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Abstract

K-mer counting has many applications in sequencing data processing and analysis. However, sequencing
errors can produce many false k-mers that substantially increase the memory requirement during
counting. We propose a fast k-mer counting method, CQF-deNoise, which has a novel component for
dynamically identifying and removing false k-mers while preserving counting accuracy. Compared with
four state-of-the-art k-mer counting methods, CQF-deNoise consumed 49-76% less memory than the
second best method, but still ran competitively fast. The k-mer counts from CQF-deNoise produced cell
clusters from single-cell RNA-seq data highly consistent with CellRanger but required only 5% of the
running time at the same memory consumption, suggesting that CQF-deNoise can be used for a preview
of cell clusters for an early detection of potential data problems, before running a much more

time-consuming full analysis pipeline.

Introduction

The high-throughput nature and ever decreasing cost
of next-generation sequencing (NGS) technologies
have enabled the development of experimental meth-
ods for a variety of applications [1, 2]. For applica-
tions that produce a large number of sequencing reads,
such as whole-genome sequencing for de novo assem-
bly [3], directly operating on the sequencing reads
could be slow and memory-prohibitive when the depth-
of-coverage is high. As a result, it has become common
to summarize the sequencing data by the list of all
k-mers (i.e., length-k sub-sequences) and their occur-
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rence frequencies in the sequencing reads. These k-mer
counts are useful for various downstream tasks, includ-
ing error correction [4-6], de Bruijn graph construc-
tion [6-8], read clustering and query [9], and genome
size estimation [10, 11].

In k-mer counting, the major computational con-
cerns include counting and querying efficiency, and
memory consumption. These issues are particularly
critical when the sequenced genome is large, the depth-
of-coverage is high, or when there is a limited amount
of memory available. Many k-mer counting methods
have been proposed to deal with these concerns.

In terms of counting efficiency, one common way
to speed up the counting process is multi-threading.
The main bottleneck of multi-threading methods is
the overhead caused by locking, and different meth-
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ods have used different approaches to tackle it. For
example, Jellyfish2 [12] takes advantage of the CAS
(compare and set) assembly instruction to build a
lock-free hash table for parallelism. As another ap-
proach, Squeakr [13] allows each thread to store values
of shared variables in a local data structure temporar-
ily, which will later be merged into the global data
structure.

In terms of memory consumption, one way to han-
dle large data sets is to process only a subset of data
in memory at a time. For example, DSK [14] and
KMC [15] use the disk to split a large data set into
different bins (files), and process each bin separately
one by one. When the intermediate results of the dif-
ferent bins are ready, they are further combined to
produce the final k-mer counts.

Another way to reduce memory consumption while
allowing efficient k-mer queries is to use AMQ (Ap-
proximate Membership Query) data structures. These
structures are for querying whether a particular object
(a k-mer in this case) is contained in a set/multi-set
or not. If the set contains the object, the query result
is always positive, and thus these structures guarantee
no false negatives. On the other hand, if the set does
not contain the object, there is a certain probability
that the query result would still be positive, and the
rate of such false positives is determined by properties
of the AMQ data structure.

One widely used AMQ data structure is the Bloom
filter, which is a bit vector for recording the objects
stored. Each object to be stored is fed to multiple in-
dependent hash functions to generate as its signature
a list of hash values, with each value occupying one bit
of the Bloom filter with equal probability. The Bloom
filter for a set of objects is simply the disjunction of
the hash values of all its objects. To query whether an
object is contained in the set, its hash value signature
is computed. If any of the positions occupied by the
hash values is not set in the Bloom filter, the object
is definitely not contained in the set. Otherwise, the
object is either contained in the set or it is not con-
tained in the set but its hash values form a subset of
the hash values of the objects in the set. The probabil-
ity of the latter, false positive case (also called a “false
drop” in the literature) is controlled by the size of the
Bloom filter, the number of hash functions used, and
the number of objects in the set. Assuming that each
bit in the Bloom filter is set independently, the false
positive probability is (1 — (1 — =)¥")* [16], which is
approximately (1 — e~*"/™)* when m is large, where
m is the number of bits in the Bloom filter, k is the
number of hash functions, and n is the total number
of unique objects inserted into the Bloom filter.

