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Abstract

We develop a visuo-motor model that implements visual search as a focal
accuracy-seeking policy across a crowded visual display. Stemming from the active
inference framework, saccade-based visual exploration is idealized as an inference
process, assuming that the target position and category are independently drawn from a
common generative process. This independence allows to divide the visual processing in
two independent pathways, consistently with the anatomical “What” /“Where”
separation. A biomimetic log-polar treatment of the visual information, that includes
the strong compression rate performed at the sensor level by retina and V1 encoding, is
preserved up to the action selection level. A dual neural network architecture, that
independently learns where to look and what to see, is then trained, with the foveal
accuracy used as a monitoring signal for action selection. This allows in particular to
interpret the “Where” as a retinotopic action selection pathway, that drives the fovea
toward the target position, in order to increase the recognition accuracy. A specific
approximate Information Gain metric, taken as the difference between central and
peripheral accuracy, is used for action selection after training. The comparison of both
accuracies amounts either to select a saccade or to keep the eye focused at the center, so
as to identify the target. Tested on a simple task of finding digits in a large, cluttered
image, simulation results demonstrate the benefit of our approach, whose key
computational shortcuts finally provide ways to implement visual search in a sub-linear
fashion, in contrast with mainstream computer vision.

Author summary

The visual search task consists in extracting a scarce and specific visual information
(the “target”) from a large and crowded visual display. In computer vision, this task is
usually implemented by scanning the different possible target identities at all possible
spatial positions, hence with strong computational load. The human visual system
employs a different strategy, combining a foveated sensor with the capacity to rapidly
move the center of fixation using saccades. Then, visual processing is separated in two
specialized pathways, the “where” pathway mainly conveying information about target
position in peripheral space (independently of its category), and the “what” pathway
mainly conveying information about the category of the target (independently of its
position). This object recognition pathway is shown here to have an essential role,
providing an “accuracy drive” that serves to force the eye to foveate peripheral objects
in order to increase the peripheral accuracy, much like in the “actor/critic” framework.
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Put together, all those principles to provide ways toward both adaptive and
resource-efficient visual processing systems.

Introduction

Problem statement.

Past 10 years have seen the disrupting development of deep learning based image
processing. Indeed the field of computer vision has been recast by the outstanding
capability of convolution-based deep networks to capture the semantic content of images
and photographs. Image processing algorithms recently outreached the performance of
human observers in specific image categorization tasks [1]. Their success relies on a
reduction of parameter complexity through weight sharing in convolutional neural
networks applied over the full image. Initially trained on energy greedy, high
performance computers, they are now designed to work on more common hardware such
as desktop computers with dedicated GPU hardware [2]. However, despite lot of efforts
spent in optimizing the processing costs, the processing of large images is still done at a
cost that scales linearly with the image size. All regions, even the “boring” ones are
systematically scanned and processed in parallel through dedicated hardware at a
significant computational cost. Image processing architectures consequently contain
millions of parameters with subsequent energy consumption while still handling
relatively small images. This introduces a trade-off between efficiency and accuracy, for
instance in autonomous driving, with the need to detect visual objects at a glance while
running on resource-constrained embedded hardware.

In contrast, when human vision is considered, things work differently. First, the
general performance is still greater than that of computer vision. Indeed, object
recognition can be achieved by the human visual system both rapidly, — in less than 100
ms [3] — and at a low energy cost (< 5 W). On top of that, it is mostly self-organized,
robust to visual transforms or lighting conditions and can learn with a few examples. If
many different anatomical features may explain this efficiency, a main difference lies in
the fact that its sensor (the retina) combines a non homogeneous sampling of the world
with the capacity to rapidly change its center of fixation. On the one hand, the retina is
composed of two separate systems: a central, high definition fovea (a disk of about 6
degrees of diameter in visual angle around the center of gaze) and a large, lower
definition peripheral area. On the other hand, the human vision is dynamic. The retina
is attached on the back of the eye which is capable of low latency, high speed eye
movements. In particular, saccades allow for efficient changes of the position of the
center of gaze: they take about 200 ms to initiate, last about 200 ms and usually reach
a maximum velocity of approx 600 degrees per second. The scanning of a full visual
scene is thus not done in parallel but sequentially, and only scene-relevant regions of
interest are scanned through saccades. This implies a decision process at each step that
decides where to look next. This behavior is prevalent during our lifetime (about a
saccade every 2-3 seconds, that is, almost a billion saccade in a lifetime). The interplay
of those two features allows human observers to engage in an integrated action
perception loop which sequentially scans and analyses the different parts of the image.

Take for instance the case of an encounter with a friend in a crowded café. To catch
the moment at which she arrives, you need to visually search for her face despite the
sensory clutter in the visual field. To do so, you need to scan relevant parts of the visual
scene with your gaze. Doing a saccade at these locations will allow you to recognize

your friend. The main difficulty of this task is to identify a particular object class (e.g.

human faces) given all their possible spatial configurations and respective geometrical
visual transformations. Searching for any face in a peripheral and crowded display
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needs to precede the recognition of a specific face identity.

State of the art

To take benefit from this visuomotor behavior, it is important to understand both its
computational and neurophysiological principles. First, the joint problem of target

localization and identification is a classical problem of visual search in computer vision.

Addressing apparently simple questions such as “find the green bottle on the table”, it
is of broad interest in machine learning, computer vision and robotics, but also in
neuroscience, as it speaks to the mechanisms underlying foveation and more generally to
low-level attention mechanisms. When restricted to a mere “feature search” [4], many
solutions are proposed. Notably, recent advances in deep-learning have provided efficient
models such as faster-RCNN [5] or YOLO [6]. Their object search implementations

predict in the image the probability of proposed bounding boxes around visual objects.

While rapid, the number of boxes may significantly increase with image size and the
approach more generally necessitates dedicated hardware to run in real time.

In parallel, human visual scan-path over natural images provide ways to define
saliency maps, that quantify the attractiveness of the different parts of an image, that
are consistent with the detection of objects of interest. Essential to understand and
predict saccades, they also serve as phenomenological models of attention. Estimating
the saliency map from a luminous image is a classical problem in neuroscience, that was
shown consistent with a distance from baseline image statistics known as the “Bayesian
surprise” [7]. The saliency approach was recently updated using deep learning to
estimate saliency maps over large databases of natural images [8]. While these methods
are efficient at predicting the probability of fixation, they miss an essential component
in the action perception loop: they operate on the full image while the retina operates
on the non-uniform, foveated sampling of visual space (see Figure 1-B). Herein, we
believe that this fact is an essential factor to reproduce and understand the active vision
process.

