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Instabilities and Spatiotemporal Dynamics of Active Elastic Filaments

Yaouen Fily“#, Priya Subramanian®*, Tobias M. Schneider®, Raghunath Chelakkot?, Arvind Gopinath®*

Biological filaments driven by molecular motors tend to experience tangential propulsive forces also known as active follower forces.
When such a filament encounters an obstacle, it deforms, which reorients its follower forces and alters its entire motion. If the filament
pushes a cargo, the friction on the cargo can be enough to deform the filament, thus affecting the transport properties of the cargo.
Motivated by cytoskeletal filament motility assays, we study the dynamic buckling instabilities of a two-dimensional slender elastic
filament driven through a dissipative medium by tangential propulsive forces in the presence of obstacles or cargo. We observe two
distinct instabilities. When the filament’s head is pinned or experiences significant translational but little rotational drag from its cargo,
it buckles into a steadily rotating coiled state. When it is clamped or experiences both significant translational and rotational drag from
its cargo, it buckles into a periodically beating, overall translating state. Using minimal analytically tractable models, linear stability
theory, and fully non-linear computations, we study the onset of each buckling instability, characterize each buckled state, and map out
the phase diagram of the system. Finally, we use particle-based Brownian dynamics simulations to show our main results are robust
to moderate noise and steric repulsion. Overall, our results provide a unified framework to understand the dynamics of tangentially

propelled filaments and filament-cargo assemblies.

Keywords: Active filament, Buckling, Follower forces, Oscillations

1 Introduction

Actin filaments and microtubules are some of the fundamental
building blocks of biological systems. The mechanical properties
of biological objects often come down to the way those elastic
filaments move and bend under external loads or internal molec-
ular motor forces, Examples include the buckling of cytoskele-
tal filaments by molecular motors®?, the sliding deformations
of microtubule doublets induced by ATPase dynein in eukaryotic
10°12]" and the looping of DNA that is crucial to the normal
functioning of the cell. In the synthetic realm, filaments made
of connected magnetically responsive colloids driven by external
fields13+18 or of tailored connected Janus particles’4 may also
bend or buckle as they move.

From a theoretical perspective, the elastic properties of a thin
composite filament can be captured by an elastic line model
whose only free parameter is the filament’s bending rigidity. In
contrast, modeling the deforming forces requires knowledge of
their direction and spatiotemporal variations. In this paper, we
focus on the case of follower forces, i.e., forces that always act
along the filament’s tangent. One possible realization of this prob-
lem is a chain of self-propelled Janus colloids bonding to each
other along the same direction in which they self-propel. The best
studied example of follower forces at the micro-scale, however, is
gliding motility assays, wherein cytoskeletal filaments (actin fila-
ments or microtubules) glide over a surface under the propelling
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action of molecular motors (dynein, kinesin, or myosin) grafted
onto the surfacelZ*23 The interaction between motors and fila-
ments naturally generates tangential forces distributed along the
filament with a consistent direction (always towards the same end
of the filament). In the absence of obstacles or other restrictions
to its motion, such a filament moves in a straight line as if on a
molecular-motor powered conveyor belt. This motion, however,
is easily disrupted, e.g., by optical trapping, or by surface defects.
The motor forces then become compressive and can buckle the
filament (see figure[I). Experiments reveal the resulting buckled
shape is determined by the strength and type of surface defect
or pinning222, Buckling instabilities have also been observed in
simulations of a variety of models of pinned or clamped motility
assays filaments#224727 Recent Brownian dynamics simulations
also found buckling instabilities in follower-force propelled fila-
ments pushing a cargo/2®,

Outside of biology, the follower-force induced buckling prob-
lem has received significant attention from the engineering com-
munity, albeit in situations where inertia plays a role, e.g., water
bearing flexible pipes or propelled structures like rockets2239,
Theoretical studies from this body of literature emphasize that
tangential forces, being non-conservative, do not lend themselves
to the usual energy minimization approaches to buckling4?. In
order to analyze the stability of the filament, one must study the
full dynamical response.

Here, we show that the overdamped version of the follower-
force induced buckling problem, exemplified by gliding motility
assays, can be similarly analyzed by studying the time-dependent
response of the filament to deformations. Combining concepts
from classical Euler beam theory, viscous resistive force theory
and a coarse-grained description of the motor generated follower
forces, we propose a two-dimensional continuum model that gov-
erns the shape of actively deformed filaments. This in turn pro-
vides us with a unified framework to understand the planar buck-
ling instabilities of biological filaments under follower load and
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Fig. 1 Fluorescence enhanced two dimensional gliding motility assay
images showing a microtubule, propelled by kinesin-1 motors, buckling
upon encountering a surface defect or other pinning site741. The pin-
ning site’s location, indicated by the white arrow in each tile, is fixed,
however the field of view changes to follow the filament. (Tile 1) The front
of the filament has hit the defect and started to buckle into a near-circular
shape. (Tile 2) The pinned, buckled, front end of the filament rotates
around the defect. (Tile 3) The front of the filament escapes the defect
and resumes straight motion. A region of high curvature persists near
the defect as the filament slides through it, suggesting the defect still acts
on the filament. At the defect the filament breaks the two-dimensional
confinement to slide over itself. (Tile 4) The filament continues its motion
through and away from the defect.

the role of boundary conditions in selecting which instability de-
velops.

The paper is organized as follows. In section [2| we discuss
the model and the approximations that lead to it in the context
of motility assays. In section [3| we look at the buckling of fila-
ments whose head is held fixed, either pinned (free to rotate) or
clamped (unable to rotate). We identify equilibrium base states,
the critical points at which they become unstable, and track the
non-linear non-equilibrium states that bifurcate therein. We ob-
serve that initially straight pinned filaments buckle into a steadily
rotating coiled state whereas clamped filaments buckle into a pe-
riodic beating state wherein deformation waves travel through
the filament. We further identify a simpler model with the same
stability phenomenology but whose linear stability is analytically
tractable, thus providing additional insight into the full model’s
paths to instability. Section |4| extends our linear and non-linear
analysis to filament-cargo assemblies. We find that filament-cargo
behaviors can be largely understood in terms of the pinned and
clamped cases above, with the cargo playing a role similar to ei-
ther a partial pinning or a partial clamping site depending on
its translational and rotational drag coefficients. In section [5] we
show that the results of our stability analysis and noiseless non-
linear simulations compare well with Brownian dynamics simu-
lations of noisy animated filaments. Finally in section [6]| we dis-
cuss our results’ place amongst the recent literature on biologi-
cally motivated follower-force buckling problems.

