of
531 Health, National Institute of Neurological Disorders and Stroke (NINDS R01
532 NS058529 and R35 NS105078 to J.R.L.), National Human Genome Research
533 Institute/National Heart, Lung, and Blood Institute (NHGRI/NHLBI UM1
534 HG006542 to J.R.L.), and the National Human Genome Research Institute (NHGRI

535 K08 HG008986 to J.E.P.).

536

537 **Conflict of interest**

538 J.R.L has stock ownership in 23andMe, is a paid consultant for Regeneron
539 Pharmaceuticals, and is a co-inventor on multiple the United States and European
540 patents related to molecular diagnostics for inherited neuropathies, eye diseases and
541 bacterial genomic fingerprinting. The Department of Molecular and Human Genetics
542 at Baylor College of Medicine derives revenue from the chromosomal microarray
543 analysis and clinical exome sequencing offered in the Baylor Genetics Laboratory
544 (<http://bmgl.com>).

545

546 **References**

547 Andelfinger, G., B. Loeys and H. Dietz, 2016 A Decade of Discovery in the Genetic
548 Understanding of Thoracic Aortic Disease. *Can J Cardiol* 32: 13-25.
549 Arbustini, E., M. Grasso, S. Ansaldi, C. Malattia, A. Pilotto et al., 2005 Identification
550 of sixty-two novel and twelve known *FBN1* mutations in eighty-one
551 unrelated probands with Marfan syndrome and other fibrillinopathies. *Hum*
552 *Mutat* 26: 494.

553 Asan, Y. Xu, H. Jiang, C. Tyler-Smith, Y. Xue et al., 2011 Comprehensive
554 comparison of three commercial human whole-exome capture platforms.
555 *Genome Biol* 12: R95.

556 Bayram, Y., J. J. White, N. Elcioglu, M. T. Cho, N. Zadeh et al., 2017 REST
557 Final-Exon-Truncating Mutations Cause Hereditary Gingival Fibromatosis.
558 *Am J Hum Genet* 101: 149-156.

559 Berchowitz, L. E., G. Kabachinski, M. R. Walker, T. M. Carlile, W. V. Gilbert et al.,
560 2015 Regulated Formation of an Amyloid-like Translational Repressor
561 Governs Gametogenesis. *Cell* 163: 406-418.

562 Brenn, T., T. Aoyama, U. Francke and H. Furthmayr, 1996 Dermal fibroblast culture
563 as a model system for studies of fibrillin assembly and pathogenetic
564 mechanisms: defects in distinct groups of individuals with Marfan's
565 syndrome. *Lab Invest* 75: 389-402.

566 Buchan, J. G., D. M. Alvarado, G. E. Haller, C. Cruchaga, M. B. Harms et al., 2014
567 Rare variants in *FBNI* and *FBN2* are associated with severe adolescent
568 idiopathic scoliosis. *Hum Mol Genet* 23: 5271-5282.

569 Chen, M., B. Yao, Q. Yang, J. Deng, Y. Song et al., 2018 Truncated C-terminus of
570 fibrillin-1 induces Marfanoid-progeroid-lipodystrophy (MPL) syndrome in

571 rabbit. Dis Model Mech 11.

572 Coban-Akdemir, Z., J. J. White, X. Song, S. N. Jhangiani, J. M. Fatih et al., 2018

573 Identifying Genes Whose Mutant Transcripts Cause Dominant Disease Traits

574 by Potential Gain-of-Function Alleles. Am J Hum Genet 103: 171-187.

575 Collod-Beroud, G., S. Le Bourdelles, L. Ades, L. Ala-Kokko, P. Booms et al., 2003

576 Update of the UMD-FBN1 mutation database and creation of an *FBN1*

577 polymorphism database. Hum Mutat 22: 199-208.

578 Davis, M. R., E. Arner, C. R. Duffy, P. A. De Sousa, I. Dahlman et al., 2016a

579 Datasets of genes coexpressed with *FBN1* in mouse adipose tissue and during

580 human adipogenesis. Data Brief 8: 851-857.

581 Davis, M. R., E. Arner, C. R. Duffy, P. A. De Sousa, I. Dahlman et al., 2016b

582 Expression of *FBN1* during adipogenesis: Relevance to the lipodystrophy

583 phenotype in Marfan syndrome and related conditions. Mol Genet Metab 119:

584 174-185.