Foveated models of vision have been considered for long time in robotics and
computer vision as a way to leverage the visual scene scaling problem. Focal image
processing relies a non-homogeneous compression of an image, that maintains the pixel
information at the center of fixation and strongly compresses it at the periphery,
including pyramidal encoding [9,10], local wavelet decomposition [11] and logpolar
encoding [12,13]. Though focal and multiscale encoding is now largely considered in
static computer vision, sequential implementations have not been shown effective
enough to overtake static object search methods. Several implementations of a focal
sequential search in visual processing can be found in the literature, with various
degrees of biological realism [14,15], that often rely on a simplified focal encoding, long
training procedures and bounded sequential processing. More realistic attempts to
combine foveal encoding and sequential visual search can be found in [10,11,16], that
will be compared further on with our approach.

In contrast to phenomenological (or “bottom-up”) approaches, active models of
vision [10,17,18] provide the ground principles of saccadic exploration. In general, they
assume the existence of a generative model from which both the target position and
category can be inferred through active sampling. This comes from the constraint that
the visual sensor is foveated but can generate a saccade. Several studies are relevant to
our endeavor. First, one can consider optimal strategies to solve the problem of the
visual search of a target [17]. In a setting similar to that presented in Figure 1-A, where
the target is an oriented edge and the background is defined as pink noise, authors show
first that a Bayesian ideal observer comes out with an optimal strategy, and second that
human observers are close to that optimal performance. Though well predicting
sequences of saccades in a perception action loop, this model is limited by the simplicity
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of the display (elementary edges added on stationary noise, a finite number of locations
on a discrete grid) and by the abstract level of modeling. Despite these (inevitable)
simplifications, this study could successfully predict some key characteristics of visual
scanning such as the trade-off between memory content and speed. Looking more
closely at neurophysiology, the study of [19] allows to go further in understanding the
interplay between saccadic behavior and the statistics of the input. In this study,
authors were able to manipulate the size of the saccades by monitoring key properties of

the presented (natural) images. For instance, smaller images generate smaller saccades.

A further modeling perspective is provided by [18]. In this setup, a full description
of the visual world is used as a generative process. An agent is completely described by
the generative model governing the dynamics of its internal beliefs and is interacting

with this image by scanning it through a foveated sensor, just as described in Figure 1.

Thus, equipping the agent with the ability to actively sample the visual world allows to
interpret saccades as optimal experiments, by which the agent seeks to confirm
predictive models of the (hidden) world. One key ingredient to this process is the
(internal) representation of counterfactual predictions, that is, the probable
consequences of possible hypothesis as they would be realized into actions (here,
saccades). Following such an active inference scheme [20] numerical simulations
reproduce sequential eye movements that fit well with empirical data. Saccades are here
a consequence of an active seek for the agent to minimize the uncertainty about his
beliefs, knowing his priors on the generative model of the visual world.

Outline

Stemming from the active vision principles, our aim is to produce a principled and
resource-effective model of vision. We start from an elementary visual search problem,
that is how to locate an object in a large, crowded image, and take human vision as a
guide for efficient design. Our framework is made as general as possible, with minimal
mathematical treatment, to speak largely to fragmented domains, such as machine
learning, neuroscience and robotics. We expect to provide an integrated view of
foveated active vision, applicable to both domains.

After this introduction, the principles underlying accuracy-based saccadic control are
defined in the second section. We first define notations, variables and equations for the
generative process governing the experiment and the generative model for the active
vision agent. Complex combinatorial inferences are here replaced by separate pathways,
i.e. the spatial (“Where”) and categorical (“What”) pathways, whose output is

combined to infer optimal eye displacements and subsequent identification of the target.

Our agent, equipped with a foveated sensor, should learn an optimal behavior strategy
to actively scan the visual image. Implementation details are provided in the methods
section, giving ways to reproduce our results, showing in particular how to simplify the
learning using accuracy-driven action maps. Numerical simulations are presented in the
results section, demonstrating the applicability of this framework to different task
complexity levels. The last section finally summarizes the results, showing its relative
advantages in comparison with other frameworks, and providing ways toward possible
improvements.

Principles

For biological vision is the result of a continual optimization under strong material and
energy constraints, we need to understand both its ground principles and its specific
computational and material constraints in order to implements effective biomimetic
vision systems.
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(A)

eye position (a. u.)

0 100 200 300 400 500 600 700 800
time (ms)

Fig 1. Problem setting: In generic, ecological settings, the visual system faces a
tricky problem when searching for one target (from a class of targets) in a cluttered
environment. It is synthesized in the following experiment: (A) After a fixation period
FIX of 200 ms, an observer is presented with a luminous display DIS showing a single
target from a known class (here digits) and at a random position. The display is
presented for a short period of 500 ms (light shaded area in B), that is enough to
perform at most one saccade on the potential target (SAC, here successful). Finally, the
observer has to identify the digit by a keypress ANS. NB: the target contrast is here
enhanced for a better readability. (B) Prototypical trace of a saccadic eye movement to
the target position. In particular, we show the fixation window FIX and the temporal
window during which a saccade is possible (green shaded area). (C) Simulated
reconstruction of the visual information from the (interoceptive) retinotopic map at the
onset of the display DIS and after a saccade SAC, the dashed red box indicating the
foveal region. In contrast to an exteroceptive representation (see A), this demonstrates
that the position of the target has to be inferred from a degraded (sampled) image. In
particular, the configuration of the display is such that by adding clutter and reducing
the contrast of the digit, it may become necessary to perform a saccade to be able to
identify the digit. The computational pathway mediating the action has to infer the
location of the target before seeing it, that is, before being able to actually identify the
target’s category from a central fixation.

