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SUMMARY: 

Here, we use quantitative cytogenetics in C. elegans to elucidate the molecular 

stoichiometry and longitudinal architecture of the cohesin-based meiotic chromosome 

axis, a structure required for most meiotic prophase-specific biology. We reveal a modular 

organization of the axis wherein different meiotic HORMAD proteins assemble into 

cohorts in defined numbers and co-organize the axis together with two functionally-

distinct cohesin complexes in defined stoichiometry.  Half of the REC-8-containing 

cohesin complexes loaded during S phase are lost concurrently with axis assembly, and 

the resulting axis contains single cohesion-mediating REC-8 complexes occurring with 

an average spacing of 1/130-200 kb, alternating with cohorts of axis-organizing COH-3/4 

cohesin complexes (averaging 3 per module) that can associate with individual 

chromatids. The resulting axis/loop architecture yields an inherent asymmetry in genomic 

content between the loops formed on sister chromatids, potentially explaining essential 

but enigmatic aspects of meiotic recombination, such as the inter-homolog bias of DNA 

repair. 
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INTRODUCTION: 

     At the onset of meiotic prophase in organisms ranging from yeast to humans, newly 

replicated chromosomes adopt a highly specialized organization that enables diploid cells 

to produce haploid gametes.  This reorganization involves the assembly of a discrete axial 

structure along the length of each conjoined sister chromatid pair, with the majority of 

DNA organized into loops emanating from this axis.  These meiotic chromosome axes 

and/or their constituent components contribute to virtually all major aspects of meiotic 

prophase, including chromosome movement, homologous chromosome pairing, 

formation of DNA double strand breaks (DSBs), assembly of Synaptonemal Complex 

(SC) between aligned homologs, and repair of DSBs by interhomolog recombination to 

yield crossovers that will ensure homolog segregation.  Thus, understanding the structure 

and function of meiotic chromosome axes is crucial for elucidating the mechanisms 

responsible for faithful inheritance of chromosomes during sexual reproduction. 

     A combination of genetic, cytological and biochemical approaches has identified the 

major components of meiotic chromosome axes in multiple different experimental 

systems.  The foundation of the chromosome axis is built up by meiosis-specific cohesin 

complexes that are composed of a mixture of canonical subunits and meiosis-specific 

subunits. Most notably, meiosis-specific kleisin subunits have been identified in multiple 

organisms, including Rec8p in budding yeast (Klein et al., 1999)), RAD21L and REC8 in 

mammals (Eijpe et al., 2003; Parisi et al., 1999), and COH-3, COH-4 and REC-8 in C. 

elegans (Ishiguro, 2019; Pasierbek et al., 2001; Severson et al., 2009). At the onset of 

meiotic prophase, these cohesin complexes mediate by unknown mechanisms the 

recruitment of other meiosis-specific axis components. Some of these, including 

SYCP2/SYCP3 in mouse (Eijpe et al., 2000; Schalk et al., 1998) and Red1p in budding 

yeast (Smith and Roeder, 1997) have been designated as “axis core” proteins, as they 

play a role in recruitment of meiosis-specific HORMA-domain containing proteins (e.g. 

Hop1p in yeast (Hollingsworth and Byers, 1989) or HORMAD1/2 in mammals (Wojtasz 

et al., 2009); referred to as “HORMADs” from here on). The HORMADs share a structural 

organization in common with spindle-assembly checkpoint protein Mad2, which has a 

capacity to form complexes with other proteins through topological entrapment of 

peptides known as “closure motifs” by a Mad2 domain known as a “safety belt” 
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(Rosenberg and Corbett, 2015). Recent work has demonstrated that yeast Red1p and 

mammalian SYCP-2/SYCP-3 each contain a single closure motif that mediates 

interactions with their respective HORMAD partners; further, Red1p homo-tetramers and 

SYCP2/SYCP3 hetero-tetramers are capable of forming oligomeric filaments in vitro 

(West et al., 2019). In C. elegans, similar axis core components have not been identified, 

but four different HORMAD paralogs are present and constitute a hierarchical complex 

that builds up the meiotic chromosome axis (HTP-3, HTP-1/2 and HIM-3; (Couteau and 

Zetka, 2005; Goodyer et al., 2008; Martinez-Perez and Villeneuve, 2005; Martinez-Perez 

et al., 2008; Zetka et al., 1999). Further, biochemical and in vivo experiments have 

demonstrated that HTP-3 recruits HTP-1/2 and HIM-3 to the axis by interacting with their 

HORMA domains via closure motifs located in its C-terminal tail (Kim et al., 2014). 

Another recent study provided information regarding the relative cross-sectional 

positioning of cohesins and HORMADs within the context of the mature SCs of C. 

elegans, showing that HORMADs are located closer to the central region of the SC, 

whereas cohesin complexes are located closer to the bulk of the chromatin (Kohler et al., 

2017). 

     While there has been substantial progress in identifying components of the meiotic 

chromosome axis and interactions among many of these components, much remains to 

be learned regarding how these proteins and interactions become organized along the 

length of chromosomes into a functional composite structure that mediates and 

coordinates key meiotic events. Ensemble/population-based measurements have 

identified preferential sites of association of multiple meiotic axis proteins in budding and 

fission yeast (Miyoshi et al., 2012; Panizza et al., 2011), but these analyses do not 

address how many (and which) sites are occupied at the same time on individual meiotic 

chromosomes and in a given individual meiocyte.  Further, a recent Hi-C-based study of 

mouse spermatocytes suggests a lack of reproducible loop positions during mouse 

meiosis (Patel et al., 2019). It is also not known (either in meiotic cells or mitotically-

dividing cells) how many cohesin complexes are required to locally provide sister 

chromatid cohesion (“single/simple ring” vs. “handcuff model”, e.g.: see (Rankin and 

Dawson, 2016)), or how many cohesins and other axis forming proteins load onto a given 

stretch of DNA and organize a pair of sister chromatids into a linear axis with emanating 
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chromatin loops, as they appear in cytological preparations.  Consequently, we currently 

lack understanding regarding how meiotic chromosome organization accomplishes 

certain essential tasks.  For example: programmed meiotic DSBs must use the 

homologous chromosome rather than the sister chromatid as a repair template for 

recombinational repair, as it is necessary to form a crossover between homologs to 

provide the basis for a temporary link between the homologs that will ensure their correct 

segregation at the first meiotic division. An “inter-sister block” or “inter-homolog bias” 

favoring use of the homolog as a recombination partner is a long-known phenomenon in 

the meiotic recombination program and depends on chromosome axis proteins (for review 

see: (Zickler and Kleckner, 2015)), but how this bias is achieved is not understood on a 

mechanistic level.  It is clear that our knowledge regarding how meiotic chromosome 

structures confer characteristic properties of the meiotic program would benefit from a 

fuller understanding of how the axis itself is organized. 

 Here, we report an analysis of the molecular stoichiometry and longitudinal 

architecture of the meiotic chromosome axis, using the well-established meiotic model 

organism C. elegans.  Our work builds on and exploits a well-recognized feature of meiotic 

chromosomes from various model (and non-model) systems, namely that when meiotic 

nuclei are strongly spread out in 2D on a glass slide (“fully spread” from here on), the 

continuous axis configuration (observed in in situ preparations and under mild/partial 

spreading conditions) is “spaced out”, and cohesins, axis core proteins and/or HORMADs 

can appear as linear arrays of foci visible by electron microscopy or immuno-fluorescence 

(e.g. see: (Anderson et al., 1988; Ishiguro et al., 2011; Kim et al., 2010; Smith and Roeder, 

1997) and FIG1A). By combining this spreading approach with novel quantitative 

strategies and/or structured illumination microscopy (SIM), we reveal previously 

unrecognized features of meiotic chromosome organization. We demonstrate a modular 

organization of the chromosome axis in which different HORMAD proteins assemble into 

cohorts in defined numbers and co-organize the chromosome axis together with two 

structurally and functionally distinct cohesin complexes in defined stoichiometry.  We 

show that half of the REC-8-containing cohesin complexes loaded during S phase are 

abruptly lost concurrently with loading of COH-3/4 cohesin complexes and axis assembly.  

Moreover, the resulting axis contains individual, cohesion-mediating, REC-8 complexes 
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occurring at an average spacing of 130-200 kb, interspersed with cohorts of axis-

organizing COH-3/4 cohesins (an average of 3 per module).  Finally, we provide evidence 

that the axis architecture deduced from our analysis can result in an inherent asymmetry 

in size, number and genomic composition between the loops formed on sister chromatids, 

a feature that can help to explain the inter-homolog bias of meiotic recombination. 

Together, our analyses provide a quantitative framework that will inform and constrain 

future experiments and models regarding meiotic chromosome axis organization and 

function.  Moreover, the quantitative cytogenetic strategies applied here should be 

broadly applicable for investigating molecular stoichiometry in the context of other cellular 

structures and processes. 