585 Dietz, H. C., 2015 Potential Phenotype-Genotype Correlation in Marfan Syndrome:

586 When Less is More? Circ Cardiovasc Genet 8: 256-260.

587 Duerrschnid, C., Y. He, C. Wang, C. Li, J. C. Bournat et al., 2017 Asprosin is a

588 centrally acting orexigenic hormone. Nat Med 23: 1444-1453.

589 Garg, A., and C. Xing, 2014 De novo heterozygous *FBN1* mutations in the extreme
590 C-terminal region cause progeroid fibrillinopathy. *Am J Med Genet A* 164a:
591 1341-1345.

592 Goldblatt, J., J. Hyatt, C. Edwards and I. Walpole, 2011 Further evidence for a
593 marfanoid syndrome with neonatal progeroid features and severe generalized
594 lipodystrophy due to frameshift mutations near the 3' end of the *FBN1* gene.
595 *Am J Med Genet A* 155a: 717-720.

596 Graul-Neumann, L. M., T. Kienitz, P. N. Robinson, S. Baasanjav, B. Karow et al.,
597 2010 Marfan syndrome with neonatal progeroid syndrome-like lipodystrophy
598 associated with a novel frameshift mutation at the 3' terminus of the
599 *FBN1*-gene. *Am J Med Genet A* 152a: 2749-2755.

600 Inoue, K., M. Khajavi, T. Ohyama, S. Hirabayashi, J. Wilson et al., 2004 Molecular
601 mechanism for distinct neurological phenotypes conveyed by allelic
602 truncating mutations. *Nat Genet* 36: 361-369.

603 Jacquinet, A., A. Verloes, B. Callewaert, C. Coremans, P. Coucke et al., 2014
604 Neonatal progeroid variant of Marfan syndrome with congenital
605 lipodystrophy results from mutations at the 3' end of *FBN1* gene. *Eur J Med
606 Genet* 57: 230-234.

607 Loeys, B. L., H. C. Dietz, A. C. Braverman, B. L. Callewaert, J. De Backer et al.,
608 2010 The revised Ghent nosology for the Marfan syndrome. *J Med Genet* 47:
609 476-485.

610 Park, J. W., L. Yan, C. Stoddard, X. Wang, Z. Yue et al., 2017 Recapitulating and
611 Correcting Marfan Syndrome in a Cellular Model. *Int J Biol Sci* 13: 588-603.

612 Passarge, E., P. N. Robinson and L. M. Graul-Neumann, 2016
613 Marfanoid-progeroid-lipodystrophy syndrome: a newly recognized
614 fibrillinopathy. *Eur J Hum Genet* 24: 1244-1247.

615 Poli, M. C., F. Ebstein, S. K. Nicholas, M. M. de Guzman, L. R. Forbes et al., 2018
616 Heterozygous Truncating Variants in *POMP* Escape Nonsense-Mediated
617 Decay and Cause a Unique Immune Dysregulatory Syndrome. *Am J Hum
618 Genet* 102: 1126-1142.

619 Romere, C., C. Duerrschmid, J. Bournat, P. Constable, M. Jain et al., 2016 Asprosin,
620 a Fasting-Induced Glucogenic Protein Hormone. *Cell* 165: 566-579.

621 Schneider, C. A., W. S. Rasband and K. W. Eliceiri, 2012 NIH Image to ImageJ: 25
622 years of image analysis. *Nat Methods* 9: 671-675.

623 Song, Y. H., G. H. Kim, H. W. Yoo and J. B. Kim, 2012 Novel de novo nonsense
624 mutation of *FBNI* gene in a patient with Marfan syndrome. *J Genet* 91:

625 233-235.

626 Takenouchi, T., M. Hida, Y. Sakamoto, C. Torii, R. Kosaki et al., 2013 Severe
627 congenital lipodystrophy and a progeroid appearance: Mutation in the
628 penultimate exon of *FBN1* causing a recognizable phenotype. Am J Med
629 Genet A 161a: 3057-3062.

