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ABSTRACT

Synovial sarcoma is an aggressive mesenchymal neoplasm, driven by the SS18-SSX fusion, and
characterized by immunogenic antigens expression and exceptionally low T cell infiltration levels.
To study the cancer-immune interplay in this disease, we profiled 16,872 cells from 12 human
synovial sarcoma tumors using single-cell RNA-sequencing (scRNA-Seq). Synovial sarcoma
manifests antitumor immunity, high cellular plasticity and a core oncogenic program, which is
predictive of low immune levels and poor clinical outcomes. Using genetic and pharmacological
perturbations, we demonstrate that the program is controlled by the SS18-SSX driver and repressed
by cytokines secreted by macrophages and T cells in the tumor microenvironment. Network
modeling predicted that SS18-SSX promotes the program through HDAC1 and CDK6. Indeed,
the combination of HDAC and CDK4/6 inhibitors represses the program, induces immunogenic
cell states, and selectively targets synovial sarcoma cells. Our study demonstrates that immune
evasion, cellular plasticity, and cell cycle are co-regulated and can be co-targeted in synovial

sarcoma and potentially in other malignancies.
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INTRODUCTION

Therapeutic strategies harnessing the cytotoxic capacity of the adaptive immune response to target
tumor cells have radically changed clinical practice, but response varies dramatically across
patients and tumor types (1,2). Cancer types with defined genetics and exceptionally low T cell
infiltration levels could help provide clues to some of the immune escape mechanisms underlying

lack of response to immune therapies.

One such cancer type is synovial sarcoma (SyS) (3), a highly aggressive mesenchymal neoplasm
that accounts for 10-20% of all soft-tissue sarcomas in young adults (4). SyS tumors homogenously
express several immunogenic cancer-testis antigens (CTAs) (5-8), which are recognized by
circulating T cells in the peripheral blood of SyS patients (5—7). Nonetheless, T cell infiltration
remains exceptionally low in these tumors, suggestive of yet unidentified immune evasion

mechanisms.

The cellular plasticity (4), stem-like features (9,10), and unique genetics of SyS may explain its
exceptional ability to escape immune surveillance despite the expression of immunogenic
antigens. SyS is invariably driven by the SS18-SSX oncoprotein — where the BAF subunit SS18
is fused to SSX1, SSX2 or, rarely, SSX4 (11). The BAF complex, the mammalian ortholog of
SWI/SNF, is a major chromatin regulator (11), which has been previously shown to mediate
resistance to immune checkpoint blockade in melanoma and renal cancer (12,13). SSX genes are
a family of CTAs involved in transcriptional repression (14-17). The resulting SS18-SSX
oncoprotein leads to massive dysregulation of the chromatin architecture and transcriptional

regulation (11,18-20), generating a spectrum of malignant cellular morphologies (4), including
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epithelial-like malignant cells (in biphasic tumors), suggestive of pluripotential differentiation or

mesenchymal to epithelial transitions.

Studies of human SyS to date have either relied on bulk tissue (21,22) or on established cellular
models (11,18,19), masking important aspects of the tumor ecosystem. Moreover, given this
cancer’s rarity, even concerted efforts, such as TCGA, profiled only limited numbers of tumors
(21-23). Here, we leveraged single-cell RNA-Seq (scRNA-Seq), imaging, functional
perturbations, and computational modeling, to study the cancer-immune interplay in SyS. We
profiled 16,872 cells from 12 human SyS tumors by scRNA-seq and demonstrate that SyS tumors
invariably include a subpopulation of cells expressing a novel core oncogenic program, associated
with T cell exclusion. The core oncogenic program is predictive of poor prognosis and is repressed
by the genetic inhibition of the SS18-SSX fusion, and by cytokines expressed by T cells and
macrophages in the tumor microenvironment. HDAC1 and CDK6 are a key regulator and target
of this aggressive cell program, respectively, and their combined inhibition synergistically
represses it in SyS cells, triggering antigen presentation and cell autonomous immune responses.
Collectively, our findings demonstrate a strong connection between SyS development and immune
evasion, and strengthen the notion that de-differentiation, immune evasion, and cell cycle are co-
regulated, such that cellular immunity can be targeted through modulation of cell cycle and

epigenetic processes.

RESULTS

Cell type inference from expression and genetic features in scRNA-seq of SyS
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To comprehensively interrogate the SyS ecosystem, we used full-length (24) and droplet-based
(25) scRNA-Seq to profile 16,872 high quality malignant, immune, and stromal cells from 12
human SyS tumors (Fig. 1A,B, Supp. Fig. 1A,B, Supp. Table 1, Methods). We assigned cells to
different cell types according to both genetic and transcriptional features (Fig. 1B-G, Supp. Fig.
1, Methods): (1) expression-based clustering and post hoc annotation of non-malignant clusters
based on canonical cell type markers (Fig. 1C, Supp. Fig. 1A, Supp. Table 2); (2) detection of
the SS78-SSX fusion transcripts (26) (Fig. 1D); (3) inference of copy number alterations (CNAs)
from scRNA-Seq profiles (27) (Fig. 1E), which we validated in four tumors by bulk whole-exome
sequencing (WES) (Fig. 1G); and (4) similarity of cells to bulk expression profiles of SyS tumors
(Methods) (23) (Fig. 1F). The four approaches were highly congruent (Supp. Fig. 1A). For
example, the fusion was detected in 58.6% of cells inferred as malignant by other analyses, but
only in 0.89% of non-malignant cells. Notably, SSX1/2 expression was also very specific to
malignant cells, with a detection rate of 66.64% and 1.49% in the malignant and non-malignant
cells, respectively (Supp. Fig. 1A, “SSX1/2 detection”). Similarly, CNAs were detected only in
cells that were assigned as malignant by the other analyses (Fig. 1E,G), and the SyS similarity
scores distinguished between malignant and non-malignant cells (as defined by the other methods)
with 100% accuracy (Fig. 1F, Supp. Fig. 1C). Cells discordant across these criteria (< 0.05%)
were excluded from all downstream analyses. Notably, in one of the tumors we identified an

additional malignant-specific fusion between MEOX2 and AGMO (Supp. Fig. 1A).

We assigned the cells to nine subsets (Fig. 1C): malignant cells, non-malignant endothelial cells,
Cancer Associated Fibroblasts (CAFs), CD8 and CD4 T cells, B cells, Natural Killer (NK) cells,

macrophages, and mastocytes, and generated signatures for each subset (Supp. Table 2, Supp.
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Fig. 1D). Malignant cells primarily grouped by their tumor of origin, while their non-malignant
counterparts (immune and stroma) grouped primarily by cell type (Fig. 1B,C), as we have
observed in other tumor types (28-30). The malignant cells of each of the biphasic (BP) tumors
(SyS1 and SyS12) formed two distinct subsets — epithelial and mesenchymal — which clustered
together with malignant cells of the other biphasic tumor (Fig. 1B,C, black, cyan and magenta

dots, Methods). We next focused on characterizing the states of immune cells in SyS.

Evidence of antitumor immune activity despite low immune infiltration

The lack of effective antitumor immunity in SyS may results from: either the inactivity of immune
cells, limiting their recognition of or response to SyS malignant cells, or hampered immune cell
infiltration and recruitment into the tumor parenchyma. To test the first possibility, we examined
CDS8 T cell states (Fig. 2A, Supp. Table 3A), and found clear hallmarks of antitumor immunity
and recognition. T cell subsets span naive, cytotoxic, exhausted, and regulatory T cells (Fig. 2B;
Methods), with evidence of expansion based on TCR reconstruction (31) (showing 57 clones, all
patient-specific, with shared clones between matched samples from the same patient). While
cytotoxic and exhaustion markers were generally co-expressed in T cells (Fig. 2B, consistent with
previous reports (29)), clonally expanded T cells had unique transcriptional features (Methods,
Supp. Table 3A), suggestive of an effector-like non-exhausted state (Fig. 2B, P < 6.6*%10712,
mixed-effects). These expanded T cells might respond to SyS-specific CTAs, which were
specifically expressed in large fractions of the malignant cell populations (Supp. Fig. 2A).
Moreover, CD8 T cells in SyS have features suggesting they are even more active than those in

melanoma tumors, where anti-tumor immunity is relatively pronounced. First, compared to CD8
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T cells from melanoma (32), CD8 T cells in SyS tumors overexpressed a program characterizing
T cells in tumors that were responsive to immune checkpoint blockade (33) (Fig. 2C bottom, P =
1.22*10719, mixed-effects). In addition, compared to melanoma CDS8 T cells, the SyS CDS8 T cells
also overexpressed effector and cytotoxic gene modules (34,35) (e.g., GZMB, CX3CRI, P =
6.36*10, mixed-effects), and repressed exhaustion markers (P = 6.36*10-3, mixed-effects),
including LAYN (34), and multiple checkpoint genes (CTLA4, HAVCR2, LAG3, PDCDI, and

TIGIT; P = 7.69*10”7, mixed-effects, Fig. 2C, top).

Other immune cells in the tumor microenvironment also showed features of antitumor immunity.
Macrophages span M1-like and M2-like states, suggestive of both pro- and anti-inflammatory
properties, respectively (Supp. Fig. 2B-D; Methods, Supp. Table 3B), and expressed relatively
high levels of TNF (P = 1.13*107, mixed-effects, >4 fold more compared to melanoma
macrophages). However, mastocytes show regulatory features, with 39% of them expressing PD-

L1 (as opposed to only 2% PD-L1 expressing malignant cells).

We next examined the alternative hypothesis that T cell abundance might be a limiting factor in
SyS, despite these favorable T cell states. We compared SyS to 30 other cancer and sarcoma types.
SyS tumors showed extremely low levels of immune cells, which cannot be explained by variation
in the mutational load (Fig. 2D; P = 2.58*10°'!, mixed effects when conditioning on the tumor
mutational load), and despite the malignant-cell specific expression of immunogenic CTAs (Supp.
Fig. 2A). In addition, unlike melanoma (Supp. Fig. 2E, left), T cell levels were not correlated with
prognosis in SyS (Supp. Fig. 2E, right), indicating that they may not cross the critical threshold
to impact clinical outcomes. Only mastocytes had a moderate positive association with improved

prognosis (P =0.012, Cox regression). These findings suggest that the lack of proper immune cell
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recruitment and infiltration is a key immune evasion mechanism in SyS, potentially mediated by

the SyS cells.

Cellular plasticity and a core oncogenic program characterize synovial sarcoma cells

To identify malignant cell functions that may impact immune cell infiltration, we characterized
the cellular programs in SyS malignant cells. We identified three co-regulated gene modules,
which repeatedly appeared across multiple tumors in our cohort (Fig. 3A-D, Supp. Table 4,
Methods). The first two modules reflected mesenchymal and epithelial cell states (Fig. 3B, Supp.
Fig. 3A). These differentiation programs included canonical mesenchymal (ZEBI, ZEB2,
PDGFRA and SNAI2) or epithelial (MUCI and EPCAM) markers (36,37) (P < 1.55*10°1°,
hypergeometric test), and demonstrated that epithelial cells had a marked increase in antigen

presentation and interferon (IFN) y responses (P < 8.49*10, hypergeometric test).