Some studies have attempted to improve the speed
efficiency of the Bloom filter. For example, blocked

Page 2 of 13

Bloom filter [17] divides up a Bloom filter into mul-
tiple smaller Bloom filters each of which can fit into
the cache line, which improves the cache efficiency at
the expense of a higher false positive rate.

To use the Bloom filter for object counting, one way
is to use ¢ bits for each data slot (instead of one bit)
to record how many times this slot is set, which forms
a counter with a value up to 2°—1 [18]. This variation
of the Bloom filter permits object removal, by decre-
menting the counters in the k& corresponding slots of
the object to be removed, again with a chance of false
decrements due to the false positive rate. A drawback
of this counting approach is that every data slot is al-
located c bits regardless of the number of times that
it is set, leading to unnecessary memory consumption.
Besides, it does not provide an easy way to query the
occurrence count of an object because each counter is
associated with a slot and each slot can be shared by
many objects. Some other variations of the counting
Bloom filter have been proposed in the literature [19],
including ones that allow the query of object occur-
rence counts [20].

The counting quotient filter (CQF) [19] is a recently
proposed AMQ data structure for object counting that
is more space efficient than the counting Bloom filter,
and it allows dynamic re-sizing of the data structure
as more data are added. We explain CQF in detail in
Materials and Methods.

The ideas described above can also be combined. For
example, Squeakr [13] implements a multi-threaded
CQF, which can perform k-mer counting with both
time and space efficiency.

A practical issue of k-mer counting is the presence
of errors in the sequencing reads, which increases the
number of unique k-mers by creating false k-mers that
do not actually exist in the original sequences. Since
the number of distinct random errors grows with the
number of sequencing reads produced, the memory
consumption of k-mer counts can keep increasing with
sequencing depth even though the number of true k-
mers in the original sequences stays constant.

An important property of false k-mers is that they
usually have much lower occurrence counts than the
true k-mers due to the random nature of most sequenc-
ing errors. Therefore, some previous k-mer counting
methods simply assume low-frequency k-mers are er-
rors and discard them. For example, BFCounter [21]
and Turtle [22] use a Bloom filter to detect whether
a k-mer has been encountered before and a separate
data structure for the actual counting of k-mers that
appear at least twice in the sequencing reads. In this
way, the singletons (k-mers that appear only once in
the sequencing reads) will not take up space in the sec-
ond data structure. Alternatively, Jellyfish2 [12] filters
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low-frequency k-mers by keeping a counting Bloom fil-
ter with a small number of bits per slot, and when
the counter reaches a pre-defined threshold (such as
two), further k-mer counting will be performed using
another data structure that is more space efficient.

We argue that these approaches to handling false k-
mers are not ideal in two aspects. First, false k-mers
take up space in the data structures during the count-
ing process, with a possibility of using up all the avail-
able memory before the whole counting process is com-
plete. Therefore, they should be removed as early as
possible. Second, using an extra step to identify sin-
gletons leads to extra overheads in terms of running
time and possibly memory consumption. It would be
more preferable to combine counting and false k-mer
removal in the same process.

In this paper, we propose a method called CQF-
deNoise that uses the CQF data structure for counting
k-mers while removing false k-mers on the fly. Based
on a user-specified wrong removal tolerance thresh-
old, CQF-deNoise automatically determines the suit-
able time and number of rounds of false k-mer re-
moval. As a result, the number of unique k-mers in
the CQF during the whole counting process remains
largely constant and is much smaller than the total
number of unique true and false k-mers. We show that
as compared to several state-of-the-art k-mer counting
methods, CQF-deNoise consumes less memory, runs
competitively fast, but at the same time gives k-mer
counts that are highly accurate. We also show that
the fast and low-memory k-mer counting achieved by
CQF-deNoise makes it possible to cluster cells based
on single-cell RNA-seq data using only 5% of the time
required by a standard pipeline while the clusters pro-
duced remain highly similar.

Results

The details of CQF-deNoise are given in Materials and
Methods. We tested its performance and compared it
with several other k-mer counting methods using four
data sets with diverse properties (Table 1). All meth-
ods were tested on the same machine, and parameter
values of CQF-deNoise were determined by an auto-
matic procedure described in Materials and Methods
with the actual values used listed in Table 2.