630 Vantyghem, M. C., A. S. Balavoine, C. Douillard, F. Defrance, L. Dieudonne et al.,
631 2012 How to diagnose a lipodystrophy syndrome. Ann Endocrinol (Paris) 73:
632 170-189.

633 Verstraeten, A., M. Alaerts, L. Van Laer and B. Loeys, 2016 Marfan Syndrome and
634 Related Disorders: 25 Years of Gene Discovery. Hum Mutat 37: 524-531.

635 White, J. J., J. F. Mazzeu, Z. Coban-Akdemir, Y. Bayram, V. Bahrambeigi et al.,
636 2018 WNT Signaling Perturbations Underlie the Genetic Heterogeneity of
637 Robinow Syndrome. Am J Hum Genet 102: 27-43.

638 Wu, N., X. Ming, J. Xiao, Z. Wu, X. Chen et al., 2015 *TBX6* null variants and a
639 common hypomorphic allele in congenital scoliosis. N Engl J Med 372:
640 341-350.

641 Yeowell, H. N., L. C. Walker, M. K. Marshall, S. Murad and S. R. Pinnell, 1995 The
642 mRNA and the activity of lysyl hydroxylase are up-regulated by the

643 administration of ascorbate and hydralazine to human skin fibroblasts from a
644 patient with Ehlers-Danlos syndrome type VI. *Arch Biochem Biophys* 321:
645 510-516.
646

647 **Figure Legends**

648 **Figure 1** Clinical and genetic manifestations of the research subjects

649 (A, B) Pictures of patient XH253 indicated bilateral arachnodactly of hands and
650 feet.

651 (C, D) The anterior and lateral view of Patient XH253 demonstrated scoliosis on
652 whole-spine X-ray images.(E) Sanger sequencing of XH253 verified a novel
653 heterozygous frameshift variant of p.Tyr2596Thrfs*86 in *FBNI*. (F, G) The anterior
654 and lateral view of subject XH474 demonstrated scoliosis on whole-spine X-ray
655 images. (H) Sanger sequencing verified monoallelic missense mutations of
656 p.Gln1630His and p.Cys1631Gly in *FBNI*. (I) Integrative Genomics Viewer (IGV)
657 displays varying level of alignment reads detail depending on the zoom level and
658 uses red box and transparency to highlight monoallelic missense variants in the
659 exome data from XH474.

660 (J) Conservation analysis of amino acid residues of *FBNI* among vertebrates.

661 Lines indicate homologous amino acid sequences in selected vertebrates. Note the
662 strong conservation of Cys1631 among vertebrates highlighted in red and Gln1630
663 highlighted in green, respectively. (K, L, M, N) Photographic images of subject
664 XH601 who presented with scoliosis, short stature and subcutaneous fat reduction

665 and arachnodactyly anomalies of hands and feet.(O, P) The anterior and lateral view
666 demonstrated severe scoliosis on whole-spine X-ray images.
667 (Q, R) Hand and foot radiographs showed bilateral metacarpophalangeal dislocation,
668 interosseous atrophy, claw hands and dolichostenomelia. (S) Sanger sequencing of
669 XH601 parent-offspring trio verified a novel de novo heterozygous frameshift
670 mutation of p.Glu2759Cysfs*9 in *FBN1*. The RefSeq transcript number of *FBN1* is
671 NM_000138.4.

672

673 **Figure 2** Schematic representations and NMD predictions of the p.Y2596Tfs*86 and
674 p.E2759Cfs*9 mutations other MPLS-affected frameshift mutations in *FBN1*
675 (A) Schematic diagrams of full-length WT and mutant EGFP-FBN1 plasmids
676 transiently expressed in HEK293T. The numbers indicate the amino acid positions in
677 *FBN1*. PTC location is marked with red circle. The resulting frameshift and
678 reduction in the deduced amino acid sequence caused by the p.Y2596Tfs*86 and
679 p.E2759Cfs*9 mutations are indicated by the yellow region, respectively.

680 (B) Prediction of frameshift variants that are potentially subject to
681 nonsense-mediated mRNA decay (NMD)-escape or NMD-degradation. The
682 mutation of p.Y2596Tfs*86 in *FBN1* gene is predicted to be subject to degradation

683 by triggering NMD. The p.E2759Cfs*9 mutation in *FBNI* gene is predicted to
684 escape NMD. All of other MPLS-affected frameshift mutations in *FBNI* are
685 predicted to escape NMD.