Among mesenchymal cells with a relatively low Overall Expression (Methods) of the
mesenchymal program, one subset also expressed epithelial markers, reminiscent of transitioning
to/from an epithelial state, while another underexpressed both programs, reminiscent of a poorly
differentiated state. These poorly differentiated cells were highly enriched with cycling cells (P =
2.44*10%, mixed effects), indicating that they might function as the tumor progenitors, fueling
tumor growth (Fig. 3E,F, Supp. Fig. 3B,C). Diffusion map analysis of the cells based on these
two programs highlighted putative differentiation trajectories, and found structured differentiation
patterns only in the biphasic tumors (Fig. 3G, Methods). RNA velocity (38) demonstrated that
epithelial to mesenchymal transitions may also take place (Supp. Fig. 3D), suggestive of cellular

plasticity. Further supporting this hypothesis, the post-treatment sample of patient SyS12 includes


https://doi.org/10.1101/724302
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/724302; this version posted August 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

a new subpopulation of mesenchymal cells, which was absent from the pre-treatment sample, and

resembles the epithelial cells in terms of its CNAs (Supp. Fig. 3E).

The third module highlighted a new program present in a subset of cells in each tumor (25.2-84.7%
per tumor, Fig. 3D,H, Supp. Fig. 4), which we named the core oncogenic program. The program
is characterized by expression of genes from respiratory carbon metabolism (oxidative
phosphorylation, citric acid cycle, and carbohydrate/protein metabolism, P < 1*107%,
hypergeometric test, Supp. Table 4), and repression of genes involved in TNF signaling,
apoptosis, p53 signaling, and hypoxia processes (P < 1*10-'°, hypergeometric test, Supp. Table
4), including known tumor suppressors, such as p21 (CDKNI1A4) and KLF4. The program was
expressed in a higher proportion of cycling and poorly differentiated cells (P < 2.94*10*, mixed-

effects, Fig. 31).

To test the clinical value of these transcriptional programs, we reanalyzed two independent bulk
gene expression cohorts (21,22). Both dedifferentiation (Methods) and the core oncogenic
program were substantially more pronounced in the more aggressive poorly differentiated SyS
tumors (P < 2.76*10, one-sided t-test, Fig. 4A, Methods), and were associated with increased

risk of metastatic disease (P < 1.36*10-3, Cox regression, Fig. 4B).

The core oncogenic program is associated with the cold phenotype and spatial niche

Next we turned to explore the connection between the malignant cells’ state and the tumor
microenvironment and composition. Using our single-cell immune signatures we first estimated

the composition of bulk SyS tumors in two published cohorts (18,22) and stratified them into “hot”
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or “cold”, based on their relative inferred proportions of immune cells (Methods). “Hot” tumors
showed the repression of the core oncogenic program and had significantly higher differentiation
scores (P <5.34*%107, r = -0.44 and 0.48, respectively, partial Pearson correlation, conditioning on

inferred tumor purity, Methods; Fig. 4C).

Interestingly, the core oncogenic program shows some degree of similarity to a transcriptional
signature we recently associated with T cell exclusion in melanoma (32) (P < 7.16*10°1°,
hypergeometric test), although most genes in the program (~92%) were distinct from melanoma.
Among the overlapping genes we find the induction of the CTA MAGEA4, the BAF complex unit
SMARCA4, and repression of apoptosis and p53 signaling (e.g., ATF3, JUN, KLF4, and SATI).
The melanoma T cell exclusion signature and the synovial sarcoma mesenchymal state also
overlapped (P = 6.33*108, hypergeometric test), for example, in the induction of SNAI2 and
repression of 23 epithelial genes, including CDHI. Nevertheless, the programs were largely

distinct, likely given the different tissues, microenvironments, cell of origin and genetic drivers.

The association between the core oncogenic program and T cell exclusion is observed in situ in
the SyS samples from our single-cell cohort. We measured in sifu expression of 12 proteins across
4,310,120 cells in 9 samples using multiplexed immunofluorescence (t-CyCIF) (39) (Fig. 4D,E;
Methods), and profiled the in situ expression of 1,412 genes in 24 spatially distinct areas in two
samples using the GeoMx high plex RNA Assay (early version for Next-Generation Sequencing;
Methods). Both approaches showed that CD45" immune cells were exceptionally low in SyS
(<0.4%, compared to >8.7% in melanoma samples (32)). Moreover, the malignant cells in the
more immune infiltrated areas show a marked decrease in the core oncogenic program (» = -0.53,

P =6.9*1073, Pearson correlation, and P < 1*10-19, mixed effects; Methods). This suggests that the

10
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status of the malignant cells and the composition of the tumor microenvironment might be

interconnected in SyS.

SS18-SSX sustains the core oncogenic program and blocks differentiation

To decouple the intrinsic and extrinsic factor determining the malignant cell states in SyS we first
tested whether the core oncogenic and other programs were co-regulated by the genetic fusion
driving SyS. We depleted SS18-SSX in two SyS cell lines (SYO1 and Aska) using shRNA, and
profiled 12,263 cells by scRNA-Seq. The fusion knock-down (KD) led to extensive and highly
consistent transcriptional alterations in both cell lines (Fig. SA, Supp. Fig. SA, Supp. Table 5): it
substantially repressed the core oncogenic program and cell cycle genes (P < 8.05*1071%7, t-test,
Fig. SA-C), while inducing mesenchymal differentiation programs and markers, including ZEB!
and VIM (P < 1*10-°, t-test and likelihood-ratio test Fig. SA,B,). The KD impact on the core
oncogenic and differentiation programs was decoupled from the repression of cellular proliferation
(Fig. 5B), such that the impact on the core oncogenic and differentiation programs was observed
even when controlling for the cycling status of the cells, and when considering only cycling or
non-cycling cells (P < 1.54*10°13, t-test, Fig. 5B, Methods). Thus, the fusion’s impact on cell cycle
may be secondary or downstream to its impact on the core oncogenic program. In addition the
fusion KD led to an induction of antigen presentation and cell autonomous immune responses,

such as TNF and IFN signaling (P < 1*¥10-3°, mixed-effects, Supp. Fig. 5A).

Using these SS18-SSX KD experiments we defined an SS18-SSX program, which we then
stratified to direct and indirect fusion targets based on available SS18-SSX ChIP-Seq profiles (/3,

28) (Methods; Supp. Fig. SB,C, Supp. Table SA). According to the SS18-SSX program, the
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fusion directly dysregulates developmental programs and promotes the core oncogenic program
(P < 2.51*107, hypergeometric test, Methods, Supp. Fig. 5B, Supp. Table 5), while its impact
on cell cycle genes is mostly indirect (P < 1.2*¥107, hypergeometric test, Supp. Table 5, Supp.
Fig. 5B) and mediated by cyclin D2 (CCND2) and CDK6 — the only cell cycle genes that are
members of the direct SS18-SSX program. Taken together, our findings support a model in which
SS18-SSX directly promotes the core oncogenic program, blocks differentiations, drives cell cycle

progression, and represses features necessary for immune recognition and recruitment.

TNF and IFNy synergistically repress the core oncogenic and SS18-SSX programs

The association between the core oncogenic program and the cold phenotype suggest that the
program promotes T cell exclusion in SyS. Another (non-mutually exclusive) hypothesis is that,
despite their low numbers, the immune cells in the tumor microenvironment may nonetheless
impact the state of the malignant cells, for example, through the secretion of different molecules
and cytokines. To test this, we implemented a mixed-effects inference approach that uses sCRNA-
Seq data to find associations between the expression of secreted molecules and ligands in immune

cells and the state of the malignant cells (Methods).

According to this analysis, the expression of IFNy and TNF specifically from CD8 T cells and
macrophages, respectively (Fig. 6A), was strongly associated with the repression of the core
oncogenic program in the malignant cells (P < 9.4*1073°, mixed-effects). We further stratified the
core oncogenic program to its predicted TNF/IFNy-dependent and -independent components, by

the association of each gene’s expression in the malignant cells with the TNF and IFNy expression
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levels in the corresponding macrophages and CD8 T cells, respectively (Methods, Supp. Table

6A).

To test these predictions, we treated primary SyS cell cultures with TNF and IFNy, separately and
in combination, and profiled 1,050 cells by scRNA-Seq. As predicted, combined TNF and IFNy
treatment repressed the core oncogenic program (P = 6.66*10°'%, mixed-effects, Fig. 6B) in a
synergistic manner (P = 9.49*10%, interaction term, mixed-effects). Moreover, the treatment
repressed the predicted TNF/IFNy-dependent component of the program (1.6*10-%, mixed-
effects), but not the component predicted to be TNF/IFNy-independent (P > 0.05, Fig. 6B). The
combined treatment also repressed the SS18-SSX program (P < 3.12*107!6, both direct and indirect
components, including TLEI; P = 1.23*10* for the interaction term, Fig. 6B, Supp. Table 6B),
and induced multiple genes from the epithelial program (P = 1.95*10°, hypergeometric test, Supp.
Table 6B). Short-term (4-6 hours) treatment with TNF alone substantially repressed homeobox
genes (e.g., MEOX2, Supp. Table 6C), which are directly bound by SS18-SSX (18,19) (P < 1*10
17 hypergeometric test). It also repressed the core oncogenic program, but only temporarily (P =
8.73*10°'®, mixed-effects; Supp. Fig. 5D), suggesting that IFNy is required to sustain the effect.
Interestingly, TNF also induced TNF expression in the SyS cells (P < 5.57*10%, mixed-effects),
suggesting that autocrine signaling might induce the effect. Taken together, these findings
demonstrate that macrophages and T cells can suppress the SS18-SSX program by secreting TNF

and IFNy.

HDAC and CDK4/6 inhibitors synergistically repress the immune resistant features of

synovial sarcoma cells

13
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Lastly, we turned to examine whether pharmacological agents could potentially repress the core
oncogenic program and induce more immunogenic cell states in SyS cells. Computational
modeling of the core oncogenic regulatory network (Methods) highlighted the SSX-SS18-
HDACI complex (20) as the program’s master regulator (Fig. 6C), and the tumor suppressor
CDKNIA (p21) as its most repressed target. The latter indicates that the core oncogenic program
is regulating, rather than regulated by, cell cycle genes through the p21-CDK2/4/6 axis, potentially
reinforcing the direct induction of cyclin D and CDK6 by SS18-SSX (Fig. 6C,D). According to
this model (Fig. 6D), modulators of cell cycle (e.g., CDK4/6 inhibitors) and SS18-SSX (e.g.,
HDAC inhibitors) could synergistically target the immune resistance features of SyS cells,

especially in the presence of tumor microenvironment cytokines as TNF.

To test these predictions, we treated SyS lines and primary mesenchymal stem cells (MSCs) with
low doses of HDAC and CDK4/6 inhibitors, in order to avoid global toxicity-related effects, and
examined their impact on the transcriptional state of the cells. As predicted, the HDAC inhibitor
panobinostat markedly repressed the core oncogenic program (P = 3.34*10°'4, mixed-effects; Fig.
7A) and selectively induced CDKNI1A4 in SyS cells (P = 2.13*10®) (Supp. Fig. 6A). Panobinostat
also repressed the SS18-SSX program (P = 5.32*10772; Fig. 7B), decreased the expression of cell
cycle genes (P < 1.78*1072%), and induced an immunogenic phenotype (32) with enhanced antigen
presentation and IFNy responses (P < 9.53*103!; Fig. 7C,D, Supp. Fig. 6B,C). The CDK4/6
inhibitor abemaciclib repressed cell cycle gene expression (P = 3.63*10%), without impacting the
core oncogenic program (P > 0.1; Fig. 7A), supporting the notion that cell cycle regulation is
down-stream of the core oncogenic program. Lastly, a low dose combination of panobinostat,
abemaciclib and TNF synergistically repressed the core oncogenic program (P = 1.72*10-%7, Fig.