 

RESULTS and DISCUSSION: 

Linear arrays of foci reflect modular arrangement of the meiotic chromosome axes: 
In contrast to the more continuous appearance of HORMAD signals observed in in situ 

preparations of C. elegans gonads and under partial spreading conditions (which maintain 

the spatial-temporal organization of the gonad largely intact), we find that in fully spread 

C. elegans meiotic prophase nuclei, the chromosome axis is resolved as individual 

HORMAD foci, arranged like pearls on a string (Figure 1A), as observed in other 

organisms.  The three types of HORMAD proteins that constitute the C. elegans meiotic 

chromosome axis (HTP-3, HTP-1/2, and HIM-3; (Goodyer et al., 2008; Martinez-Perez et 

al., 2008; Zetka et al., 1999)) colocalize together in most of these foci in early prophase 

nuclei when examined by Structured Illumination Microscopy (SIM, FIG1A), consistent 

with the demonstrated direct physical interactions among these components (Goodyer et 

al., 2008; Kim et al., 2014). Further, previously reported findings concerning distinct 

behaviors of different HORMAD proteins could be recapitulated in these fully spread 

preparations. For example, in late prophase, crossover designation triggers the 

reorganization of the C. elegans meiotic bivalent into two distinct domains: a long arm, 

where all the HORMADs are present, and a short arm, where only HTP-3 and HIM-3 are 

present (Martinez-Perez et al., 2008); this reorganization is clearly visible in the fully-

spread preparations (FIG1A). 
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We count approximately 1000 HORMAD-containing foci (HIM-3 and HTP-3) in 

fully-spread pachytene nuclei (FIG1A, bottom right). These individual HORMAD foci are 

connected along a given chromosome stretch by DAPI-positive threads, the chromosome 

loops. For each chromosome axis, these DAPI-positive loops correspond to a pair of 

sister chromatids, for a total of four individual chromatids per bivalent (FIG1A). 

 C. elegans HORMAD protein HTP-3, which is required to load all the other 

HORMADs (Goodyer et al., 2008), appears to play a role in axis organization analogous 

to the axis core proteins (Red1 and SYCP2/SYCP3) identified in other organisms. In the 

absence of HTP-3, meiotic cohesin complexes still bind chromatin and hold sister 

chromatids together until anaphase (Severson et al., 2009), but they are not arranged as 

a continuous axis or in a pearls-on-a-string-like configuration during prophase (FIG1S1). 

Thus, absence of HTP-3 phenocopies budding yeast red1 mutants (in which axes don’t 

form, but cohesin binding is unaffected), rather than hop1 mutants (in which Red1p and 

Rec8p containing axes form) (Klein et al., 1999; Woltering et al., 2000). Therefore, we 

speculate that HTP-3, which contains six closure-motifs that mediate associations with 

HIM-3 and HTP-1/2 (Kim et al., 2014), functions as the axis core component in C. elegans. 

 During metazoan meiosis, chromosome axis organization and meiotic sister 

chromatid cohesion are mediated by at least two different cohesin complexes that contain 

distinct kleisin subunits and/or load at distinct times. Sister chromatid cohesion is 

mediated by complexes containing REC-8 in worms, REC8 in mammals and C(2)M in 

flies, whereas axis formation requires COH-3 and COH-4 in worms, REC8 and RAD21L 

in mammals and the SOLO-SUNN-containing cohesin complex in flies (Crawley et al., 

2016; Gyuricza et al., 2016; Pasierbek et al., 2001; Severson et al., 2009; Xu et al., 2005). 

Because COH-3 and COH-4 are products of a recent gene duplication, are functionally 

redundant and are recognized by the same antibody, they are referred to as COH-3/4 

from here on (Severson et al., 2009; Severson and Meyer, 2014). 

When HORMADs (e.g. HTP-3), COH-3/4 and REC-8 foci are visualized 

simultaneously in fully-spread nuclei, such foci occur in roughly the same numbers (about 

1000 foci per nucleus, FIG1A). Moreover, the HORMAD, COH-3/4 and REC-8 signal 

peaks usually do not coincide with each other, yet they are arranged in a 1:1:1 modular 

fashion along a given chromosome stretch (FIG1B).  If we consider the numbers of these 
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HORMAD/cohesin (REC-8 and COH-3/4) foci modules to be distributed along the diploid 

genome (2 x 100 Mbp), we can estimate an average spacing of one HORMAD/cohesin 

module for every ~200 kbp.  Because overlap between some chromosome segments in 

spreads of whole nuclei might result in an underestimate of foci numbers, we sought to 

validate this estimate by measuring numbers of foci on well-separated DNA segments of 

defined size. 

Our approach was to evaluate numbers of cohesin and HORMAD foci on extra-

chromosomal arrays (ExChrs), which are mini-chromosomes that form via fusion of linear 

or circular DNA of any origin upon injection into the C. elegans gonad. ExChrs are visible 

as additional DAPI bodies in oocytes, which allows an approximation of their size 

(FIG1C). Depending on the mixture of injected DNAs, ExChrs can be highly repetitive or 

complex in DNA sequence. Repetitive ExChrs acquire heterochromatic marks and are 

silenced in the germ line, whereas complex ExChrs can be transcriptionally active in germ 

cell nuclei (Kelly et al., 1997). ExChrs can be transmitted through mitosis and can be 

inherited across generations, albeit in non-Mendelian fashion (Mello et al., 1991; 

Stinchcomb et al., 1985). 

Here we analyzed ExChr oxEx1578, a repetitive array that has 0% E. coli genomic 

DNA, and meEx001, a complex array that has 95% E. coli genomic DNA. Based on 3D 

DAPI intensity measurements in diakinesis-stage oocytes, we estimate that meEx001 

contains about 1 Mbp of DNA and oxEx1578 contains about 2.2 Mbp, corresponding to 

approximately 1% and 2% of the size of the C. elegans haploid genome, respectively 

(FIG1C). Interestingly, we found that ExChrs are ring chromosomes (FIG1S2A), as 

suggested by S.K. Kim in 1992 (http://wbg.wormbook.org/wli/wbg12.2p22). Both 

meEx001 and oxEx1578 form chromosome axes during meiotic prophase, but do not 

engage in synapsis when more than one ExChr is present in the nucleus (FIG1S2A). 

In fully spread nuclei, we find that ExChrs are decorated by HTP-3, COH-3/4 and 

REC-8 foci in a pattern similar to that observed on normal chromosomes (FIG1C).  

Numbers of HORMAD foci and cohesin foci on a given ExChr are strongly correlated 

(FIG1S2B), consistent with the modular organization described above. Further, the 

average numbers of foci observed for these two ExChrs were proportional to the amount 

of DNA present, as we detected twice the number of foci on the ExChr that contains twice 
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the amount of DNA (meEx001: HTP-3: 7.8(+/-2.4), REC-8: 8.1(+/-2.5) and COH-3/4: 

7.8(+/-2.6) foci; oxEx1578: HTP-3: 16.1(+/-2.9), REC-8: 16.8(+/-2.8) and COH-3/4: 

15.3(+/-3.1) foci, FIG1C and FIG1S2B). 

Our observation that meEx001 and oxEx1578 exhibit the same average densities 

of cohesin and HORMAD foci is remarkable given that these two ExChrs share almost no 

sequences in common with each other or with the C. elegans genome (except for a 

promoter fragment and plasmid sequences in the selection markers that are present in 

vastly different amounts in the two ExChrs). Moreover, meEx001 is a young chromosome 

(analyzed in generations 4-9 after its creation) and had not yet reliably acquired 

heterochromatic marks (only 5/25 rings analyzed were enriched for H3K9me2), whereas 

oxEx1578 was generated years ago in the Jorgensen lab (Frokjaer-Jensen et al., 2012), 

has been maintained for many generations, and is strongly heterochromatic in the 

germline (25/25 rings were enriched for H3K9me2, FIG1S2B).  Thus, we conclude that 

HORMAD/cohesin modules occur along chromosomal DNA with an average spacing of 

approximately 130-200 kbp, and that they can do so apparently independently of DNA 

sequence or epigenetic state. 

 

Inferring the numbers and stoichiometry of cohesin and HORMAD molecules in 
chromosome axis foci: 
Next, we set out to determine the numbers of the different cohesion and HORMAD 

proteins present in the individual axis foci that we observe cytologically. 

First, we present evidence indicating that individual REC-8 foci detected in fully-

spread nuclei each represent a single REC-8 cohesin complex: We examined 

chromosome axes in fully-spread meiotic chromosomes from worms expressing two 

differently-tagged versions of REC-8 (REC-8::3xFLAG and REC-8::GFP) in the same 

animal; no untagged REC-8 was expressed in these worms.  If REC-8 foci represented 

cohorts of multiple REC-8 cohesin complexes, we would have expected to observe 

frequent colocalization of the two tags.  Instead, visualization by immuno-fluorescence 

and SIM imaging revealed that both tagged proteins are integrated into the chromosome 

axes, but they do not colocalize (FIG2A). Importantly, the same result was obtained when 

detection of FLAG and GFP was performed sequentially, in either order, ruling out the 
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possibility that lack of colocalization of the two tags might have been caused by antibody 

exclusion (FIG2A and FIG2fS1A).  Thus, we conclude that each single REC-8 focus in 

the fully-spread preparations represents a single cohesin complex.  

