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Abstract

We develop a visuo-motor model that implements visual search as a focal
accuracy-seeking policy across a crowded visual display. Stemming from the active
inference framework, saccade-based visual exploration is idealized as an inference
process, assuming that the target position and category are independently drawn from a
common generative process. This independence allows to divide the visual processing in
two independent pathways, consistently with the anatomical “What”/“Where”
separation. A biomimetic log-polar treatment of the visual information, that includes
the strong compression rate performed at the sensor level by retina and V1 encoding, is
preserved up to the action selection level. A dual neural network architecture, that
independently learns where to look and what to see, is then trained, with the foveal
accuracy used as a monitoring signal for action selection. This allows in particular to
interpret the “Ẁhere” as a retinotopic action selection pathway, that drives the fovea
toward the target position, in order to increase the recognition accuracy. A specific
approximate Information Gain metric, taken as the difference between central and
peripheral accuracy, is used for action selection after training. The comparison of both
accuracies amounts either to select a saccade or to keep the eye focused at the center, so
as to identify the target. Tested on a simple task of finding digits in a large, cluttered
image, simulation results demonstrate the benefit of our approach, whose key
computational shortcuts finally provide ways to implement visual search in a sub-linear
fashion, in contrast with mainstream computer vision.

Author summary

The visual search task consists in extracting a scarce and specific visual information
(the “target”) from a large and crowded visual display. In computer vision, this task is
usually implemented by scanning the different possible target identities at all possible
spatial positions, hence with strong computational load. The human visual system
employs a different strategy, combining a foveated sensor with the capacity to rapidly
move the center of fixation using saccades. Then, visual processing is separated in two
specialized pathways, the “where” pathway mainly conveying information about target
position in peripheral space (independently of its category), and the “what” pathway
mainly conveying information about the category of the target (independently of its
position). This object recognition pathway is shown here to have an essential role,
providing an “accuracy drive” that serves to force the eye to foveate peripheral objects
in order to increase the peripheral accuracy, much like in the “actor/critic” framework.
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Put together, all those principles to provide ways toward both adaptive and
resource-efficient visual processing systems.

Introduction 1

Problem statement. 2

Past 10 years have seen the disrupting development of deep learning based image 3

processing. Indeed the field of computer vision has been recast by the outstanding 4

capability of convolution-based deep networks to capture the semantic content of images 5

and photographs. Image processing algorithms recently outreached the performance of 6

human observers in specific image categorization tasks [1]. Their success relies on a 7

reduction of parameter complexity through weight sharing in convolutional neural 8

networks applied over the full image. Initially trained on energy greedy, high 9

performance computers, they are now designed to work on more common hardware such 10

as desktop computers with dedicated GPU hardware [2]. However, despite lot of efforts 11

spent in optimizing the processing costs, the processing of large images is still done at a 12

cost that scales linearly with the image size. All regions, even the “boring” ones are 13

systematically scanned and processed in parallel through dedicated hardware at a 14

significant computational cost. Image processing architectures consequently contain 15

millions of parameters with subsequent energy consumption while still handling 16

relatively small images. This introduces a trade-off between efficiency and accuracy, for 17

instance in autonomous driving, with the need to detect visual objects at a glance while 18

running on resource-constrained embedded hardware. 19

In contrast, when human vision is considered, things work differently. First, the 20

general performance is still greater than that of computer vision. Indeed, object 21

recognition can be achieved by the human visual system both rapidly, – in less than 100 22

ms [3] – and at a low energy cost (< 5 W ). On top of that, it is mostly self-organized, 23

robust to visual transforms or lighting conditions and can learn with a few examples. If 24

many different anatomical features may explain this efficiency, a main difference lies in 25

the fact that its sensor (the retina) combines a non homogeneous sampling of the world 26

with the capacity to rapidly change its center of fixation. On the one hand, the retina is 27

composed of two separate systems: a central, high definition fovea (a disk of about 6 28

degrees of diameter in visual angle around the center of gaze) and a large, lower 29

definition peripheral area. On the other hand, the human vision is dynamic. The retina 30

is attached on the back of the eye which is capable of low latency, high speed eye 31

movements. In particular, saccades allow for efficient changes of the position of the 32

center of gaze: they take about 200 ms to initiate, last about 200 ms and usually reach 33

a maximum velocity of approx 600 degrees per second. The scanning of a full visual 34

scene is thus not done in parallel but sequentially, and only scene-relevant regions of 35

interest are scanned through saccades. This implies a decision process at each step that 36

decides where to look next. This behavior is prevalent during our lifetime (about a 37

saccade every 2-3 seconds, that is, almost a billion saccade in a lifetime). The interplay 38

of those two features allows human observers to engage in an integrated action 39

perception loop which sequentially scans and analyses the different parts of the image. 40

Take for instance the case of an encounter with a friend in a crowded café. To catch 41

the moment at which she arrives, you need to visually search for her face despite the 42

sensory clutter in the visual field. To do so, you need to scan relevant parts of the visual 43

scene with your gaze. Doing a saccade at these locations will allow you to recognize 44

your friend. The main difficulty of this task is to identify a particular object class (e.g. 45

human faces) given all their possible spatial configurations and respective geometrical 46

visual transformations. Searching for any face in a peripheral and crowded display 47
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needs to precede the recognition of a specific face identity. 48

State of the art 49

To take benefit from this visuomotor behavior, it is important to understand both its 50

computational and neurophysiological principles. First, the joint problem of target 51

localization and identification is a classical problem of visual search in computer vision. 52

Addressing apparently simple questions such as “find the green bottle on the table”, it 53

is of broad interest in machine learning, computer vision and robotics, but also in 54

neuroscience, as it speaks to the mechanisms underlying foveation and more generally to 55

low-level attention mechanisms. When restricted to a mere “feature search” [4], many 56

solutions are proposed. Notably, recent advances in deep-learning have provided efficient 57

models such as faster-RCNN [5] or YOLO [6]. Their object search implementations 58

predict in the image the probability of proposed bounding boxes around visual objects. 59