In order to do so, we provide a simplified visual environment toward which a visual
agent can act on. The search experience is formalized and simplified in a way
reminiscent to classical psychophysic experiments: an observer is asked to classify digits
(for instance as taken from the MNIST database) as they are shown on a computer
display. However, these digits can be placed at random positions on the display, and
visual clutter is added as a background to the image (see Figure 1-A). In order to vary
the difficulty of the task, different parameters are controlled, such as the target
eccentricity, the background noise period and and the signal/noise ratio (SNR). The
agent initially fixates the center of the screen. Due to the peripheral clutter, he needs to
explore the visual scene through saccades to provide the answer. He controls a foveal
visual sensor that can move over the visual scene through saccades (see Figure 1-B).
When a saccade is actuated, the center of fixation moves toward a new location, which
updates the visual input (see Figure 1-C). The lower the SNR and the larger the initial
target eccentricity, the more difficult the identification. There is a range of eccentricities
for which it is impossible to identify the target from a single glance, so that a saccade is
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necessary to issue a proper response. This implies in general that the position of the
object may be detected in the first place in the peripheral clutter before being properly
identified.

This setup provides the conditions for a separate processing of the visual
information. Indeed, in order to analyze a complex visual scene, there are two types of
processing that need to be done. On the one side, you need to analyze in detail what is
at the center of fixation, that is the region of interest currently processed. On the other
side, you also need to analyze the surrounding part, even if the resolution is low, in
order to choose what is the next center of fixation. This basically means making a
choice of “what’s interesting next”. You do not necessarily need to know what it is, but
you need to that it’s interesting enough, and of course you need to know what action to
take to move the center of fixation at the right position. This is reminiscent of the
What/Where separate visual processing separation observed in monkeys and humans
ventral and dorsal visual pathways [21].

Active inference

This kind of reasoning can be captured by a statistical framework called a partially
observed Markov Decision Process (POMDP), where the cause of a visual scene is
couple made of a viewpoint and scene elements. Changing the viewpoint will conduct to
a different scene rendering. A generative model tells how typically looks the visual field
knowing the scene elements and a certain viewpoint. In general, active inference
assumes a hidden external state e, which is known indirectly through its effects on the
sensor. The external state corresponds to the physical environment. Here the external
state is assumed to split in two (independent) components, namely e = (u,y) with u the
interoceptive body posture (in our case the gaze orientation, or “viewpoint”) and y the
object shape (or object identity). The visual field x is the state of the sensors, that is, a
partial view of the visual scene, measured through the generative process : & ~ p(X|e).

Using Bayes rule, one may then infer the scene elements from the current view point
(model inversion). The real physical state e being hidden, a parametric model 6 is
assumed to allow for an estimate of the cause of the current visual field through model
inversion thanks to Bayes formula, in short:

p(E|z) < p(z|E;0)

It is also assumed that a set of motor commands A = {..., q, ...} (here saccades) may
control the body posture, but not the object’s identity, so that y is invariant to a.
Actuating a command a changes the viewpoint to u/, which feeds the system with a new
visual sample 2’ ~ p(X|u/,y). The more viewpoints you have, the more certain you are
about the object identity through a chain rule sequential evidence accumulation.

In an optimal search setup however [17], you need to choose the next viewpoint that
will help you the most to disambiguate the scene. In a predictive setup, the consequence
of every saccade should be analyzed through model inversion over the future
observations, that is, predicting the effect of every action to choose the one that may
optimize future inferences. The benefit of each action should be quantified through a
certain metric (future accuracy, future posterior entropy, future variational free energy,
...), that depend on the current inference p(U, Y |x). The saccade a that is selected thus
provides a new visual sample from the scene statistics. If well chosen, it should improve
the understanding of the scene (here the target position and category). However,
estimating in advance the effect of every action over the range of every possible object
shapes and body postures is combinatorially hard, even in simplified setups, and thus
infeasible in practice.

The predictive approach necessitates in practice to restrain the generative model in
order to reduce the range of possible combinations. One such restriction, known as the
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“Naive Bayes” assumption, considers the independence of the factors that are the cause
of the sensory view. The independence hypothesis allows considering the viewpoint u
and the category y being independently inferred from the current visual field, i.e
p(U,Y|z) = p(U|z)p(Y|x). This property is strictly true in our setting and is very
generic in vision for simple classes (such as digits) and simple displays (but see [22] for
more complex visual scene grammars).

Metric training

Next, the effect of a saccade is to shift the visual field from one place to another.
Concretely, each saccade provokes a new visual field 2’ and a new subjective position u’,
while the target identity y remains unchanged. Choosing the next saccade thus means
using a model to predict how accurate p(U|x) and p(Y|x) will be after the saccade
realization. In detail, modeling the full sequence of operations that lead to both
estimate p(U’|z’) and p(Y'|2z") means predicting the future visual field z’ over all
possible saccades, that may yet be too costly in case of large visual fields. Better off
instead is to form a statistics over the (scene understanding) benefit obtained from past
saccades in the same context, that is forming an accuracy map from the current view.
This is the essence of the sampling-based metric prediction that we develop here. The
putative effect of every saccade should be condensed in a single number, the accuracy,
that quantifies the final benefit of issuing saccade a from the current observation x. If a
is a possible saccade and 2z’ the corresponding future visual field, the result of the
categorical classifier over 2’ can either be correct (1) or incorrect (0). If this experiment
is repeated many times over many visual scenes, the probability of correctly classifying
the future visual field z’ from a forms a probability, i.e. a number between 0 and 1, that
reflects the proportion of correct and incorrect classifications. To sum up, a main
assumption here is that instead of trying to detect the actual position of the target,
better off for the agent is to estimate how accurate the categorical classifier will be after
moving the eye. Extended to the full action space A, this forms an accuracy map that
may be learned through trials and errors, by actuating saccades and taking the final
classification success or failure as a teaching signal. Our main assumption here is that
such a predictive accuracy map is at the core of a realistic saccade-based vision systems.
Compared with a baseline approach that would predict for all possible gaze directions
over an image, this map should moreover be organized radially to preserve the
retinotopic compression.