Having established that single cytological REC-8 foci represent single REC-8 

molecules, we set out to deduce the numbers and relative stoichiometry of other cohesin 

subunits and different HORMAD components associated with meiotic chromosome axes 

using quantitative analysis of wide-field immuno-fluorescence images.  

We used two different independent approaches to infer the relative numbers of 

REC-8 and COH-3/4 containing cohesin complexes. First, we measured and compared 

the total amount of chromatin-bound SMC-1 (which is present in all cohesion complexes) 

and chromatin bound REC-8. Nuclei from gonads of two distinct genotypes, one 

expressing REC-8::FLAG (identified by GFP::COSA-1 expression) and the other 

expressing SMC-1::FLAG (identified by mEos::HIM-3 expression) were spread together 

on the same glass slide, immuno-stained for the Flag epitope and HIM-3, and imaged 

using the same conditions (FIG2B). Whereas anti-HIM-3 and DAPI fluorescence were not 

distinguishable between the two genotypes (FIG2B and data not shown), the average 

total FLAG immuno-fluorescence signal for the nuclei expressing SMC-1::FLAG was 4 

times that for the nuclei expressing REC-8::FLAG. Thus, we estimated there to be 4 times 

more chromatin/DNA bound SMC-1 than REC-8 molecules. We corroborated and 

extended this finding using an orthogonal approach in which we visualized and measured 

SMC-1 fluorescence signals (visualized with an HA tag) in 800nm x 800nm ROIs 

encompassing individual SMC-1 foci (FIG2C).  SMC-1 fluorescence values were 

compared for three classes of foci, i.e., those associated with: a) COH-3/4 but not REC-

8; b) both COH-3/4 and REC-8; c) REC-8 but not COH-3/4. The average SMC-1::HA 

fluorescence measured for “COH-3/4 only” foci was 2.8 x that measured for “REC-8 only” 

foci, and the average SMC-1::HA fluorescence for SMC-1 foci associated with both COH-

3/4 and REC-8 was 4 x that for “REC-8 only” foci. Further, the total fluorescence 

measurements for COH-3/4 and for SMC-1 within the same foci are highly correlated 

(FIG2S1B), reinforcing the idea that REC-8 and COH-3/4 are the major, and possibly 

only, kleisins present in chromatin-bound cohesin complexes during meiosis (Severson 

et al., 2009). In summary, our two different quantification approaches together revealed 
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that the individual HORMAD/cohesin modules that make up the axis contain, on average, 

four cohesin complexes: one containing REC-8 and three containing COH-3/4. 

 We also wished to determine the number and relative stoichiometry of different 

HORMAD components in the chromosome axis foci. To this end, we made pairwise 

comparisons of relative fluorescence intensities of foci for different axis components 

marked with the same tag, using HTP-3 as a standard for aligning the different 

comparisons.  For each of these experiments, we isolated nuclei from two different 

genotypes (one expressing 3xFLAG::HTP-3::GFP and one expressing REC-8::GFP, 

GFP::HIM-3, or HTP-1::GFP), then mixed and spread them together on the same slide, 

and stained and imaged them using the same conditions. For the data in FIG2D, we 

measured fluorescence within 400x400 nm ROIs encompassing well-isolated individual 

foci and normalized our data to the mean fluorescence intensity measured for REC-8 foci, 

as we consider these to represent single molecules. Using this approach, we estimated 

that a single cytological HORMAD focus contains, on average, 2.9 (+/-0.68) HTP-3 

molecules, 5.1 (+/-2) HTP-1 molecules, and 7.8 (+/-2.9) HIM-3 molecules (FIG2D).  The 

relative ratio of GFP::HIM-3 to HTP-3::GFP calculated using this approach (2.7 : 1) is in 

good agreement with that estimated using a different method that evaluates total 

fluorescence in partially spread nuclei (3.2 : 1) (FIG2S2A). 

HORMAD proteins HTP-1 and HTP-2 are nearly identical, and although HTP-2 is 

largely dispensable for successful meiosis, they do have partially overlapping functions 

(Couteau and Zetka, 2005; Martinez-Perez et al., 2008; Martinez-Perez and Villeneuve, 

2005). Thus, the value calculated for HTP-1::GFP is expected to be an underestimate of 

the total number of HTP-1/2 molecules associated with meiotic chromosome axes in 

nuclei that contain a mixture of tagged HTP-1 and untagged HTP-2. Indeed, we found 

that the ratio of HTP-1::GFP to GFP::HIM-3 was significantly higher for nuclei that lacked 

HTP-2 (1.9 : 1) than for nuclei where HTP-2 was present (1.4 : 1) (FIG2S2B). Thus, we 

infer that a single HORMAD focus most likely contains an average of 6 HTP-1/2 molecules 

during WT prophase.  

The wide ranges of fluorescence values measured for HTP-1 and HIM-3 foci likely 

reflect biological variation in the numbers of HTP-1 or HIM-3 molecules present in 

different HORMAD modules, as we find that HTP-1/2 and HIM-3 protein levels in meiotic 
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nuclei increase over the course of meiotic prophase (FIG 2S2C).  In contrast, HTP-3 

levels remain largely stable from meiotic entry through the end of pachytene (FIG 2S2C). 

Overall, our data are in strong agreement with biochemical and structural data from a 

recent study that investigated interactions among C. elegans HORMAD proteins (Kim et 

al., 2014).  This study found that the HIM-3 HORMA domain can bind to 4 of the 6 closure 

motifs in the C-terminal tail of HTP-3, and the HORMA domains of HTP-1/2 can bind to 

the remaining two motifs. Moreover, when the proteins are co-expressed in bacteria, 

HTP-3 and HIM-3 form complexes in a 1:2 or 1:3 ratio, while HTP-3 and HTP-1 do so in 

a 1:2 ratio.  Thus, our data quantifying the numbers of foci per nucleus and their relative 

fluorescence are consistent with a model in which meiotic chromosome axes are 

assembled from interactions between individual modules that are each composed of 

cohesin and HORMAD proteins in the following stoichiometry: [1 REC-8 cohesin] : [3 

COH-3/4 cohesins] : [3 HTP-3 : 6-9 HIM-3 : 6 HTP-1/2], distributed along chromosomes 

with an average density of 1 module for every 130-200 Kb. 

 

Non-random arrangement of structurally and functionally distinct cohesin 
complexes along chromosome axes: 
Previous work provided evidence that REC-8 and COH-3/4 cohesin complexes play 

functionally distinct roles during C. elegans meiosis (Severson et al., 2009; Severson and 

Meyer, 2014): REC-8 has been demonstrated to mediate sister chromatid cohesion, 

whereas COH-3/4 plays a key role in axis organization (FIG3S1A).  Further, these 

functionally distinct complexes differ in their timing of association with chromatin: REC-8 

cohesins (like murine REC8) load during pre-meiotic DNA replication, whereas COH-3/4 

cohesins (like murine RAD21L) load after completion of S phase, at the beginning of 

prophase ((for review: (Ishiguro, 2019)). Our data support and extend these findings in 

several ways. 

First, measurement of fluorescence levels in immuno-stained gonads 

demonstrated that half of the REC-8 cohesin complexes loaded during S phase are 

removed from chromatin concurrently with loading of COH-3/4 cohesin complexes and 

coalescence of meiotic chromosome axes (FIG3A). This suggests that a fundamental 

shift in the relationships between sister chromatids may occur upon entry into meiotic 
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prophase. The sharp drop of REC-8 molecules upon meiotic prophase entry does not 

depend on the presence of COH-3/4, as it occurs even in a coh-4 coh-3 mutant 

(FIG3S1B). Cohesin release factor WAPL-1 may play a role in REC-8 removal, as a drop 

in REC-8 levels upon meiotic entry is not observed in a wapl-1 mutant (FIG3S1B); 

however, interpretation of this finding is complicated by the fact that COH-3/4 cohesins 

load prematurely at low levels during S phase in the wapl-1 mutant (Crawley et al., 2016), 

so REC-8 may not be loaded at normal levels in this mutant.  

Second, analysis of SIM images of fully spread chromosome axes revealed that 

not only do COH-3/4 and REC-8 signal peaks usually not coincide, but COH-3/4 and 

REC-8 signal peaks usually occur in a largely alternating pattern along a given axis stretch 

(FIG3B).  This striking alternating arrangement is significantly different from simulated 

random positioning along a theoretical axis, strongly suggesting a functional biological 

basis underlying the observed pattern.  