686

687 **Figure 3** Functional effects of the Y2596Tfs*86 and E2759Cfs*9 mutations on
688 *FBNI* protein expression

689 (A) Detection of SDS-resistant aggregates by SDD-AGE in cell lysates of HEK293T
690 transiently expressing EGFP-FBN1 fusions were investigated by SDD-AGE and
691 Western blot. Expression of the proteins was induced for 48 h and detected with a
692 monoclonal FBN1-specific antibody.

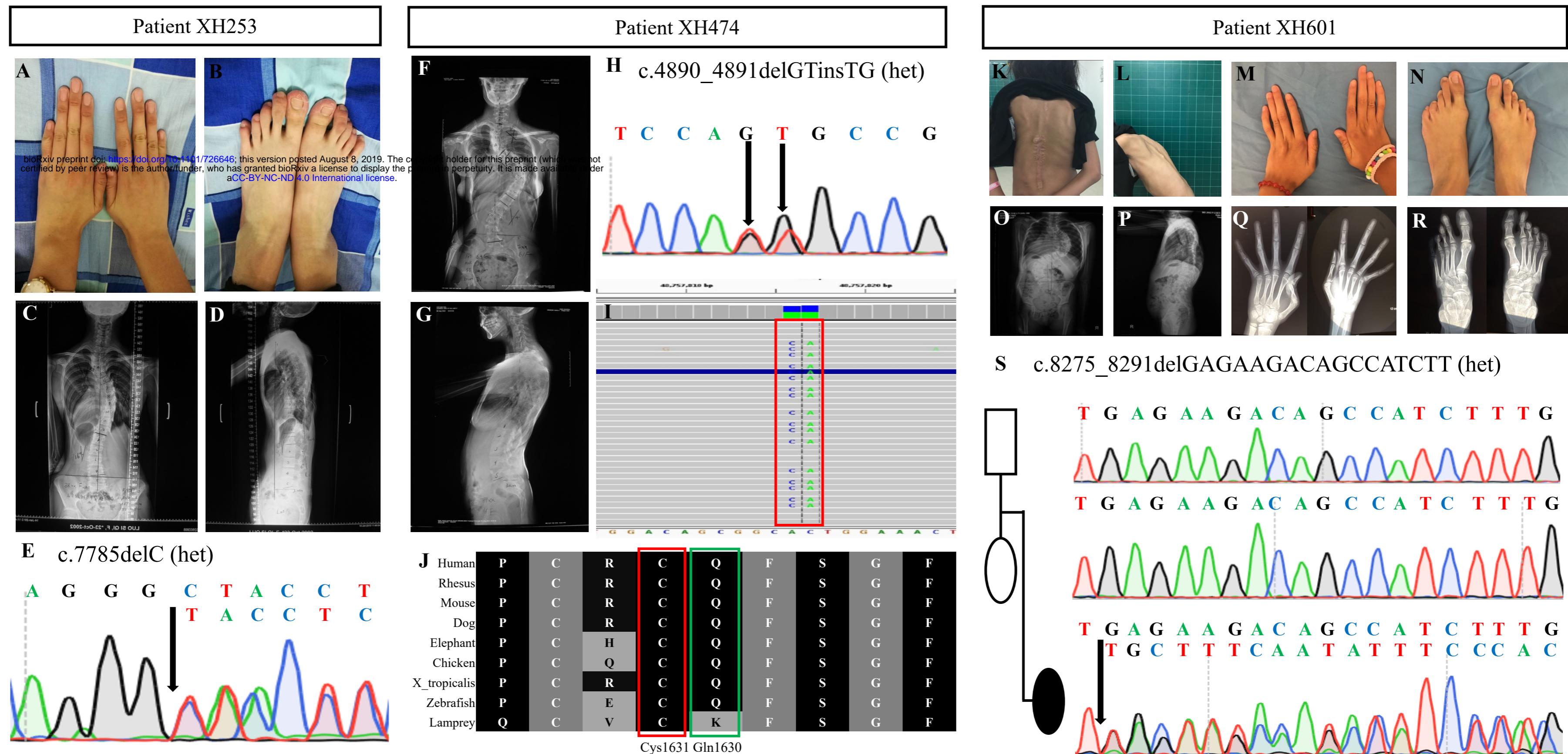
693 (B) Elevated phosphorylation of SMAD2 (pSMAD2) in individuals with truncating
694 *FBNI* variants, respectively. G2003R is used as a positive control. GAPDH is used
695 as a loading control. pSMAD2/GAPDH ratio is shown normalized to the unaffected
696 control (WT).