CQF-deNoise has a low wrong removal rate of true
k-mers

Since CQF-deNoise removes potential false k-mers
based on their low occurrence frequencies, it could ac-
cidentally remove some true k-mers. We tested how
many true k-mers (those that appear in the reference
genome) were wrongly removed by CQF-deNoise using
the C. elegans data set, which had the highest depth
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of coverage and thus the highest expected false-to-true
k-mer ratio in the data caused by the sequencing er-
Trors.

When we did not perform noise removal, the fre-
quency distribution of the full set of k-mers was clearly
multi-modal (Figure la), with a peak at around 160
that likely corresponded to the median coverage of the
true k-mers, and another peak at 1 that should con-
tain mostly false k-mers. Since a local minimum was
observed at 50, we used it as the demarcation point
and manually set the number of noise removal rounds
of CQF-deNoise for each value from 0 to 50 to inspect
the change of counting results.
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Figure 1 Trade-off between memory consumption and wrong
removal of true k-mers based on the C. elegans data set with
k = 28. (a) Distribution of k-mer occurrence counts without
noise removal. (b) Estimated wrong removal rate and (c)
memory consumption at different numbers of k-mer removal
rounds. The estimated wrong removal rate was defined as the
fraction of true k-mers having an occurrence count no larger
than the number of rounds of noise removal, estimated by the
Poisson distribution.

As the number of noise removal rounds increased,
as expected more and more true k-mers were wrongly
removed, but the rate remained low, reaching the max-
imum of only 107236 with 50 rounds of noise removal
(Figure 1b), which is negligible given the high sequenc-
ing depth (290x). As to be discussed below, in real
situations the number of noise removal rounds deter-
mined automatically by CQF-deNoise is usually much
smaller than 50, and thus the fraction of true k-mers
being removed is very small in practice.

At the same time, the memory consumption rapidly
dropped from 5.5GB to 0.9GB as the number of noise
removal rounds increased from 0 to 20, which was
then stabilized thereafter (Figure 1c). To interpret
this memory consumption objectively, we performed
the following conceptual analysis. Assuming that most
true k-mers in the genome are unique and there is
a uniform read coverage of the whole genome in the
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Table 1 Data sets used for testing the performance of CQF-deNoise and comparing it with other k-mer counting methods. Data
sets were chosen from four species with very different genome sizes. The sequencing data also had different depths of coverage of

the genomes.

Species Reference genome  Genome size (Mb)  Data sets (SRA accessions) Total read length (Gb)  Depth-of-coverage
C. elegans  WBcel235 100 SRR7693585-7693591 29.0 290 %
F. vesca FraVesHawaii_1.0 240 SRR072005-072014, 14.1 59 x
072029, 5275218, 5799056-
5799057
Z. mays B73 RefGen_v4 2,100 SRR7753852-7753853, 128.8 61x
7753855, 7753858-7753861,
7753878-7753884
H. sapiens  GRCh38.p12 3,257 SRR2831527-2831541 199.6 61 x

Table 2 Parameter values of CQF-deNoise. The length of hash
value signature (p), quotient (g) and remainder (r)
automatically determined by our algorithm based on the number
of rounds of k-mer removal (m) used in our empirical tests.

m P q
0.1 40 32 8
2 39 31 8
5,10,15 38 30 8
20,25,30,40,50 37 29 8

data set, there would be around 100 million unique
true k-mers in the C. elegans genome, each with an
occurrence count of 160. Since two counting slots are
required to store this average occurrence count when
the remaining parameter, 7, is equal to 8 in addition to
a slot storing the remainder (Materials and Methods;
Table 2), the total number of slots in the CQF would
be at least 300 millions. Further, since the number of
slots in the CQF has to be a power of 2, the smallest
number of slots becomes 229, which was exactly the
number of slots in the CQF we constructed, showing
that our memory usage of 0.9GB was optimal in this
case.