7A, Supp. Fig. 6A) and multiple immune resistant features, while inducing antigen presentation,
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IFN responses, and induced-self antigens as MICA/B (P = 3.12*¥107%; Fig. 7C,D, Supp. Fig.
6B,C). It also repressed MIF (Macrophage Migration Inhibitory Factor), a member of the core
oncogenic and SS18-SSX programs, which has been previously shown to hamper T cell
recruitment into the tumor (40). The effect of the drug combination on these programs and genes
in viable SyS cells significantly exceeded the expected additive effect (P < 0.01, mixed-effects
interaction term, Methods), and could potentially help both T cells (MHC-1) and NK cells
(MICA/B) bind to and eliminate SyS cell. Consistent with the transcriptional changes, the drug
combination displayed a significantly higher detrimental effect on the SyS cells compared to

primary MSCs (P = 5.7*10°'?; Fig. 7E,F).

DISCUSSION

Here, we mapped malignant and immune cell states and interactions in human SyS tumors, through
integrative analyses of clinical and functional data. Out data reveals active antitumor immunity in
this relatively cold tumor, alongside malignant cellular plasticity and immune excluding features,
centered around a core oncogenic program. This program is regulated by the tumor’s primary
genetic driver and may hamper proper immune recruitment and infiltration. Nonetheless, immune
cells can impact the malignant cells through TNF and IFNy secretion, counteracting the
transcriptional alterations induced by the oncoprotein. Targeting the oncogenic program and its
downstream effects with HDAC and CDK4/6 inhibitors induced cell autonomous immune

responses, repressed immune resistant features, and was selectively detrimental to SyS cells.

The metabolic features of the core oncogenic program may also impact the tumor

microenvironment. Supporting this notion, recent studies have shown that malignant cells use
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oxidative phosphorylation to create a hypoxic niche and promote T cell dysfunction (41). These
metabolic features might reflect the conserved role of the SWI/SNF complex in regulating carbon
metabolism and sucrose non-fermenting phenotypes in the yeast Saccharomyces cerevisiae (42).
These connections might generalize to other cancer types, as mutations in the BAF complex have
been recently shown to induce a targetable dependency on oxidative phosphorylation in lung

cancer (43).

Despite the extremely cold phenotypes displayed by SyS (Fig. 2D), expanded effector T cells are
present in SyS tumors (Fig. 2B,C), potentially responding to the CTAs expressed specifically in
the malignant cells, including NY-ESO-1 and PRAME (Supp. Fig. 2A). Consistently, vaccines
triggering dendritic-cells to prime NY-ESO-1 specific T cells can lead to durable responses in SyS
patients (7), further supporting the notion that SyS immune evasion operates primarily through
impaired T cell or dendritic cell recruitment (44). The latter may also be mediated through Wnt/j-
catenin signaling pathway, which has been previously shown to interfere with CD8 T cell
recruitment to tumors by dendritic cells (44), and is indeed active in all the malignant SyS cells
and directly induced by SS18-SSX (Supp. Fig. 5B, Supplementary Tables 2, 6). The core
oncogenic program itself includes several CTAs, linking between malignant immune evasion and

testicular immune privileges.

While the core oncogenic program shares some similar features with a T cell exclusion program
we recently identified in melanoma (32), there are also substantial distinctions between the two
programs, and >90% do not overlap between the two, likely reflecting the dramatic differences in
driving events, cell of origin and tissue environment of the two tumors. This emphasizes the
importance of understanding immune evasion for each tumor context. In particular, unlike the

melanoma program, the core oncogenic program highlights a metabolic shift and is strongly
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connected to the genetic driver. In SyS tumors (but not in melanoma) we successfully decoupled,
through computational inference, the intrinsic and extrinsic signals which modulate this
transcriptional program, facilitating the reconstruction of multicellular circuits. This new approach
revealed a bi-directional interaction between malignant and immune cells where CD8 T cells and
macrophages can in turn repress the core oncogenic program through the secretion of TNF and
[FNy. Thus, beyond their direct cytotoxic activity, immune cells can alleviate some of the
aggressive features of SyS cells through cytokine secretion, targeting also malignant cells with

repressed antigen presentation or unrecognized epitopes.

Our findings also demonstrate that immune resistance, metabolic processes, cell cycle and de-
differentiation are tightly co-regulated in SyS. Hence, certain targeted therapies may be able to
sensitize the tumor to immune surveillance. Supporting this notion, we demonstrate that the
combined inhibition of HDAC and CDK4/6, two known repressors of SS18-SSX (45,46) and
cellular proliferation (47), respectively, trigger immunogenic cell states even at sub-cytotoxic
doses. This combinatorial treatment is also selectively cytotoxic to SyS cells, consistent with
previous reports where HDAC and CDK4/6 inhibitors were used separately to induce cell death in
SyS (45,47). The basal antitumor immune response we report, and the ability of T cells and
macrophages to repress the core oncogenic and SS18-SSX programs support the potential of

exploiting HDAC and CDK4/6 inhibitors together with immunotherapy.

Taken together, our study comprehensively maps and interrogates cell states in SyS and its
surrounding tumor microenvironment, along with their multicellular regulatory circuits and
clinical implications. We demonstrated that the SS18-SSX oncoprotein and the tumor
microenvironment coordinately shape cell states in SyS, resulting in the establishment of an

immune privileged environment (Fig. 7G). The possibility to selectively target the underlying
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mechanisms to reverse immune evasion offers a new perspective for the clinical management of

SyS, and potentially other malignancies driven by similar genetic events.
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FIGURE LEGENDS

Figure 1. A single-cell map of the cellular ecosystem of synovial sarcoma tumors. (a) Study
workflow. (b-e) Consistent assignment of cell identity. t-SNE plots of scRNA-Seq profiles (dots),
colored by either (b) tumor sample, (¢) inferred cell type, (d) SS18-SSX1/2 fusion detection, (e)
CNA detection, and (f) differential similarity to SyS compared to other sarcomas (Methods).
Dashed ovals (b): mesenchymal and epithelial malignant subpopulations of biphasic (BP) tumors
or poorly differentiated (PD) tumor. (g) Inferred large-scale CNAs distinguish malignant (top)
from non-malignant (bottom) cells, and are concordant with WES data (bold). The CNAs (red:

amplifications, blue: deletions) are shown along the chromosomes (x axis) for each cell (y axis).

20


https://doi.org/10.1101/724302
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/724302; this version posted August 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Figure 2. SyS tumors manifest antitumor immunity with limited immune infiltration. (a)
Immune and stroma cells in SyS tumors. t-SNE of immune and stroma cell profiles (dots), colored
by inferred cell type (left) or sample (right). (b) The CD8 T cell expansion program is associated
with particularly high cytotoxicity and lower than expected exhaustion. The cytotoxicity (x axis)
and exhaustion (y axis) scores of SyS CD8 T cells, colored by the score of the T cell expansion
program (Methods). (¢) CD8 T cells in SyS (orange) have higher effector programs than in
melanoma (green). Distribution of effector vs. exhaustion scores (x axis, top, Methods) or an
immune checkpoint blockade responsiveness program (33) (x axis, bottom, Methods) in CD8 T
cells from each cancer type. (d) SyS tumors manifest a particularly cold phenotype. Overall
Expression of the immune cell signatures (y axis, Methods) in SyS tumors (orange) and other

cancer types (left panel) or other sarcomas (right panel).
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Figure 3. Cellular plasticity and a core oncogenic program characterize synovial sarcoma
cells. (a-d) De-differentiation, cell cycle, and the core oncogenic programs across malignant cells.
t-SNE plots of malignant cell profiles (dots), colored by: (a) sample, (b) Overall Expression of the
epithelial vs. mesenchymal differentiation program, (¢) cell cycle status, or (d) Overall Expression
of the core oncogenic program. Dashed ovals (a): mesenchymal and epithelial malignant
subpopulations of biphasic (BP) tumors or poorly differentiated (PD) tumor. (e,f) Association
between cell cycle and poor differentiation. (e) G1/S (x axis) and G2/M (y axis) phase signature
scores for each cell. (f) Epithelial and mesenchymal-like differentiation. Scatter plots of the
malignant cells’ (dots) scores for the epithelial vs. mesenchymal program (x axis) and for overall
differentiation (y axis). Color: expression of cell cycle program (see also Supp. Fig. 3B,C). (g)
Distinct differentiation pattern in biphasic tumors. Single cell profiles dots arranged by the first
two diffusion-map components (DCs) for representative examples of a biphasic (SyS12, left) and
monophasic (SyS11, right) tumors, and colored by the Overall Expression of the epithelial vs.
mesenchymal programs (colorbar). (h) Core oncogenic program genes. Normalized expression
(centered TPM values, colorbar) of the top 100 genes in the core oncogenic program (columns)
across the malignant cells (rows), sorted according to the Overall Expression of the program (bar
plot, right). Leftmost color bars: biphasic tumor and sample ID. (i) The program is expressed in a
higher proportion of cycling and poorly differentiated cells. Fraction of malignant cells (y axis)
with a high (above median, black) and low (below median, blue) Overall Expression of the core

oncogenic program, in cells stratified by cycling and differentiation status (x axis).
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Figure 4. The core oncogenic program and de-differentiation co-vary within and across
tumors and are associated with aggressive and cold tumors. (a) The core-oncogenic program
and de-differentiation mark the aggressive poorly differentiated (PD) subtype. Overall expression
of the core oncogenic or differentiation (both mesenchymal and epithelial) programs scores (y
axis) across 34 SyS tumors (21), stratified as biphasic (BP), monophasic (MP), or poorly
differentiated (PD) (x axis). Middle line: median; box edges: 25t and 75t percentiles, whiskers: most
extreme points that do not exceed +IQR*1.5; further outliers are marked individually. (b) The core
oncogenic program and differentiation scores (overall expression of both differentiation programs)
are predictive of metastatic disease in an independent cohort of 58 SyS patients (22). Kaplan-Meier
(KM) curves of metastasis free survival (x axis, years), when stratifying the patients by high (top
25%), low (bottom 25%), or intermediate (remainder) expression of the respective program. P:
COX regression p-value; Pc: COX regression p-value when controlling for fusion type and patient
age group. (c¢) Inferred level of immune cell types is associated with the malignant programs in
bulk SyS tumors, when controlling for tumor purity. Partial correlation (colorbar) between the
inferred level of each immune subset (rows) and the core oncogenic and differentiation levels
(columns). (d-e) In situ validation of programs. Detection of core oncogenic (Hsp90, c-Jun and
EGRI), epithelial (E-cadherin) and mesenchymal (Vimentin) markers, using immunofluorescence