2 Continuum model for filament dynamics

2.1 Geometry, forces and torques

Gliding assays typically feature polar filaments moving in a thin
fluid film over a flat surface. Thus we restrict ourselves to planar
configurations and model overdamped filaments moving in the xy

2| 1414

(b)

Tail o—5=10 T(s+ ds)t(s+ds)

(a)
€y
| t(s)
€,

n(s) ‘3_9(5)

N(s+ds)n(s +ds) M (s + ds)

Head

Fig. 2 Definition sketches used in the model for the deforming filament.
(a) The active force density —ft(s) acts anti-parallel to the local tangent
vector t(s) with s, the arc-length, measured from the head. The slen-
der filament is free at s = ¢ while the end s = 0 is constrained in some
manner. The filament moves in the two dimensional plane spanned by
the tangent and the normal coinciding with the x —y plane. (b) Sketch
of the forces and torques acting on a small differential element ds of the
filament about location s. Shown are the normal N(s,z) and tangential
T (s,r) components of the cross-sectionally averaged force resultant, the
moment (the internal torque), M(s,r), and the externally acting forces with
active (f) and dissipative (f,) components.

plane with cartesian basis (ey,e,) (see Figure . The filament is
treated as a slender column with circular section, length ¢, and
diameter o < ¢. The material comprising the filament is assumed
be a linear elastic material with Young’s modulus E and bending
modulus x ~ Ec*. For high aspect ratio filaments £/c > 1 as is
appropriate in our case, the filament accommodates compressive
forces by bending rather than stretching. We therefore treat the
filament as inextensible. One end of the filament, called its head,
is either pinned, clamped, or rigidly attached to a viscous load.
The other end, called the tail, is free.

The shape and location of the thin filament are described by
the parametrization r(s,¢) of its center-line where 0 < s < ¢ is the
arclength along the filament. Since the filament only moves in
two dimensions, its shape is fully determined by the angle 6(s,?)
between the positive x axis and the filament’s tangent vector at s.
The unit tangent and normal vectors at point r(s,z) are then given
by t =cos6 e, +sinf e, and n = —sin 6 e, +cos 0 e, respectively.

Force and torque balances demand that internal force and
torque densities due to the bending of the filament balance ex-
ternal force densities as illustrated in Figure b). In addition
to internal forces and torques, each material point along the fil-
ament experiences two external forces: the active motor force,
and the dissipative viscous force, both of which can be treated as
externally applied force densities.

The active forces are created by regularly spaced molecular mo-
tors grafted onto the surface beneath the filament with areal den-
sity pn. The filament only interacts with motors located within a
short distance §,, of its center-line. Those motors spend a fraction
r of their time attached to the filament, during which they exert a
tangential force with magnitude F},. Unattached or out-of-range
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motors exert no force. At high motor densities p,, and duty ra-
tios r, the mean effective force per motor is nearly independent
of the motor density®. Assuming further that attached motors
are synchronized, and ignoring variations in the magnitude and
direction of the motor generated forces#2, the effective net force
density acting on the filament is —ft with constant magnitude
S~ Fnpm O

Passive dissipation comes from the filament’s interaction with
the surrounding fluid film. It is a very low Reynolds number
environment, meaning inertial effects are negligible. The solid
surface beneath the fluid film acts as a momentum sink that
screens hydrodynamic interactions, thus we also neglect nonlo-
cal hydrodynamic effects, only keeping local hydrodynamic drag.
Let éHP and & Jp_ be the corresponding viscous resistances per unit
length in the tangential and normal directions, respectively. In
a 3D Newtonian fluid of viscosity u, local resistivity theory pre-
dicts &7 ~ 4un/(In(¢/c)+1/2) and &7 ~ Zélf. The relationship
13 f = 2§Hp remains true in two dimensional settings with filament
deformations confined to a planel, In structured media such as
gels, on the other hand, the ratio between the two coefficients
may be different8l,

In addition to this passive hydrodynamic force, dissipative ef-
fects also arise from active motor kinetics especially at high duty
ratio due to the energy dissipated as attached motors detach. In-
ternal motor friction may also be induced as attached motors are
swept by the filament resulting in dissipative forces acting at ev-
ery location on the filament. We incorporate these motor-induced
resistances using the tangential and normal active resistances per
unit length 5““ and &{. Combining the active and passive contri-
butions, the total drag force density is f, = —§;(f- )t — &, (f-n)n
where & = é"" +¢fand &, = &V 4-£4 are the effective tangential
and normal resistances per unit length.

A range of possible viscous effects may be investigated conve-
niently by treating the viscosity contrast y=&, / éH as an indepen-
dent parameter. When motor friction is small such that friction
is entirely due to the surrounding Newtonian fluid, then y ~ 2. If
the surrounding fluid instead resembles a freely draining polymer
solution (e.g., for very dilute assays), y = 1. For a gel-like mate-
rial, Y>> 1. When motor friction is significant, such as for densely
packed motors with high duty-ratio, § > &, thus y < 1.

The equations governing the spatiotemporal dynamics of the
filament illustrated in Figures 2(a-b) can be derived by invoking
force and torque balances (ESM §I). We work in a dimensionless
setting by scaling all forces by x/¢2, lengths by £, and times by
A Y6 /. The cross-sectionally averaged internal force resultant F
evaluated at r(s,) can be decomposed into its tangential 7 and
normal N components, F = Tt+ Nn. Using this decomposition,
we first combine force and torque balances at a representative
material point with constraint equations that relate the shape of
the filament to the velocity of its centerline, then use the Frenet-
Serret relationships to eliminate the state variable N in favor of
the shape variable 6 to obtain the two dimensionless coupled par-

tial differential equations
O — TN+(9//6/)/7/)1/9/ (79”/+T6/) (1)

0 = 79””+(T0/)/79.+79/(T/+9”9/7[3) )
where we have denoted dr/dr by i and derivatives with respect
to arc-length s by primes. Equations and feature two di-
mensionless parameters:

Yy==—and f=—. 3

We have already discussed the viscosity contrast y. The activity
parameter 3 captures the relative importance of the active force,
which causes buckling, to the filament stiffness, which curbs it.
One may also write § = (¢/1)> where A = (K‘/f)% is the length
over which compression is accommodated. Thus 8 > 1 corre-
sponds to a very active, very soft, or very long (¢ > 1) filament,
whereas 3 < 1 corresponds to a very weakly active, very stiff, or
very short (¢ < A) filament.