While rapid, the number of boxes may significantly increase with image size and the 60

approach more generally necessitates dedicated hardware to run in real time. 61

In parallel, human visual scan-path over natural images provide ways to define 62

saliency maps, that quantify the attractiveness of the different parts of an image, that 63

are consistent with the detection of objects of interest. Essential to understand and 64

predict saccades, they also serve as phenomenological models of attention. Estimating 65

the saliency map from a luminous image is a classical problem in neuroscience, that was 66

shown consistent with a distance from baseline image statistics known as the “Bayesian 67

surprise” [7]. The saliency approach was recently updated using deep learning to 68

estimate saliency maps over large databases of natural images [8]. While these methods 69

are efficient at predicting the probability of fixation, they miss an essential component 70

in the action perception loop: they operate on the full image while the retina operates 71

on the non-uniform, foveated sampling of visual space (see Figure 1-B). Herein, we 72

believe that this fact is an essential factor to reproduce and understand the active vision 73

process. 74

Foveated models of vision have been considered for long time in robotics and 75

computer vision as a way to leverage the visual scene scaling problem. Focal image 76

processing relies a non-homogeneous compression of an image, that maintains the pixel 77

information at the center of fixation and strongly compresses it at the periphery, 78

including pyramidal encoding [9, 10], local wavelet decomposition [11] and logpolar 79

encoding [12,13]. Though focal and multiscale encoding is now largely considered in 80

static computer vision, sequential implementations have not been shown effective 81

enough to overtake static object search methods. Several implementations of a focal 82

sequential search in visual processing can be found in the literature, with various 83

degrees of biological realism [14,15], that often rely on a simplified focal encoding, long 84

training procedures and bounded sequential processing. More realistic attempts to 85

combine foveal encoding and sequential visual search can be found in [10,11,16], that 86

will be compared further on with our approach. 87

In contrast to phenomenological (or “bottom-up”) approaches, active models of 88

vision [10,17,18] provide the ground principles of saccadic exploration. In general, they 89

assume the existence of a generative model from which both the target position and 90

category can be inferred through active sampling. This comes from the constraint that 91

the visual sensor is foveated but can generate a saccade. Several studies are relevant to 92

our endeavor. First, one can consider optimal strategies to solve the problem of the 93

visual search of a target [17]. In a setting similar to that presented in Figure 1-A, where 94

the target is an oriented edge and the background is defined as pink noise, authors show 95

first that a Bayesian ideal observer comes out with an optimal strategy, and second that 96

human observers are close to that optimal performance. Though well predicting 97

sequences of saccades in a perception action loop, this model is limited by the simplicity 98
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of the display (elementary edges added on stationary noise, a finite number of locations 99

on a discrete grid) and by the abstract level of modeling. Despite these (inevitable) 100

simplifications, this study could successfully predict some key characteristics of visual 101

scanning such as the trade-off between memory content and speed. Looking more 102

closely at neurophysiology, the study of [19] allows to go further in understanding the 103

interplay between saccadic behavior and the statistics of the input. In this study, 104

authors were able to manipulate the size of the saccades by monitoring key properties of 105

the presented (natural) images. For instance, smaller images generate smaller saccades. 106

A further modeling perspective is provided by [18]. In this setup, a full description 107

of the visual world is used as a generative process. An agent is completely described by 108

the generative model governing the dynamics of its internal beliefs and is interacting 109

with this image by scanning it through a foveated sensor, just as described in Figure 1. 110

Thus, equipping the agent with the ability to actively sample the visual world allows to 111

interpret saccades as optimal experiments, by which the agent seeks to confirm 112

predictive models of the (hidden) world. One key ingredient to this process is the 113

(internal) representation of counterfactual predictions, that is, the probable 114

consequences of possible hypothesis as they would be realized into actions (here, 115

saccades). Following such an active inference scheme [20] numerical simulations 116

reproduce sequential eye movements that fit well with empirical data. Saccades are here 117

a consequence of an active seek for the agent to minimize the uncertainty about his 118

beliefs, knowing his priors on the generative model of the visual world. 119

Outline 120

Stemming from the active vision principles, our aim is to produce a principled and 121

resource-effective model of vision. We start from an elementary visual search problem, 122

that is how to locate an object in a large, crowded image, and take human vision as a 123

guide for efficient design. Our framework is made as general as possible, with minimal 124

mathematical treatment, to speak largely to fragmented domains, such as machine 125

learning, neuroscience and robotics. We expect to provide an integrated view of 126

foveated active vision, applicable to both domains. 127

After this introduction, the principles underlying accuracy-based saccadic control are 128

defined in the second section. We first define notations, variables and equations for the 129

generative process governing the experiment and the generative model for the active 130

vision agent. Complex combinatorial inferences are here replaced by separate pathways, 131

i.e. the spatial (“Where”) and categorical (“What”) pathways, whose output is 132

combined to infer optimal eye displacements and subsequent identification of the target. 133

Our agent, equipped with a foveated sensor, should learn an optimal behavior strategy 134

to actively scan the visual image. Implementation details are provided in the methods 135

section, giving ways to reproduce our results, showing in particular how to simplify the 136

learning using accuracy-driven action maps. Numerical simulations are presented in the 137

results section, demonstrating the applicability of this framework to different task 138

complexity levels. The last section finally summarizes the results, showing its relative 139

advantages in comparison with other frameworks, and providing ways toward possible 140

improvements. 141

Principles 142

For biological vision is the result of a continual optimization under strong material and 143

energy constraints, we need to understand both its ground principles and its specific 144

computational and material constraints in order to implements effective biomimetic 145

vision systems. 146

July 30, 2019 4/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725879doi: bioRxiv preprint 

https://doi.org/10.1101/725879
http://creativecommons.org/licenses/by/4.0/


FIX
(A)

DIS SAC

?

ANS

0 100 200 300 400 500 600 700 800
time (ms)

0.0

0.2

0.4

0.6

0.8

1.0

ey
e 

po
sit

io
n 

(a
. u

.)
FIX DIS

SAC ANS
(B)

DIS
(C)

SAC

Fig 1. Problem setting: In generic, ecological settings, the visual system faces a
tricky problem when searching for one target (from a class of targets) in a cluttered
environment. It is synthesized in the following experiment: (A) After a fixation period
FIX of 200 ms, an observer is presented with a luminous display DIS showing a single
target from a known class (here digits) and at a random position. The display is
presented for a short period of 500 ms (light shaded area in B), that is enough to
perform at most one saccade on the potential target (SAC, here successful). Finally, the
observer has to identify the digit by a keypress ANS. NB : the target contrast is here
enhanced for a better readability. (B) Prototypical trace of a saccadic eye movement to
the target position. In particular, we show the fixation window FIX and the temporal
window during which a saccade is possible (green shaded area). (C) Simulated
reconstruction of the visual information from the (interoceptive) retinotopic map at the
onset of the display DIS and after a saccade SAC, the dashed red box indicating the
foveal region. In contrast to an exteroceptive representation (see A), this demonstrates
that the position of the target has to be inferred from a degraded (sampled) image. In
particular, the configuration of the display is such that by adding clutter and reducing
the contrast of the digit, it may become necessary to perform a saccade to be able to
identify the digit. The computational pathway mediating the action has to infer the
location of the target before seeing it, that is, before being able to actually identify the
target’s category from a central fixation.