(t-CyClIF) (d) and in situ hybridization (ISH) (e).
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Figure 5. The genetic driver promotes the core oncogenic program in malignant SyS cells.
(a-¢) SS18-SSX sustains the core oncogenic, cell cycle, and dedifferentiation programs. (a)
scRNA-Seq following KD of SS18-SSX. Co-embedding (using PCA and canonical correlation
analyses (48), Methods) of Aska and SYO1 cell profiles (dots), colored by: (1) cell line and
perturbation; or the Overall Expression (colorbar) of the (2) cell cycle, (3) core oncogenic, or (4)
mesenchymal differentiation (36,37) programs. (b) SS18-SSX KD represses the core oncogenic
program and induces the mesenchymal differentiation program irrespective of its repression of the
cell cycle program. Distribution of Overall Expression scores (y axis) for each program in control
(blue) and shSSX (grey) cells, for each cell line, where core oncogenic and mesenchymal program
scores are shown separately for cycling and non-cycling cells. (¢) Overlap of SS18-SSX and core
oncogenic programs. Expression (centered TPM) of genes (rows) shared between the fusion and
core oncogenic programs across the Aska and SYOI cells (columns), with a control (shCt) or SSX
(shSSX) shRNA. Cells are ordered by the Overall Expression of the SS18-SSX program (bottom

plot) and labeled by type and condition (Color bar, top).
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Figure 6. The immune cells and the genetic driver form two opposing forces in shaping SyS
cell states. (a,b) TNF and IFNy are expressed by immune cells in the tumor microenvironment
and can repress the core oncogenic program. (a) TNF and IFNy are detected primarily in
macrophages and T cells, respectively. Fraction of cell (y axis) of each subset in the tumor (x axis)
that express (black) IFNy (left) or TNF (right) by scRNA-seq. (b) TNF and IFNy repress the core
oncogenic and SS18-SSX programs (see also Supp. Fig. 5D). Distribution of Overall Expression
score (y axis) of the core oncogenic (also stratified to its predicted and TNF/IFNy-dependent and
-independent components) and SS18-SSX programs (x axis) in control (blue) and TNF + IFNy
treated cells. (¢) Gene regulatory model of control of the core oncogenic program by SS18-SSX.
Red/green: genes that are induced/repressed in the core oncogenic program. Grey: genes that are
repressed in the core oncogenic program and directly repressed by HDAC1-SS18-SSX (20). Red
blunt arrows: repression; black pointy arrows: activation. Thick edges represent paths from SS18-
SSX to p21. (d) Model of regulation and intervention in the core oncogenic program. SS18-SSX
activates the core oncogenic program in an HDAC-dependent manner and promotes cell cycle
through direct activation of CDK6 and CCND2 (CycD) transcription. The core program suppresses

p21 and inhibits immunogenic features. HDAC and CDKG6 inhibitors target SyS dependencies.
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Figure 7. The core oncogenic program can be selectively blocked in SyS cells by combined
HDAC and CDK4/6 inhibitors. (a-d) TNF, HDAC and CDK®6 inhibitors suppress the core
oncogenic program. Overall Expression of the core oncogenic program (a), SS18-SSX program
(b), an immune resistance program identified in melanoma (32) (¢), and MHC-1 genes (d) in SyS
cells and MSCs (x axis). (A-D) "P<0.1,”P<0.01, ™"P<1*103, "P<1*104, t-test. (e,f) Selective
toxicity for SyS cell lines. (e) Viability (y axis) of SyS cell lines and MSCs (x axis) under different
drugs (x axis, "P<5*102, "P<5*1073, ""P<5*10-*, ANOVA test). (f) Selective toxicity to SyS lines
vs. MSC (y axis, -logio(P-value), ANOVA) in each treatment (x axis). In (A-E) middle line: median;
box edges: 25t and 75t percentiles, whiskers: most extreme points that do not exceed £IQR*1.5;
further outliers are marked individually. (g) Model of intrinsic and microenvironment determinants
of SyS cell states. Left: The SS18-SSX oncoprotein sustains de-differentiation, proliferation and
the core oncogenic program. Right: immune cells in the tumor microenvironment can repress the
core oncogenic and SS18-SSX programs through TNF and IFNy secretion. Combined inhibition

of HDAC and CDK4/6 mimics these effects selectively in SyS cells.
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METHODS
Human tumor specimen collection and dissociation

Patients at Massachusetts General Hospital and University Hospital of Lausanne were consented
preoperatively in all cases according to their respective Institutional Review Boards (protocol
numbers: CER-VD 260/15, DF/HCC 13-416). Fresh tumors were collected directly from the
operating room at the time of surgery and presence of malignancy was confirmed by frozen section.
Tumor tissues were mechanically and enzymatically dissociated using a human tumor dissociation
kit (Miltenyi Biotec, Cat. No. 130-095-929), following the manufacturers recommendations.

Clinical annotations are provided in Supp. Table 1.
Fluorescence-activated cell sorting (FACS)

Tumor cells were kept in Phosphate Buffered Saline with 1% bovine serum albumin (PBS/BSA)
while staining. Cells were stained using calcein AM (Life Technologies) and TO-PRO-3 iodide
(Life Technologies) to identify viable cells. For all tumors, we used CD45-VioBlue (human
antibody, clone REA747, Miltenyi Biotec) to identify immune cells and in few cases, we also used
CD3-PE to specifically identify lymphocytes (human antibody, clone BW264/56, Miltenyi
Biotec). For all the samples, we used unstained cells as control. Standard, strict forward scatter
height versus area criteria were used to discriminate doublets and gate only single cells. Viable
single cells were identified as calcein AM positive and TO-PRO-3 negative. Sorting was
performed with the FACS Aria Fusion Special Order System (Becton Dickinson) using 488nm
(calcein AM, 530/30 filter), 640nm (TO-PRO-3, 670/14 filter), 405nm (CD45-VioBlue, 450/50
filter) and 56 1nm (PE, 586/15 filter) lasers. We sorted individual, viable, immune and non-immune
single cells into 96-well plates containing TCL buffer (Qiagen) with 1% beta-mercaptoethanol.
Plates were snap frozen on dry ice right after sorting and stored at -80°C prior to whole

transcriptome amplification, library preparation and sequencing.
Library construction and sequencing

For plate-based scRNA-seq, Whole transcriptome amplification was performed using the
SMART-seq2 protocol (24), with some modifications as previously described (30,49,50). The

Nextera XT Library Prep kit (Illumina) was used for library preparation, with custom barcode
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adapters (sequences available upon request). Libraries from 384 to 768 cells with unique barcodes

were combined and sequenced using a NextSeq 500 sequencer (Illumina).

In addition to SMART-seq2, cells from three samples (SS12pT, SS13 and SS14) were also
sequenced using droplet-based scRNA-Seq with the 10x genomics platform. The samples were
partitioned for SMART-seq2 and 10x genomics after dissociation. For each tumor, approximately
two thirds of the sample was used for SMART-seq2 and one third for droplet based scRNA-seq
(10x genomics). We sorted viable cells using MACS (Dead Cell Removal Kit, Miltenyi Biotec)
and ran up to 2 channels per sample with a targeted number of cell recovery of 2,000 cells per
channel. The samples were processed using the 10x Genomics Chromium 3' Gene Expression
Solution (version 2) based on manufacturer instructions and sequenced using a NextSeq 500

sequencer (Illumina).
Whole exome sequencing (WES)

DNA and RNA were extracted from fresh frozen tissue or Formalin-Fixed Paraffin-Embedded
(FFPE) blocks for each patient (obtained according to their respective Institutional Review Board-
approved protocols) using the AllPrep DNA/RNA extraction kit (Qiagen). We used tumor tissue
and matched normal muscle tissue from the same patient as reference. Library construction was
performed as previously described (50), with the following modifications: initial genomic DNA
input into shearing was reduced from 3ug to 20-250ng in 50uL of solution. For adapter ligation,
[llumina paired end adapters were replaced with palindromic forked adapters, purchased from
Integrated DNA Technologies, with unique dual-indexed molecular barcode sequences to facilitate
downstream pooling. Kapa HyperPrep reagents in 96-reaction kit format were used for end
repair/A-tailing, adapter ligation, and library enrichment PCR. In addition, during the post-
enrichment SPRI cleanup, elution volume was reduced to 30uL to maximize library concentration,
and a vortexing step was added to maximize the amount of template eluted. After library
construction, libraries were pooled into groups of up to 96 samples. Hybridization and capture
were performed using the relevant components of [llumina's Nextera Exome Kit and following the
manufacturer’s suggested protocol, with the following exceptions: first, all libraries within a
library construction plate were pooled prior to hybridization. Second, the Midi plate from

Illumina’s Nextera Exome Kit was replaced with a skirted PCR plate to facilitate automation. All
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hybridization and capture steps were automated on the Agilent Bravo liquid handling system. After
post-capture enrichment, library pools were quantified using qPCR (automated assay on the
Agilent Bravo), using a kit purchased from KAPA Biosystems with probes specific to the ends of
the adapters. Based on gPCR quantification, libraries were normalized to 2nM. Cluster
amplification of DNA libraries was performed according to the manufacturer’s protocol
(Ilumina), using exclusion amplification chemistry and flowcells. Flowcells were sequenced using
Sequencing-by-Synthesis chemistry. The flowcells are then analyzed using RTA v.2.7.3 or later.
Each pool of whole exome libraries was sequenced on paired 76 cycle runs with two 8 cycle index

reads across the number of lanes needed to meet coverage for all libraries in the pool.
In situ immunofluorescence imaging

Formalin-fixed, paraffin-embedded (FFPE) tissue slides, 5 um in thickness, were generated at the
at the Massachusetts General Hospital from tissue blocks collected from patients under IRB-
approved protocols (DF/HCC 13-416). Multiplexed, tissue cyclic immunofluorescence (t-CyCIF)
was performed as described recently (51). For direct immunofluorescence, we used the following
antibodies (manufacturer, clone, dilution): c-Jun-Alexa-488 (Abcam, Clone E254, 1:200), CD45-
PE (R&D, Clone 2D1, 1:150), p21-Alexa-647 (CST, Clone 12D1, 1:200), Hesl-Alexa-488
(Abcam, Clone EPR4226, 1:500), FoxP3-Alexa-570 (eBioscience, Clone 236A/E7, 1:150), NF-
kB (Abcam, Clone E379, 1:200), E-Cadherin-Alexa-488 (CST, Clone 24E10, 1:400), pRB-Alexa-
555 (CST, Clone D20B12, 1:300), COXIV-Alexa-647 (CST, Clone 3E11, 1:300), B-catenin-
Aleaxa-488 (CST, Clone L54E2, 1:400), HSP90-PE (Abcam, polyclonal, lot# GR3201402-2,
1:500) and vimentin-Alexa-647 (CST, Clone D21H3, 1:200). Stained slides from each round of t-
CyCIF were imaged with a CyteFinder slide scanning fluorescence microscope (RareCyte Inc.
Seattle WA) using either a 10X (NA=0.3) or 40X long-working distance objective (NA = 0.6).
Imager5 software (RareCyte Inc.) was used to sequentially scan the region of interest in 4
fluorescence channels. Image processing, background subtraction, image registration, single-cell

segmentation and quantification were performed as previously described (51).
RNA in situ hybridization

Paraffin-embedded tissue sections from human tumors from Massachusetts General Hospital and

and University Hospital of Lausanne were obtained according to their respective Institutional
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Review Board-approved protocols. Sections were mounted on glass slides and stored at -80°C.
Slides were stained using the RNAscope 2.5 HD Duplex Detection Kit (Advanced Cell
Technologies, Cat. No. 322430), as previously described (30,49,52): slides were baked for 1 hour
at 60°C, deparaffinized and dehydrated with xylene and ethanol. The tissue was pretreated with
RNAscope Hydrogen Peroxide (Cat. No. 322335) for 10 minutes at room temperature and
RNAscope Target Retrieval Reagent (Cat. No. 322000) for 15 minutes at 98°C. RNAscope
Protease Plus (Cat. No. 322331) was then applied to the tissue for 30 minutes at 40°C.
Hybridization probes were prepared by diluting the C2 probe (red) 1:50 into the C1 probe (green).
Advanced Cell Technologies RN Ascope Target Probes used included Hs-EGR1 (Cat. No. 457671-
C2) and Hs-IGF2 (Cat. No. 594361). Probes were added to the tissue and hybridized for 2 hours
at 40°C. A series of 10 amplification steps was performed using instructions and reagents provided
in the RNAscope 2.5 HD Duplex Detection Kit. Tissue was counterstained with Gill’s hematoxylin
for 25 seconds at room temperature followed by mounting with VectaMount mounting media

(Vector Laboratories).
RNA profiling in situ hybridization (ISH)

DNA oligo probes were designed to bind mRNA targets. From 5’ to 3°, they each comprised of a
35-50 nt target complementary sequence, a UV photocleavable linker, and a 66 nt indexing oligo
sequence containing a unique molecular identifier (UMI), RNA ID sequence, and primer binding
sites. Up to 10 RNA detection probes were designed per target mRNA. RNA detection probes

were provided by Nanostring Technologies.