The range of B values accessible to motility assay experiments
is remarkably large. The lower bound is zero, obtained by de-
creasing the motor density or the ATP concentration to zero.
The upper bound can be estimated from the values of F,,, pu,
Om, 1, K, and ¢ found in the experimental literature. For mi-
crotubules driven by kinesin, Bourdieu et al.?? report &, ~ 20
nm, p, ~ 2000 —5000 um=2, r~ 1, F, ~2—5 pN, and a per-
sistence length ¢, ~ Smm at room temperature. Thus f may
be as large as ~ 5 x 107* Nm~!, and x ~ 2 x 1072> N.m? (con-
sistent with?). Average microtubule lengths of 5— 10 um seem
common"217 which yields the upper bound B ~ 3 % 10%. On
the other hand, microtubules can have a broad distribution of
lengths with small amounts of longer filaments, up to at least
30 um"Z mixed with shorter ones. Since B is proportional to
£3, this yields a significantly higher upper bound Buax ~ 7 x 10°.
For actin driven by myosin, Bourdieu et al. %% report r&,, ~1—1.5
nm, py, ~ 100 — 1000 umfz, and F,, ~ 0.5—0.7 pN, which gives
f~107% Nm~!, as well as ¢, = 16 um at room temperature,
which gives k ~ 6 x 1072 Nm2. Average filament lengths of
¢ ~1—2 um seem typical#344 which yields Bnax ~ 10%. As with
microtubules, the length distribution can be broad with some val-
ues up to at least 4 um*344, which yields Bpax ~ 10°.

Accordingly, our simulations explore 0 < 8 < 10°, and it should
be noted that some features, most notably self-overlapping fila-
ments, are unique to the upper part of this range (8 ~ 10* —10°).

2.2 Boundary conditions

The evolution of the filament’s shape and position is completely
specified by solving (I)-(2) subject to boundary conditions. The
tail is free, i.e., at s = ¢ the filament is fully unconstrained. The
torque and force free conditions thus read

0'(1,1)=0"(1,1)=T(1,t) =0. 4

At the head, s = 0, we consider three cases: (i) a pinned filament
(unable to translate but free to rotate), (ii) a clamped filament
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(unable to translate or rotate), and (iii) a point viscous drag force
and torque on the filament’s head corresponding to a rigidly at-
tached cargo. We first consider case (iii), then discuss cases (i)
and (ii) as limit cases of (iii).

The external force Fex: and the external torque Tex exerted at
the filament’s head (s = 0) by a rigidly attached viscous cargo de-
pend linearly on the cargo’s translational and angular velocities,
which in turn depend on the translational and angular velocities
of the filament’s head. In the most general case, both Feyxs and
Text depend anisotropically on both r(0,¢) and (0,7). Here, we
consider the simpler case of a point viscous load:

Fext = *é%lf, Text = *ég(t xt), (5)

where EH and EH are two scalars representing the head’s effective
translational and rotational drag coefficients. Aside from &X' and
&Y, equation does not explicitly involve the geometry of the
cargo. Thus by allowing & and &M to vary independently we
can in principle model a variety of head sizes, head shapes, and
friction mechanisms. Even though equation only samples a
limited subset of all possible cargo and attachment geometries,
we show in section [4] that it is sufficient to reproduce many of
the cargo-filament behaviors seen in previous experiments and
simulations.

To obtain (5] in terms of T and 8, we first write t = §n and

k08" — f+ Tt (—x0"+0'T
L (k88" +T)E LI
4l &L
then eliminate the normal force N in favor of 6. After simplifying
and nondimensionalizing (see ESM §II) we obtain

9/(071‘) = cRé(Ozt)7 @]

£6"(0,1) - 08" (0,1) £ T(0,6)6'(0,1), ®

YT'(0,)=T(0,1) = ¥5(B-0'(0,)6"(0,1). (9

In addition to the dimensionless parameters y and 8 introduced
in the bulk equations (I)-(2), the boundary equations (7)-(9)
feature two new dimensionless parameters: the scaled rotational
head drag (g = (£ /&, (%) and the scaled translational head drag
§ = (&H /&, ). Thus the spatiotemporal evolution of the actively
buckling filament is controlled by a total of four dimensionless
parameters.

Setting { = o in equations (7)-(9) corresponds to holding the
filament’s head fixed. ({,{r) = (e=,0) corresponds to a pinned
head (no translation, free rotation), while (&, {r) = (c0,0) corre-
sponds to a clamped head (no translation, no rotation). Thus the
head boundary conditions simplify to

T'(0,1)—B =0 (10)

0" (0,1) = 6'(0,) =0 (11)

4] 1414

for a pinned head and
T'(0,1) — B+ 6(0,1)0"(0,1) =0 (12)
0" (0,t) —T(0,)0’(0,t) = 6(0,1) =0 (13)

for a clamped head, where without loss of generality we have
assumed horizontal clamping (t(0) = e,).

3 Constrained filaments

Let us first consider constrained filaments (free tail, pinned or
clamped head). Similar to classical buckling, we expect the
straight configuration to remain stable for small force densities
(small B8), then turn unstable to lateral perturbations at some crit-
ical value of 8. Our base state is a straight horizontal filament:
0(s) = 0= 6y. From ()-() it follows that T(s) = B(s— 1) = Ty(s),
i.e., the filament is pre-stressed linearly with maximum compres-
sion at s = 0.

We start with a numerical study of the linear stability of the
straight configuration, which predicts the onset of buckling (sec-
tion [3:1). We follow with an analytical study of the linear sta-
bility of a simpler problem with the same stability phenomenol-
ogy (section [3:2). We then study the numerical solutions of the
full nonlinear equations (section and relate our problem to
other follower-force buckling problems from the literature (sec-

tion [3.4)).

3.1 Linear stability

To ascertain any critical points at which the straight pre-stressed
filament becomes unstable and to identify the nature of the insta-
bility, we write T = Ty(s) + €T (s,¢) and 6 = 6y + e’ O(s) where
€ < 1 is a formal small parameter characterizing the amplitude
of the solutions. To first order in €, the equation for ® decouples
from the equation for 7;:

00 +0" 4+ B((1—5)0) =0. (14)

The linearized boundary conditions are given by equation
(free tail) and either equation (pinned head) or

0" (0,t) +56'(0,t) =6(0,t) =0 (15)

(clamped head). Together, equation and the boundary con-
ditions form an eigenvalue problem. Non-trivial solutions only
exist for specific values of the complex eigenvalue ®. The stabil-
ity of the solution is controlled by the sign of the real part of :
stable if it is negative, unstable if it is positive. A nonzero imag-
inary part indicates an oscillatory solution which may decay or
grow depending on the sign of the real part. The shape of the
unstable mode is given by the corresponding eigenvector.