In order to do so, we provide a simplified visual environment toward which a visual 147

agent can act on. The search experience is formalized and simplified in a way 148

reminiscent to classical psychophysic experiments: an observer is asked to classify digits 149

(for instance as taken from the MNIST database) as they are shown on a computer 150

display. However, these digits can be placed at random positions on the display, and 151

visual clutter is added as a background to the image (see Figure 1-A). In order to vary 152

the difficulty of the task, different parameters are controlled, such as the target 153

eccentricity, the background noise period and and the signal/noise ratio (SNR). The 154

agent initially fixates the center of the screen. Due to the peripheral clutter, he needs to 155

explore the visual scene through saccades to provide the answer. He controls a foveal 156

visual sensor that can move over the visual scene through saccades (see Figure 1-B). 157

When a saccade is actuated, the center of fixation moves toward a new location, which 158

updates the visual input (see Figure 1-C). The lower the SNR and the larger the initial 159

target eccentricity, the more difficult the identification. There is a range of eccentricities 160

for which it is impossible to identify the target from a single glance, so that a saccade is 161
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necessary to issue a proper response. This implies in general that the position of the 162

object may be detected in the first place in the peripheral clutter before being properly 163

identified. 164

This setup provides the conditions for a separate processing of the visual 165

information. Indeed, in order to analyze a complex visual scene, there are two types of 166

processing that need to be done. On the one side, you need to analyze in detail what is 167

at the center of fixation, that is the region of interest currently processed. On the other 168

side, you also need to analyze the surrounding part, even if the resolution is low, in 169

order to choose what is the next center of fixation. This basically means making a 170

choice of “what’s interesting next”. You do not necessarily need to know what it is, but 171

you need to that it’s interesting enough, and of course you need to know what action to 172

take to move the center of fixation at the right position. This is reminiscent of the 173

What/Where separate visual processing separation observed in monkeys and humans 174

ventral and dorsal visual pathways [21]. 175

Active inference 176

This kind of reasoning can be captured by a statistical framework called a partially 177

observed Markov Decision Process (POMDP), where the cause of a visual scene is 178

couple made of a viewpoint and scene elements. Changing the viewpoint will conduct to 179

a different scene rendering. A generative model tells how typically looks the visual field 180

knowing the scene elements and a certain viewpoint. In general, active inference 181

assumes a hidden external state e, which is known indirectly through its effects on the 182

sensor. The external state corresponds to the physical environment. Here the external 183

state is assumed to split in two (independent) components, namely e = (u, y) with u the 184

interoceptive body posture (in our case the gaze orientation, or “viewpoint”) and y the 185

object shape (or object identity). The visual field x is the state of the sensors, that is, a 186

partial view of the visual scene, measured through the generative process : x ∼ p(X|e). 187

Using Bayes rule, one may then infer the scene elements from the current view point
(model inversion). The real physical state e being hidden, a parametric model θ is
assumed to allow for an estimate of the cause of the current visual field through model
inversion thanks to Bayes formula, in short:

p(E|x) ∝ p(x|E; θ)

It is also assumed that a set of motor commands A = {..., a, ...} (here saccades) may 188

control the body posture, but not the object’s identity, so that y is invariant to a. 189

Actuating a command a changes the viewpoint to u′, which feeds the system with a new 190

visual sample x′ ∼ p(X|u′, y). The more viewpoints you have, the more certain you are 191

about the object identity through a chain rule sequential evidence accumulation. 192

In an optimal search setup however [17], you need to choose the next viewpoint that 193

will help you the most to disambiguate the scene. In a predictive setup, the consequence 194

of every saccade should be analyzed through model inversion over the future 195

observations, that is, predicting the effect of every action to choose the one that may 196

optimize future inferences. The benefit of each action should be quantified through a 197

certain metric (future accuracy, future posterior entropy, future variational free energy, 198

...), that depend on the current inference p(U, Y |x). The saccade a that is selected thus 199

provides a new visual sample from the scene statistics. If well chosen, it should improve 200

the understanding of the scene (here the target position and category). However, 201

estimating in advance the effect of every action over the range of every possible object 202

shapes and body postures is combinatorially hard, even in simplified setups, and thus 203

infeasible in practice. 204

The predictive approach necessitates in practice to restrain the generative model in 205

order to reduce the range of possible combinations. One such restriction, known as the 206
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“Näıve Bayes” assumption, considers the independence of the factors that are the cause 207

of the sensory view. The independence hypothesis allows considering the viewpoint u 208

and the category y being independently inferred from the current visual field, i.e 209

p(U, Y |x) = p(U |x)p(Y |x). This property is strictly true in our setting and is very 210

generic in vision for simple classes (such as digits) and simple displays (but see [22] for 211

more complex visual scene grammars). 212

Metric training 213

Next, the effect of a saccade is to shift the visual field from one place to another. 214

Concretely, each saccade provokes a new visual field x′ and a new subjective position u′, 215

while the target identity y remains unchanged. Choosing the next saccade thus means 216

using a model to predict how accurate p(U |x) and p(Y |x) will be after the saccade 217

realization. In detail, modeling the full sequence of operations that lead to both 218

estimate p(U ′|x′) and p(Y |x′) means predicting the future visual field x′ over all 219

possible saccades, that may yet be too costly in case of large visual fields. Better off 220

instead is to form a statistics over the (scene understanding) benefit obtained from past 221

saccades in the same context, that is forming an accuracy map from the current view. 222

This is the essence of the sampling-based metric prediction that we develop here. The 223

putative effect of every saccade should be condensed in a single number, the accuracy, 224

that quantifies the final benefit of issuing saccade a from the current observation x. If a 225

is a possible saccade and x′ the corresponding future visual field, the result of the 226

categorical classifier over x′ can either be correct (1) or incorrect (0). If this experiment 227

is repeated many times over many visual scenes, the probability of correctly classifying 228

the future visual field x′ from a forms a probability, i.e. a number between 0 and 1, that 229

reflects the proportion of correct and incorrect classifications. To sum up, a main 230

assumption here is that instead of trying to detect the actual position of the target, 231

better off for the agent is to estimate how accurate the categorical classifier will be after 232

moving the eye. Extended to the full action space A, this forms an accuracy map that 233

may be learned through trials and errors, by actuating saccades and taking the final 234

classification success or failure as a teaching signal. Our main assumption here is that 235

such a predictive accuracy map is at the core of a realistic saccade-based vision systems. 236

Compared with a baseline approach that would predict for all possible gaze directions 237

over an image, this map should moreover be organized radially to preserve the 238

retinotopic compression. 239

Finally, the independence assumption allows to separate the scene analysis in two 240

independent tasks. Each task is assumed to be realized in parallel through distinct 241

computational pathways, that will be referred as the “What” and the “Where” 242

pathways by analogy with the ventral and dorsal pathways in the brain (see figure 2). 243