Third, analysis of spread nuclei from rec-8 mutants provides additional evidence 

for a functional distinction between REC-8 and COH-3/4 cohesin complexes, by 

demonstrating a capacity for COH-3/4 cohesin complexes to interact with individual 

chromatids.  In rec-8 mutants, when only COH-3/4 cohesin complexes are present on 

chromatin during meiotic prophase, SCs frequently form and crossover recombination 

apparently occurs between sister chromatids (rather than between homologs), 

suggesting that axes assemble along individual chromatids in this context (Crawley et al., 

2016).  However, we find that not all chromosomes engage in synapsis in rec-8 mutants, 

and we were able to trace the paths of both synapsed and unsynapsed axes in late 

prophase nuclei of rec-8 mutants. This analysis confirmed the interpretation that 

continuous chromosome axes (containing HTP-3 and COH-3/4) do indeed form along 

individual chromatids in the rec-8 mutant (FIG3C and FIG3S1C).  Thus, we infer that while 

REC-8 cohesin complexes are required to confer cohesion between sister chromatids, 

COH-3/4 cohesin complexes are sufficient to organize axes and can topologically 

embrace or bind to single chromatids (rather than sister chromatid pairs), at least when 

REC-8 cohesin is absent. 

 

Model for chromosome axis assembly and implications for axis/loop organization. 
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Based on our data, we propose the following model for the assembly of meiotic 

chromosomes axes: upon completion of pre-meiotic S-phase and entry into meiotic 

prophase, half of the REC-8-containing cohesin complexes, which were loaded during S-

phase and hold sister chromatids together, are removed from chromatin. This presumably 

loosens the associations between sister chromatids between the positions where REC-8 

cohesins are retained. Concurrently, COH-3/4-containing cohesin complexes bind and/or 

capture DNA from only one of the two individual sister chromatids, helping to promote the 

formation of loops in the intervals between the positions where REC-8 complexes are 

maintaining cohesion between the sister chromatids. This organization is “locked in” by 

binding of HORMAD proteins, resulting in a linear arrangement of HORMADS and 

cohesion complexes along the longitudinal axis of the chromosome (FIG4A). 

COH-3/4 cohesins can bind independently to either of the two individual sister 

chromatids. Moreover, there are, on average, an odd number of COH-3/4 cohesin 

complexes (i.e. three) in a given interval between two REC-8 cohesion-mediating 

complexes. Thus, chromatin loops that form on each sister chromatid in between two 

REC-8 cohesion-mediating complexes could potentially be inherently different from each 

other in number and size, and consequently in DNA content (“asymmetric loops”).  This 

would contrast with the usual depiction of “symmetric loops” on the two sister chromatids 

that are of the same size and DNA content (FIG4B). 

We used an immuno-FISH (fluorescence in situ hybridization) approach to test 

whether chromosome loops associated with pairs of sister chromatids appear 

“symmetric”, “asymmetric” or both. We labeled two consecutive 200 kbp regions of 

chromosome II with 2 different-colored FISH probes, and we measured the distances 

from the junctions between the two probes (where the two colors meet) to the 

chromosome axes (marked by HTP-3). If loops are symmetric, the distance between the 

FISH probe junction and the chromosome axis should be the same for the two sister 

chromatids. In contrast, if loops are asymmetric, the distances between the FISH probe 

junctions and the chromosome axis should differ for the two sister chromatids (FIG4B). 

To be able to distinguish between signals from sister chromatids and the homologous 

chromosome, we used worms heterozygous for an internal inversion of chromosome II 

(mIn1), which results in wide spacing between the FISH signals associated with the two 
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homologous chromosomes (FIG4C). For this assay, we analyzed 81 sister chromatid 

pairs on minimally-disrupted chromosomes prepared using partial spreading conditions 

(FIG4D and FIG4S1).  In 32% of cases (26/81), the FISH probe junctions of the two sister 

chromatids were not cytologically resolvable between the two sister chromatids and thus 

could potentially represent either symmetric loops or asymmetric loops that were too 

small to be resolved. In 26% of cases (21/81) the FISH probe junctions were found at 

similar distances (differing by £400 nm) from the chromosome axes, consistent with 

symmetric loops. Finally, in 42% of cases (34/81), the distances between the FISH probe 

junctions and the chromosome axis differed by >400 nm for the two sister chromatids, 

presumably indicative of asymmetric loops that were large enough to be resolved by our 

assay (FIG4D).  Thus, we conclude that the loops present on pairs of sister chromatids 

are frequently distinct from each other in size and/or position, and consequently, in 

genomic content. 

Asymmetry between sister chromatid loops can potentially help to explain some 

important properties of the meiotic recombination program.  Since the DSBs that serve 

as the initiating events of meiotic recombination are thought to be generated in loop 

regions that are tethered to the chromosome axis (Blat et al., 2002; Panizza et al., 2011), 

such asymmetry between sister-chromatid loops could potentially prevent DSBs from 

occurring at the same site on both sister chromatids during the same meiosis.  

Furthermore, the proposed axis-loop organization could also contribute to the inter-

homolog repair bias of meiotic recombination (Haber et al., 1984; Jackson and Fink, 1985; 

Schwacha and Kleckner, 1994), as an intrinsic feature of the proposed configuration is 

that sister chromatids would almost never share the same loop domains and thus would 

not be favored as DNA repair partners. 

 The approaches employed in this work have enabled us to deduce the numbers, 

relative stoichiometry and spatial distribution of multiple proteins that are central to the 

functional organization of chromosomes during meiosis. Further, our data regarding the 

density of HORMAD/cohesin modules (1 per 130-200 kbp) and the stoichiometry of 

proteins within these modules can be used to calculate the density of cohesin complexes 

along C. elegans meiotic prophase chromosomes.  Given an average of four cohesin 

complexes (1 REC-8 and 3 COH-3/4) in each module, we can infer that there are 
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approximately 20 - 30 cohesin complexes per Mb of chromosome length when each pair 

of sister chromatids is considered as a single conjoined entity.  When considering the 

total amount of DNA in each sister chromatid pair, this translates to a density of 10 - 15 

cohesin complexes per Mb of DNA.  These measurements of cohesin density on C. 

elegans meiotic chromosomes are in remarkably close agreement with recent 

independent estimates of cohesin density deduced for mouse ES cells based on in-gel 

fluorescence measurements and fluorescence correlation spectroscopy (FCS)-calibrated 

imaging (5.3 complexes/Mb; (Cattoglio et al., 2019)) and for HeLa cells based on 

quantitative mass spectrometry and FCS-calibrated imaging (8.5-17 complexes/Mb; 

(Holzmann et al., 2019)), supporting both the validity of our experimental approach and 

the broad relevance of our findings to the field of chromosome biology.  Thus, we 

anticipate that other features revealed in the current work, such as spatial alternation 

between cohesion-mediating cohesin complexes and putative axis/loop-organizing 

cohesin complexes, may reflect generalizable principles and properties of chromosome 

organization that operate in other contexts.  Finally, we note that the approaches we 

devised here to quantify numbers and/or relative stoichiometry of chromosome axis 

components should be widely applicable for analyzing many other cellular structures and 

biological processes, enabling quantitative estimates of molecular components that can 

inform and constrain models regarding how such structures and processes assemble and 

function. 
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FIGURE LEGENDS: 

Figure 1. Density of chromosome axis modules. A) TOP: Comparison of Structured 

Illumination Microscopy (SIM) images of in situ, partially spread, and fully spread 

individual meiotic prophase nuclei, displayed at the same magnification. In the image at 

the right, dashed lines outline the domains of each of the six bivalents where HTP-1/2 

proteins have become depleted from the chromosome axis, indicating that this nucleus is 

at the late pachytene stage.  BOTTOM LEFT, CENTER: Images of cropped segments of 

synapsed chromosome pairs, illustrating both the pearls-on-a-string appearance of 

chromosome axis foci and colocalization of HTP-3 and HIM-3 (overlaid) or HTP-1/2 

(images offset in both x and y); range of R values from ImageJ Coloc2 analysis for 8-10 

individual fully spread nuclei. BOTTOM, RIGHT: Quantification of numbers of HTP-3, 

HIM-3 REC-8 and COH-3/4 foci in individual fully spread nuclei; each data point 

represents a nucleus. 

B) LEFT: Chromosome axis segments from a fully-spread prophase nucleus from a worm 

expressing REC-8::GFP.  GFP, COH-3/4 and HTP-3 were detected by antibody staining 

and visualized by SIM. RIGHT: Representation of the positions of manually-identified 

signal intensity peaks for GFP, COH-3/4 and HTP-3 foci in the image on the left. 

C) TOP: Method used to estimate the total DNA content of two distinct ExChrs, 

meEx001 and oxEx1578. Sample deconvolved wide-field images of DAPI-stained 

chromosome complements from individual oocyte nuclei (with the ExChrs circled) are 

presented together with masks generated using the “3D Object Counter” ImageJ plugin; 

in the accompanying graph, each data point represents the total DAPI fluorescence for 

a single ExChr (2C), normalized to ½ of the total DAPI fluorescence measured for all 6 
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bivalents (4C) in the same nucleus. BOTTOM, LEFT and RIGHT:  Individually cropped 

examples of ExChr meEx001 (left) and oxEx1578 (right) from fully-spread nuclei stained 

for COH-3/4 or REC-8 together with HTP-3. BOTTOM, CENTER: Table representing 

the average densities per Mbp of HTP-3, REC-8 and COH-3/4 foci derived from our 

analyses counting foci for the whole genome and for the ExChrs (see FIG1S2B and 

FIG1A, bottom). 