Finally, the independence assumption allows to separate the scene analysis in two
independent tasks. Each task is assumed to be realized in parallel through distinct
computational pathways, that will be referred as the “What” and the “Where”
pathways by analogy with the ventral and dorsal pathways in the brain (see figure 2).
Each pathway is here assumed to rely on different sensor morphologies. By analogy
with biological vision, the target identification is assumed to rely on the very central
part of the retina (the fovea), that comes with higher density of cones, and thus higher
spatial precision. In contrast, the saccade planning should rely on the full visual field,
with peripheral regions having a lower sensor density and a lesser sensitivity to high
spatial frequencies. The operations that transform the initial primary visual data should
preserve the initial retinotopic organization, so as to form a final retinotopic accuracy
map (see figure 2C). Accordingly with the visual data, the retinotopic accuracy map
may thus provide more detailed accuracy predictions in the center, and coarser accuracy
predictions in the periphery. Finally, each different initial visual field may bring out a
different accuracy map, indirectly conveying information about the target retinotopic
position. A final action selection (motor map) should then overlay the accuracy map
through a winner-takes-all mechanism, implementing the saccade selection in
biologically plausible way, as it is thought to be done in the superior colliculus, a brain
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Fig 2. Computational graph. Two streams of information are separated from the
visual primary layers, one stream for processing the central pixels only, the other for
processing the periphery with a logpolar encoding. The two streams converge toward a
decision layer that compares the central and the peripheral acuracy, in order to decide
wether to issue a saccadic or a categorical response. If a saccade is produced, then the
center of vision is displaced toward the region that shows the higher accuracy on the
accuracy map. (A) The visual input is constructed the following way: first a 128 x 128
natural-like background noise is generated, characterized by noise contrast, mean spatial
frequency and bandwidth [24]. Then a circular mask is put on. Last a sample digit is
selected from the MNIST database (of size 28 x 28), rectified, multiplied by a contrast
factor and overlayed on the background at a random position (see an example in
Figure 1-A, DIS). (B) The visual input is then transformed in 2 ways: (i) a 28 x 28
central foveal-like snippet is fed to a classification network (“What” pathway) and (ii) a
log-polar set of oriented visual features is fed to the “Where” pathway. This log-polar
input is generated by a bank of filters whose centers are positioned on a log-polar grid
and whose radius increases proportionally with the eccentricity. (C) The “What”
network is implemented using the three-layered LeNet CNN [25], while the “Where”
network is implemented by a three-layered neural network consisting of the retinal input,
two hidden layers with 1000 units each and a collicular-like accuracy map at the output.
This map has a similar retinotopic organization and predicts the accuracy of each
hypothetical position of a saccade. To learn to associate the output of the network with
the ground truth, supervised training is performed using back-propagation with a binary
cross entropy loss. (D) If the predicted accuracy in the output of the “Where” network
is higher than that predicted in the “What” network, the position of maximal activity
in the “Where” pathway serves to generate a saccade which shifts the center of gaze.

region responsible for oculo-motor control [23]. The saccadic motor output showing a
similar log-polar compression than the visual input, the saccades should be more precise
at short than at long distance (and several saccades may be necessary to precisely reach
distant targets).
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Detailed implementation

Modern parametric classifiers are composed of many layers (hence the term “Deep
Learning”) that can be trained through gradient descent over arbitrary input and
output feature spaces. The ease of use of those tightly optimized training algorithms
allows for the quantification of the difficulty of a task through the failure or success of
the training. The simplified anatomy of the agent is composed of two separate pathways
whose processing is realized by such a neural network. Each network is trained and
tested separately on distinct datasets, before being finally evaluated in a dynamic vision
setup (see next section).

Images generation

We define here the generative model for input display images as shown first in
Figure 1-A (DIS) and as implemented in Figure 2-A.

Targets. Following a common hypothesis regarding active vision, visual scenes consist
of a single visual object of interest. We use the MNIST database of handwritten digits
introduced by [25]: Samples are drawn from the database of 60000 grayscale 28 x 28
pixels images and separated between a training and a validation set (see below the
description of the “Where” network).

Full-scale images. Each sample position is draw a random in a full-scale image of
size 128 x 128. To enforce isotropic saccades, a centered circular mask covering the
image (of radius 64 pixels) is defined, and the position is such that the embedded
sample fits entirely into that circular mask.

Background noise setting. To implement a realistic background noise, we generate
synthetic textures [24] using a bi-dimensional random process. The texture is designed
to fit well with the statistics of natural images. We chose an isotropic setting where
textures are characterized by solely two parameters, one controlling the median spatial
frequency sfy of the noise, the other controlling the bandwidth around the central
frequency. Equivalently, this can be considered as the band-pass filtering of a random
white noise image. The spatial frequency is optimized at 0.1 pixel ™" to fit that of the
original digits. This specific spatial frequency occasionally allows to generate some
“phantom” digit shapes in the background. Finally, these images are rectified to have a
normalized contrast.

Mixing the signal and the noise. Finally, both the noise and the target image are
merged into a single image. Two different strategies are used. A first strategy emulates
a transparent association, with an average luminance computed at each pixel, while a
second strategy emulates an opaque association, choosing for each pixel the maximal
value. The quantitative difference was tested in simulations, but proved to have a
marginal importance.

Foveal vision and the “What” pathway

At the core of the vision system is the identification module, i.e. the “What” pathway.
It consists of a classic convolutional classifier showing some translation invariance. This
translation invariance can be measured in the form of a shift-dependent accuracy map.
Importantly, it can quantify its own classification uncertainty, that may allow
comparisons with the output of the “Where” pathway.
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Fig 3. (A) Input samples from the “What” training set, with randomly shifted targets
using a Gaussian bivariate spatial offset with a standard deviation of 15 pixels. The
target contrast is randomly set between 0.3 and 0.7. (B) 55 x 55 shift-dependent
accuracy map, measured for different target eccentricities on the test set after training.

The foveal input is defined as the 28 x 28 grayscale image extracted at the center of
gaze (see dashed red box in Figure 1-C). This image is passed unmodified to the agent’s
visual categorical pathway (the “What” pathway), that is realized by a convolutional
neural network, here the known “LeNet” classifier [25]. The network structure, that
processes the input to identify the target category, is provided (and unmodified) by the
pyTorch library [26]. Tt is made of a 3 convolution layers followed by two
fully-connected layers. The network output is a vector representing the probability of
detecting each of the 10 digits. The argument of the output neuron with maximum
probability provides the image category.