Each pathway is here assumed to rely on different sensor morphologies. By analogy 244

with biological vision, the target identification is assumed to rely on the very central 245

part of the retina (the fovea), that comes with higher density of cones, and thus higher 246

spatial precision. In contrast, the saccade planning should rely on the full visual field, 247

with peripheral regions having a lower sensor density and a lesser sensitivity to high 248

spatial frequencies. The operations that transform the initial primary visual data should 249

preserve the initial retinotopic organization, so as to form a final retinotopic accuracy 250

map (see figure 2C). Accordingly with the visual data, the retinotopic accuracy map 251

may thus provide more detailed accuracy predictions in the center, and coarser accuracy 252

predictions in the periphery. Finally, each different initial visual field may bring out a 253

different accuracy map, indirectly conveying information about the target retinotopic 254

position. A final action selection (motor map) should then overlay the accuracy map 255

through a winner-takes-all mechanism, implementing the saccade selection in 256

biologically plausible way, as it is thought to be done in the superior colliculus, a brain 257
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Fig 2. Computational graph. Two streams of information are separated from the
visual primary layers, one stream for processing the central pixels only, the other for
processing the periphery with a logpolar encoding. The two streams converge toward a
decision layer that compares the central and the peripheral acuracy, in order to decide
wether to issue a saccadic or a categorical response. If a saccade is produced, then the
center of vision is displaced toward the region that shows the higher accuracy on the
accuracy map. (A) The visual input is constructed the following way: first a 128× 128
natural-like background noise is generated, characterized by noise contrast, mean spatial
frequency and bandwidth [24]. Then a circular mask is put on. Last a sample digit is
selected from the MNIST database (of size 28× 28), rectified, multiplied by a contrast
factor and overlayed on the background at a random position (see an example in
Figure 1-A, DIS). (B) The visual input is then transformed in 2 ways: (i) a 28× 28
central foveal-like snippet is fed to a classification network (“What” pathway) and (ii) a
log-polar set of oriented visual features is fed to the “Where” pathway. This log-polar
input is generated by a bank of filters whose centers are positioned on a log-polar grid
and whose radius increases proportionally with the eccentricity. (C) The “What”
network is implemented using the three-layered LeNet CNN [25], while the “Where”
network is implemented by a three-layered neural network consisting of the retinal input,
two hidden layers with 1000 units each and a collicular-like accuracy map at the output.
This map has a similar retinotopic organization and predicts the accuracy of each
hypothetical position of a saccade. To learn to associate the output of the network with
the ground truth, supervised training is performed using back-propagation with a binary
cross entropy loss. (D) If the predicted accuracy in the output of the “Where” network
is higher than that predicted in the “What” network, the position of maximal activity
in the “Where” pathway serves to generate a saccade which shifts the center of gaze.

region responsible for oculo-motor control [23]. The saccadic motor output showing a 258

similar log-polar compression than the visual input, the saccades should be more precise 259

at short than at long distance (and several saccades may be necessary to precisely reach 260

distant targets). 261
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Detailed implementation 262

Modern parametric classifiers are composed of many layers (hence the term “Deep 263

Learning”) that can be trained through gradient descent over arbitrary input and 264

output feature spaces. The ease of use of those tightly optimized training algorithms 265

allows for the quantification of the difficulty of a task through the failure or success of 266

the training. The simplified anatomy of the agent is composed of two separate pathways 267

whose processing is realized by such a neural network. Each network is trained and 268

tested separately on distinct datasets, before being finally evaluated in a dynamic vision 269

setup (see next section). 270

Images generation 271

We define here the generative model for input display images as shown first in 272

Figure 1-A (DIS) and as implemented in Figure 2-A. 273

Targets. Following a common hypothesis regarding active vision, visual scenes consist 274

of a single visual object of interest. We use the MNIST database of handwritten digits 275

introduced by [25]: Samples are drawn from the database of 60000 grayscale 28× 28 276

pixels images and separated between a training and a validation set (see below the 277

description of the “Where” network). 278

Full-scale images. Each sample position is draw a random in a full-scale image of 279

size 128× 128. To enforce isotropic saccades, a centered circular mask covering the 280

image (of radius 64 pixels) is defined, and the position is such that the embedded 281

sample fits entirely into that circular mask. 282

Background noise setting. To implement a realistic background noise, we generate 283

synthetic textures [24] using a bi-dimensional random process. The texture is designed 284

to fit well with the statistics of natural images. We chose an isotropic setting where 285

textures are characterized by solely two parameters, one controlling the median spatial 286

frequency sf0 of the noise, the other controlling the bandwidth around the central 287

frequency. Equivalently, this can be considered as the band-pass filtering of a random 288

white noise image. The spatial frequency is optimized at 0.1 pixel−1 to fit that of the 289

original digits. This specific spatial frequency occasionally allows to generate some 290

“phantom” digit shapes in the background. Finally, these images are rectified to have a 291

normalized contrast. 292

Mixing the signal and the noise. Finally, both the noise and the target image are 293

merged into a single image. Two different strategies are used. A first strategy emulates 294

a transparent association, with an average luminance computed at each pixel, while a 295

second strategy emulates an opaque association, choosing for each pixel the maximal 296

value. The quantitative difference was tested in simulations, but proved to have a 297

marginal importance. 298

Foveal vision and the “What” pathway 299

At the core of the vision system is the identification module, i.e. the “What” pathway. 300

It consists of a classic convolutional classifier showing some translation invariance. This 301

translation invariance can be measured in the form of a shift-dependent accuracy map. 302

Importantly, it can quantify its own classification uncertainty, that may allow 303

comparisons with the output of the “Where” pathway. 304
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Fig 3. (A) Input samples from the “What” training set, with randomly shifted targets
using a Gaussian bivariate spatial offset with a standard deviation of 15 pixels. The
target contrast is randomly set between 0.3 and 0.7. (B) 55× 55 shift-dependent
accuracy map, measured for different target eccentricities on the test set after training.