We calculate the eigenvalues by discretizing equation and
its boundary conditions using a second-order-accurate finite dif-
ference method (see ESM §III.A), then track their behavior as a
function of the activity parameter . Note that they do not de-
pend on ¥ at all. The first eigenvalue whose real part goes pos-
itive signals the onset of instability — a bifurcation point. The
manner in which the positive real part arises determines the type
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Fig. 3 Linear stability of a pinned filament (blue) and a clamped filament (green) as a function of the dimensionless activity 8. (a) Real part of the
most unstable eigenvalue(s). (b) Imaginary part of the most unstable eigenvalue(s). In the pinned case, we discard the zero eigenvalue corresponding
to a straight filament. At B = Bqy ~ 30.6, the most unstable eigenvalue acquires a positive real part while maintaining a zero imaginary part, signaling
a divergence bifurcation. In the clamped case, the two most unstable eigenvalues start real, distinct, and negative (B < By ~ 30.6, overdamped
relaxation), then merge their (still negative) real parts and acquire opposite imaginary parts (B;, < B < B, =~ 76.2, damped oscillations), until their real
part eventually becomes positive (8 > B, unstable oscillations). (c) In the clamped case, the imaginary part scales like (8 — Bg,)'/? near the flutter
point consistent with flutter theory#2. The scaling remains fairly accurate all the way to the Hopf bifuraction point (red dot).

of bifurcation.
3.1.1 Pinned filament: Instability to rotational states

In the pinned-free case, the linear stability problem exhibits a
unique degeneracy: ® = O # 0 is always an eigenvector with
eigenvalue @ = 0. This Goldstone mode corresponds to a freely
rotating straight filament and exists due to the invariance of the
elastic energy under rotation about the pinning point.

The blue curves in figures [3[(a-b) show the real and imaginary
parts of the eigenvalue with the largest real part besides the Gold-
stone mode. The straight filament configuration is stable up to
Bap = 30.6, after what it turns unstable as the real part of the
eigenvalue becomes positive. The imaginary part remains zero
throughout, indicating a divergence bifurcation (DB). At the crit-
ical point, both the real and imaginary parts of the growth rate
are zero: Re(w) =0 and Im(w) = 0. As one moves away from
the critical point Re(®) ~ 8 — Bgp. Although the eventual shape of
the buckled filament is controlled by the nonlinear terms we ne-
glected in this analysis, the zero imaginary part and the presence
of the Goldstone mode suggest the filament eventually settles into
a steady buckled shape steadily rotating around the pinning point.

3.1.2 Clamped filament: Instability to oscillatory states

Clamped-free filaments experience a different type of instabil-
ity known as a Hopf-Poincaré bifurcation (HB) wherein a pair
of complex conjugate eigenvalues crosses the imaginary axis
(Re(w) = 0) together. The real and imaginary parts of those two
eigenvalues are shown in green in Figures[3|(a-b). The instability
occurs at f, & 76.2, about two and a half times the load it takes
to buckle the pinned filament.

Figures [B|(a-b) also show that the pair of complex conjugate
eigenvalues that go unstable at fB,;, start off as two distinct, real
eigenvalues at small . They only become a complex conjugate
pair upon colliding with each other at the flutter point S, ~ 40.1.
Although this happens in the stable regime (Re(®) < 0), it sig-

nals a change in the filament’s response to fluctuations. Between
B =0 and B = B, every eigenvalue is real, thus fluctuations re-
lax without oscillating. Between 8 = B, and B = By, the slow-
est relaxation mode (the one whose eigenvalue has the largest
real part) exhibits damped oscillations. Finally when 8 > By, the
oscillations become unstable leading to full-blown nonlinear os-
cillations. This eigenvalue behavior (collision of real eigenval-
ues turning into a complex conjugate pair) implies the scaling
Im(w) ~ /B — By near the flutter point f,42. As seen in Fig-
ure [3|(c), here this scaling persists until the onset of instability at
Bry and sets the frequency at the onset of the actual instability:

Im[®(Bnb)] ~ v/ Brb — Brp-

3.2 Minimal models for constrained filaments

Let us now study the linear stability of a simpler problem whose
analytical tractability provides a different kind of insight into the
nature of the buckling transitions: an elastic filament loaded by
a point compressive follower force at the tail. We set f =0 in
equations and and add a tangential compressive force
P = —f(t({,t) to the boundary condition at s = ¢, i.e., we set
(in scaled coordinates) 7T'(1,7) = B. The boundary conditions at
s = 0 remain the same. The crucial change as far as analytical
tractabilty is that 7 no longer depends on s in the base state. We
further eliminate the angle v in favor of the lateral displacement
H(s) = J§ds'siny(s") = [y ds'y(s'). The base state is now given by
H =0 and the linearized equation of motion reads

H+H////+ﬁHII — 0 (16)

We seek solutions to of the form H = exp(wr) H(s) and
write (without loss of generality) the growth rate as

ﬁ2

®=7

(Z+i7), an
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Fig. 4 Features of the fully non-linear, steady state solutions for y = 2. (a,b) Typical filament shapes for (a) a pinned filament and (b) a clamped filament
for activity parameters B varying from close to the critical value to values at which self-crossing occurs. In the pinned case, the steady-state behavior
is solid body rotation with constant-sign curvature. At very large 8 the filament rolls into a self-overlapping coil. In the clamped case, the steady-state
behavior is periodic beating. Each color (red, orange, yellow) is a different configuration (shape) comprising the beating pattern. Again, increasing
the driving force eventually leads to self-crossing. (c) Mean bending energy as a function of 3. (d) Rotation (pinned case) or beating (clamped case)

frequency as a function of S.

where i = v/—1. The general solution has the form
H(s) = aj cosh(A;5) +ay sinh(Ays) +az cos(Aps) +ay sin(Ays) (18)

where

z,zzg(_um):zg_ﬁ,

The unknown coefficients in and the values of A; and 1, in
and are all functions of 3.
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3.2.1 Pinned filament

In the pinned case the boundary conditions are H(0) = H"(0) =
H"(1) = H"(1) = 0. Imposing boundary conditions at s = 0 on
equations and yields a; +a3 = 0 and a; A} —a3A3 =0.
This implies that a; = a3 = 0 since in general A + A7 is non-zero.
The general form of the solution then reduces to

H(s) = ap sinh(A;5) +ay sin(Ays) +Cs (20)

The mode linear in s is the Goldstone mode corresponding to a
straight rotating filament. It satisfies all the boundary conditions
independently.

The solvability condition to keep a, and a4 nontrivial is ob-
tained by applying the boundary conditions at s = 1:

)y] coth /11 = ).2 COt)Lz. 21D

Near a DB point, the growth rate can be estimated by assuming
Imag(®) =0 and Real(®) — 0, or in this case .# =0 and Z < B%/4.
Using A} = B(—1+vV1—Z) /2 and A} =B (1+V1—Z) /2, we

obtain
VB cot/B~1—-0(%).