A specific dataset is constructed to train the network. It is made of randomly
shifted /randomly attenuated digits overlayed over a noisy background, as defined above.
Both the offset, the contrast and the background noise render the task more difficult
than the original MNIST classification. The relative contrast of the digit is randomly set
between 0.3 and 0.7. The network is trained incrementally by progressively increasing
the offset variability (of a bivariate central gaussian) by increasing the standard
deviation from 0 to 15 (with a maximal offset set at 25 pixels). The network is trained
on a total of 75 epochs, with 60000 examples generated at each epoch from the MNIST
original training set. The shifts and backgrounds are re-generated at each epoch. The
shift standard deviation increases of one unit every 5 epochs. Note that at the end of
the training, many digits fall outside the center of the fovea, so that many examples are
close to impossible to classify, either because of a low contrast or a too large eccentricity.
At the end of the training process, the average accuracy is thus of 34% (though it had a
91% accuracy after the 5th epoch, when the digits were only at the center).

After training, a shift-dependent accuracy map is computed by systematically
testing the network accuracy on every horizontal and vertical offset, each on a set of
1000 samples generated from the MNIST test set, within a range of +/—27 pixels (see
figure 3). This forms a 55 x 55 accuracy map showing higher accuracy at the center,
and a slow decreasing accuracy with target eccentricity (with over 70% accuracy plateau
showing a shift invariance on a 7-8 pixels eccentricity radius). This significant shift
invariance is a known effect of convolutional computation, that is obtained here at the
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cost of a lesser central recognition rate (around 80%), remembering the classification
task is here harder by construction. The accuracy fastly drops for greater than 10 pixels
eccentricity, reaching the baseline 10% chance level at around 20 pixels offset.

Peripheral vision: from log-polar feature vectors to log-polar
action maps

The “Where” pathway is devoted to choosing the next saccade. Here we assume the
“Where” implements the following action selection: where to look next in order to reduce
the uncertainty about the target identity? This implies moving the eye such as to
increase the “What” classifier accuracy. For a given visual field, each possible future
saccade has an expected accuracy, that can be trained from the “What” pathway
output. To accelerate the training, we use a shortcut that is training the network on a
translated accuracy map. The ouput is thus an accuracy map, that tells for each
possible visuo-motor displacement the value of the future accuracy.

Primary visual representation: log-polar orientation filters For to reduce the
processing cost, and in accordance with observations [23,27], a similar log-polar
compression pattern is assumed to be conserved from the retina up to the primary
motor layers. The non-uniform sampling of the visual space is adequately modeled as a
log-polar conformal mapping, as it provides a good fit with observations in

mammals [13] which has a long history in computer vision and robotics. Both the visual
features and the output accuracy map are to be expressed in retinal coordinates. On
the visual side, local visual features are extracted as oriented edges as a combination of
the retinotopic transform with primary visual cortex filters [28]. The centers of these
first and second order orientation filters are radially organized around the center of
fixation, with small and tightened receptive fields at the center and more large and
scarce receptive fields at the periphery. The size of the filters increases proportionally to
the eccentricity. The filters are organized in 10 spatial eccentricity scales (respectively
placed at around 2, 3, 4.5, 6.5, 9, 13, 18, 26, 36.5 , and 51.3 pixels from the center) and

24 different azimuth angles allowing them to cover most of the original 128 x 128 image.

At each of these position, 6 different edge orientations and 2 different phases (symmetric
and anti-symmetric) are computed. This finally implements a (fixed) bank of linear
filters which model the receptive fields of the input to the primary visual cortex.

To ensure the balance of the coefficients across scales, the images are first whitened
and then linearly transformed into a “primary visual” feature vector . The length of
this vector is 2880, such that the retinal filter compresses the original image by about
83%, with high spatial frequencies preserved at the center and only low spatial
frequencies conserved at the periphery. In practice, the bank of filters is pre-computed
and placed into a matrix for a rapid transformation of input batches into feature
vectors. This matrix transformation allows also the evaluation of a reconstructed visual
image given a retinal activity vector thanks to a pseudo-inverse of the forward
transform matrix. In summary, the full-sized images are transformed into a primary
visual feature vector which is fed to the “Where” pathway.

Visuo-motor representation: “Collicular” accuracy maps The output of the

“Where” pathway is defined as an accuracy map representing the recognition probability
after moving the eye, independently of its identity. Like the primary visual map, this

target accuracy map is also organized radially in a log-polar fashion, making the target
position estimate more precise at the center and fuzzier at the periphery. This modeling
choice is reminiscent of the approximate log-polar organization of the superior colliculus
(SC) motor map [23]. In ecological conditions, this accuracy map should be trained by
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sampling, i.e. by ”trial and error”, using the actual recognition accuracy (after the
saccade) to grade the action selection. In practice, as we generate the visual display, the
position of the target (which is hidden to the agent) is known. Under an ergodic
assumption, knowing both the translational shift imposed to the visual field by a
saccade of known amplitude, and the shift-dependent accuracy map of the “What”
classifier (Figure 3-B), the full accuracy map at each pixel can be predicted for each
visual sample by shifting the central accuracy map on the true position of the target.
Such a computational shortcut is allowed by the independence of the categorical
performance with position. This full accuracy map is log-polar projected to provide the
expected accuracy of each hypothetical saccade in a retinotopic space. In practice, we
use the energy of the filters at each position as a proxy to quantify the projection from
the metric space to the retinotopic space. This generates a filter bank at 10 spatial
eccentricity scales and 24 different azimuth angles, i.e. 240 output filters. Each filter is
normalized such that the value at each log-polar position is the average of the values
which are integrated in visual space. Applied to the full sized ground truth accuracy
map computed in metric space, this gives an accuracy map at different location of a
retinotopic motor space. Such transform is again implemented by a simple matrix
multiplication which can be pre-computed to fasten calculations. Practically, this also
allows to compute an inverse transform using the pseudo-inverse matrix of the forward
transform. In particular, that inverse transform is used to represent the accuracy
predicted by any given visual feature vector, but also to compute the position of
maximal accuracy in metric space to set up the sensor displacement.