The foveal input is defined as the 28× 28 grayscale image extracted at the center of 305

gaze (see dashed red box in Figure 1-C). This image is passed unmodified to the agent’s 306

visual categorical pathway (the “What” pathway), that is realized by a convolutional 307

neural network, here the known “LeNet” classifier [25]. The network structure, that 308

processes the input to identify the target category, is provided (and unmodified) by the 309

pyTorch library [26]. It is made of a 3 convolution layers followed by two 310

fully-connected layers. The network output is a vector representing the probability of 311

detecting each of the 10 digits. The argument of the output neuron with maximum 312

probability provides the image category. 313

A specific dataset is constructed to train the network. It is made of randomly 314

shifted/randomly attenuated digits overlayed over a noisy background, as defined above. 315

Both the offset, the contrast and the background noise render the task more difficult 316

than the original MNIST classification. The relative contrast of the digit is randomly set 317

between 0.3 and 0.7. The network is trained incrementally by progressively increasing 318

the offset variability (of a bivariate central gaussian) by increasing the standard 319

deviation from 0 to 15 (with a maximal offset set at 25 pixels). The network is trained 320

on a total of 75 epochs, with 60000 examples generated at each epoch from the MNIST 321

original training set. The shifts and backgrounds are re-generated at each epoch. The 322

shift standard deviation increases of one unit every 5 epochs. Note that at the end of 323

the training, many digits fall outside the center of the fovea, so that many examples are 324

close to impossible to classify, either because of a low contrast or a too large eccentricity. 325

At the end of the training process, the average accuracy is thus of 34% (though it had a 326

91% accuracy after the 5th epoch, when the digits were only at the center). 327

After training, a shift-dependent accuracy map is computed by systematically 328

testing the network accuracy on every horizontal and vertical offset, each on a set of 329

1000 samples generated from the MNIST test set, within a range of +/−27 pixels (see 330

figure 3). This forms a 55× 55 accuracy map showing higher accuracy at the center, 331

and a slow decreasing accuracy with target eccentricity (with over 70% accuracy plateau 332

showing a shift invariance on a 7-8 pixels eccentricity radius). This significant shift 333

invariance is a known effect of convolutional computation, that is obtained here at the 334
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cost of a lesser central recognition rate (around 80%), remembering the classification 335

task is here harder by construction. The accuracy fastly drops for greater than 10 pixels 336

eccentricity, reaching the baseline 10% chance level at around 20 pixels offset. 337

Peripheral vision: from log-polar feature vectors to log-polar 338

action maps 339

The “Where” pathway is devoted to choosing the next saccade. Here we assume the 340

“Where” implements the following action selection: where to look next in order to reduce 341

the uncertainty about the target identity? This implies moving the eye such as to 342

increase the “What” classifier accuracy. For a given visual field, each possible future 343

saccade has an expected accuracy, that can be trained from the “What” pathway 344

output. To accelerate the training, we use a shortcut that is training the network on a 345

translated accuracy map. The ouput is thus an accuracy map, that tells for each 346

possible visuo-motor displacement the value of the future accuracy. 347

Primary visual representation: log-polar orientation filters For to reduce the 348

processing cost, and in accordance with observations [23,27], a similar log-polar 349

compression pattern is assumed to be conserved from the retina up to the primary 350

motor layers. The non-uniform sampling of the visual space is adequately modeled as a 351

log-polar conformal mapping, as it provides a good fit with observations in 352

mammals [13] which has a long history in computer vision and robotics. Both the visual 353

features and the output accuracy map are to be expressed in retinal coordinates. On 354

the visual side, local visual features are extracted as oriented edges as a combination of 355

the retinotopic transform with primary visual cortex filters [28]. The centers of these 356

first and second order orientation filters are radially organized around the center of 357

fixation, with small and tightened receptive fields at the center and more large and 358

scarce receptive fields at the periphery. The size of the filters increases proportionally to 359

the eccentricity. The filters are organized in 10 spatial eccentricity scales (respectively 360

placed at around 2, 3, 4.5, 6.5, 9, 13, 18, 26, 36.5 , and 51.3 pixels from the center) and 361

24 different azimuth angles allowing them to cover most of the original 128× 128 image. 362

At each of these position, 6 different edge orientations and 2 different phases (symmetric 363

and anti-symmetric) are computed. This finally implements a (fixed) bank of linear 364

filters which model the receptive fields of the input to the primary visual cortex. 365

To ensure the balance of the coefficients across scales, the images are first whitened 366

and then linearly transformed into a “primary visual” feature vector x. The length of 367

this vector is 2880, such that the retinal filter compresses the original image by about 368

83%, with high spatial frequencies preserved at the center and only low spatial 369

frequencies conserved at the periphery. In practice, the bank of filters is pre-computed 370

and placed into a matrix for a rapid transformation of input batches into feature 371

vectors. This matrix transformation allows also the evaluation of a reconstructed visual 372

image given a retinal activity vector thanks to a pseudo-inverse of the forward 373

transform matrix. In summary, the full-sized images are transformed into a primary 374

visual feature vector which is fed to the “Where” pathway. 375

Visuo-motor representation: “Collicular” accuracy maps The output of the 376

“Where” pathway is defined as an accuracy map representing the recognition probability 377

after moving the eye, independently of its identity. Like the primary visual map, this 378

target accuracy map is also organized radially in a log-polar fashion, making the target 379

position estimate more precise at the center and fuzzier at the periphery. This modeling 380

choice is reminiscent of the approximate log-polar organization of the superior colliculus 381

(SC) motor map [23]. In ecological conditions, this accuracy map should be trained by 382

July 30, 2019 11/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725879doi: bioRxiv preprint 

https://doi.org/10.1101/725879
http://creativecommons.org/licenses/by/4.0/


sampling, i.e. by ”trial and error”, using the actual recognition accuracy (after the 383

saccade) to grade the action selection. In practice, as we generate the visual display, the 384

position of the target (which is hidden to the agent) is known. Under an ergodic 385

assumption, knowing both the translational shift imposed to the visual field by a 386

saccade of known amplitude, and the shift-dependent accuracy map of the “What” 387

classifier (Figure 3-B), the full accuracy map at each pixel can be predicted for each 388

visual sample by shifting the central accuracy map on the true position of the target. 389