697 (C) Gray-scale analysis results show significantly upregulated (pSMAD2) in
698 constructs encoding truncating *FBNI* variants. EV denotes empty vector (pEGFP).
699 RT: room temperature. Data are represented as mean \pm SD of three independent
700 experiments. * denotes P value <0.05 and ** denotes P value <0.01 .

701

702 **Figure 4** The partial gene structure of the C-terminus of *FBNI* and overview of
703 previously reported truncating variants in and around Exon 65 in patients presenting
704 with MPLS

705 Blue, purple and red boxes denote specific domain. Light green, orange and black
706 boxes denote exons and the gray area between the two boxes denote introns. All
707 truncating variants were annotated by small green circles except that c.8226+1G>T
708 previously reported twice was annotated by a big circle. COOH denotes COOH
709 unique region. Deep blue box denotes purported asprosin encoded by the exons of
710 *FBNI*.


711

712

713

714

Figure 1

Figure 2

A FBN1-WT

FBN1-Y2596Tfs*86

FBN1-E2759Cfs*9

bioRxiv preprint doi: <https://doi.org/10.1101/726646>; this version posted August 8, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

**c.8175_8182delACGGGGCA
(p. Arg2726Glufs*9):
Escaping NMD**

**c.8156_8175delAA
(p.Lys2719Thrfs*12):
Escaping NMD**


**c.8155_8156delAA
(p.Lys2719Aspfs*18):
Escaping NMD**

**c.7785delC
(p.Tyr2596Thrfs*86):
Triggering NMD**

**c.8275_8291del
(p.Glu2759Cysfs*9):
Escaping NMD**

**c.8206_8207insA
(p.Thr2736Asnfs*1):
Escaping NMD**

B

Information

Canonical stop

CDS start

Your variant location

Color

NMD-competent region

NMD-incompetent region

Nonstop region

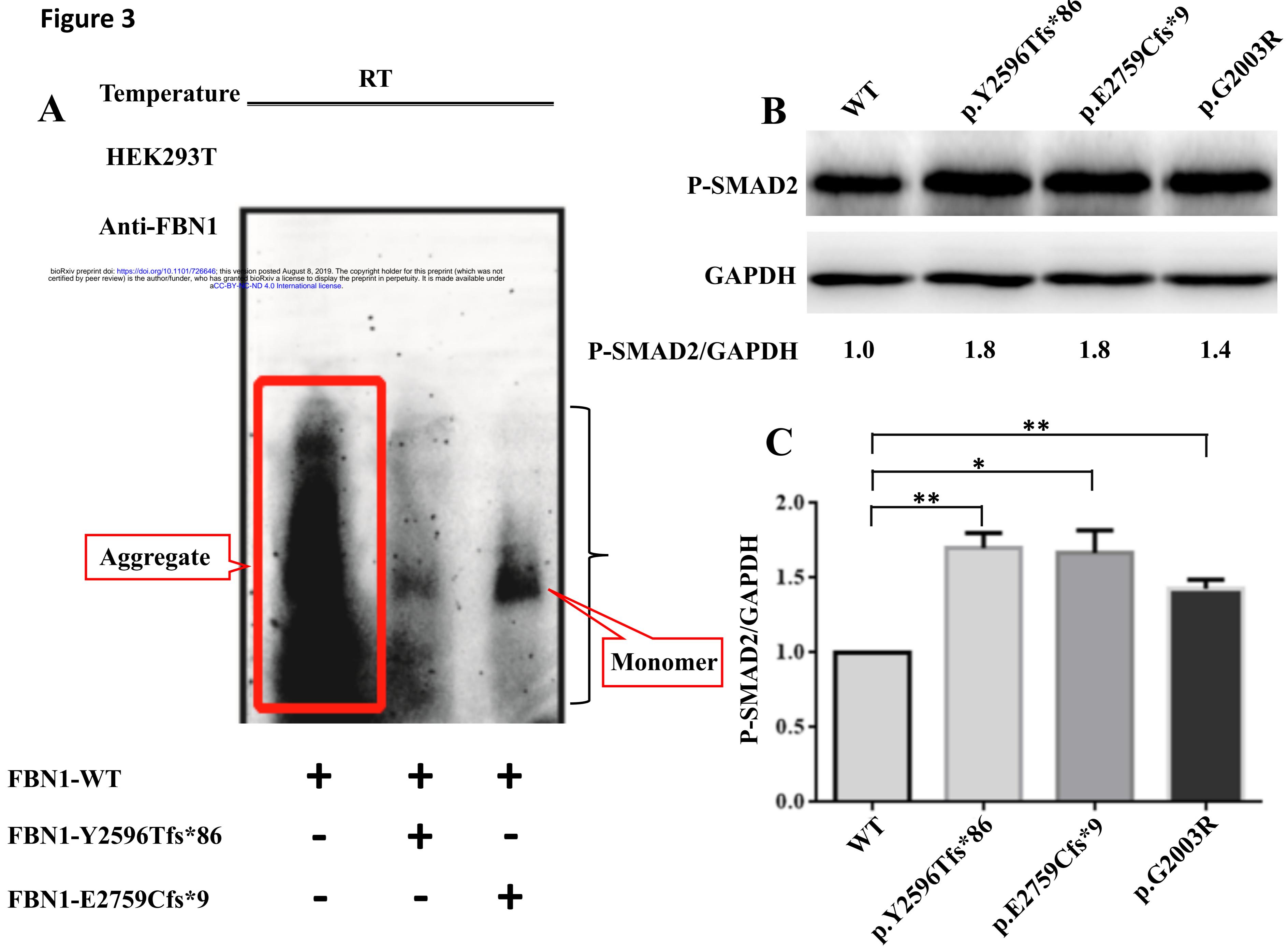
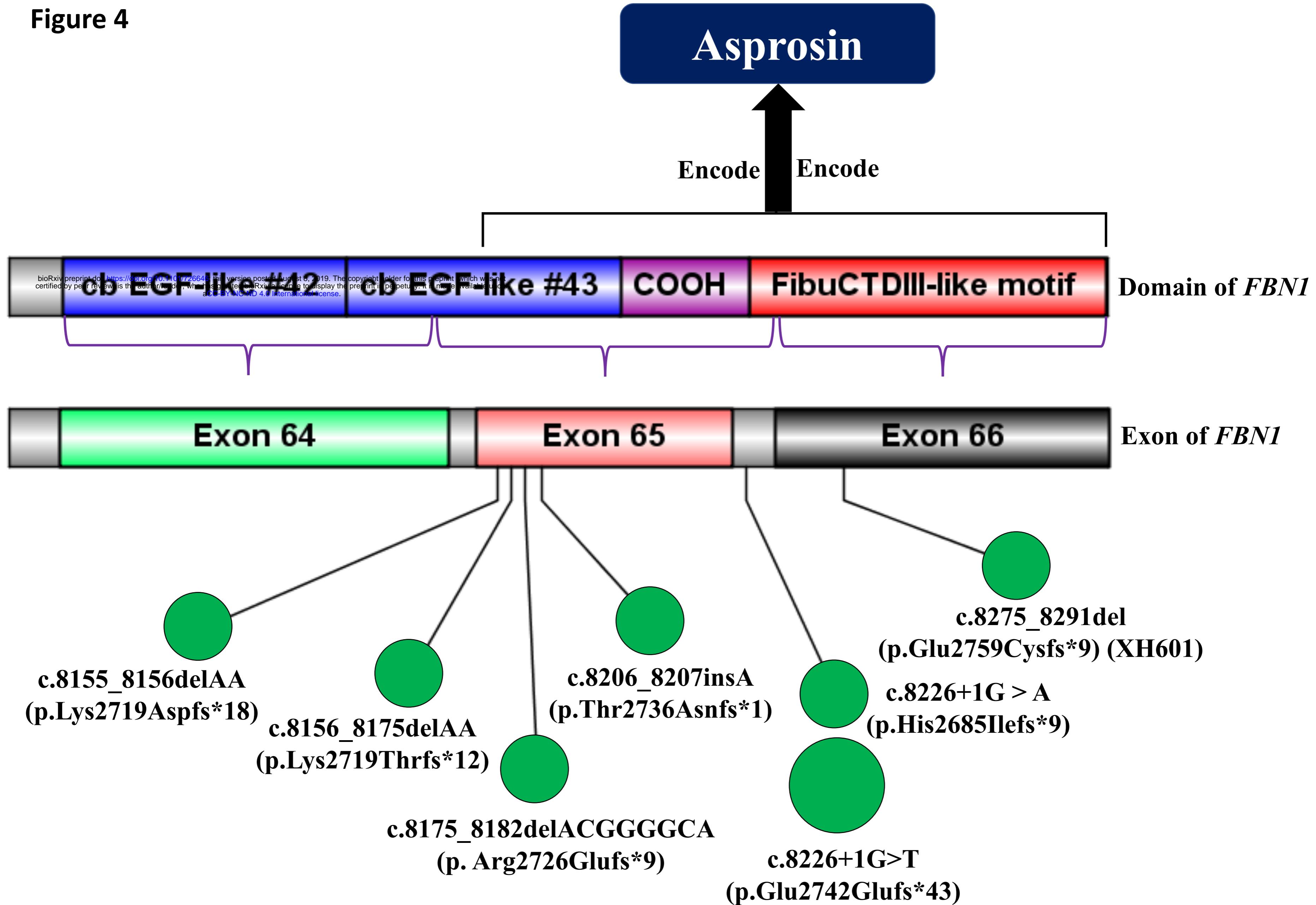