CQF-deNoise has high counting accuracy

We evaluated the counting accurcy of CQF-deNoise
using the C. elegans data set in two ways. First, since
singleton k-mers are mostly false k-mers, we evaluated
the proportion of singleton k-mers that remained in
the CQF (the “singleton survival rate”) and the pro-
portion of non-singleton k-mers that did not remain in
the CQF (the “non-singleton removal rate”). Single-
tons can survive due to the intrinsic nature of CQF,
that a low-occurrence k-mer can happen to share the
same hash value as one or more other k-mers, and thus
their counts add up. A non-singleton can be removed
if its occurrence count is no more than one every time
when a round of noise removal starts. From the re-
sults, the singleton survival rate remained fairly stable
across the different numbers of noise removal rounds,
with only around 0.1%-0.2% of the singletons remained
in the CQF at the end of counting (Figure 2a). For the
non-singletons, less than 2.5% of them were removed
(Figure 2b), and many of these non-singletons are ex-

pected to be false k-mers based on the shape of the
bimodal k-mer count distribution (Figure la).
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Figure 2 Counting accuracy based on the C. elegans data set.
(a) Singleton survival rate, (b) non-singleton removal rate, (c)
proportion of k-mers in CQF with a count different from its real
count, and (d) among all the k-mers in CQF with count
different from its real count, the proportion of k-mers with
count difference being 1, with different numbers of rounds of
noise removal.

Second, for the k-mers that remained in the CQF at
the end of counting, we evaluated the correctness of
their counts. We observed that only 2%-4% of these
k-mers had an incorrect count (Figure 2¢), and among
these k-mers with an incorrect count, more than half
of them had a difference of only 1 between the actual
count and the count in the CQF (Figure 2d), showing
that the noise removal procedure of CQF-deNoise had
minimal effects on counting accuracy.

CQF-deNoise uses less memory than other k-mer
counting methods

To benchmark the computational performance of
CQF-deNoise, we compared it with four state-of-the-
art k-mer counting methods, namely BFCounter [21],
Jellyfish2 [12], KMC3 [15], and Squeakr [13]. BF-
Counter, Jellyfish2 and Squeakr are memory-based,
while KMC3 was designed to be a disk-based method,
although it also provided an in-memory mode, which
we used in our comparisons.
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We first compared the memory consumption of the
different methods based on the four data sets. From
the results (Figure 3a,b), CQF-deNoise consistently
consumed the smallest amount of memory on all four
data sets for both values of k tested. Compared to
the next method with the least memory consumption,
CQF-deNoise had a memory usage reduction from 49%
(F. vesca data set, k = 55) to 76% (C. elegans data
set, k = 28).
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Figure 3 Comparison of the k-mer counting methods. Memory
usage when (a) k=28 and (b) k=55. Running time when (c)
k=28 and (d) k=55.

The running time of CQF-deNoise was similar to
that of Jellyfish2 and Squeakr and was consistently
faster than BFCounter (Figure 3c,d). It was not faster
than KMC3, but the short counting time of KMC3
came with the cost of a much higher memory con-
sumption, which was 21 (Z. mays data set, k = 55) to
187 (C. elegans data set, k = 55) times of the memory
consumption of CQF-deNoise.

To evaluate the scalability of the different methods,
we considered the C. elegans data set (which had the
highest depth-of-coverage), and sub-sampled reads at
different depths. The results show that CQF-deNoise
used the least amount of memory at all depth values
(Figure 4a). Importantly, the memory consumption in-
crease with respect to sequencing depth was smallest
for CQF-deNoise, since it was largely unaffected by the
increasing amount of false k-mers in the data. In terms
of running time, the order of the different methods re-
mained unchanged at the different depths of coverage
(Figure 4b).

These results show that CQF-deNoise performs k-
mer counting with lower memory consumption while
running as fast as the other memory-based methods.
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Figure 4 Scalability of the k-mer counting methods (a) Memory

consumption and (b) running time of the different methods on

random subsets of reads from the C. elegans data set at 70X
to 290 X coverage.

Table 3 Query performance of the different methods. For each
species, the running time of querying a) random k-mers that
existed in the sequencing reads and were contained in the data
structures (“Exist”) and b) random k-mers that did not exist in
the sequencing reads (“Not exist”) are reported. Each query set
contained approximately 100 million and 550 million k-mers in
the case of C. elegans and F. vesca, respectively.