Such a computational shortcut is allowed by the independence of the categorical 390

performance with position. This full accuracy map is log-polar projected to provide the 391

expected accuracy of each hypothetical saccade in a retinotopic space. In practice, we 392

use the energy of the filters at each position as a proxy to quantify the projection from 393

the metric space to the retinotopic space. This generates a filter bank at 10 spatial 394

eccentricity scales and 24 different azimuth angles, i.e. 240 output filters. Each filter is 395

normalized such that the value at each log-polar position is the average of the values 396

which are integrated in visual space. Applied to the full sized ground truth accuracy 397

map computed in metric space, this gives an accuracy map at different location of a 398

retinotopic motor space. Such transform is again implemented by a simple matrix 399

multiplication which can be pre-computed to fasten calculations. Practically, this also 400

allows to compute an inverse transform using the pseudo-inverse matrix of the forward 401

transform. In particular, that inverse transform is used to represent the accuracy 402

predicted by any given visual feature vector, but also to compute the position of 403

maximal accuracy in metric space to set up the sensor displacement. 404

Classifier training Consider the retinal transform x as the input and a log-polar 405

retinotopic vector a made of n Bernouilli probabilities (success probabilities) as the 406

output. The network is trained to predict the distribution a knowing the retinal input 407

x by comparing it to the known ground truth distribution computed over the motor 408

map. The loss function that comes naturally is the Binary Cross-Entropy (negative 409

term of the Kullback-Leibler divergence) between the ground truth and the predicted 410

map (assuming the independence of the output map features). 411

The parametric neural network consists of a primary visual input layer, followed by 412

two fully connected hidden layers of size 1000 with rectified linear activation, and a final 413

output layer with a sigmoid nonlinearity to ensure that the output is compatible with a 414

likelihood. The network is trained on 60 epochs of 60000 samples, with a learning rate 415

equal to 10−4 and the Adam optimizer [29]. The full training takes about 1 hours on a 416

laptop. The code is written in Python (version 3.7.6) with pyTorch library [26] (version 417

1.1.0). The full scripts for reproducing the figures and extending the results to a full 418

range of parameters is available at 419

https://github.com/laurentperrinet/WhereIsMyMNIST. 420

Results 421

Open loop setup 422

After training, the “Where” pathway is now capable to predict an accuracy map, whose 423

maximal argument drives the eye toward a new viewpoint. There, a central snippet is 424

extracted, that is processed through the “What” pathway, allowing to predict the digit’s 425

label. Examples of this simple open loop sequence are presented in figure 4, when the 426

digits contrast parameter is set to 0.7 and the digits eccentricity varies between 0 and 427

40 pixels. The presented examples correspond to strong eccentricity cases, when the 428

target is hardly visible on the display (fig. 4a), and almost invisible on the 429

reconstructed input (fig. 4b). The radial maps (fig. 4c-d) respectively represent the 430
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a. b. c. d. e.

(A)

(B)

(C)

(D)

(E)
Fig 4. (A) – (E) Active vision samples after training. (A) – (B) classification
success samples. (C) – (E) classification failure samples. Digit contrast set to 0.7.
From left to right : a. The initial 128×128 visual display, with blue cross giving the
center of gaze. The visual input is retinotopically transformed and sent to the
multi-layer neural network implementing the “Where” pathway. b. Magnified
reconstruction of the visual input, as it shows off from the primary visual features
through an inverse log-polar transform. c.-d. Color-coded radial representation of the
output accuracy maps, with dark violet for the lower accuracies, and yellow for the
higher accuracies. The network output (’Predicted’) is visually compared with the
ground truth (’True’). e. 28× 28 central snippet as extracted from the visual display
after doing a saccade, with label prediction and success flag in the title.

actual and the predicted accuracy maps. The final focus is represented in fig. 4e, with 431

cases of classification success (fig. 4A-B) and cases of classification failures (fig. 4C-E). 432

In the case of successful detection (fig. 4A-B), the accuracy prediction is not perfect 433

and the digit is not perfectly centered on the fovea. This “close match” however allows 434

for a correct classification for the digit’s pixels are fully present on the fovea. The case 435

of fig. 4B and 4C is interesting for it shows two cases of a bimodal prediction, indicating 436

that the network is capable of doing multiple detections at a single glance. The case of 437
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Fig 5. Effect of contrast and target eccentricity. The active vision agent is
tested for different target eccentricities (in pixels) and different contrasts to estimate a
final classification rate. Orange bars: accuracy of a central classifier (’No saccade’) with
respect to the target’s eccentricity, averaged over 1,000 trials per eccentricity. Blue bars:
Final classification rate after one saccade.

4C corresponds to a false detection, with the true target detected still, though with a 438

lower intensity. The case of fig. 4D is a “close match” detection that is not precise 439

enough to correctly center the visual target. Not every pixel of the digit being visible on 440

the fovea, the label prediction is mistaken. The last failure case (fig. 4E) corresponds to 441

a correct detection that is harmed by a wrong label prediction, only due to the “What” 442

classifier inherent error rate. 443

To test the robustness of our framework, the same experiment was repeated at 444

different signal-to-noise ratios (SNR) of the input images. Both pathways being 445

interdependent, it is crucial to disentangle the relative effect of of both sources of errors 446

in the final accuracy. By manipulating the SNR and the target eccentricity, one can 447

precisely monitor the network detection and recognition capabilities, with a detection 448

task ranging from ‘easy” (small shift, strong contrast) to “almost impossible” (large 449

shift, low contrast). The digit recognition capability is systematically evaluated in 450

Figure 5 for different eccentricities and different contrasts. For 3 target contrasts 451

conditions ranging from 0.3 to 0.7, and 10 different eccentricities ranging from 4 to 40 452

pixels, the final accuracy is tested on 1, 000 trials both on the initial central snippet and 453

the final central snippet (read at the landing of the saccade). The orange bars provide 454

the initial classification rate (without saccade) and the blue bars provide the final 455

classification rate (after saccade) – see figure 5. As expected, the accuracy decreases 456

with the eccentricity, for the targets become less and less visible in the periphery. The 457

decrease is rapid in the central classifier case: the accuracy drops to the baseline level at 458

approximately 20 pixels away from the center of gaze. The saccade-driven accuracy has 459

a much wider range, with a slow decrease up to the border of the visual display (40 460

pixels away from the center). When varying the target contrast, the initial accuracy 461

profile is scaled by the reference accuracy (obtained with a central target), whose values 462

are approximately 53%, 82% and 92% for SNRs of 0.3, 0.5 and 0.7. The saccade-driven 463

accuracy profile is also similar at the different SNRs values, yet with the scaling 464

imposed by the “What” pathway. This contrast-dependent scaling shows the robustness 465

of our framework to the different factors of difficulty. 466

The high contrast case (fig. 5A) provides the greatest difference between the two 467

profiles, with an accuracy approaching 0.9 at the center and 0.6 at the periphery. This 468

allows to recognize digits after one saccade in a majority of cases, up to the border of 469

the image, from a very scarce peripheral information. This full covering of the 128×128 470

image range is done at a much lesser cost than would be done by a systematic image 471

scan, as in classic computer vision. With decreasing target contrast, a general decrease 472

of the accuracy is observed, both at the center and at the periphery, with about 10% 473

decrease with a contrast of 0.5, and 40% decrease with a contrast of 0.3. In addition, 474
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Fig 6. Multi-saccades case. (A) Example of a corrective saccade on a 3-saccades
trial. The subjective visual field is reconstructed from the log-polar visual features, with
red square delineated 28× 28 foveal snippet, after 0, 1, 2 and 3 saccades (from left to
right). (B) Average classification accuracies measured for different target eccentricities
(in pixels) and a different number of saccades. Target contrast set to 0.7. Orange bars:
initial central accuracy (’0 saccade’) in function of the eccentricity, averaged over 1,000
trials per eccentricity. Blue bars: Final classification rate after one, two and three
saccades (from left to right).