Figure 3

Figure 4

Table 1 Clinical features of Marfan syndrome patients re-evaluated for according to the revised Ghent nosology

Subject	XH253	XH474	XH601
General patient information			
Gender	F	F	F
Age (years)	10	16	9
Height (m)	1.72	1.71	1.36
Weight (kg)	48	48	20.5
Major Cobb angle (degrees)	43	85	117
Major Curve type	R-T	R-T	R-T
Curve number	3	3	2
Curve details	UTC (38), MTC (43), LC (16)	UTC (60), MTC (85), LC (40)	MTC (117), LC (89)
Treatment	Surgery	Surgery	Surgery
Causal <i>FBNI</i> variant			
Nucleotide alteration	c.7785delC	c.4890_4891delGTinsTG	c.8275A8291delGAGAAGACAGCCATCTT
Protein change	p.Tyr2596Thrfs*86	p.Gln1630_Cys1631delinsHisGly	p. Glu2759Cysfs*9
Variant reported in MFS	None	p. Cys1631Gly	None
MFS evaluation			
Diagnosis	MFS	MASS	Marfanoid
Aortic root dilation (z-score)	4.5	1.3	1.6
Ectopia lentis	A	A	A
Systemic features score	7/20	8/20	7/20
Wrist/thumb sign	P	P	A
Pectus carinatum/ excavatum	A	A	A
Hindfoot deformity	A	A	A
Pneumothorax	A	A	A
Dural ectasia	A	A	A
Protrusio acetabuli	A	A	A
UPer/lower segment	0.92	0.94	0.86
Scoliosis or thoracolumbar kyphosis	P	P	P
Reduced elbow extension	NA	NA	NA
Facial features (3/5)	P	P	P
Skin striae	A	A	A
Myopia	-0.7 dioptres	NA	-0.4 dioptres
Mitral valve prolapses (all types)	P	P	P

MFS denotes Marfan syndrome; MASS denotes myopia, mitral valve prolapses, borderline (Z<2) aortic root dilatation, striae, skeletal findings phenotype NA denotes not available; F denotes female; R-T denotes right thoracic spine; P denotes present; A denotes absent. UTC denotes upper thoracic curve; MTC denotes major thoracic curve; LC denotes lumbar curve.