Classifier training Consider the retinal transform x as the input and a log-polar
retinotopic vector @ made of n Bernouilli probabilities (success probabilities) as the
output. The network is trained to predict the distribution a knowing the retinal input
x by comparing it to the known ground truth distribution computed over the motor
map. The loss function that comes naturally is the Binary Cross-Entropy (negative
term of the Kullback-Leibler divergence) between the ground truth and the predicted
map (assuming the independence of the output map features).

The parametric neural network consists of a primary visual input layer, followed by
two fully connected hidden layers of size 1000 with rectified linear activation, and a final
output layer with a sigmoid nonlinearity to ensure that the output is compatible with a
likelihood. The network is trained on 60 epochs of 60000 samples, with a learning rate
equal to 10~% and the Adam optimizer [29]. The full training takes about 1 hours on a
laptop. The code is written in Python (version 3.7.6) with pyTorch library [26] (version
1.1.0). The full scripts for reproducing the figures and extending the results to a full
range of parameters is available at
https://github.com/laurentperrinet/WhereIsMyMNIST.

Results

Open loop setup

After training, the “Where” pathway is now capable to predict an accuracy map, whose
maximal argument drives the eye toward a new viewpoint. There, a central snippet is
extracted, that is processed through the “What” pathway, allowing to predict the digit’s
label. Examples of this simple open loop sequence are presented in figure 4, when the
digits contrast parameter is set to 0.7 and the digits eccentricity varies between 0 and
40 pixels. The presented examples correspond to strong eccentricity cases, when the
target is hardly visible on the display (fig. 4a), and almost invisible on the
reconstructed input (fig. 4b). The radial maps (fig. 4c-d) respectively represent the
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d

Predicted

idx=8

(A)

idx=20 Fredicted

(B)

idx=46 Predicted

Predicted

idx=32 True Predicted

(E) ...

Fig 4. (A) - (E) Active vision samples after training. (A) — (B) classification
success samples. (C) — (E) classification failure samples. Digit contrast set to 0.7.
From left to right : a. The initial 128 x128 visual display, with blue cross giving the
center of gaze. The visual input is retinotopically transformed and sent to the
multi-layer neural network implementing the “Where” pathway. b. Magnified
reconstruction of the visual input, as it shows off from the primary visual features
through an inverse log-polar transform. c.-d. Color-coded radial representation of the
output accuracy maps, with dark violet for the lower accuracies, and yellow for the
higher accuracies. The network output ("Predicted’) is visually compared with the
ground truth ("True’). e. 28 x 28 central snippet as extracted from the visual display
after doing a saccade, with label prediction and success flag in the title.

actual and the predicted accuracy maps. The final focus is represented in fig. 4e, with

cases of classification success (fig. 4A-B) and cases of classification failures (fig. 4C-E).

In the case of successful detection (fig. 4A-B), the accuracy prediction is not perfect

and the digit is not perfectly centered on the fovea. This “close match” however allows
for a correct classification for the digit’s pixels are fully present on the fovea. The case
of fig. 4B and 4C is interesting for it shows two cases of a bimodal prediction, indicating
that the network is capable of doing multiple detections at a single glance. The case of
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Fig 5. Effect of contrast and target eccentricity. The active vision agent is
tested for different target eccentricities (in pixels) and different contrasts to estimate a
final classification rate. Orange bars: accuracy of a central classifier ("No saccade’) with
respect to the target’s eccentricity, averaged over 1,000 trials per eccentricity. Blue bars:
Final classification rate after one saccade.

4C corresponds to a false detection, with the true target detected still, though with a
lower intensity. The case of fig. 4D is a “close match” detection that is not precise
enough to correctly center the visual target. Not every pixel of the digit being visible on
the fovea, the label prediction is mistaken. The last failure case (fig. 4E) corresponds to
a correct detection that is harmed by a wrong label prediction, only due to the “What”
classifier inherent error rate.

To test the robustness of our framework, the same experiment was repeated at
different signal-to-noise ratios (SNR) of the input images. Both pathways being
interdependent, it is crucial to disentangle the relative effect of of both sources of errors
in the final accuracy. By manipulating the SNR and the target eccentricity, one can
precisely monitor the network detection and recognition capabilities, with a detection
task ranging from ‘easy” (small shift, strong contrast) to “almost impossible” (large
shift, low contrast). The digit recognition capability is systematically evaluated in
Figure 5 for different eccentricities and different contrasts. For 3 target contrasts
conditions ranging from 0.3 to 0.7, and 10 different eccentricities ranging from 4 to 40
pixels, the final accuracy is tested on 1,000 trials both on the initial central snippet and
the final central snippet (read at the landing of the saccade). The orange bars provide
the initial classification rate (without saccade) and the blue bars provide the final
classification rate (after saccade) — see figure 5. As expected, the accuracy decreases
with the eccentricity, for the targets become less and less visible in the periphery. The
decrease is rapid in the central classifier case: the accuracy drops to the baseline level at
approximately 20 pixels away from the center of gaze. The saccade-driven accuracy has
a much wider range, with a slow decrease up to the border of the visual display (40
pixels away from the center). When varying the target contrast, the initial accuracy
profile is scaled by the reference accuracy (obtained with a central target), whose values
are approximately 53%, 82% and 92% for SNRs of 0.3, 0.5 and 0.7. The saccade-driven
accuracy profile is also similar at the different SNRs values, yet with the scaling
imposed by the “What” pathway. This contrast-dependent scaling shows the robustness
of our framework to the different factors of difficulty.

The high contrast case (fig. 5A) provides the greatest difference between the two
profiles, with an accuracy approaching 0.9 at the center and 0.6 at the periphery. This
allows to recognize digits after one saccade in a majority of cases, up to the border of
the image, from a very scarce peripheral information. This full covering of the 128 x 128
image range is done at a much lesser cost than would be done by a systematic image
scan, as in classic computer vision. With decreasing target contrast, a general decrease
of the accuracy is observed, both at the center and at the periphery, with about 10%
decrease with a contrast of 0.5, and 40% decrease with a contrast of 0.3. In addition,
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Fig 6. Multi-saccades case. (A) Example of a corrective saccade on a 3-saccades
trial. The subjective visual field is reconstructed from the log-polar visual features, with
red square delineated 28 x 28 foveal snippet, after 0, 1, 2 and 3 saccades (from left to
right). (B) Average classification accuracies measured for different target eccentricities
(in pixels) and a different number of saccades. Target contrast set to 0.7. Orange bars:
initial central accuracy (’0 saccade’) in function of the eccentricity, averaged over 1,000
trials per eccentricity. Blue bars: Final classification rate after one, two and three
saccades (from left to right).