To perform the ISH, 5 um FFPE tissue sections from two patients were mounted on positively
charged histology slides. Sections were baked at 65°C for 45 minutes in a Hyb EZ II hybridization
oven (Advanced cell Diagnostics, Inc). Slides were deparaffinized using Citrsolv (Decon Labs,
Inc., 1601), rehydrated in an ethanol gradient, and washed in 1x phosphate-buffered saline pH 7.4
(PBS: Invitrogen, AM9625). Slides were incubated for 15 minutes in 1X Tris-EDTA pH 9.0 buffer
(Sigma Aldrich, SRE0063) at 100°C with low pressure in a TintoRetriever Pressure cooker (bioSB,
7008). Slides were washed, then incubated in 1 pg/mL proteinase K (Thermo Fisher Scientific,
AM2546) in PBS for 15 minutes at 37°C and washed again in PBS. Tissues were then fixed in
10% neutral-buffered formalin (Thermo Fisher Scientific, 15740) for 5 minutes, incubated in NBF
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stop buffer (0.1M Tris Base, 0.1M Glycine, Sigma) for 5 minutes twice, then washed for 5 minutes
in PBS. Tissues were then incubated overnight at 37°C with GeoMx™ RNA detection probes in
Buffer R (Nanostring Technologies) using a Hyb EZ II hybridization oven (Advanced cell
Diagnostics, Inc). During incubation, slides were covered with HybriSlip Hybridization Covers
(Grace BioLabs, 714022). Following incubation, HybriSlip covers were gently removed and 25-
minute stringent washes were performed twice in 50% formamide and 2X SSC at 37°C. Tissues
were washed for 5 minutes in 2X SSC then blocked in Buffer W (Nanostring Technologies) for
30 minutes at room temperature in a humidity chamber. 500nM Syto13 and antibodies targeting
PanCK and CD45 (Nanostring technologies) in Buffer W were applied to each section for 1 hour
at room temperature. Slides were washed twice in fresh 2X SSC then loaded on the GeoMx™
Digital Spatial Profiler (DSP) (53). In brief, entire slides were imaged at 20x magnification and
12 circular regions of interest (ROI) with 200-300 um diameter were selected per sample. The
DSP then exposed ROIs to 385 nm light (UV) releasing the indexing oligos and collecting them
with a microcapillary. Indexing oligos were then deposited in a 96-well plate for subsequent
processing. The indexing oligos were dried down overnight and resuspended in 10 uL. of DEPC-

treated water.

Sequencing libraries were generated by PCR from the photo-released indexing oligos and ROI-
specific Illumina adapter sequences and unique i5 and i7 sample indices were added. Each PCR
reaction used 4 puL of indexing oligos, 1 puL of indexing PCR primers, 2 puL of Nanostring SX PCR
Master Mix, and 3 uL. PCR-grade water. Thermocycling conditions were 37°C for 30 min, 50°C
for 10 min, 95°C for 3 min; 18 cycles of 95°C for 15sec, 65°C for Imin, 68°C for 30 sec; and 68°C
5 min. PCR reactions were pooled and purified twice using AMPure XP beads (Beckman Coulter,
A63881) according to manufacturer’s protocol. Pooled libraries were sequenced at 2x75 base pairs

and with the single-index workflow on an Illumina NextSeq to generate 458M raw reads.
Primary cell cultures and cell lines

Human primary Synovial Sarcoma (SyS) spherogenic cultures (SScull, SScul2 and SScul3) were
derived from patients undergoing surgery at Massachusetts General Hospital and University
Hospital of Lausanne, according to their respective Institutional Review Board-approved

protocols. Directly after dissociation (as above), the dissociated bulk tumor cells were put in
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culture and grown as spheres using ultra-low attachment cell culture flasks in IMDM 80% (Gibco,
Cat. No. 1244053), Knock-Out Serum Replacement 20% (Gibco, Cat. No. 10828028),
Recombinant Human EGF Protein 10 ng/mL (R&D systems, Cat. No. 236-EG-200), Recombinant
Human FGF basic, 145 aa (TC Grade) Protein 10ng/mL (R&D systems, Cat. No. 4114-TC-01M)
and 1% Penicillin-Streptomycin (Gibco, Cat. No. 15140122). Cells were expanded by mechanical
and enzymatical dissociation every week using TrypLE Express Enzyme (ThermoFisher, Cat. No.

12605010).

The SyS cell lines used for the SS18-SSX KD experiments and the functional drug assays include:
Aska (a generous gift from Kazuyuki Itoh, Norifumi Naka, and Satoshi Takenaka, Osaka
University, Japan), SYO1 (a generous gift from Akira Kawai, National Cancer Center Hospital,
Japan), and HS-SY-II (purchased from RIKEN Bio Resource Center, 3-1-1 Koyadai, Tsukuba,
Ibaraki 305-0074, Japan). All three cell lines were cultured using standard protocols in DMEM
medium (Gibco) supplemented with 10-20% fetal bovine serum, 1% Glutamax (Gibco), 1%
Sodium Pyruvate (Gibco) and 1% Penicillin-Streptomycin (Gibco) and grown in a humidified
incubator at 37°C with 5% COx.

Human primary pediatric Mesenchymal Stem Cells (MSCs) were isolated from healthy donors
undergoing corrective surgery in agreement with the Institutional Review Board-approved
protocol of the University Hospital of Lausanne (Protocol number 2017-0100). Samples were
deidentified prior to culture and analysis. Cells were expanded in 90% IMDM (Gibco, Cat. No.
1244053) containing 10% Fetal Bovine Serum (Gibco), 1% Penicillin-Streptomycin (Gibco) and
10ng/mL Platelet-Derived Growth Factor BB (PDGF-BB, PeproTech) as previously described
(54).

SS18-SSX knockdown in Aska and SYOL1 cell lines

The SyS cell lines Aska and SYO1 were cultured using standard protocols in DMEM medium
(Gibco) supplemented with 10-20% fetal bovine serum, 1% Glutamax (Gibco), 1% Sodium
Pyruvate (Gibco) and 1% Penicillin-Streptomycin (Gibco) and grown in a humidified incubator at
37°C with 5% COa. Cells expressing a pLKO.1 vector with a scrambled shRNA hairpin control
(5’- CCTAAGGTTAAGTCGCCCTCGCTCGAGCGAGGGCGACTTAAC CTTAGG-3’) or a
shSSX hairpin targeting SSX of the SS18-SSX fusion (5’-CAGTCACTGACAGTTAATAAA-3’)
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were prepared by lentiviral infection. Briefly, lentivirus was prepared by transfection of HEK293T
cells with gene delivery vector and the packaging vectors pspax2 and pMD2.G, filtration of media
followed by ultracentrifugation, and then resuspension of viral pellet in PBS. Aska and SYOI1 cells
were infected with lentivirus for 48 hours and then underwent 5 days of selection with puromycin

(2 pg/mL) prior to collection for scRNA-seq.
In vitro IFN/TNF experiment

Cells were dissociated 12 hours before adding the drugs at the concentrations indicated directly to
the growing media and cells were collected at different time point (ranging from 4 hours to 4 days)
for SMART-seq2. Viability was determined by CellTiter-Glo Luminescent Cell Viability Assay
(Promega) after 5 to 7 days of treatment. TNF-alpha (Miltenyi Biotec, Human TNF-a, Cat. No.
130-094-014) IFN-gamma (R&D systems, Recombinant Human IFN-gamma Protein, Cat. No.

285-IF-100) were suspended in deionized sterile-filtered water.

In vitro drug assay and cell proliferation measurements

For the functional drug assay, 200,000 SYO-1 cells and HSSYTI cells, and 100,000 MSCs were
seeded in 60 x 15 mm plates (Falcon). Cells were stimulated for five days with the following
compounds: 100 or 200 nM Abemaciclib (Selleckchem, U.S.A.), 15 or 30 ng/ml TNF (Miltenyi
Biotech, Germany) or a combination of the two. Compounds were refreshed at days three and four,
and the solvent (DMSO) was used as control. At day 4, 12.5 or 25 nM Panobinostat (Selleckchem,
U.S.A.) was added to the cultures, and the cells were harvested 24 hours later for proliferation
scoring. To assessment cellular proliferation, cells were detached with trypsin, washed in PBS,
and re-suspended in 1 ml of complete medium. After diluting 1:2 with Trypan blue (Invitrogen)
viable cells were counted using the Automated Cell Counter Countess II FL (Thermo Fisher

Scientific). Each experimental condition was measured in triplicate.
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scRNA-seq pre-processing and gene expression quantification

BAM files were converted to merged, demultiplexed FASTQ files. The paired-end reads obtained
with SMART-Seq2 were mapped to the UCSC hg19 human transcriptome using Bowtie (55), and
transcript-per-million (TPM) values were calculated with RSEM v1.2.8 in paired-end mode (56).
The paired-end reads obtained with droplet scRNA-Seq (10x Genomics) were mapped to the
UCSC hgl19 human transcriptome using STAR (57), and gene counts/TPM values were obtained

using CellRanger (cellranger-2.1.0, 10x Genomics).

For bulk RNA-Seq, expression levels were quantified as E=log2(TPM+1). For scRNA-seq data,
expression levels were quantified as E=log>(TPMi;j/10+1). TPM values were divided by 10
because the complexity of our single-cell libraries is estimated to be within the order of 100,000
transcripts (52). The 10! factoring prevents counting each transcript ~10 times and
overestimating differences between positive and zero TPM values. The average expression of a
gene i across a population P of N cells, was defined as

. TPM. .
Eip = log, (1 + %)

For each cell, we quantified the number of genes with at least one mapped read, and the average
expression level of a curated list of housekeeping genes (58). We excluded all cells with either
fewer than 1,700 detected genes or an average housekeeping expression (£, as defined above)
below 3 (Supp. Table 1). For the remaining cells, we calculated the average expression of each
gene (Ep), and excluded genes with an average expression below 4, which defined a different set
of genes in different analyses depending on the subset of cells included. In cases where we
analyzed different cell subsets together, we removed genes only if they had an average E, below
4 in each of the different cell subsets included in the analysis. Different cell types and malignant

cells from different tumors were considered as different cell subsets in this regard.
WES data pre-processing

A BAM file was produced with the Picard pipeline (http://picard.sourceforge.net/), which aligns
the tumor and normal sequences to the hgl9 human genome build using Illumina sequencing

reads. The BAM was uploaded into the Firehose pipeline
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(http://www .broadinstitute.org/cancer/cga/Firehose). Quality control modules within Firehose
were applied to all sequencing data for comparison of the origin for tumor and normal genotypes
and to assess fingerprinting concordance. Cross-contamination of samples was estimated using

ContEst (59).
Somatic alteration assessment

MuTect (60) was applied to identify somatic single-nucleotide variants. Indelocator
(http://www .broadinstitute.org/cancer/cga/indelocator),  Strelka  (61), and  MuTect2
(https://software.broadinstitute.org/gatk/documentation/tooldocs/current/org_broadinstitute gat
k tools walkers cancer m2 MuTect2) were applied to identify small insertions or deletions. A

voting scheme was used with inferred indels requiring a call by at least 2 out of 3 algorithms.