 

Figure 1S1. Requirement for HTP-3 in organizing cohesins into axial arrays. 
Images of cohesin components SMC-1 and REC-8 and SC central region component 

SYP-1 in partially spread nuclei from htp-3 mutant gonads, visualized by wide-field 

deconvolution microscopy. SMC-1 and REC-8 are not detected as linear arrays of foci 

or as continuous axes in either early or late prophase nuclei (indicated by the presence 

of 1-3 SYP-1 aggregates). 

 

Figure 1S2. Structure and features of ExChrs. A) Circular structure of ExChrs.  Left, 

schematic illustrating that multiple circular and/or linear DNA molecules co-injected into 

the C. elegans germ line co-assemble into extra-chromosomal arrays that can be 

inherited as mini-chromosomes. Right, SIM images of HTP-3-marked chromosome 

axes in spread nuclei carrying ExChrs, which appear as rings.  Insets show multiple 

rings cropped from different nuclei from the same strain; the fact that rings from a given 

strain are similar in size indicates that once formed, ExChrs tend to be stable in size.  

The rings depicted are two different examples from 21 independent lines generated 

using the same selection scheme [cb-unc-119(+) in the unc-119(ed3) mutant], either 

alone or together with 10-90% E. coli genomic DNA (linearized by sonication and size 

selected to 1-5 Kb by gel extraction) in the injection mix. The transmission rates of the 

Unc+ trait in self-fertilizing hermaphrodites varied widely, ranging from 10-95%, and did 

not correlate with the percentage of E. coli DNA present in the injection mix. In 18 of the 

21 lines, ExChrs could be detected as additional HTP-3-positive structures in meiotic 

prophase nuclei, and in 16 of these 18 cases, the ExChrs were reliably resolvable as 

rings by SIM in partially spread gonads; as the two ExChrs that were not verified as 
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rings were the smallest of the 18, we speculate that they may also be rings, but their 

small size prevented their ring structure from being resolved microscopically. 

B) Density of axis components on circular ExChrs. TOP: For each of the two ExChr-

bearing strains depicted, the large images on the right show portions of nuclei from 

partially spread gonads prepared using conditions that preserve SCs, stained for HTP-

3, COH-3/4 and SYP-1. At the left, schematic representations of the DNA composition 

of meEx001 and oxEx1578 are presented together with SIM images of individual 

cropped ExChrs stained for HTP-3 and H3K9me2. BOTTOM: Quantification of axis foci 

on ExChrs in fully-spread nuclei stained for either REC-8 or COH-3/4 together with HTP-

3. In the graphs, each data point represents a single ExChr, with the X-axis indicating 

the numbers of REC-8 or COH-3/4 foci and the Y-axis indicating the numbers of HTP-3 

foci counted on that ExChr. All data acquired are presented.  For both ExChrs examined, 

the numbers of HTP-3 and REC-8 or COH-3/4 foci are strongly correlated (p<0.001) 

and the slopes of the linear regression lines are near to 1 (for meEx001 REC-8 vs. HTP-

3, r = .85, slope = .79; for meEx001 COH-3/4 vs. HTP-3, r = .88, slope = .84; for 

oxEx1578 REC-8 vs. HTP-3, r = .94, slope = .76; for oxEx1578 COH-3/4 vs. HTP-3, r = 

.76, slope = .79). Further, in three of the four cases, a line with slope = 1 falls within the 

95% confidence interval for the slope of the linear regression line (indicated by the gray 

shaded area), consistent with a near 1:1:1 correspondence between HORMAD, REC-8 

and COH-3/4 foci, as observed for spread chromosome segments depicted in FIG1.  

Thus, we infer that axis organization on the ExChrs is similar to that observed for normal 

chromosomes. 

 

Figure 2.  Quantitation of numbers of chromosome axis proteins present in 
individual axis module foci.  A) Sample SIM image of a fully-spread nucleus from a 

worm expressing both REC-8::GFP and REC-8::3xFLAG, immuno-stained for HTP-3, 

FLAG and GFP; all REC-8 molecules present harbor one or the other tag. (In this case, 

the specimen was stained sequentially: anti-GFP was applied first, followed by 

secondary detection, before primary and secondary immuno-detection of HTP-3 and 

FLAG; also see FIG2S1A). Although GFP and FLAG signals both localize to 

chromosome axes (marked by HTP-3, left), they do not colocalize with each other. 
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Coloc2 analysis using ImageJ confirmed little to no colocalization of FLAG and GFP by 

pixel intensity-based assessment (n=28 nuclei). 

B) Comparing the total amounts of chromatin-bound SMC-1 and REC-8. Gonads from 

worms expressing either SMC-1::3xFLAG and mEos::HIM-3 (labeled as “GFP” in the 

figure to illustrate acquisition in the green channel) or REC-8::3xFLAG and GFP::COSA-

1 were spread together on the same slides, immuno-stained for HIM-3 and FLAG, and 

imaged together using the same conditions. GFP::COSA-1 and mEos::HIM-3 served as 

internal markers to identify the genotypes of the nuclei being imaged; for the example 

nuclei depicted, similarities and difference in fluorescence intensities for HIM-3 and FLAG 

signals are illustrated using the indicated color scheme (generated using the Fire LUT 

from ImageJ).  Graph indicates the total FLAG fluorescence measured in ROIs 

surrounding individual nuclei in SUM intensity projections; each data point represents a 

single nucleus. For each genotype, 6 late pachytene nuclei each from 4 different gonads 

were assayed. All values obtained are displayed, with no normalization applied. The ratio 

of the average total fluorescence values is 1 REC-8::3xFLAG : 3.94 SMC-1::3xFLAG. 

C) Inferred number of SMC-1 molecules in individual axis foci. The total fluorescence 

for SMC-1::HA, REC-8::GFP and COH-3/4 was measured in individual 800x800 nm ROIs 

surrounding individual foci in SUM intensity projections of fully-spread nuclei; each data 

point represents the total fluorescence of SMC-1::HA in a single focus. As indicated in the 

cropped image on the top, SMC-1 foci were categorized as: localizing with COH-3/4, but 

not REC-8 (blue, left in the graph), localizing with both COH-3/4 and REC-8 (red, middle 

in the graph), or localizing with REC-8, but not COH-3/4 (green, right). All values obtained 

are plotted in the graph on the bottom. The Y-axis (representing arbitrary fluorescence 

units) is normalized to the mean fluorescence of SMC-1 foci that only localize with a REC-

8 focus, but not with a COH-3/4 focus; this value is set to 1, as we consider REC-8 foci 

to represent single cohesin complexes. 

D) Sample images (top) and quantitative data (graph and table) for experiments 

measuring fluorescence intensities of individual foci in parallel for pairwise combinations 

of axis proteins. Nuclei from worms expressing 3xFLAG::HTP-3::GFP and nuclei from 

worms expressing REC-8::GFP, HTP-1::GFP or GFP::HIM-3 were spread together on the 

same slides, immuno-stained for GFP and FLAG, and imaged together using the same 
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conditions. Presence or absence of FLAG staining (blue in the sample images) was used 

to identify the genotype of the nuclei; asterisks indicate unspread nuclei of the same 

genotype that were present in the same field. Total fluorescence was measured in 

400x400 nm ROIs surrounding well-separated individual foci in SUM intensity projections; 

each data point represents a single focus. Different pairwise data sets were normalized 

to each other using the mean fluorescence of HTP-3::GFP foci as a normalization 

standard. The Y-axis (representing arbitrary fluorescence units) is normalized to mean 

REC-8::GFP = 1, as we consider REC-8 foci to represent single molecules. 

 

Figure 2S1. Supporting evidence for quantification of cohesin molecules.  A) SIM 

images of partially-spread nuclei from a worm expressing both REC-8::GFP and REC-

8::3xFLAG, immuno-stained for HTP-3, FLAG and GFP. TOP: All primary antibodies 

(anti-FLAG, ant-GFP and anti-HTP-3) were applied at the same time. Center panel was 

generated using ImageJ plugin “ColocThreshold”, with white indicating the rare pixels 

with significant FLAG and GFP colocalization. BOTTOM: For the nucleus depicted, the 

specimen was stained sequentially: anti-FLAG was applied first, followed by secondary 

detection, before primary and secondary immuno-detection of HTP-3 and GFP (the 

opposite staining order was presented in FIG2A). Importantly, in all three orders in which 

the experiment was performed (sequential staining in both directions and simultaneous 

co-staining with all primary antibodies), GFP and FLAG both localize to chromosome 

axes (marked by HTP-3) in similar numbers, but they do not colocalize with each other, 

ruling out antibody exclusion artifacts. 