Table 2 Clinical manifestations of previously reported and our patient XH601 with Marfanoid-progeroid-lipodystrophy (MPL) syndrome with allelic truncating mutations in *FBN1*

Graul-Neumann et al. [2010]	Goldblatt et al. [2011]	Horn and Robinson et al. [2011]	Takenouchi et al. [2013]	Jacquinet et al. [2014]	Garg and Xing et al. [2014]		XH601 (this study)	
					Patient 1	Patient 2		
Clinical characteristics								
Age (year)	27	20	3.5	10	16	23	17	
Gender	Female	Male	Female	Female	Female	Female	Female	
Ancestry	Caucasian	Caucasian	Caucasian	Asian (Japanese)	Caucasian	Hispanic	Caucasian	
Height (cm; [centile])	170	50-75	108	149	177	157.5	176	
Weight (Kg; [centile])	39	<3	14.5	21.7	41.8	26.4	41.9	
Causal <i>FBN1</i> mutation					c.8226+1G>A, splice mutation, exon 65 skipping and subsequent frameshift	c.8226+1G>T, splice mutation, exon 65 skipping	c.8275_8291del GAGAAGACAGCCATCTT	
protein change	p.(Lys2719Aspfs*18)	p.(Lys2719Thrfs*12)	p.(Glu2742Glufs*43)	p.(Arg2726Glufs*9)	p.(His2685Ilefs*9)	p.(Thr2736Asnfs*1)	p.(Glu2742Glufs*43)	p.(Glu2759Cysfs*9)
Adjacent to Exon 65 in <i>FBN1</i>	Y	Y	Y	Y	Y	Y	Y	
Inheritance pattern	De novo	De novo	De novo	De novo	De novo	De novo	De novo	
BMI (kg/m ²)	13.3	NA	12.4	9.8	13.3	10.6	13.5	
Body fat (%)	20.5	NA	NA	NA	NA	28.4	27.7	
Premature birth	Y	Y	Y	Y	Y	Y	Y	
Birth weight (Kg)	1.78	1.04 (<3)	1	1.427	1.72	1.19	1.17	
Birth length (cm)	41.5	NA	40	40	45	40	40.75	
Progeroid appearance	Y	Y	Y	Y	Y	Y	Y	
Subcutaneous fat reduction	Y	Y	Y	Y	Y	Y	Y	
Arm span/height	0.99	NA	NA	NA	NA	0.94	0.98	
Upper/lower segment	0.95	NA	NA	NA	NA	0.99	0.8	
Proptosis	Y	Y	Y	Y	Y	Y	Y	
DPF	NA	NA	NA	NA	NA	NA	NA	
Myopia	Y	Y	N	Y	Severe	Y	Y	
Ectopia lentis	Bilateral	Bilateral	N	N	N	Left eye	N	
High-arched palate	Y	Y	Y	NA	NA	N	NA	
Pectus excavatum	NA	Y	NA	Y	N	Y	N	
scoliosis / kyphosis	Kyphosis	NA	NA	NA	N	Scoliosis	Scoliosis	
Cobb angle (degrees)	NA	NA	NA	NA	NA	NA	117	
Wrist sign	Y	Y	NA	NA	NA	Y	Y	
Thumb sign	Y	N	NA	NA	NA	Y	Y	
BMJD	NA	NA	NA	NA	NA	NA	Y	
Interosseous atrophy	NA	NA	NA	NA	NA	NA	Y	
Arachnodactyly	NA	NA	NA	Y	Y	NA	Y	
Hyperextensible digits	NA	Y	NA	Y	Y	Y	Y	
Pes planus /valgus	NA	Pes planus	NA	NA	Pes valgus	NA	Pes planus	
Easy bruising	Y	Y	NA	NA	NA	N	Y	
MVPS	Y	N	N	N	N	NA	Y	
Arrested								
hydrocephalus	NA	Y	Y	Y	NA	NA	NA	
RGC	NA	NA	NA	Hydronephrosis	N	NA	N	
Dural ectasia	Lumbosacral	NA	NA	Y	Y	NA	N	
Hypertension	NA	NA	NA	Y	NA	NA	N	
CHD	NA	NA	NA	NA	NA	NA	Y	

Abbreviations: Y, yes; N, no; NA, not available. DPF, downslanting palpebral fissures; BMJD: bilateral metacarpophalangeal joint dislocation; MVPS, mitral valve prolapse syndrome; RGC, renal/genitourinary complications. CHD, congenital hip dislocation