Running time (s) - C. elegans - - F. vesca -
Exist Not exist Exist Not exist
BFCounter 70 51 353 294
CQF-deNoise 47 40 210 197
Jellyfish2 153 156 620 778
KMC3 95 160 429 1299
Squeakr 55 50 269 254

K-mer count querying using CQF-deNoise is
efficient

Another important performance indicator is the time
needed to query the occurrence counts of k-mers after
the counting process, when all the counts are already
loaded into memory. We compared the different meth-
ods using the C. elegans and F. vesca data sets only
due to the large amount of time needed by some of the
published methods to query from the other two data
sets. For each of the two data sets, we queried both
k-mers that existed in the sequencing reads and were
contained in all the counting data structures as well as
k-mers that did not exist in the reads.

The results (Table 3) show that CQF-deNoise com-
pleted these queries using the smallest amount of time
among all the methods for both data sets and for both
types of k-mers. The high query efficiency of CQF-
deNoise was likely due to the compactness of its data
structure.

Cell clusters can be accurately identified by k-mer
counts in single-cell RNA-seq data

Finally, we explored the clustering of single cells as
an application of k-mer counts. We obtained a single-
cell RNA-seq (scRNA-seq) data set of peripheral blood
mononuclear cells produced using the 10x Chromium
platform [23]. For each cell, we computed the occur-
rence counts of either all k-mers or only the k-mers
that appear in annotated protein-coding transcripts
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using CQF-deNoise. In both cases, two-dimensional
projection of the cells based on these k-mer counts us-
ing UMAP [24] showed that there were four cell clus-
ters (Figure 5a,b). Using SingleR [25] to annotate the
cell types, we found that monocytes and B-cells formed
two distinct clusters, while the other two clusters con-
tained a mixture of cells from different types with the
natural killer (NK) cells occupying a corner of one of
these clusters.
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Figure 5 Visualization of single cells based on the scRNA-seq
data set. (a,b) Two-dimensional UMAP projection of single
cells based on the counts of all k-mers (a) or only the k-mers in
annotated protein-coding transcripts (b). (c) Two-dimensional
projection of single cells produced by CellRanger. In the legend,
the numbers in brackets represent cell numbers of the different
types.

To evaluate the quality of these clusters, we applied
CellRanger [26], a pipeline designed for 10x scRNA-seq
data, to this data set. The two-dimensional projection
also showed four clusters with very similar cell type
distributions as the ones produced by CQF-deNoise
(Figure 5c¢).

To have a more quantitative comparison between
CQF-deNoise and CellRanger, we used k-means [27] to
produce four clusters using either the protein-coding
transcript k-mer counts or the transcript expression
levels computed by CellRanger. The adjusted Rand
index (ARI) between the two sets of clusters was high
(0.94), while when they were individually compared
with the SingleR annotations, the ARI values were
very close (both 0.60), showing that the two sets of
results were highly consistent.

The advantage of using k-mer counts over a full anal-
ysis pipeline that includes read alignments lies in the
computational resources required. When we did not
restrict the memory consumption, the CQF-deNoise
pipeline was completed in 19 minutes using 6.4GB of
memory, while CellRanger used 72 minutes (3.8 times
of CQF-deNoise) and 142.7GB of memory (22.3 times
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of CQF-deNoise). When we set the maximum memory
usage to 7GB, CellRanger took 374 minutes to com-
plete, which was 19.7 times of CQF-deNoise; or equiva-
lently, CQF-deNoise only used 5% of CellRanger’s run-
ning time.

These preliminary results suggest that k-mer counts
can potentially be used to provide a quick preview of
the analysis results that a full analysis pipeline would
take a much longer time to produce.

Discussion and conclusion

In this paper, we have proposed a memory-efficient
k-mer counting method, CQF-deNoise, that uses less
memory than other stat-of-the-art k-mer counting
methods but runs as fast as the memory-based meth-
ods. Its low memory consumption is attributed to a
procedure that removes potential false k-mers caused
by sequencing errors. When compared to the next
method with the lowest memory consumption, CQF-
deNoise used 49%-76% less memory.