At # = 0, equation admits the physical root 8 ~20.19. This
is the critical value of B at which the straight pinned filament
becomes unstable.

6] 114

(22)

3.2.2 Clamped filament

The clamped case was previously studied by De Canio et al.%2. Us-
ing a method similar to that of section they showed that the
most unstable eigenvalue exhibits the same qualitative behavior
seen in the green curves of Figure [3((a-b). They also derived an
equation, similar to equation [22), from which the flutter point
and Hopf bifurcation can be obtained without constructing the
o(P) curves. For the sake of completeness we now rederive this
equation in our notations.

The boundary conditions for the clamped case are H(0) =
H'(0)=H"(1) = H" (1) = 0. The general solution has the form

sinh(4;5)  sin(4zs)
M A '

A(s)
ai

= cosh(A;s) —cos(Ays) + a—zll (
ai
(23)
Imposition of boundary conditions at s = 1 yields two equations
for the two unknowns a; and a,:

ai (112 cosh\; +222 cosAy) +ap A1 (A sinhAd; +A; sindy) =0, (24)
ai(A{ sinhA; — A3 sindy) +apd; (A2 coshdy + A7 cosdy) = 0. (25)

After a bit of algebra, the solvability condition to keep a; and
ap nontrivial can be written as a single complex equation for the
three real unknowns 8, %, .#:

(Z+17)(1 +coshAicosAy) —iVZ +17 sinhAysindy =2, (26)

To obtain the flutter point, we set .# = 107° (or any value small
enough to ensure we are right above the flutter point) and solve
for # and B numerically. For the Hopf bifurcation, we set Z =0
and solve for .# and B numerically. We obtain f, = 20.05 and
By, = 37.70, both consistent with22,

3.3 Non-linear solutions and scaling analysis

In the unstable regime, the straight filament yields to buckled so-
lutions whose amplitude is determined by non-linear effects. In
order to validate the linear stability analysis and study those non-
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Fig. 5 Features of the fully non-linear, steady-state solutions for a pinned
filament (blue) and a clamped filament (green) for y = 2. (a-b) Mean
bending energy as a function of the active force density 8. The scaling
exponents are slightly smaller than the predicted 2/3. (c-d) Curvature
0’ as a function of the arclength s along the filament for the largest force
density we simulated (8 = 10°). In the clamped case we show 20 different
times during the beating pattern to visualize the envelope of the traveling
curvature wave. In both cases boundary effects are still significant, which
may explain the discrepancy with the predicted scaling exponents in (a-
b). (e-f) Rotation (pinned case) and beating (clamped case) frequency
as a function of . In both cases the predicted 4/3 scaling exponent is
accurate.

linear solutions, we integrate equations (I) and (2) numerically
using a semi-implicit finite difference scheme (see ESM §III.B)
until a stable solution arises, whether it is a static shape or a peri-
odically evolving one. The initial condition is a slightly perturbed
straight filament (8 (s) = 1073 sin(27s)) that allows instabilities to
grow despite the absence of noise in the model.

As expected, at low f the initial perturbation relaxes and the
filament remains straight. This straight configuration exhibits
the same instabilities predicted by the linear stability analysis,
at essentially the same force values. The pinned-free filament
buckles into a steadily rotating shape at By, ~ 30.6 (linear
prediction: Bg, ~ 30.6). The clamped-free filament buckles
into a periodic beating pattern at g, ~ 76.3 (linear prediction:
Bab ~ 76.2). Figures [4(a-b) show typical stable filament shapes
from a little above the onset of each instability up to very large
B. In the pinned-free case (figure[4{(a)), the shape is static in the

co-rotating frame, thus a single snapshot suffices. For ease of
comparison every filament is shown with its head pointing to the
left. In the clamped-free case (figure [@|(b)), multiple snapshots
are needed to visualize the beating pattern. At § =75 and 150 we
show three such snapshots. At B = 10° we show a single snapshot
illustrating the filament intersecting itself. In both pinned and
clamped filaments, the shapes show increased curvature as f3
increases, confirmed by the increasing bending energy shown
in Figure c), until the filament eventually overlaps itself
(rightmost shapes in Figures [4(a-b)). Note that this model does
not prevent self-overlap at all. In section [5| we discuss a model
with short-range repulsion that is better suited for systems in
which self-crossing is effectively forbidden.

A number of large-f3 properties can be understood through scal-
ing arguments. Balancing the active force density f and the tan-
gential bending force density k6’6" ~ k6% /A3 in a filament with
typical curvature radius A yields A = (x/f)'/3 =¢/B'/3. This is the
same A we introduced below equation (3] to discuss the meaning
of B. When A is larger than the filament’s length ¢, § is small and
the filament remains straight. When A is sufficiently shorter than
the filament’s length ¢, B is large, the filament buckles, and we
expect its curvature radius to be of order A. We can then use 4
to estimate the bending energy: Ex = & [¢ ds(6')% ~ x£(6/1)%. At
large B we expect 6 ~ 1 thus Ex ~ klA% = (k/0)B%/3.

The scaling exponents we observe in Figure a-b) are a little
smaller than 2/3. Looking at the spatial variations of the curva-
ture along the filament (6’(s), shown in Figure c-d)), it is clear
that even at the largest B we simulated (8 = 103), a good 15%
of the filament experiences significant boundary effects. Thus we
think the exponent discrepancy is due to boundary effects and
expect the 2/3 exponent to be observable at yet higher f3.

To estimate the rotation frequency of pinned filaments at high
B, we start from the coil shape shown in Figure ff(a). Assuming
the coil has radius 1, its linear (tangential) speed is v~ (¢f)/(¢§))
and its angular frequency is @ ~v/A ~ k/(&*) B4/3.