B) COH-3/4 and SMC-1 fluorescence values correlate with each other in fully spread 

nuclei from worms expressing SMC-1::HA. LEFT: SIM image of well-spread 

chromosome segments in which relative intensities of immuno-fluorescence signals are 

depicted using the indicated color scale, illustrating the strong similarity between the 

fluorescence intensity patterns for COH-3/4 (top) and SMC-1::HA (bottom). RIGHT: 

Graph plotting fluorescence values for SMC-1::HA (x-axis) and COH-3/4 (Y-axis) in 

800x800 nm ROIs centered on individual axis foci from SUM projected, wide-field 

images. R2 value reflects a strong positive correlation between SMC-1 and COH-3/4 

fluorescence values in individual foci. 
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Figure 2S2. Assessment of relative levels of chromosome-associated HORMAD 
proteins in whole nuclei. A) SUM-projected non-deconvolved wide field images (left) 

of leptotene nuclei from partially-spread gonads from 3xFLAG::HTP-3::GFP and 

GFP::HIM-3 expressing worms processed in parallel for immuno-fluorescence on the 

same slide. Each data point in the graph (right) represents the total fluorescence in a 

single nucleus. 

B) Fully-spread nuclei from worms expressing 3xFLAG::HTP-3::GFP and from worms 

expressing HTP-1::GFP (either in the presence or absence of HTP-2) were prepared as 

in Figure 2D on the same slide (example image on the left). Nuclei were stained 

sequentially for GFP and COH-3/4, followed by detection of the FLAG epitope to identify 

the nuclei expressing 3xFLAG::HTP-3::GFP. Total immuno-fluorescence signals for 

GFP (green channel) and COH-3/4 (far-red channel) were measured in ROIs drawn 

around each individual nucleus. Each data point in the graph represents the ratio of total 

GFP signal : total COH-3/4 signal for a single nucleus (to account for differences in the 

degree of spreading of individual nuclei). Data for the two experiments were normalized 

to each other using the mean value for HTP-3::GFP  as a normalization standard; HTP-

3::GFP values for only one of the two experiments are presented in the graph. 

C) SUM intensity projections of non-spread WT gonads stained for DAPI, HTP-3 and 

HTP-1/2, or DAPI, HTP-3 and HIM-3; the gonads were divided as depicted into nineteen 

equal-sized, half-overlapping ROIs from the mitotic tip to start of cellularization (late 

diplotene). For each HORMAD being evaluated (HTP-3, HIM-3 or HTP-1/2), the ratio of 

total immuno-fluorescence signal / total DAPI signal was determined for each ROI.  For 

the plots of relative fluorescence (for each HORMAD) over the course of meiotic 

prophase progression, measured values were normalized to the average value for the 

set of ROIs spanning from the onset of meiotic prophase (ROI 6) through the end of the 

pachytene stage (ROI 16-17). Two gonads were averaged for each staining. Note that 

HTP-3 levels remain stable over the course of meiotic prophase, whereas HTP-1/2 and 

HIM-3 levels increase. 
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Figure 3.  Non-random distribution of functionally and structurally distinct cohesin 
complexes.  
A) Reduction in chromosome-associated REC-8 cohesion-conferring complexes occurs 

concurrently with axis formation. LEFT: Deconvolved wide-field images of a partially 

spread gonad from a worm expressing REC-8::GFP, stained for GFP, COH-3/4 and 

DNA, illustrating that COH-3/4 becomes detectable on chromatin at leptotene entry and 

REC-8 signal intensity drops concurrently. As nuclei in this region of the gonad move 

approximately one row every 40 minutes (Rosu and Cohen-Fix, 2017), the fact that 

nuclei with medium levels of COH-3/4 or REC-8) are rarely observed suggests that this 

is a rapid transition. RIGHT: Quantitation of total REC-8 or COH-3/4 fluorescence in 

nuclei at pre-leptotene and leptotene/zygotene stages, measured using SUM 

projections of 3D-stiched gonads. Each data point represents a single nucleus; for each 

of the 4 gonads analyzed for each kleisin, fluorescence levels were normalized to 100 

for the mean fluorescence in pre-leptotene nuclei for REC-8 and for the mean 

fluorescence in leptotene/zygotene nuclei for COH-3/4. REC-8 fluorescence drops at 

leptotene entry to half its pre-leptotene levels. The images below the graph illustrate the 

drop in REC-8 using the indicated color scale to depict fluorescence signal intensity and 

boxes to indicate the regions of the gonad where fluorescence was quantified. 

B) Non-random, alternating distribution of cohesin complexes containing different kleisin 

subunits along chromosome axes. TOP: SIM image of axis segments from a fully-

spread prophase nucleus, illustrating lack of colocalization of COH-3/4 and REC-8. 

MIDDLE: Graphical representation of automated signal peak calling for a sample Z-

projected straightened single axis, illustrating that the positions of REC-8 and COH-3/4 

peaks usually do not coincide. Each line in the in the table below represents such a 

single, Z-projected and straightened axis segment, with R indicating REC-8 foci and C 

indicating COH-3/4 foci. Yellow indicates that both direct neighbors of a given kleisin 

focus are of the other kleisin type. Red (COH-3/4) or green (REC-8) indicates that the 

indicated focus has one like neighbor and one different neighbor. Darkening red or 

green represent more than two kleisins of the same kind in a row. Orange represents 

two, non-resolvable REC-8 and COH-3/4 signal peaks (such as the first signal peak in 

top, right). Axis segments are sorted by the number of cohesin foci (indicated at the 
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right); all analyzed segments are presented (n = 18 segments from 3 nuclei). REC-8 

and COH-3/4 foci alternate with each other in a highly non-random fashion (e.g.: 

stretches of three or more of the same kleisin were observed much less frequently than 

expected for a random distribution (10 observed vs. 131 expected; p<0.00001, chi-

square test,  www.socscistatistics.com). BOTTOM: Example of simulated data obtained 

using 50% C and 50% R as input for https://www.random.org/lists. 

C) Evidence for association of COH-3/4 cohesin complexes with individual chromatids. 

RIGHT TOP: SIM image of SYP-1, HTP-3 and COH-3/4 immuno-staining in three 

meiotic prophase nuclei from a rec-8 mutant gonad; all three nuclei shown display a 

combination of SCs and unsynapsed chromosomes. MIDDLE: Tracings of individual 

SCs from the above nuclei; blue numbers indicate the total number of SCs in each 

nucleus. BOTTOM: Nuclei with SCs pseudo-colored in blue together with images of 

unsynapsed chromosome axes (marked with HTP-3 and COH-3/4); green numbers 

indicate the number of unsynapsed chromosome axes present in each individual 

nucleus. When unsynapsed chromosome stretches were detected in the rec-8 mutant, 

they were consistently present in even numbers. Moreover, in nuclei where all SCs and 

unsynapsed axes could be reliably traced, we found that 2 x (the number of SCs) + (the 

number of unsynapsed axes) = 24, corresponding to the total number of chromatids 

present.  Based on these numbers (and SC lengths measuring approximately 75-80% 

the lengths of normal SCs, see FIG3S1C), we infer that SCs form between sister 

chromatid pairs in the rec-8 mutant and that unsynapsed chromosome stretches 

correspond to individual chromatids. 

 

Figure 3S1. Functional distinctions between REC-8 and COH-3/4 cohesin 
complexes. A) SIM images of HORMAD proteins and REC-8 in partially spread meiotic 

prophase nuclei from the coh-3 coh-4 mutant, illustrating the requirement for COH-3/4 

in axis organization. HORMADs and REC-8 still bind to chromatin in this mutant, but the 

high degree of colocalization between HTP-3, HTP-1/2 and REC-8 seen in the WT is 

not observed and continuous axes do not form. 

B) Reduction in chromosome-associated REC-8 cohesion-conferring complexes occurs 

independently of installation of COH-3/4 axis-organizing cohesins. Non-spread gonads 
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from WT, coh-3/4 and wapl-1 worms, with relative intensities of REC-8 immuno-

fluorescence signals illustrated using the indicated color scale. The drop of REC-8 levels 

observed in the WT does not depend on the loading of COH-3/4, as it still occurs in their 

absence. However, a drop in REC-8 levels does not occur in the wapl-1 mutant. 

C) SIM images of individual chromosomes from partially-spread meiotic prophase nuclei 

prepared using conditions that preserve association of SC central region proteins and 

maintain inter-axis distances comparable to in situ preparations (Woglar and Villeneuve, 

2018). Left, Representative example images of SCs in a WT pachytene nucleus, 

provided  together with traces of the paths of individual SCs that were generated using 

the ImageJ plugin “Simple Neurite Tracer” (Longair et al., 2011), illustrating that the 

paths of all six individual synapsed chromosome pairs can be reliably traced in 3D using 

this approach.  Right, Example images of SCs of straightened chromosomes, indicating 

the average lengths of wild-type early pachytene SCs (identified based on the presence 

of multiple recombination foci [marked by RPA and BLM] per SC), wild-type late 

pachytene SCs (which have a single bright COSA-1-marked crossover site focus per 

SC), and the inter-sister SCs that are formed in a rec-8 mutant. 