44 85 b3 Vs z2 ®7 W1 BE Do
Target eccentricity (pixels)

4 &5 B3 us 22 x1 a1 m6 w0
Target eccentricity (pixels)

the proportion of false detections also increases with contrast decrease. At 40 pixels
away from the center, the false detection rate is approximately 30% for a contrast of 0.7,
50% for a contrast of 0.5 and 70% for a contrast of 0.3 (with a recognition close to the
baseline at the periphery in that case). The accuracy gain (difference between the initial
and the final accuracy) is maximal for eccentricities ranging from 15 to 30 pixels. This
optimal range reflects a peripheral region around the fovea where the target detection is
possible, but not its identification. The visual agent knows where the target is, without
exactly knowing what it is. More generally, this accuracy difference, that quantifies the
benefit of active inference with respect to a central prior, can be interpreted as an
approximation of the information gain provided by the “Where” pathway?.

Closed-loop setup

The most peripheral targets are difficult to detect in one round, resulting in degraded
performances at the periphery. Even when correctly detected, our log polar action maps
also precludes precise centering. The peripheral targets are generally poorly centered
after one saccade, as shown in figure 4, resulting in classification errors. Sequential
search is thus needed to allow for a better recognition. Multi-saccades visual search
results are thus presented in figure 6

An example of a corrective saccade is shown on figure 6A. A hardly visible
peripheral digit target is first approximetely shifted to the foveal zone. A second
saccade allows to improve the target centering. A third saccade only marginally
improves the centering. As shown in figure 6B, such corrective saccades, that generally
only slightly shift the target, still provide a significant improvement in the classification
accuracy. Except at the center, the accuracy rises of about 10% both for the mid-range
and the most peripheral eccentricities. Most of the improvement however is provided by
the first corrective saccade. The second corrective saccade only shows a barely
significant 2-3 % improvement, only visible at the periphery. The following saccades
would mostly implement target tracking, without providing additional accuracy gain. A

Lwith the true label log-posterior seen as a sample of the posterior entropy — see eq.(1).
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3-saccades setup finally allows a wide covering of the visual field, providing a close to
central recognition rate at all eccentricities. The residual peripheral error may
correspond to “opposite side” target misses cases (figure 4C), when the target is shifted
away from the visual field horizon, and the agent can not recover from its initial error.

Concurrent action selection

Finally, when both pathways are assumed working in parallel, each one may be used
concurrently to choose the most appropriate action. Two concurrent accuracies are
indeed predicted through separate processing pathways, namely the central pixels
recognition accuracy through the “What” pathway, and the log-polar accuracy map
through the “Where” pathway. The central accuracy may thus be compared with the
maximal accuracy as predicted by the “Where” pathway.

From the information theory standpoint, each saccade comes with fresh visual
information about the visual scene that can be quantified by an information gain,
namely:

IGmax = mz}xlogp(y|u/, x',x,u) - logp(y|fv7u)
~ maxlog p(yz') — log p(y|x) (1)

with the left term representing the future accuracy (after the saccade is realized) and
the right term representing the current accuracy as it is obtained from the 'what’
pathway. The accuracy gain may be averaged over many saccades and many initial
eccentricities (so that the information gain may be close to zero when the initial u is
very central). For the saccade is subject to predictions errors and execution noise, the
actual v’ may be different from the initial prediction. The final accuracy, as instantiated
in the accuracy map, contains this intrinsic imprecision, and is thus necessary lower
than the optimal one. The consequence is that in some cases, the approximate
information gain may become negative, when the future accuracy is actually lower than
the current one. This is for instance the case when the target is centered on the fovea.

In our simulation results, the central accuracy is found to overtake the maximal
peripheral accuracy when the target is close to the center of gaze. When closely
inspecting the 1-10 pixels eccentricity range (not shown), a decision frontier between a
positive and a negative information gain is found to lie at 2-3 pixels away from the
center. Inside that range, no additional saccade is expected to be produced, and a
categorical response should be given instead. While this frontier is not attained,
micro-saccades may be pursued in the close vicinity of the target in search of a perfect
centering. In the opposite case, when the central accuracy estimate is very poor, the
comparison can still be considered helpful, for it may allow to “explain away” the
current center of gaze and its neighborhood, encouraging to actuate long-range saccades
toward less salient peripheral positions, making it easier to escape from initial
prediction errors. This should encourage the agent to select a saccade “away” from the
central position, which is reminiscent of a well-known phenomenon in vision known as
the “inhibition of return” [7]. Combining accuracy predictions from each pathway may
thus allow to refine saccades selection in a way that complies with biological vision. In
particular, we predict that such a mechanism is dependent on the class of inputs, and
would be different for searching for faces as compared to digits.

Quantitative role of parameters

In addition, we controlled that these results are robust to changes in an individual
experimental or network parameters from the default parameters (see Figure 7). From
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Fig 7. Quantitative role of parameters: We show here variations of the average
accuracy as a function of some free parameters of the model. All parameters of the
presented model were tested, from the architecture of image generation, to the
parameters of the neural network implementing the “Where” pathway (including
meta-parameters of the learning paradigm). We show here the results which show the
most significative impact on average accuracy. (A) First, we tested some properties of
the input, respectively from left to right: noise level (noise), mean spatial frequency of
clutter sf_0 and bandwidth B_sf of the clutter noise. This shows that average accuracy
evolves with noise (see also Figure 5 for an evolution as a function of eccentricity), but
also to the characteristics of the noise clutter. In particular, there is a drop in accuracy
whenever noise is of similar wavelength as digits, but which becomes less pronounced as
the bandwidth increases. (B) The accuracy also changes with the architecture of the
foveated input as shown here by changing the number N_azimuth of azimuth directions
which are sampled in visual space. This shows a compromise between a rough azimuth
representation and a large precision, which necessitates a longer training phase, such
that the optimal number is around 20 azimuth directions. (C) Finally, we scanned
parameters of the Deep Learning neural network. It shows that accuracy quickly
converged after a characteristic time of approximately 25 epochs. We then tested
different values for the dimension of respectively the first (dim1) and second (dim2)
hidden layers, showing weak changes in accuracy.