To estimate the beating frequency of clamped filaments, we
note that for the bending energy to come back to the same
value at the end of every beat, the energy E; supplied by the
active force over a full beat must equate the energy Eg dis-
sipated by viscous drag over the same period. The former is
Ef = 02 O gt f(f dsft-r. Assuming the total distance traveled
by a point of the filament over a full beat is of order A, we
can write i ~ oA then Ef ~ (1/@)(¢)(f)(wA) = (x/¢)B>/3. The
latter is Eg = (f”/”dtf(fds(g -¥)-r where § = §tt+ &, (1 —-tt)
is the filament’s drag tensor. Using the same estimates we get
Ez ~ (1/0)()(&)(wA)? = (PEwP~3 where & is a combination
of § and &,. Finally we equate the two energies to get @ ~

K/(54) B3

As shown in Figure [Bj(e-), the rotation frequency of pinned
filaments and the beating frequency of clamped filaments do both
grow like B4/3 as early as 8 ~ 10°.
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3.4 Related constrained follower-force problems

The linear stability problem of section was analyzed by
Sekimoto et al.“* who found By, ~ 30.6 and By, ~ 75.5. The
small discrepancy in S, may be due to a different discretization
method. De Canio et al.?” studied the linear stability and
nonlinear dynamics of the clamped point follower load model of
section [3.2.2] and found the same qualitative behavior we see in
the clamped distributed follower force case. Ling et al. %% studied
the linear stability and nonlinear dynamics of the 3D clamped
case and found two distinct types of beating, a planar one similar
to the one we observe and a helical one, each having its own
instability threshold and a range of B in which it dominates.
Fatehiboroujeni et al.4® studied the double-clamped 3D case,
in which both ends of the filament are clamped and the base
state is pre-buckled. Chellakot et al.2% studied a slightly different
problem with noisy follower forces using a bead-spring model
(discussed further in section [5) and found By, ~ 36 and By, ~ 78
in the weak (but finite) follower force noise regime. Reference2’
also discusses the B*/3 growth of the frequency in both pinned
and clamped filaments, however they find it no longer holds at
very large . We suspect this restriction comes from either the
discrete nature of their bead-spring model, the presence of steric
repulsion, or both.

Most of the literature on buckling under follower forces, how-
ever, comes from engineering=2. In this context, an elastic fila-
ment under compressive follower load is known as a Leipholz col-
umn if the load is distributed along the filament as in section 3.1
or a Beck column if the load is concentrated at one end as in sec-
tion The latter may arise, for example, when a jet engine is
attached at the end of an elastic column. A key difference with
the present paper is that those studies are typically concerned
with moderate or weak damping, whereas we're interested in the
overdamped limit when inertia is negligible.

To better understand the relationship between the two situa-
tions, it is useful to consider the undamped version of our prob-
lem, i.e., replace the anisotropic friction force [§tt+&, (1 —tt)]-
dyr with an inertial term pd?r where p is the mass density per unit
length of the filament. Up to some redefinitions of the dimen-
sionless parameters, this is equivalent to changing  to 6 in equa-
tion (@) and o to w? in equation (I4)4. The free, pinned, and
clamped boundary conditions are unchanged. In other words, the
inertial-case growth rate is the square root of the overdamped-
case growth rate with the same dimensionless parameter values.
The same reasoning applies when the follower load is concen-
trated at the end of the filament.

In the pinned-free case, the eigenvalues before the divergence
bifurcation point (f < Bgp) are all real and negative, therefore
the corresponding inertial growth rates are purely imaginary, cor-
responding to constant-amplitude oscillations of the inertial fila-
ment. At the bifurcation (f = fg,), one eigenvalue turns positive,
thus one of its square roots turns real positive. Therefore, the in-
ertial system goes unstable at the same dimensionless force 8 as
the overdamped one, and the unstable growth rate is real in both
cases.

8 1414

In the clamped free case, the eigenvalues before the flutter
point (B < fp) are all real and negative. This, again, suggests
constant-amplitude oscillations of the inertial filament. At the
flutter point, two eigenvalues acquire opposite nonzero imaginary
parts while their real part remains negative. This results in a pair
of complex conjugate square roots with positive real part. Both
the overdamped and the inertial system experience a transition
at f3,, however the overdamped system merely transitions from
overdamped stability to oscillatory stability, whereas the inertial
system goes unstable altogether. The change of sign of the real
part of this pair of eigenvalues at = B, then has no major sig-
nificance to the inertial system.

In summary, the effect of strong damping depends strongly on
the boundary conditions. For pinned-free filaments the change
is essentially limited to pertubations in the stable region relaxing
rather than oscillating. For clamped-free filaments, on the other
hand, damping impacts both the location and the nature of the
transition.

4 Filaments moving attached cargo

Let us now consider filaments whose head, rather than being held
fixed (pinned or clamped), is attached to a viscous load, for ex-
ample an active filament transporting a cargo. The effect of the
head is captured by the scaled translational and rotational drag
paramaters { and (g from equations (7)-(@). With the activity
parameter 8 and the viscosity contrast v, this makes four dimen-
sionless parameters.

As before, the stable configuration under weak loading (small
B) is straight, however it now translates at constant speed along
its own length:

0(s,t)=0=6y and T(s,) = (%) (s=1)=Ty(s). @27)

Substituting in (6) yields the velocity of the head, which is
also that of the entire filament:

uw_ S (1
Weg (1+Y§)t(0). (28)

Equations ([27)-(28) define the base state whose instabilities we
now study.

4.1 Methods

Following section [3} we study both the linear stability of the base
state and the long-time solutions of the full nonlinear equations.

To analyze the linear stability of the base state, we write
0(s,1) = 6y + €0(s,t) with € <« 1, substitute equations (27)-(28)
into equations (I)-(2) and (7)-(), and expand to O(¢) to get

0+0" =8 (L) (s—1)@"+

1+7¢
+ (/s (%) (r+1) —YB) o. 29
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Fig. 6 (a-c) Instabilities of a filament attached to a viscous head as a function of the active force density 8 and the head’s rotational drag {r for y=2
and three values of the head’s translational drag ¢ (left: 0.2, center: 1, right: 5). Each colored dot represents a nonlinear simulation. The color codes
for the long-time behavior: light grey for straight translation, red for buckled rotation, blue for buckled beating. The black lines represent the boundaries
of the linear stability regions. The solid lines separate the stable region from the two unstable regions. The dashed lines separate the two unstable
regions; the imaginary part of the most unstable eigenvalue is zero below the line, nonzero above it. (d) Linear stability boundaries between the three
states of a filament-cargo assembly (straight, rotating, beating) in the ({r, ) plane for { =1 three values of the viscosity contrast y. Increasing the
filament’'s normal to tangential drag coefficient ratio y shifts the phase boundaries towards lower values of the active force 3.

and
0 = @1, =0"(1,), (30)
0'(0,1) = rO(0,1), 31D
$0"(0,1)—0"(0,t) = {Tp(0,1)0(0,1). (32)

We then discretize those linearized equations as in section 3.1}
compute the eigenvalues, and extract the critical value(s) corre-
sponding to the onset of instability.

To obtain the full nonlinear solutions we discretize equa-

tions (I)-(@) and (7)-(9) as in section[3:3]
4.1.1 Results

Figures|fl(a-c) show the regions of (in)stability in the (8, {g) plane
for y =2 and three different values of { (from left to right: 0.2,
1, 5). Each colored dot corresponds to a nonlinear simulation:
light gray for filaments that remain straight, red for filaments that
buckle into a rotating state, blue for filament that buckle into
a beating state. Rotating filaments look similar to the ones in
Figure @(a) except their head now follows a circular orbit (see
ESM Movie 1). Beating filaments exhibit periodic buckling similar
that of Figure[d|(b) except their head now moves along a wavy line
(see ESM Movie 2).