the proportion of false detections also increases with contrast decrease. At 40 pixels 475

away from the center, the false detection rate is approximately 30% for a contrast of 0.7, 476

50% for a contrast of 0.5 and 70% for a contrast of 0.3 (with a recognition close to the 477

baseline at the periphery in that case). The accuracy gain (difference between the initial 478

and the final accuracy) is maximal for eccentricities ranging from 15 to 30 pixels. This 479

optimal range reflects a peripheral region around the fovea where the target detection is 480

possible, but not its identification. The visual agent knows where the target is, without 481

exactly knowing what it is. More generally, this accuracy difference, that quantifies the 482

benefit of active inference with respect to a central prior, can be interpreted as an 483

approximation of the information gain provided by the “Where” pathway1. 484

Closed-loop setup 485

The most peripheral targets are difficult to detect in one round, resulting in degraded 486

performances at the periphery. Even when correctly detected, our log polar action maps 487

also precludes precise centering. The peripheral targets are generally poorly centered 488

after one saccade, as shown in figure 4, resulting in classification errors. Sequential 489

search is thus needed to allow for a better recognition. Multi-saccades visual search 490

results are thus presented in figure 6 491

An example of a corrective saccade is shown on figure 6A. A hardly visible 492

peripheral digit target is first approximetely shifted to the foveal zone. A second 493

saccade allows to improve the target centering. A third saccade only marginally 494

improves the centering. As shown in figure 6B, such corrective saccades, that generally 495

only slightly shift the target, still provide a significant improvement in the classification 496

accuracy. Except at the center, the accuracy rises of about 10% both for the mid-range 497

and the most peripheral eccentricities. Most of the improvement however is provided by 498

the first corrective saccade. The second corrective saccade only shows a barely 499

significant 2-3 % improvement, only visible at the periphery. The following saccades 500

would mostly implement target tracking, without providing additional accuracy gain. A 501

1with the true label log-posterior seen as a sample of the posterior entropy – see eq.(1).

July 30, 2019 15/21

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 5, 2019. ; https://doi.org/10.1101/725879doi: bioRxiv preprint 

https://doi.org/10.1101/725879
http://creativecommons.org/licenses/by/4.0/


3-saccades setup finally allows a wide covering of the visual field, providing a close to 502

central recognition rate at all eccentricities. The residual peripheral error may 503

correspond to “opposite side” target misses cases (figure 4C), when the target is shifted 504

away from the visual field horizon, and the agent can not recover from its initial error. 505

Concurrent action selection 506

Finally, when both pathways are assumed working in parallel, each one may be used 507

concurrently to choose the most appropriate action. Two concurrent accuracies are 508

indeed predicted through separate processing pathways, namely the central pixels 509

recognition accuracy through the “What” pathway, and the log-polar accuracy map 510

through the “Where” pathway. The central accuracy may thus be compared with the 511

maximal accuracy as predicted by the “Where” pathway. 512

From the information theory standpoint, each saccade comes with fresh visual
information about the visual scene that can be quantified by an information gain,
namely:

IGmax = max
u′

log p(y|u′, x′, x, u)− log p(y|x, u)

' max
u′

log p(y|x′)− log p(y|x) (1)

with the left term representing the future accuracy (after the saccade is realized) and 513

the right term representing the current accuracy as it is obtained from the ’what’ 514

pathway. The accuracy gain may be averaged over many saccades and many initial 515

eccentricities (so that the information gain may be close to zero when the initial u is 516

very central). For the saccade is subject to predictions errors and execution noise, the 517

actual u′ may be different from the initial prediction. The final accuracy, as instantiated 518

in the accuracy map, contains this intrinsic imprecision, and is thus necessary lower 519

than the optimal one. The consequence is that in some cases, the approximate 520

information gain may become negative, when the future accuracy is actually lower than 521

the current one. This is for instance the case when the target is centered on the fovea. 522

In our simulation results, the central accuracy is found to overtake the maximal 523

peripheral accuracy when the target is close to the center of gaze. When closely 524

inspecting the 1-10 pixels eccentricity range (not shown), a decision frontier between a 525

positive and a negative information gain is found to lie at 2-3 pixels away from the 526

center. Inside that range, no additional saccade is expected to be produced, and a 527

categorical response should be given instead. While this frontier is not attained, 528

micro-saccades may be pursued in the close vicinity of the target in search of a perfect 529

centering. In the opposite case, when the central accuracy estimate is very poor, the 530

comparison can still be considered helpful, for it may allow to “explain away” the 531

current center of gaze and its neighborhood, encouraging to actuate long-range saccades 532

toward less salient peripheral positions, making it easier to escape from initial 533

prediction errors. This should encourage the agent to select a saccade “away” from the 534

central position, which is reminiscent of a well-known phenomenon in vision known as 535

the “inhibition of return” [7]. Combining accuracy predictions from each pathway may 536

thus allow to refine saccades selection in a way that complies with biological vision. In 537

particular, we predict that such a mechanism is dependent on the class of inputs, and 538

would be different for searching for faces as compared to digits. 539

Quantitative role of parameters 540

In addition, we controlled that these results are robust to changes in an individual 541

experimental or network parameters from the default parameters (see Figure 7). From 542
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Fig 7. Quantitative role of parameters: We show here variations of the average
accuracy as a function of some free parameters of the model. All parameters of the
presented model were tested, from the architecture of image generation, to the
parameters of the neural network implementing the “Where” pathway (including
meta-parameters of the learning paradigm). We show here the results which show the
most significative impact on average accuracy. (A) First, we tested some properties of
the input, respectively from left to right: noise level (noise), mean spatial frequency of
clutter sf 0 and bandwidth B sf of the clutter noise. This shows that average accuracy
evolves with noise (see also Figure 5 for an evolution as a function of eccentricity), but
also to the characteristics of the noise clutter. In particular, there is a drop in accuracy
whenever noise is of similar wavelength as digits, but which becomes less pronounced as
the bandwidth increases. (B) The accuracy also changes with the architecture of the
foveated input as shown here by changing the number N azimuth of azimuth directions
which are sampled in visual space. This shows a compromise between a rough azimuth
representation and a large precision, which necessitates a longer training phase, such
that the optimal number is around 20 azimuth directions. (C) Finally, we scanned
parameters of the Deep Learning neural network. It shows that accuracy quickly
converged after a characteristic time of approximately 25 epochs. We then tested
different values for the dimension of respectively the first (dim1) and second (dim2)
hidden layers, showing weak changes in accuracy.