Artifacts introduced by DNA oxidation during sequencing were computationally removed using
a filter-based method (62). In the analysis of primary tumors that are formalin-fixed, paraffin-
embedded samples (FFPE) we further applied a filter to remove FFPE-related artifacts (63).
Reads around mutated sites were realigned with Novoalign
(www.novocraft.com/products/novoalign/) to filter out false positive that are due to regions of
low reliability in the reads alignment. At the last step, we filtered mutations that are present in a
comprehensive WES panel of 8,334 normal samples (using the Agilent technology for WES
capture) aiming to filter either germline sites or recurrent artifactual sites. We further used a
smaller WES panel of 355 normal samples that are based on Illumina technology for WES
capture, and another panel of 140 normal samples sequenced without our cohort (64) to further
capture possible batch-specific artifacts. Annotation of identified variants was done using

Oncotator (65) (http://www.broadinstitute.org/cancer/cga/oncotator).
Copy number and copy ratio analysis

To infer somatic copy number from WES, we wused ReCapSeg (http:/
gatkforums.broadinstitute.org/categories/recapseg-documentation),  calculating  proportional
coverage for each target region (i.e., reads in the target/total reads) followed by segment
normalization using the median coverage in a panel of normal samples. The resulting copy ratios

were segmented using the circular binary segmentation algorithm (66). To infer allele-specific
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copy ratios, we mapped all germline heterozygous sites in the germline normal sample using
GATK Haplotype Caller (67) and then evaluated the read counts at the germline heterozygous sites
in order to assess the copy profile of each homologous chromosome. The allele-specific copy

profiles were segmented to produce allele specific copy ratios.
Gene sets Overall Expression

We used the following scheme to compute the Overall Expression (OE) of a gene set (signature).
The OE metric (32) filters technical variation and highlights biologically meaningful patterns. The
procedure is based on the notion that the measured expression of a specific gene is correlated with
its true expression (signal), but also contains a technical (noise) component. The latter may be due
to various stochastic processes in the capture and amplification of the gene’s transcripts, sample
quality, as well as variation in sequencing depth. The OE of a gene signature is computed in a way

that accounts for the variation in the signal-to-noise ratio across genes and cells.

Given a gene signature and a gene expression matrix £ (as defined above), we first binned the
genes into 50 expression bins according to their average expression across the cells or samples.
The average expression of a gene across a set of cells within a sample is E;p (see: scRNA-seq pre-

processing and gene expression quantification) and the average expression of a gene across a
Eij . . .
set of N tumor samples was defined as: E; [Eij] =2 F] Given a gene signature S that consists of

K genes, with k» genes in bin b, we sample random S-compatible signatures for normalization. A
random signature is S-compatible with a signature S if it consists of overall K genes, such that in

each bin b it has exactly k» genes. The OE of signature S in cell or sample j is then defined as:

OF, = Yies Gy
E5[Xies Cjjl

Where S is a random S-compatible signature, and Cj is the centered expression of gene i in cell or
sample j, defined as Cj; = Ej; — E[Ej;]. Because the computation is based on the centered gene

expression matrix C, genes that generally have a higher expression compared to other genes will
not skew or dominate the signal. We found that 100 random S-compatible signatures are sufficient

to yield a robust estimate of the expected value Eg[Y;e5 Cj;]. The distribution of the OE values was

normal or a mixture of normal distributions, facilitating subsequent analyses.
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We use the term transcriptional program (e.g., the core oncogenic program) to denote cell states
defined by a pair of signatures, such that one (S-up) is overexpressed and the other (S-down) is

underexpressed. The OE of a program is then the OE of S-up minus the OE of S-down.

In cases where the OE of a given signature/program has a bimodal distribution across the cell
population, it can be used to naturally separate the cells into two subsets. To this end, we applied
the Expectation Maximization (EM) algorithm for mixtures of normal distributions to define the
two underlying normal distributions. We then assigned cells to two subsets, depending on the

distribution (high or low) they were assigned to.
Cell type assignments

Cell type assignments were performed based on genetic and transcriptional features, according to

the following four analyses:

(1) Fusion detection. Fusion detection was performed with STAR-Fusion (26), to detect any

transcript that indicates the fusion of two genes.

(2) Copy Number Alterations (CNA) inference. To infer CNAs from the scRNA-seq data we
used the approach described in (58), as implemented in the R code provided in
https://github.com/broadinstitute/inferCNA with the default parameters. To identify malignant
cells based on CNA patterns, we defined the overall CNA level of a given cell as the sum of the
absolute CNA estimates across all genomic windows. Within each tumor, we identified CD45"
cells with the highest overall CNA level (top 10%), and considered their average CNA profile as
the CNA profile of the pertaining tumor. For each cell we then computed a CNA-R-score defined
as the Spearman correlation coefficient obtained when comparing its CNA profile to the inferred
CNA profile of its tumor. Cells with a high CNA-R-score (greater than the 25% of the CD45" cell
population) were considered as malignant according to the CNA criterion. As certain
tumors/malignant cells have a stable genome, we did not use the CNA criterion to identify non-
malignant cells. Large-scale CNAs were visualized (Fig. 1G) using a Bayesian approach, as

described in https://github.com/broadinstitute/infercnv/wiki/infercnv-i6-HMM-type.

(3) Differential similarity to bulk tumors. We compared the scRNA-Seq profiles to those of bulk

sarcoma tumors (23). RNA-Seq of bulk sarcoma tumors was downloaded from TCGA
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(http://xena.ucsc.edu). For each cell in our scRNA-Seq cohort we: (i) computed the Spearman

correlation between its expression profile and the expression profiles of the bulk sarcoma tumors,
and (ii) examined if the rscoefficients obtained when comparing the cell to SyS tumors were higher
than those obtained when comparing the cell to non-SyS sarcoma tumors, using a one-sided
Wilcoxon ranksum test. Cells with a ranksum p-value < 0.05 were considered as potentially

malignant, and as potentially non-malignant otherwise.

(4) Expression profile clustering. We clustered the cells by applying a shared nearest neighbor
(SNN) modularity optimization algorithm (68), as implemented in the Seurat R package. First,
Principle Component Analysis (PCA) was preformed and k-nearest neighbors (ANN) were
calculated to construct the &-NN graph. The A&~NN graph was used to identify clusters that optimize
the modularity function. Next, we assigned clusters to cell types. Clusters where the majority of
cells had the SS18-SSX1/2 fusion (by the method in (1)) were considered as malignant clusters.
Non-malignant clusters were assigned to cell types by computing the OE of well-established cell
type markers across the non-malignant cells (Supp. Table 2). The OE of each of these cell type
signatures had a bimodal distribution across the cell population. Applying the Expectation
Maximization (EM) algorithm for mixtures of normal distributions, we defined the two underlying
normal distributions, and assigned cells to cell types. Each non-malignant cluster was enriched for

cells of a particular cell type, and was assigned to that cell type.

We used these four converging criteria to assign the cells to nine cell subsets: malignant cells,
epithelial cells, Cancer Associated Fibroblasts (CAFs), CD8 and CD4 T cells, B cells, NK cells,
macrophages, and mastocytes. Specifically, a cell was labeled malignant if it was CD45" and
classified as malignant according to analyses (3) and (4) above. A cell was labeled non-malignant
if it was classified as non-malignant according to analyses (1-4) above. Non-malignant cells were
then further assigned to cell types based on their cluster assignment by (4). Cells with inconsistent
assignments (157 in the SMART-Seq dataset and 558 in the droplet-based dataset) were removed
from further analyses. Lastly, within malignant cells we identified epithelial cells by clustering

each of the biphasic tumors into two clusters.

Cell type assignments were preformed separately for the SMART-Seq2 and droplet scRNA-Seq
datasets cohort. Fusion detection was performed only with the full length SMART-Seq?2 data.
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Cell type signatures

Cell type signatures were generated based on pairwise comparisons between identified cell
subtypes: malignant cells, epithelial cells, CAFs, CD8 and CD4 T cells, B cells, NK cells,
macrophages, and mastocytes. For each pair of cell subtypes we identified differentially expressed
genes using the likelihood-ratio test (69), as implemented in the Seurat package

(http://www.satijalab.org/seurat). Genes were considered as cell type specific if they were

overexpressed in a particular cell subtype compared to all other cell subtypes (log-fold change >
0.25 and p-value < 0.05, following Bonferroni correction). We defined a general T cell signature
for both CD4 and CDS cells by identifying genes that were overexpressed in both CD4 and CD8
compared to all other (non T) cells. A more permissive version of this generic T cell signature
includes genes which were overexpressed in CD4 or CD8 T cells compared to all other (non T)

cells.
Inferring tumor composition

Tumor composition was assessed based on the Overall Expression of the different cell type specific
signatures we identified from the scRNA-seq data (Supp. Table 2). For example, the CD8 T cell
signature was used to infer the level of CD8 T cells in the tumor, and likewise for other cell types.
To estimate tumor purity we used the malignant SyS signature identified here (Supp. Table 2),
which consists of genes that are exclusively expressed by malignant SyS cells compared to non-

malignant cells in SyS tumors.

To evaluate the performance of this approach, we simulated 200 bulk RNA-Seq profiles. For each
simulated bulk RNA-Seq profile we: (1) randomly chose one of the tumors in the cohort; (2)
sampled 100 cells from different cell types profiled in this tumor — these cells include a mix of
immune, stroma and malignant cells, at a randomly chosen composition; (3) summed the sScRNA-
Seq profiles of this randomly chosen population (P) of 100 cells, such that the bulk expression of

gene i across this population was defined as

Z'EP TPM.'.
Ei,P = lOgZ (1 + W
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We also used cell type signatures we previously derived from melanoma scRNA-Seq data (32) to
predict the tumor composition of the simulated SyS bulk RNA-Seq profiles, and vice versa. We
then compared the predictions to the known cell type composition. The predicted composition was
highly correlated with the known composition (7 > 0.9, P < 1*10-3°, Spearman correlation) for all

cell types.
Multilevel mixed-effects models

To examine the association between two cell features, denoted here as x and y, across different
patients or experiments we used multilevel mixed-effects regression models (random intercepts
models). The models include patient/experiment-specific intercepts to control for the dependency
between the scRNA-seq profiles of cells that were obtained from the same patient/experiment. The
models also control for data quality by providing the number of reads (log-transformed) that were
detected in each cell as a covariate. To compute the association between features x and y we
provided x as another covariate and used y as the dependent variable. The models were
implemented using the Ime4 and ImerTest R  packages (https://CRAN.R-
project.org/package=Ime4, https://CRAN.R-project.org/package=ImerTest).