The linear stability analysis is performed on a similar grid of
(B,Clr) values, however for readability only the boundaries of
the (in)stability regions are shown. The solid black curve cor-
responds to the appearance of an eigenvalue with a positive real
part, i.e., the straight/buckled boundary. The dashed black curve
corresponds to the most unstable eigenvalue acquiring a nonzero
imaginary part, i.e., the rotating/beating boundary.

Many of the features seen in Figures |§|(a-c) can be related to the
results of section 3] First, f = 0 always yields a straight filament.
Second, following the bottom edge of Figure [f)(c) corresponds to
varying 8 while holding { and (g fixed with { large and {g small.

This may be thought of as the finite-{, finite-{gr version of the
pinned boundary condition ({ = e, {g = 0). Accordingly, both
situations yield a transition from a straight filament to a rotating
one as f3 is increased. Likewise, the finite ({,{gr) counterpart of
the transition from a straight clamped filament to a beating one
can be observed along the top edge of Figure [f[(c). The overall
shape of Figures [f|(b) and [6](c) follows from bridging those three
limits: straight states on the left (low f3), rotating states at the
bottom right (large 8, low {r), and beating states at the top right
(large B, large &gr).

Still, there are some unexpected features. First, we could not
identify a rotating region at { = 0.2, suggesting it may disappear
entirely at low {. Second, the straight state is re-entrant. For ex-
ample, at fixed { =1 and {r = 0.007, a straight filament remains
straight if B is small, buckles into a rotating shape if § is a little
larger, remains straight if 8 is yet larger, and buckles into a beat-
ing shape if 8 is even larger. In other words, an unstable straight
filament can sometimes be re-stabilized by further increasing the
active buckling load (f). Third, near the transition between ro-
tating and beating we observe mixed states wherein the filament
switches periodically between rotating and beating. ESM Movie 3
illustrates this behavior, however note that trajectories in this re-
gion are quite sensitive to the amount of time spent in each state
and the timing of the switches.

It is also worth noting that the linear stability analysis performs
well at the straight/buckled transition, but not so well at the ro-
tating/beating transition. This is because the latter involves two
highly curved states, neither of which is well described by a first
order expansion around the straight state.

Finally, Figure[6|(d) illustrates the effect of the viscosity contrast
7. It shows the linear stability boundaries in the (f,{g) plane for
¢ =1 and three different values of y: 0.5 (blue), 1 (green), and
2 (red, same as the black lines in Figure |§|(b)). There are no
qualitative changes, only an overall shift of the phase boundaries
towards weaker 3 values as y increases with the straight/beating
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line shifting more than the straight/rotating line.

5 Robustness to noise and steric repulsion

The nonlinear simulations of sections do not include any
noise. Neither do they include steric repulsion preventing the fila-
ment from overlapping itself. Whether the latter is relevant in an
experiment depends on the details of the quasi-two-dimensional
confinement, however noise is always present at the micro-scale.
We now show that our results are robust, at least qualitatively, to
both. Rather than adding those effects to our continuum model,
we switch to a bead-spring model inspired by previous work by
some of us2Z

5.1 Model

The model is a simplified version of those introduced by
Chelakkot et al.2Z and Isele-Holder et al.?8. It consists of a chain
of elastically connected, self-propelled, polar colloidal spheres
that moves and deforms in two dimensions. The filament has N
spheres, each of diameter o, located at coordinatesr; (i =1,..,N).
Adjacent beads are connected by linear springs with equilib-
rium length o and stiffness k. The corresponding potential is

- 7’5 Z (Jrizy —ri| — o). (33)

kg is chosen large enough to keep the bonds’ lengths approxi-
mately equal to o, thus mimicking inextensibility. The chain’s
length is then ¢/ ~ No.

Resistance to bending is implemented via a three-body elastic
potential with bending rigidity «x:

Up = ZLX_) i1 —bi)? (34)

where b; = (r,_; —r;)/|r; —r;_| is the unit bond vector, which
always points towards the next bead in the direction of the
head bead (bead 1). In the continuous limit (¢ — 0, N — oo,
No —constant), b; identifies with the tangent vector t of the con-
tinuous model at arclength s = io, thus (b;+; —b;)/0 ~ dt/ds and
Up =~ (x/2) [ds(dt/ds)* = (x/2) [ ds(d8 /ds)?. In other words, the
definition ensure k has the same meaning as in the continu-
ous model.

The active follower force pushes each bead with magnitude F
along its bond vector: F; = Fb;. In the continuous limit, this yields
a uniform active force per unit length f = F /o which identifies
with the active force density used in the continuous model.

Steric repulsion takes the form of a short-ranged pairwise
repulsive WCA (Weeks-Chandler-Anderson) interaction between
beads. The potential is

N i—1

Uwca =Y. Z u(jr; —r;|) (35)

i=1j=

u(r) = 4kBT{(%>12’<%>6]+kBT tre2eqg

0 if r>2l/6¢
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where kg is Boltzmann’s constant and 7 is the temperature.

The positions of the beads evolve according to over-damped
Brownian dynamics:

d
B=—M——

ar‘(UE+UB+UWCA)+MFbi+ V2D ® 37
i

where M is the viscous mobility, D is the diffusion constant, which
obeys Stokes-Einstein’s equation D = MkgT, and ® is a zero-
mean, unit-variance Gaussian white noise force.

The cargo (viscous load) consists of a hexagon made of seven
beads rigidly attached to each other and to the filament’s first
bead (i = 1, corresponding to s = 0 in the continuous model) as
shown in Figure |7} The cargo beads experience noise, drag, and
WCA interactions like the filament’s beads, however they do not
experience any active follower, spring, or bending spring force.

Equations (34)-(38) are rendered dimensionless by scaling
lengths by o, times by ¢2/D, and energies by kg7. In the sim-
ulations this is done by setting 6 = 1, M = 1, and kg7 = 1. We
are then left with three dimensionless parameters: the dimen-
sionless stretching stiffness xg/(kgT'), the dimensionless bending
rigidity x/(okgT), and the dimensionless active force 6F/(kgT).
The exact value of the former is not very important as long as it
is large enough to keep length fluctuations small and the chain
approximately inextensible. We set kg /(kg7) = 20000. The other
two parameters, while convenient to run the simulations, are not
best suited to analyze the results and compare with the contin-
uous model. Thus we define the dimensionless activity param-
eter B = Fo2N3/x, which identifies with our previous B in the
continuous limit, and the (new) dimensionless bending rigidity
JH = «/(NokgT). The latter is the ratio of the thermal persis-
tence length ¢, = k/(kgT) to the chain’s length { = No. If # > 1
(large bending rigidity, short chain, or weak noise), the noise
alone does not preclude a straight chain. Conversely, if 7" < 1
(small bending rigidity, long chain, or strong noise) thermal noise
alone can destroy the straight configuration. Since the relative
noise strength is set by 1/.#, one may explore the role of noise
by varying any of k, kgT, or /. Isele-Holder et al.%8 fixed x and
L and varied kgT. Chelakkot et al.%” fixed ¢ and kgT. Here we
follow the latter.