the scan of each of these parameters, the following observations were remarkable. First 543

we verified that accuracy decreased when noise increased and while the bandwidth of 544

the noise imported weakly, the spatial frequency of the noise was an important factor. 545

In particular, final accuracy was worst for sf 0 ≈ 0.07, that is when the characteristic 546

textures elements were close to the characteristic size of the objects. Second, we saw 547

that the dimension of the “Where” network was optimal for a dimensionality similar to 548

that of the input but that this mattered weakly. The dimensionality of the log-polar 549

map is more important. The analysis proved that an optimal accuracy was achieved 550

when using a number of 24 azimuthal directions. Indeed, a finer log-polar grid requires 551

more epochs to converge and may result in an over-fitting phenomenon hindering the 552

final accuracy. Such fine tuning of parameters may prove to be important in practical 553

applications and to optimize the compromise between accuracy and compression. 554
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Relation with other models 555

Our model is, to our best knowledge, the first case of a bio-realistic log-polar 556

implementations of an active vision framework. We have thus provided a proof of 557

concept that a log-polar encoding retina can efficiently serve object detection and 558

identification over wide visual displays. 559

There are however lots of model that reflect to some degree the biological principles 560

of sequential visual processing. First, active vision is of course an important topic in 561

mainstream computer vision. In the case of image classification, it is considered as a 562

way to improve object recognition by progressively increasing the definition over 563

identified regions of interest, referred as “recurrent attention” [14,15]. Standing on a 564

similar mathematical background, recurrent attention is however at odd with the 565

functioning of biological systems, with a mere distant analogy with the retinal principles 566

of foveal-surround visual definition. 567

Phenomenological bio-realistic models, such as the one proposed in Najemnik and 568

Geisler’s seminal paper [17], rely on a rough simplification, with foveal center-surround 569

acuity modeled as a response curve. Despite providing a bio-realistic account of 570

sequential visual search, the model owns no foveal image processing implementation. 571

Stemming on Najemnik and Geisler’s principles, a trainable center-surround processing 572

system was proposed in [10], with a sequential scan of an image in a face-detection task, 573

however the visual search task here relies on a systematic scan over degraded image, 574

with visual processing delegated to standard feature detectors. 575

Denil at al’s paper [16] is probably the one that shows the closest correspondence 576

with our setup. It owns an identity pathway and a control pathway, in a What/Where 577

fashion, just as ours. Interestingly, only the “what” pathway is neurally implemented 578

using a random foveal/multi-fixation scan within the fixation zone. The “Where” 579

pathway, in contrast, mainly implements object tracking, using particle filtering with a 580

separately learned generative process. The direction of gaze is here chosen so as to 581

minimize the target position, speed and scale uncertainty, using the variance of the 582

future beliefs as an uncertainty metric. The control part is thus much similar to a 583

dynamic ROI tracking algorithm, with no direct correspondence with foveal visual 584

search, or with the capability to recognize the target. 585

Discussion 586

In summary, we have proposed a visuo-motor action-selection model that implements a 587

focal accuracy-seeking policy across the image. Our main modeling assumption here is 588

an accuracy-driven monitoring of action, stating in short that the ventral classification 589

accuracy drives the dorsal selection on an accuracy map. The predicted accuracy map 590

has, in our case, the role of a value-based action selection map, as it is the case in 591

model-free reinforcement learning. However, it also owns a probabilistic interpretation 592

that may be combined with concurrent accuracy predictions (such as the one done 593

through the “What” pathway) to bring out more elaborate decision making which are 594

relevant for visual search, such as the inhibition of return [7]. This combination of a 595

scalar drive with action selection is reminiscent of the actor/critic principle proposed for 596

long time in the reinforcement learning community [30]. In biology, the ventral and the 597

dorsolateral division of the striatum have been suggested to implement such an 598

actor-critic separation [31,32]. Consistently with those findings, our central accuracy 599

drive and peripheral action selection map can respectively be considered as the “critic” 600

and the “actor” of an accuracy-driven action selection scheme, with foveal 601

identification/desambiguation taken as a “visual reward”. 602

Moreover, one crucial aspect of vision highlighted by our model is the importance of 603
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centering objects in recognition. Despite the robust translation invariance observed on 604

the “What” pathway, there is small radius of 2-3 pixels around the target’s center that 605

needs to be respected to maximize the classification accuracy. This relates to the idea of 606

finding an absolute referential for an object, for which the recognition is easier. If the 607

center of fixation is fixed, the log-polar encoding of an object has the notable properties 608

to map object rotations and scalings toward translations in the radial and angular 609

directions of the visual domain [13]. The translation invariance found in convolutional 610

processing may thus be extended to both rotation and scale invariance in the log-polar 611

domain. Incorporating this scale and rotation invariance may thus extend the 612

generalization capabilities of the model. 613

Despite its simplicity, the generative model used to generate our visual display 614

allowed to assess the effectiveness and robustness of our learning scheme, that should be 615

extended to more complex displays and more realistic closed-loop setups. On the one 616

side, the restricted 28×28 input used for the foveal processing is a mere placeholder, 617

that should be replaced by more elaborate image processing frameworks, such as 618

Inception [33] or VGG-19 [34], that can handle natural image classification. The main 619

advantage of our peripheral image processing is its energy-efficiency. Our full log-polar 620

processing pathway consistently conserves the high compression rate performed by 621

retina and V1 encoding up to the action selection level. The organization of both the 622

visual filters and the action maps in concentric log-polar elements, with radially 623

exponentially growing spatial covering, can thus serve as a baseline for a future 624

sub-linear (logarithmic) visual search in computer vision. This may allow to detect an 625

object in large visual environments at little cost, which should be particularly beneficial 626

when the computing resources are under constraint, such as for drones or mobile robots. 627

Finally, our model relies on a strong idealization, assuming the presence of a unique 628

target. The presence of many targets in a scene should be addressed, which amounts to 629

sequentially select targets, in combination with implementing an inhibition of return 630

mechanism. This would generate more realistic visual scan-paths over images. Actual 631

visual scan path over images could also be used to provide priors over action selection 632

maps that should improve realism. Identified regions of interest may then be compared 633

with the baseline bottom-up approaches, such as the low-level feature-based saliency 634

maps [7]. Maximizing the Information Gain over multiple targets needs to be envisioned 635

with a more refined probabilistic framework, including mutual exclusion over overt and 636

covert targets. How the brain may combine and integrate these various probabilities is 637

still an open question, that amounts to the fundamental binding problem. 638
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