For example, to test if malignant cycling cells were more frequent in treatment naive samples, we
used a logistic mixed-effects model as described above. The dependent variable y was the cycling
status of the malignant cells. The independent covariate x was a binary variable denoting if the

sample was obtained before or after treatment. Only malignant cells were included in this model.
T Cell Receptor (TCR) reconstruction and T cell expansion program

TCR reconstruction was performed using TraCeR (31), with the Python package in

https://github.com/Teichlab/tracer. To characterize the transcriptional state of clonally expanded

T cells, we first identified the clonality level of the T cells in our cohort. T cell that were obtained
from tumors with a larger number of T cells with reconstructed TCRs were more likely to be
defined as expanded. To control for this confounder we performed the following down-sampling
procedure. First, we removed T cells without a reconstructed alpha or beta TCR chain, and samples
with less than 20 T cells with a reconstructed TCR. Next, we computed the probability that a given

cell will be a part of a clone when subsampling 20 T cells from each tumor. T cells with a high
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probability to be a part of a clone (above the median) were considered expanded, and non-
expanded otherwise. To identify the genes differentially expressed in expanded CD8 T cells we
used mixed-effects models with a binary covariate, denoting if the cell was classified as expanded

or not.
CDS8 T cell analyses

The analysis of T cell exhaustion vs. T cell cytotoxicity was performed as previously described
(58), with the exhaustion signature provided in (58). First, we computed the cytotoxicity and
exhaustion scores of each CD8 T cell. Next, to control for the association between the expression
of exhaustion and cytotoxicity markers, we estimated the relationship between the cytotoxicity and
exhaustion scores using locally-weighted polynomial regression (LOWESS, black line in Fig. 2B).
Based on these values we classified the CD8 T cells into four groups: Cells with a low cytotoxicity
score (below the 25™ percentile) were classified as naive or memory-like cells, while the others
were considered effector or exhausted if their cytotoxicity scores were significantly higher or lower
than expected given their exhaustion scores, respectively. According to this classification, we
examined if the clonal expansion program was higher in the effector-like cells. In addition, we
compared the SyS CD8 T cells to CD8 T cells from human melanoma tumors (32) using mixed-
effects models with a sample-level covariate denoting if the sample was obtained from a SyS or

melanoma tumor.
Malignant epithelial and mesenchymal differentiation programs

The epithelial and mesenchymal signatures were obtained through intra-tumor differential
expression analysis, using the likelihood-ratio test for single cell gene expression (69), as

implemented in the Seurat package (http://www.satijalab.org/seurat). We compared the

mesenchymal to epithelial cells in each of the three biphasic tumor samples (SyS1, SyS12 and
SyS12pt). The tumor SyS16 was not included in this analysis (although it was annotated as
partially biphasic according to its histology), because its sScRNA-Seq sample did not include any
epithelial malignant cells. Genes that were up-regulated in the epithelial cells compared to the
mesenchymal cells in all three samples were defined as epithelial genes, and likewise for

mesenchymal genes. When using the epithelial and mesenchymal signatures in the analysis of bulk
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gene expression we removed from these signatures those genes that are also part of non-malignant

cell type signatures.

Using these signatures we defined: (1) the epithelial vs. mesenchymal differentiation score as the
OE of the epithelial signature minus the OE of the mesenchymal signature, and (2) the
differentiation score as the OE of the epithelial signature plus the OE of the mesenchymal
signature. An alternative way to define the differentiation score of a particular cell is first to assign
it to the epithelial or mesenchymal subset, and then use only the pertaining signature to estimate
its differentiation level. However, this approach will not distinguish between poorly-differentiated
mesenchymal cells, and mesenchymal cells which have begun to transition to an epithelial state.

Hence, we used the inclusive definition of differentiation.

Based on the genes in the epithelial and mesenchymal signatures we then generated diffusion maps
(70) for each one of the tumors in our cohort, using the density R package

(https://bioconductor.org/packages/release/bioc/html/destiny.html) with the default parameters.

Identifying co-regulated gene modules

To identify co-regulated gene modules that capture intra-tumor heterogeneity we analyzed each
tumor separately. To identify patterns that explain the cell-cell variation both in epithelial and in
mesenchymal malignant cells, we further divided the biphasic samples (SyS1, SyS12, and
SyS12pt) to their epithelial and mesenchymal compartments. We used PAGODA (71) as

implemented in https://github.com/hms-dbmi/scde to filter technical variation and identify co-

regulated gene modules in each sample. To identify genes that were repeatedly co-regulated we
then constructed a gene-gene co-regulation graph. In this graph, an edge between two genes
denotes that the two genes appeared together in the same gene module in at least five samples.
Next, we identified dense clusters in the graph using the Newman-Girvan (72) community
clustering as previously implemented (73). We filtered out small gene clusters (< 20 genes). Lastly,
for each gene cluster we identified the opposing gene module by identifying genes that were
negatively correlated with its Overall Expression (OE) across the malignant cells. Correlation was

computed using partial Spearman correlation, when controlling for the number of genes and (log-
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transformed) reads detected per cells, and correcting for multiple hypotheses testing using the

Benjamini-Hochberg procedure (74).

For comparison we applied another complementary approach, LIGER (75), which identifies
repeating gene modules in the malignant cells using integrative non-negative matrix factorization
(NMF) (76). Integrative NMF learns a low-dimensional space, where cells are defined by one set
of dataset-specific factors (denoted as V;), and another set of shared factors (denoted as ). Each
factor, or metagene, represents a distinct pattern of gene co-regulation. To find these metagenes it

solves the following optimization problem
argming, y, wso LillEi — H{(W + V)7 + A X:H; Vi 1|7

Where E; denotes the expression matrix (log-transformed TPM) of the malignant cells in sample
i, Vi denotes sample-specific metagenes and ¥ denotes the shared metagenes across all samples.
For this analysis, each biphasic tumor was again split to two “samples”, of epithelial and
mesenchymal cells. We used the top 100 genes of each metagene in W as the iNMF signatures,
and then computed the overall expression of these signatures in the malignant cells. The resulting
signatures and their expression across the malignant cells matched the signatures identified with
the PCA-based approach, and specifically the core-oncogenic program was re-discovered (Supp.

Fig. 4A).
Quantifying RNA velocity

Estimates of RNA velocity were computed using the Velocyto toolkit (http://velocyto.org/). We
applied Velocyto with the default parameters, using a gene-relative model. To explore the potential
transitions between the epithelial and mesenchymal cell states and avoid confounders, we used

only the genes from these differentiation programs (Supp. Table 4) for the analysis.
Predicting patient prognosis

To test if a given program predicts metastasis free-survival or overall survival, we first computed
the OE of the program in each tumor based on the bulk gene expression data. Next, we used a Cox
regression model with censored data to compute the significance of the association between the

expression values and survival. To visualize the predictions of a specific signature in a Kaplan
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Meier (KM) plot, we stratified the patients into three groups according to the program expression:
high or low expression correspond to the top or bottom 20% of the population, respectively, and
intermediate otherwise. We used a log-rank test to examine if there was a significant difference

between the survival rates of the three patient groups.
Analysis of in situ immunofluorescence imaging

Immune cells were detected based on the protein level of CD45 (>7.5 log-transformed). Malignant
cells were identified based on histological morphology, and high protein levels of Hesl. High
protein expression was detected by applying the EM algorithm for mixtures of normal
distributions. The core oncogenic program score was computed only in the malignant cells based
the combined expression of its repressed protein markers: Hsp90, p21, NFkB, and cJun (minus
sum of centered log-transformed values). Each image — corresponding to a specific sample in the
scRNA-Seq cohort — was divided to frames of 100 cells. The average expression of the core
oncogenic program in the malignant cells and the fraction of immune cells in each frame was
computed. Using these frame-level values we examined the association between the expression of
the core oncogenic program in the malignant cells and the fraction of the immune cells, using a
mixed-effects model, with a sample-level intercept (see Multilevel mixed-effects models). The
mixed-effect model accounts for the nested structure of the data (frames are associated with

samples), and ensures the pattern repeatedly appears across different samples.
Analysis of in situ RNA profiling

FASTQ files from multiple lanes were merged to generate single files for processing and insure
proper removal of PCR duplicates later in the pipeline. Illumina adapter sequences were trimmed
using Trim Galore (version 0.4.5) with a minimum base pair overlap stringency of four bases and
a base quality threshold of 20. Paired end reads were stitched using Paired-End reAd mergeR
(PEAR, version 0.9.10) specifying a minimum stitched read length of 24bp and a maximum
stitched read length of 28bp. The 14bp UMI sequence was extracted from the stitched FASTQ
files from the 5’ end of the sequence reads using umi tools (version 0.5.3). The FASTQ files with
extracted UMIs were then aligned to a genome containing the 12bp reference sequence tags using
bowtie2 (version 2.3.4.1) in end-to-end mode with a seed length of four. Using a custom python

function, the generated SAM files were split into multiple SAM files based on the tag to which
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they aligned to limit memory usage when removing PCR duplicates. The split SAM files were
converted to bam files, sorted, and index using samtools (version 1.9) with the import, sort, and
index options respectively. PCR duplicates were removed from the sorted and indexed bam files
using the dedup command from umi tools with an edit distance threshold of three. An edit distance
threshold of three was used. Using custom python functions, the SAM files with PCR duplicates

removed were merged for each sample and used to generate digital counts of the tags.

Outlier counts were removed before generating a consensus count for each target. Outlier tags
were identified as those with counts 90% below the mean of the probe group in at least 20% of the
ROIs analyzed and removed them from the analysis. Subsequently, we removed tags from the
analysis if they were flagged as outliers in at least 20% of the AOIs analyzed. This was done using
the Rosner Test if there were at least 10 probes for the target (k = 0.2 * Number of Probes, alpha
=0.01), or the Grubbs test if there were less than 10 probes for the target. Probes flagged as outliers
in less than 20% of the ROIs analyzed were only removed from the analysis for the ROIs in which
they were flagged. Count reported for each target transcript were calculated as the geometric mean

of the remaining probes.

The counts for each target transcript were then normalized to the count of the house keeper genes
(Clorf43, GPI, OAZ1, POLR24, PSMB2, RAB7A4, SDHA, SNRPD3, TBC1D10B, TPM4, TUBB,
UBB). The geometric mean of the house keeper gene counts was calculated for each ROI. These
geometric means were then divided by the geometric mean of the geometric mean of the house
keeper genes to generate a normalization factor for each ROI. The counts of the transcripts in each

AOI were than multiplied by the associated normalization factor.

The normalized in situ RNA measures were used to compute: (1) the T cell levels as described in
the Inferring tumor composition section; (2) the overall expression of the malignant programs in

each of the regions of interest (ROI), as described in the Gene sets Overall Expression section;
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and (3) the differentiation scores, as described in the Malignant epithelial and mesenchymal

differentiation programs section.
Identifying SS18-SSX targets

The fusion program consists of genes that were differentially expressed in the Aska or SYO1 cells
with the SS18-SSX shRNA (shSSX) compared to those with control shRNA (shCt) after 3 or 7
days post-infection. Gene that were previously reported (18,19) to be bound by the SS18-SSX
oncoprotein in at least two SyS cell lines were defined as direct SS18-SSX targets, and were used

to stratify the SS18-SSX program to direct and indirect targets.
Mapping cancer-immune interactions

The association between the core oncogenic program in the malignant cells and the expression of
different ligands/cytokines in the immune cells was examined using the multilevel mixed-effects
regression model described above, using the scRNA-Seq data collected from SyS tumors. The
dependent variable y was the OE of the core oncogenic program and the covariate x was the
average expression of a certain ligand/cytokine in a specific type of immune cells (e.g.,
macrophages) that were profiled from the same tumor. The model also corrected for inter-patient
dependencies using the patient-specific intercepts and for cell complexity (log(number of reads)).
We restricted the analysis to ligands/cytokines that can physically bind to proteins expressed by
the malignant cells (77). The immune cells were either macrophages or CD8 T cells, as other

immune cell types were not sufficiently represented in the data.

We used a similar approach to further stratify the program to its TNF/IFN-dependent and
independent components. We repeated the same analysis described above, using each one of the
genes in the core oncogenic program as the dependent variable. Genes which were associated with

both TNF and IFN (P < 0.05, following Bonferroni correction) were considered as TNF/IFN-
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dependent, and genes which were not associated with both cytokines (P > 0.05) were considered

as TNF/IFN-independent.
TNF and IFNy impact on SyS cell cultures

SyS cell cultures were treated with TNF and IFNy, separately and in combination (see In vitro
IFN/TNF experiment section), and profiled with scRNA-Seq. Given this data, differentially
expressed genes and gene sets were identified using mixed-effects regression models (Multilevel
mixed-effects models section), with experiment-specific intercepts. The dependent variable y was
the expression of a gene or the OE of a gene set. The model included three treatment covariates:
only TNF, only IFN, and a combination of TNF and IFN. Another binary covariate denoted the
duration of the treatment (1 for < 24h duration and 0 otherwise). The model corrected for
differences between the different SyS cultures and experiments, and identified patterns that
repeatedly appeared across the different experiments. The effect-size and significance of the
combination covariate denotes the effect of the combination, and not the synergy between the two

cytokines.