 

Figure 4. Model for chromosome axis organization and evidence for asymmetry 
between sister chromatid loops. A) LEFT: A quantitative model for chromosome axis 

module composition, stoichiometry, and density derived from the data presented here and 

in (Kim et al., 2014). RIGHT: Model of chromosome axis organization based on the data 

presented; see text for description. 

B) Schemata explaining the experimental strategy for determining whether the 

chromosome loops that form on a pair of sister chromatids are “symmetric” (same size, 

same genomic position) or “asymmetric” (different sizes, different genomic position), by 

measuring the relative distances between a specific genomic position (on each 

chromatid) and the chromosome axis.  The specific genomic position assayed is the 

junction point between two consecutive 200 kbp FISH probes on chromosome II (probe 

A1 targets II..11.5-11.7 Mbp ; probe A2 targets II..11.7-11.9). 

C) Schematic illustrating the use of mIn1, a rearranged version of chromosome II 

harboring an 8.2 Mbp internal inversion, for assessment of sister chromatid loop 
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relationships. mIn1 heterozygosity results in wide (>7Mbp) separation between the FISH 

signals for the normal and rearranged homologs, thereby enabling assessment of sister 

chromatid signals. 

D) Immuno-FISH evidence for asymmetry between sister chromatid loops. Images 

shown are two examples of individually cropped heterozygous mIn1 bivalents, immuno-

stained for HTP-3 and hybridized with FISH probes A1 and A2. These examples 

illustrate the three categories of FISH signals scored; sister chromatid loops were scored 

as “asymmetric” when the distances (measured in 3D) from the two FISH probe junctions 

to the axis differed by greater than 400 nm.  Graph on the right indicates the percent of 

FISH signals for each category. For this quantification, we analyzed all FISH signals 

localizing in the minimally disrupted, non-adhered portion of the nuclei of one gonad 

prepared using partially spreading conditions (see FIG4S1). For 8% (7/88) of these sites, 

an unambiguous meeting point of the two FISH probes could not be determined, either 

because the detection for one of the two probes failed or because signals for one probe 

were splintered (potentially due to preparation artifacts). The graph reports scoring for the 

remaining 81/88 sister pairs that could be analyzed.  

 

Figure 4S1: Adhered vs. non-adhered side in partially spread nuclei. Illustration 

indicating which side of the nucleus was assayed to determine the distances between 

FISH signal junctions and the chromosome axis in FIG4D. The side of the nucleus that 

adheres to the glass (magenta frame, left) in the partial spreading procedure is visibly 

more flattened than the non-adhering side (green frame, right). Moreover, adherence of 

chromatin/DNA to the glass slide itself potentially introduces artifacts affecting 

DNA/chromatin organization. Therefore, only FISH signals that were associated with 

chromosome segments in the non-adhering side of the nucleus were assayed for 

FIG4D. 

 

MATERIALS AND METHODS: 

C. elegans culture conditions: 

Worms were grown on E. coli (OP50) seeded NG agar plates at 20˚C according to the 

standard method (Stiernagle, 2006). For experiments, worms were either selected as 
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homozygous L4 larvae (from heterozygous strains maintained using balancer 

chromosomes) or were harvested as staged L1 larvae following bleaching of gravid adults 

(for strains maintained as homozygotes) according to: (Stiernagle, 2006) and were 

analyzed 24-36 hours post L4 stage. For experiments using two tagged versions of REC-

8 (Fig 3A) ATGSi23 (rec-8::GFP; rec-8 (null)) hermaphrodites were mated with CA1481 

(rec-8::3xFLAG) males, and leptotene/zygotene nuclei of F1 heterozygous 

hermaphrodites, which expressed both REC-8 tagged proteins (and no untagged REC-

8), were analyzed 36 hours post L4 stage. 

 

C. elegans strains used in this study: 

- N2 

- ATGSi23: fqSi23[Prec-8::rec-8:::GFP::rec-8 3’UTR + cb-unc-119(+)] II; rec-

8(ok978) IV 

- CA1481: mels8[Ppie-1::GFP::cosa-1 + cb-unc-119(+)] II; rec-8(ie35[rec-

8::3xFLAG]) IV 

- TY4986: htp-3(y428) ccls4251 I/hT2 (I, III) 

- ATG98: wapl-1(tm1814) IV/nt1[qIs51] (IV,V) 

- TY5120: +/nT1 IV; coh-4(tm1857) coh-3(gk112) V/nT1[qls51] (IV;V) 

- VC666: rec-8(ok978) IV/nT1[qls51] (IV;V) 

- AV1079: meEx001; rec-8(ok978)/nT1[qls51] (IV;V) 

- EG699: ttTi5605 II; unc-119 (ed3); oxEx1578 

- CA1282: him-3(ie114[gfp::him-3]) IV 

- CA1437: htp-3(tm3655) I; ieSi62[Phtp-3::3×Flag::htp-3::GFP::htp-3 3′UTR + unc-

119(+)] II; him-3(ie33[mEos2::him-3]) IV 

- ATGSi43: fqSi37[htp-1::GFP cb-unc-119(+)] II; htp-1(gk174) IV 

- AV1080: fqSi37[htp-1::GFP cb-unc-119(+)] II; htp-1(gk174) htp-2(tm2543) IV 

- AV1088:  smc-1(ie39[smc-1::intHA]) I; fqSi23[Prec-8::rec-8:::GFP::rec-8 3’UTR + 

cb-unc-119(+)] II; rec-8(ok978) IV 

- VC1474: top-2(ok1930)/mIn1[mls14 dpy-10(e128)] II  

- CA1432: smc-1(ie36[smc-1::3xFlag]) I; mels8[Ppie-1::GFP::cosa-1 + cb-unc-

119(+)] II; him-3(ie33[mEos2::him-3]) IV 
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Microinjection of C. elegans: 

Microinjection was performed using a FemtoJet 4i injector system (Eppendorf) and an 

Axiovert 10 microscope (Zeiss). Injection mixes contained a total of 100ng DNA in 

distilled water. The injection mix for meEx001 contained the dominant selection 

plasmids pGH8 (prab-3::mCherry::unc-54_3’UTR, 2.5ng) and pBR186 (modified from 

pDD282, includes sqt-1p::sqt-1(e1350):: sqt-1_3’UTR _hsp16::Cre::tbb-2_3’UTR_rps-

11p::HygR::unc-54_3’UTR,  2.5ng) in addition to 95 ng E. coli (OP50) DNA, isolated by 

standard protocols, sonicated and size-selected for fragments of 1-5 kb by agarose gel 

purification. 

 

Full spreading and staining of nuclei: 

Worms were staged by bleaching, grown at 20˚C and harvested 24-36h post L4 stage 

(pelleted by gravitation), washed 3 times in 0.35x nuclear purification buffer (NPB; 3.5 

mM HEPES pH 7.5, 14 mL NaCl, 31.5 mM KCl, 0.07 mM EDTA, 0.175 mM EGTA, 0.07 

mM DTT, 0.035% Triton X-100). The resulting worm pellet was mixed with 1 volume 0.35x 

NBP and frozen as worm beads by dropping 50 μl drops of NBP-worm slurry into liquid 

nitrogen. 2-10 beads were ground for 10 seconds using a liquid nitrogen cooled mortar 

and pestle. The ground tissue was transferred into a 50 ml Falcon tube with a kitchen 

spoon, thawed and pipetted up and down several times to release nuclei. 5 μl of this 

suspension was applied on an EtOH-washed 22x40mm coverslip. 50μl of spreading 

solution (see below) was added and nuclei were immediately distributed over the whole 

coverslip using a pipette tip. Coverslips were left to dry at room temperature 

(approximately 1 hour) and post-dried for two more hours at 37°C, washed for 20 minutes 

in methanol at -20°C and rehydrated by washing 3 times for 5 minutes in PBS-T. A 20-

minute blocking in 1% w/v BSA in PBS-T at room temperature was followed by overnight 

incubation with primary antibodies at 4°C (antibodies diluted in: 1% w/v BSA in PBS-T 

supplied with 0.05% w/v NaN3). Coverslips were washed 3 times for 5 minutes in PBS-T 

before secondary antibody incubation for 2 hours at room temperature. After PBS-T 

washes, the nuclei were immersed in Vectashield (Vector) and the coverslip was mounted 

on a slide and sealed with nail polish. Spreading solution: (for one coverslip, 50μl): 32μl 
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of Fixative (4% w/v Paraformaldehyde and 3.2–3.6% w/v Sucrose in water), 16μl of Lipsol 

solution (1% v/v/ Lipsol in water), 2μl of Sarcosyl solution (1% w/v of Sarcosyl in water). 