The simulations start with a straight filament then use the
Euler-Maruyama scheme to integrate the equations of motion un-
til a stable motion pattern is established. Each set of parameters
is simulated for ~ 10 distinct realizations of the noise to ascertain
the validity of the observed pattern.

5.2 Results

We start with a ten-bead filament (N = 10). At both .7 =20 (low
noise) and .# = 2 (moderate noise), the filament goes through
all three swimming states as F increases from 0: straight, then ro-
tating, then beating. Figure [7[(a) and ESM Movie 4 show typical
trajectories in each state. Figure [7[(b) shows the phase diagram
along the F axis. The same sequence of states could be observed
by following a horizontal line in the lower region of Figure [6|(b)
so as to cross the dashed line. The intermittent switching between
rotating and beating we observed across that dashed line in sec-
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Fig. 7 (a) States of a noisy swimmer comprised of a 10-bead filament pushing a 7-bead hexagonal cargo: straight at low force density F (left), rotating
at intermediate F (middle), beating at high F (right). The red bead is the tail; the red curve is its trajectory. (b) Phase diagram of the same swimmer
as a function of F with weak (top, .# = 20) and moderate (bottom, .#" = 2) noise. Red, green and blue represent straight, rotating, and beating states
respectively. Mixed colors represent transition states. (c) Beating pattern of a 50-bead filament pushing a 7-bead hexagonal head at F = 40 with (top)
and without (bottom) WCA repulsion. The red curves on the right represent the planar trajectory of the tail bead. Length scales are measured in units

of o.

tion (3] is still present in the noisy simulations. In fact, a similar
behavior is now present at the straight-rotating transition, except
it is now driven by noise, thus random. Overall, the effect of
noise on the phase diagram is to broaden the transitions. Unsur-
prisingly, this broadening is stronger at .# = 2 than at .#" = 20.

Although we did not explore the ({,{gr,B) phase diagram as
systematically as we did in Figure [} the results above suggest
the phase diagram is at least somewhat robust to noise, and we
expect no changes to the overall shape of Figure[f]in presence of
weak to moderate noise.

The ten-bead simulations above include both noise and steric
repulsion, however the latter is irrelevant as the filament is too
short and the active force values we simulated far too weak for
the filament to fold back onto itself. To explore steric effects, it is
convenient to switch to a 50-bead filament with the same 7-bead
hexagonal head and F = 40, which yields large-amplitude beat-
ing. Figure[7|(c) shows the filament’s shape at various times of its
beating pattern and the trajectory of it tail (rightmost panel). In
the bottom row, the WCA repulsion is turned off. Predictably,

steric repulsion increases the space occupied by the filament.
This in turn increases the beating wavelength, thus the curvature
length scale. However, it does not seem to disrupt the beating
itself. Similar observations can be made about highly curved ro-
tating filaments: steric repulsion increases the space occupied by
the filament and its radius of curvature, however it does not pre-
vent the filament from rotating.

6 Discussion

In summary, the continuous model of section [2] and the stability
results encapsulated in Figure [6] successfully capture the qualita-
tive phase diagram and the essential dynamical features of 2D
elastic filaments driven by follower forces as have been observed
in more detailed simulations and in experiments.

Much of the dynamics seen in'?Z, at least in the weak motor
noise regime, can be understood in terms of the linear stability
analysis of section[3.1]and the scaling analysis of section 3.3} The
qualitative features of the linear stability analysis are reproduced
by the simplified models of section[3.2] whose analytical tractabil-
ity can provide further insight into the emergence of the diver-
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gence bifurcation seen in pinned filaments and the flutter point
and Hopf bifurcation seen in clamped filaments.

Both pinned rotating (figure [1) and clamped beating*Z states
have also been observed in gliding motility assay experiments,
although the transient nature of some anchoring sites can com-
plicate matters. In Figure |1} for example, the microtubule first
encounters a pinning defect and starts to form a rotating coil, but
in the third panel the head has freed itself from the pinning defect
and resumed its straight motion.

For filaments pushing a cargo, Isele-Holder et al'“® found
numerical evidence of the straight, rotating, beating, and rotat-
ing/beating intermittent states by varying the size and shape
of the cargo attached to a bead-spring filament. Rather than
focusing on any particular head shape or size, we note that
the effect of any viscous-drag-generating rigidly-attached head
can be captured by a finite set of drag parameters. Although
a full exploration of the cargo parameter space is beyond the
scope of this paper, our systematic exploration of the role of two
such parameters ({ and {r), along with the two dimensionless
parameters characterizing the filament itself (f and 7y), proves
sufficient to observe many of the dynamical states seen in
previous simulations and experiments. It also provides a solid
starting point for a future, more complete exploration of the
cargo parameter space. Perhaps most importantly, this approach
could prove useful to design filament-cargo assemblies exhibiting
a specific behavior by breaking down the problem into two
pieces: first, identify a region in cargo parameter space that
produces the desired behavior; then, look for a cargo shape and
size whose drag parameters are in said region.

We conclude with some possible extensions of this work. First,
one may generalize our treatment of filament-cargo attachment
by varying the entire set of drag parameters needed to describe
any rigidly-attached viscous head as discussed in section[2.2] Sec-
ond, the 2D constraint may be relaxed to allow motion in 3D. Ling
et al.?® found two distinct beating instabilities, one of them heli-
cal, in the constrained problem, however we are not aware of any
such study for filament-cargo assemblies. Third, long-range hy-
drodynamic interactions may be included, e.g., by assuming the
head is spherical and adding stresslets distributed along the fil-
ament48>0, This may become important for large cargos, or at
high filament density when filament-filament interactions are fre-
quent. Fourth, one may check the robustness of our cargo results
to noise in follower force due, e.g., to fluctations in the motor
density. This would also extend?Z, which includes this noise but
only considers constrained filaments. Finally, arc-length continu-
ation techniques may be used to identify unstable dynamical pat-
terns or isolated stable branches that are not easily accessible by
integrating time starting from a straight filament.
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