To examine if the combined treatment with TNF and IFNy had synergistic effects, we used only
the control cells and the cells treated for 4 days with one or two of the cytokines. This model also
included 3 binary treatment covariates (TNF, IFN, and the combination), but this time cells that
were treated with the combination were positive for all three treatment covariates. The effect-size
and significance of the combination covariate hence denotes the synergistic effect of the

combination.
Reconstructing regulatory networks

To reconstruct the gene regulatory network controlling the core oncogenic program we assembled
a database of transcription factor (TF) to target mapping based on four sources: JASPAR (78),
HTRIdb (79), MSigDB (80,81), and TRRUST (82), and augmented it with the direct SS18-SSX
targets identified here (Supp. Table 5A) and TF-target pairs we identified in a cis-regulatory motif
analysis of the core oncogenic program. Specifically, for the cis-regulatory analysis, we used
RcisTarget (83) (a R/Bioconductor implementation of icisTarget (84) and iRegulon (85)) to

identify cis-regulatory elements significantly overrepresented in a window of 500bp around the
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transcription start site of the core oncogenic genes (normalized enrichment score > 3.0) along with

their cognate TFs.

We pruned the resulting network to include only core oncogenic program genes (and SS18-SSX)
(i.e., all TFs and targets aside from SS18-SSX are program genes). An edge in the network between
a TF and its target denotes that: (1) the TF is regulating the target according to at least one of the
sources described above, and (2) there is an association between their expression levels in the
scRNA-Seq data of SyS tumors. Edges are weighted 1 and -1 to reflect positive and negative

associations. We used pageRank (86) (with the R implementation as provided in igraph

(https://igraph.org/r/)) as a measure of TF and target importance in the network. To compute TF
importance we first flipped the direction of the edges in the network, going from target to TFs.
Consistent with the network weights, targets from the up- or down-regulated side of the network
were considered induced or repressed, respectively. Likewise, TFs from the up- or down-regulated

side of the network were considered activators and repressors, respectively.
Selectivity and synergy in drug experiments

To evaluate the impact of each drug on the expression of a certain program or gene in a specific
cell lines (SYO1, HSSYIIL, or MSCs), we used a regression model with four binary treatment
covariates: abemaciclib, TNF, panobinostat, and the combination of all three drugs. As in the case
of TNF/IFN analysis, to examine the synergy of the combination, the cells treated with the
combination were positive for all four treatment covariates. The model also included the number
ofreads detected in each cell (log-transformed) to control for technical variation. When examining
the impact on the two SyS cell lines together, we used a mixed-effects model with a cell line
specific intercept, to control for cell line specific baseline states. Drug selectivity was examined
by using a mixed-effects model that accounts for all three cell lines and has another covariate to

denote if the treated cells were SyS or not.
Data availability

Processed scRNA-seq data and interactive plots generated for this study will be provided through
the Single Cell Portal. The processed scRNA-seq data will be provided via the Gene Expression
Omnibus (GEO).
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SUPPLEMENTAL FIGURE LEGENDS

Supplementary Figure 1. Consistent classification of cells based on expression and genetic
features. (a) Converging assignments of cell identity. tSNE of single-cell profiles (dots), colored
by (1) tumor sample, (2) inferred cell type, (3) SS18-SSX1/2 and MEOX2-AGMO fusion
detection, (4) SSX1/2 gene detection (mRNA level > 0), (5) MEOX2 and AGMO gene detection
(mRNA level > 0), (6-12) overall expression of well-established cell type markers (Supp. Table
2). (b) Droplet based scRNA-Seq of SyS. tSNE of single cells (dots), profiled with droplet-based
scRNA-seq (25), colored according to tumor sample (left) and inferred cell type (right). (c)
Differential similarity to SyS compared to other sarcomas (Methods) distinguishes malignant from
non-malignant cells. Differential similarity (y axis) to SyS shown for cells in each cell subset (x
axis). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points
that do not exceed +IQR*1.5; further outliers are marked individually. (d) The SyS program
distinguishes between SyS and non-SyS cancer types. Distribution of the SyS program
Overall Expression (y axis) across BAF driven tumors (left, x axis) and in TCGA (right, x
axis). In (c-d) Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme
points that do not exceed +IQR*1.5; further outliers are marked individually; P-value: Wilcoxon-

ranksum test; AUC: Area Under the receiver operating characteristic Curve.

49


https://doi.org/10.1101/724302
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/724302; this version posted August 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

Supplementary Figure 2. Antitumor immunity and immune evasion in synovial sarcoma.
(a-c) M1 and M2 states in macrophages are comparable to melanoma. (a) tSNE of macrophage
profiles, colored by M1/M2 polarization scores (Overall Expression of the M1 minus M2
program), according to signatures defined here by comparing between the two macrophage clusters
(Supp. Table 3B). (b) Distribution of M1/M2 polarization scores (y axis) according to previously
defined signatures (87) in macrophages in our datasets partitioned to M1-like and M2-like
subgroups. (c) Spearman correlation coefficient (color bar) between each pair of genes from M1
and M2 signatures defined here (top, Supp. Table 3B) or previously (87) (bottom) across
macrophages in SyS (left) and melanoma (32) (right). (d) Prognostic value of T cell levels in
different tumor types. Kaplan-Meier (KM) curves of survival in melanoma (left) (88), sarcoma
(middle) (23), and SyS (8) (right), stratified by high (top 25%, red), low (bottom 25%, blue), or
intermediate (remainder, green) levels of inferred T cell infiltration levels (Methods). P: COX
regression p-value. (e) The cancer testis antigens CTAGIA, CTAGIB (encoding for NY-ESO-
1), and PRAME are exclusively expressed by SyS malignant cells. Distribution of expression
of each gene (y axis, log-transformed TPM) in the cells of each subset (x axis). Middle line:
median; box edges: 25th and 75th percentiles, whiskers: most extreme points that do not exceed

+[QR*1.5; further outliers are marked individually.
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Supplementary Figure 3. Characterizing mesenchymal, epithelial and poorly differentiates
malignant cells. (a) Epithelial and mesenchymal program genes. The expression of the top
epithelial and mesenchymal program genes (rows) across the malignant cells (columns), with cells
sorted according to the difference in epithelial vs. mesenchymal OE scores (bottom plot). Topmost
Color bar: epithelial vs. non-epithelial cell status, and sample. Canonical markers and immune-
related genes are in red and blue, respectively. (b) Cell cycle signature. Overall Expression of the
G2/M (y axis) and G1/S (x axis) phase signatures in each malignant cell, colored by their cycling
status. (¢) Cycling cells are less differentiated. The distribution of differentiation scores of cycling
(red) and non-cycling (grey) malignant cells, across all tumors (top) and within each tumor
(bottom; only tumors with at least 10 cycling cells are shown). (d) RNA velocities (38) are
visualized on top of the two first principle components (PCs), showing the state and velocity of
the malignant cells obtained from patient SyS12 using the droplet-based approach (25). (e) t-SNE
plots of malignant cells obtained from patient SyS12 before and after treatment, revealing a
subpopulation of mesenchymal cells without copy number amplifications in chromosomes 15, 18

and 19 (Fig. 1G).
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Supplementary Figure 4. The core oncogenic program is detected using different approaches
and datasets. (a) Agreement between the core oncogenic program detected by a PCA and an
iINMF approach (76). Overall Expression (OE) of the core oncogenic program across malignant
SyS cells, as identified in the PCA-based approach (71) (x axis) and in the integrative-NMF
approach (76) (y axis) (Methods). (b-c) Program Overall Expression captures inter-tumor
variation and the MYC-high cluster in 64 SyS tumors from an independent RNA-Seq cohort (18).
The tumors were previously classified into two transcriptionally distinct clusters (18), denoted here
as MYC-high and MYC-low. (b) For each tumor (dots), shown is the Overall Expression (OE) of
the core oncogenic program (y axis) vs. the projection on the second Principle Component (PC2)
of the data. (c) Normalized expression (centered log-transformed RPKM) of the core oncogenic
program genes (columns) most correlated with PC2 across the tumors (columns). Tumors are

sorted by their PC2 projection (bottom bar).
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Supplementary Figure 5. Characterizing the transcriptional impact of SS18-SSX inhibition
and tumor microenvironment cytokines on synovial sarcoma cells. (a) The fusion KD induces
innate immune programs. Distribution of Overall Expression scores () axis) in the pathways most
differentially expressed between SyS cells with SS18-SSX (shSSX, grey) vs. control (shCt, blue)
shRNA, shown separately for non-cycling and cycling cells (x axis). (b) Biological processes
regulated in the SS18-SSX program. Gene sets (rows) most enriched (-logio(P-value),
hypergeometric test, x axis) in induced (left) and repressed (right) SS18-SSX program genes,
which are either direct (black bars) or indirect (grey bars) targets of SS18-SSX based on ChIP-Seq
data (18,19) and genetic perturbation. Vertical line denotes statistical significance following
multiple hypotheses correction. (¢) The SS18-SSX program distinguishes SyS from other cancer
types and other sarcomas. Overall Expression of the SS18-SSX program (y axis) in either TCGA
samples (n = 9,391, top), stratified by cancer types (x axis), or in another independent cohort of
sarcoma tumors (n = 164, bottom) (48). Middle line: median; box edges: 25th and 75th percentiles,
whiskers: most extreme points that do not exceed £IQR*1.5; further outliers are marked
individually. “P<0.01, *"P<1*10-3, " P<1*10*, t-test. (d) Repression of the core oncogenic and
SS18-SSX programs by short term TNF treatment is not sustained long term. Distribution of
Overall Expression scores (y axis) of the core oncogenic program and the direct and indirect SS18-
SSX programs (x axis) in control cells (blue) and cells treated with TNF for 4-6 hours (right) or
more than 24 hours (left).
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Supplementary Figure 6. HDAC and CDK4/6 inhibitors synergistically repress the core
oncogenic program and induce cell autonomous immune responses. Distribution of the
expression (y axis) of core oncogenic genes (a), as well as the Overall Expression of TNF (b) and
IFN (c) signaling pathways in SyS cells and MSCs (x axis) under different treatments (color
legend). Middle line: median; box edges: 25th and 75th percentiles, whiskers: most extreme points
that do not exceed £IQR*1.5; further outliers are marked individually. “P<0.01, *“P<1*10-,

P<]1*10, t-test.

54


https://doi.org/10.1101/724302
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/724302; this version posted August 4, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY 4.0 International license.

SUPPLEMENTAL TABLES LEGENDS

The Supplemental Tables are provided in separate (Excel) files.

Supplementary Table 1. (A) Clinical characteristics of the patients and samples in the

scRNA-seq cohort and (B) Quality measures of the scRNA-seq cohort.

Supplementary Table 2. Cell type signatures derived from the analysis of the SyS scRNA-

seq cohort, as well as canonical cell type markers used for cell assignments.

Supplementary Table 3. Immune cell states: (A) the T cell expansion program, and (B)

M1-like and M2-like macrophage signatures.

Supplementary Table 4. Malignant programs: epithelial, mesenchymal, cell cycle and core

oncogenic programs (A), and their enrichment with pre-defined gene sets (81) (B).

Supplementary Table 5. The fusion program (A) and its enrichment with pre-defined gene
sets (81) (B).

Supplementary Table 6. TNF and IFNy effects in synovial sarcoma: (A) The predicted
TNF/IFNy-dependent and independent components of the core oncogenic program according to
the cell-cell interaction analyses (Methods); (B) differentially expressed genes following TNF
and IFNy treatment, and (C) their enrichment with pre-defined gene sets (81).
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