the scan of each of these parameters, the following observations were remarkable. First
we verified that accuracy decreased when noise increased and while the bandwidth of
the noise imported weakly, the spatial frequency of the noise was an important factor.
In particular, final accuracy was worst for sf_0 ~ 0.07, that is when the characteristic
textures elements were close to the characteristic size of the objects. Second, we saw
that the dimension of the “Where” network was optimal for a dimensionality similar to
that of the input but that this mattered weakly. The dimensionality of the log-polar
map is more important. The analysis proved that an optimal accuracy was achieved
when using a number of 24 azimuthal directions. Indeed, a finer log-polar grid requires
more epochs to converge and may result in an over-fitting phenomenon hindering the
final accuracy. Such fine tuning of parameters may prove to be important in practical
applications and to optimize the compromise between accuracy and compression.
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Relation with other models

Our model is, to our best knowledge, the first case of a bio-realistic log-polar
implementations of an active vision framework. We have thus provided a proof of
concept that a log-polar encoding retina can efficiently serve object detection and
identification over wide visual displays.

There are however lots of model that reflect to some degree the biological principles
of sequential visual processing. First, active vision is of course an important topic in
mainstream computer vision. In the case of image classification, it is considered as a
way to improve object recognition by progressively increasing the definition over
identified regions of interest, referred as “recurrent attention” [14,15]. Standing on a
similar mathematical background, recurrent attention is however at odd with the
functioning of biological systems, with a mere distant analogy with the retinal principles
of foveal-surround visual definition.

Phenomenological bio-realistic models, such as the one proposed in Najemnik and
Geisler’s seminal paper [17], rely on a rough simplification, with foveal center-surround
acuity modeled as a response curve. Despite providing a bio-realistic account of
sequential visual search, the model owns no foveal image processing implementation.
Stemming on Najemnik and Geisler’s principles, a trainable center-surround processing
system was proposed in [10], with a sequential scan of an image in a face-detection task,
however the visual search task here relies on a systematic scan over degraded image,
with visual processing delegated to standard feature detectors.

Denil at al’s paper [16] is probably the one that shows the closest correspondence
with our setup. It owns an identity pathway and a control pathway, in a What/Where
fashion, just as ours. Interestingly, only the “what” pathway is neurally implemented
using a random foveal /multi-fixation scan within the fixation zone. The “Where”
pathway, in contrast, mainly implements object tracking, using particle filtering with a
separately learned generative process. The direction of gaze is here chosen so as to
minimize the target position, speed and scale uncertainty, using the variance of the
future beliefs as an uncertainty metric. The control part is thus much similar to a
dynamic ROI tracking algorithm, with no direct correspondence with foveal visual
search, or with the capability to recognize the target.

Discussion

In summary, we have proposed a visuo-motor action-selection model that implements a
focal accuracy-seeking policy across the image. Our main modeling assumption here is
an accuracy-driven monitoring of action, stating in short that the ventral classification
accuracy drives the dorsal selection on an accuracy map. The predicted accuracy map
has, in our case, the role of a value-based action selection map, as it is the case in
model-free reinforcement learning. However, it also owns a probabilistic interpretation
that may be combined with concurrent accuracy predictions (such as the one done
through the “What” pathway) to bring out more elaborate decision making which are
relevant for visual search, such as the inhibition of return [7]. This combination of a
scalar drive with action selection is reminiscent of the actor/critic principle proposed for
long time in the reinforcement learning community [30]. In biology, the ventral and the
dorsolateral division of the striatum have been suggested to implement such an
actor-critic separation [31,32]. Consistently with those findings, our central accuracy
drive and peripheral action selection map can respectively be considered as the “critic’
and the “actor” of an accuracy-driven action selection scheme, with foveal
identification/desambiguation taken as a “visual reward”.

Moreover, one crucial aspect of vision highlighted by our model is the importance of
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centering objects in recognition. Despite the robust translation invariance observed on
the “What” pathway, there is small radius of 2-3 pixels around the target’s center that
needs to be respected to maximize the classification accuracy. This relates to the idea of
finding an absolute referential for an object, for which the recognition is easier. If the
center of fixation is fixed, the log-polar encoding of an object has the notable properties
to map object rotations and scalings toward translations in the radial and angular
directions of the visual domain [13]. The translation invariance found in convolutional
processing may thus be extended to both rotation and scale invariance in the log-polar
domain. Incorporating this scale and rotation invariance may thus extend the
generalization capabilities of the model.

Despite its simplicity, the generative model used to generate our visual display
allowed to assess the effectiveness and robustness of our learning scheme, that should be
extended to more complex displays and more realistic closed-loop setups. On the one
side, the restricted 28x28 input used for the foveal processing is a mere placeholder,
that should be replaced by more elaborate image processing frameworks, such as
Inception [33] or VGG-19 [34], that can handle natural image classification. The main
advantage of our peripheral image processing is its energy-efficiency. Our full log-polar
processing pathway consistently conserves the high compression rate performed by
retina and V1 encoding up to the action selection level. The organization of both the
visual filters and the action maps in concentric log-polar elements, with radially
exponentially growing spatial covering, can thus serve as a baseline for a future
sub-linear (logarithmic) visual search in computer vision. This may allow to detect an
object in large visual environments at little cost, which should be particularly beneficial

when the computing resources are under constraint, such as for drones or mobile robots.

Finally, our model relies on a strong idealization, assuming the presence of a unique
target. The presence of many targets in a scene should be addressed, which amounts to
sequentially select targets, in combination with implementing an inhibition of return
mechanism. This would generate more realistic visual scan-paths over images. Actual
visual scan path over images could also be used to provide priors over action selection
maps that should improve realism. Identified regions of interest may then be compared
with the baseline bottom-up approaches, such as the low-level feature-based saliency
maps [7]. Maximizing the Information Gain over multiple targets needs to be envisioned
with a more refined probabilistic framework, including mutual exclusion over overt and
covert targets. How the brain may combine and integrate these various probabilities is
still an open question, that amounts to the fundamental binding problem.
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