 

Partial spreading and staining of nuclei: 

Partial spreading of C. elegans gonads was performed as in (Pattabiraman et al., 2017). 

The gonads of 20–100 adult worms were dissected in 5μl dissection solution (see below) 

on an EtOH-washed 22x40mm coverslip. 50μl of spreading solution (see above) was 

added and gonads were immediately distributed over the whole coverslip using a pipette 

tip. Coverslips were left to dry at room temperature (approximately 1 hour) and post-dried 

for two more hours at 37°C, washed for 20 minutes in methanol at -20°C and rehydrated 

by washing 3 times for 5 minutes in PBS-T. A 20-minute blocking in 1% w/v BSA in PBS-

T at room temperature was followed by overnight incubation with primary antibodies at 

4°C (antibodies diluted in: 1% w/v BSA in PBS-T supplied with 0.05% w/v NaN3). 

Coverslips were washed 3 times for 5 minutes in PBS-T before secondary antibody 

incubation for 2 hours at room temperature. After PBS-T washes, the nuclei were 

immersed in Vectashield (Vector) and the coverslip was mounted on a slide and sealed 

with nail polish. Dissection solution: For Figures 1A, 1S1, 1S2A, 2S2A, 3B, 3S1A, 4D and 

4S1 gonads were dissected in 10-30% v/v Hank’s Balanced Salt Solution (HBSS, Life 

Technology, 24020-117) with 0.1% v/v Tween-20. For Figures 1S2B, 2S2C, 3C, 3S1B 

and 3S1D gonads were dissected in 50-85% v/v Hank’s Balanced Salt Solution (HBSS, 

Life Technology, 24020-117) with 0.1% v/v Tween-20. 

 

Antibodies used in this study: 

The following primary antibodies used: Chicken anti-HTP-3 (1:500) (MacQueen et al., 

2005), chicken anti-GFP (1:2000) (Abcam), mouse anti-GFP (1:500) (Roche), rabbit anti-

GFP (1:500) (Yokoo et al., 2012), mouse anti-HA (1:1000) (Covance/Biolegend), guinea 

pig anti-SYP-1 (1:200) (MacQueen et al., 2002), mouse anti-H3K9me2 (1:500) (Abcam), 

rabbit anti-SMC-1 (1:200) (Chan et al., 2003), rabbit anti-COH-3/4 (1:5000) (Severson 

and Meyer, 2014), rabbit anti-REC-8 (1:10000) (Novus Biologicals), rabbit anti-HIM-3 

(1:200) (Zetka et al., 1999), rabbit anti-HTP-1/2 (1:500) (Martinez-Perez et al., 2008) and 

mouse anti-FLAG (1:200) (Sigma). 
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Secondary antibodies conjugated to Alexa dyes 405, 488, 555 or 647, obtained from 

Molecular Probes, were used at 1:500 dilution (Alexa 488 and 555), 1:200 (Alexa 647) 

and 1:100 (Alexa 405). In cases where antibodies raised in mouse and guinea pig were 

used on the same sample, we used highly cross-absorbed goat anti-mouse secondary 

antibodies, obtained from Biotum (conjugated to CF488, or CF555 respectively) for 

secondary detection of the mouse primary antibody in order to avoid cross-reaction 

against antibodies raised in guinea pig. 

 

Imaging: 

Imaging, deconvolution and 3D-SIM reconstruction were performed as in (Pattabiraman 

et al., 2017). Wide field (WF) images were obtained as 200 nm spaced Z-stacks, using a 

100x NA 1.40 objective on a DeltaVison OMX Blaze microscopy system, deconvolved 

and corrected for registration using SoftWoRx. Subsequently, gonads were assembled 

using the “Grid/Collection” plugin (Preibisch et al., 2009) in ImageJ. For display, pictures 

were projected using maximum intensity projection in ImageJ. 3D-Structured Illumination 

microscopy images were obtained as 125 nm spaced Z-stacks, using a 100x NA 1.40 

objective on a DeltaVison OMX Blaze microscopy system, 3D-reconstructed and 

corrected for registration using SoftWoRx. For display, images were projected using 

maximum intensity projection in ImageJ or SoftWoRx. For display in figures, contrast and 

brightness were adjusted in individual color channels using ImageJ. 

 

Manual quantification of axis foci: 

Axis foci were counted manually on 32-bit Z-projected SIM images. For this analysis, 

foci are defined as fluorescence signals that 1) display individual maxima in non-

overlapping ROIs ³ 3x3 pixels in size and 2) were at least five times brighter than 

background average (with most ranging from 10-100 times brighter than background). 

 

Quantitation of relative levels of chromosome axis proteins present in individual axis 

modules: 

Nuclei from worms expressing 3xFLAG::HTP-3::GFP and nuclei from worms expressing 

REC-8::GFP, HTP-1::GFP or GFP::HIM-3 were isolated in parallel, mixed, and spread 
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together on the same slides. GFP was labeled using primary and secondary antibodies 

prior to primary and secondary detection of the FLAG epitope to identify the nuclei 

expressing 3xFLAG::HTP-3::GFP, and nuclei on the same slide were imaged in parallel 

using the same conditions. SUM intensity projections were generated from non-

deconvolved 32-bit images, and total fluorescence was measured in 400x400 nm ROIs 

surrounding well-separated individual foci. Fluorescence measurements were made for 

25-70 well-separated foci per nucleus (4-9 nuclei for each axis component); each data 

point represents a single focus. Different pairwise data sets were normalized to each 

other using the mean fluorescence of HTP-3::GFP foci as a normalization standard. The 

Y-axis (representing arbitrary fluorescence units) is normalized to mean REC-8::GFP = 

1, as we consider REC-8 foci to represent single molecules. 

 

Assessing localization of REC-8 and COH-3/4 on straightened axes: 

Axis segments that did not twist around the homologous partner locally and were not 

spread on top of each other in maximum intensity Z-projected SIM images were 

manually traced and straightened using the ImageJ ‘’Segmented Line Tool” and 

“Selection straighten” operation as a 10 pixel-wide band. Signal peaks in individual 

channels were manually identified and marked as a single pixel along the band. The 

individual channels were analyzed separately, and the outputs were overlaid prior to 

manual readout of the spatial relationships of peak positions, resulting in the graphs 

presented in Figure 3. 

 

Colocalization analysis using Coloc2: 

Colocalization was assessed by evaluating the correlation of pixel intensities over 

space using the Coloc2 plugin of ImageJ. R values around 0 indicated lack of 

colocalization while an R value of 1 would indicate 100% colocation of signals in two 

channels, with their intensities completely correlated. 32-bit images were cropped and 

transformed into 8-bit single channels images. Background was subtracted in ImageJ 

using the sliding paraboloid background subtraction operation before running the 

Coloc2 analysis. 
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3D-tracing of chromosomes: 

32-bit SIM images obtained from high salt spreads were transformed first into RBG color 

images and then into monochrome 8-bit images. In such images, individual chromosomes 

were traced using the “Simple Neurite Tracer” plug-in of ImageJ (Longair et al., 2011). 

For display and straightening of individual chromosomes, each individual chromosome 

path was exported as an 8-bit two-color mask with the “Fill Out” function of the “Simple 

Neurite Tracer”. This mask was used to crop the individual chromosome in 3D from an 

RGB stack. These pictures were projected in Z and straightened using ImageJ 

‘’Segmented Line Tool” and the “Selection straighten” operation. 

 

Immuno-FISH and probe generation: 

The oligopaint library was designed, FISH probes were generated and primary 

hybridization was performed as in (Mateo et al., 2019). After post-fixation, the sample 

was blocked in 1% w/v BSA in PBS-T at room temperature and further incubated 

overnight with primary antibodies at room temperature (antibodies diluted in: 1 % w/v 

BSA in PBS-T supplied with 0.05% w/v NaN3). Coverslips washed 3 times for 5 minutes 

in PBS-T and blocked again in 1% w/v BSA in PBS-T. Coverslips were incubated with 

secondary antibodies for 2 hours at room temperature, and subsequently washed 3 

times for 5 minutes in PBS-T. After the PBS-T washes, the coverslips were incubated 

with a secondary probe solution for 15 minutes. This solution consisted of: 50-nt 

complementary ‘readout’ oligos (0.1 nM) bound to a either a 20-nt Cy5-labeled or Cy3-

labeled ‘imaging’ oligo (Cy5-5p-TGGGACGGTTCCAATCGGATC or Cy3-5p-

ACCTCCGTTAGACCCGTCAG (0.12 nM)) in 25% ethylene carbonate and 2X SSC 

buffer. In order to label 200 Kb, the ‘adaptor 1 readout’ oligos 1-20, and ‘adaptor 2 

readout’ oligos 21-40 were respectively pooled and labeled with either the Cy3 or Cy5-

marked ‘imaging’ oligos. Coverslips were washed with 30% formamide in 2X SSC for 

two minutes, before 3 washes for 2 minutes each in 2X SSC. Finally, coverslips were 

mounted in Vectashield with DAPI. 
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