The false k-mer removal procedure of CQF-deNoise
automatically determines the time and number of
rounds of k-mer removal based on a user-specified max-
imum tolerable rate of wrongly removing true k-mers.
We have shown that this procedure was effective in
removing false k-mers while the counts of true k-mers
were only minimally affected. Although some other k-
mer counting methods can also remove some potential
false k-mers, they do it in a fairly arbitrary way by
for example removing all singleton k-mers at the end
of counting, resulting in an increase of memory usage
as the sequencing depth (and thus number of false k-
mers) increases. In comparison, the dynamic removal
procedure of CQF-deNoise determines the k-mers to
remove based on properties of the sequencing data,
and it led to virtually constant memory usage within
a range of sequencing depths.

We demonstrated that k-mer counts can be used to
cluster single cells based on their scRNA-seq profiles,
with the clusters formed highly consistent with the
ones formed by a full analysis pipeline for scRNA-seq
data but our k-mer-based approach used much less
running time and/or memory. Conceptually, as long
as a task requires only a distance matrix of single cells
as input, such as various types of visualization, clus-
tering and trajectory inference, our k-mer-based ap-
proach can be used. Whether there are some particu-
lar data types that require filtering or normalization
steps that cannot be performed efficiently using CQF-
deNoise needs to be investigated in more detail.

We provide CQF-deNoise as an open-source package.
The main program for counting k-mers contains addi-
tional options for users who want to have more control
of the counting process, such as specifying the exact
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number of noise removal rounds to be performed. The
package also comes with a number of extra tools for
manipulating CQFs in general.

One limitation of CQF-deNoise is that some k-mers
that remain in the CQF can actually have a lower oc-
currence count than some k-mers completely removed
from the CQF. This is because whether a k-mer would
be removed depends not only on its occurrence count,
but also on the moments of its different occurrences.
A k-mer remains if and only if there are two or more
occurrences of it within any of the time periods be-
tween two noise removal rounds. This would not affect
the removal of singleton k-mers, but by chance some
false k-mers do occur more than once and are not re-
moved in this way. When it is crucial to have as few
false k-mers remaining in the CQF as possible, one
possible remedy is to construct a histogram of k-mer
occurrence frequencies after counting, use it to deter-
mine occurrence counts that likely belong to the false
k-mers by inspecting the distribution (as was done in
Figure 1), and finally perform a post-processing round
of noise removal using the identified threshold.

Materials and Methods
The counting quotient filter
CQF-deNoise uses CQF [19] for efficiently computing
the occurrence frequencies of k-mers, with a novel de-
noise method for removing k-mers that likely occur due
to sequencing errors. Here we first explain how CQF
works and how we implemented it, and then we will
describe our de-noise method in the next subsection.
CQF is an AMQ data structure for object counting.
It represents a multiset S by using a hash function h
to map every object x to a p-bit representation, where
p = logy %, n is the expected maximum number of dis-
tinct objects in S, and § is the desired false positive
query rate. Unlike the Bloom filter that directly uses
all p bits as the signature of an object, in CQF, the
first g bits (called the quotient) are used to determine
the canonical memory slot (called the “home slot”)
that an object should be stored in, and the remaining
r = p—gq bits (called the remainder) are actually stored
in the memory slot to indicate that the slot contains
an object with that signature. The CQF thus contains
a table of 29 data slots each storing r bits of data.
When collision occurs, i.e., when an object’s home slot
has already been taken by another object, the exact
memory slot to be used for storing it is determined by
a variant of linear probing, with the objects assigned
to adjacent slots following the same order as their hash
values. Object insertion, query and deletion are all as-
sisted by some additional metadata that contain infor-
mation about whether the CQF has stored any object

Page 7 of 13

with a particular quotient and where each run of data
slots of objects with the same quotient ends.

Object counts are stored in CQF in three differ-
ent ways according to their values. For an object that
has appeared only once, no additional information is
stored, which serves as an indicator that the object
count is one. For an object that has appeared twice,
an additional slot is assigned right after the original
slot, and it also stores the same remainder value of the
object. For an object that has appeared three or more
times, right after the original slot assigned to the ob-
ject, one or more additional slots are assigned as the
counter of the object, followed by another slot storing
the remainder of the object again to signify the end
of the counter. The number of slots assigned to the
counter can be dynamically modified, such that CQF
can handle object counts of very different magnitudes
at the same time. To distinguish between a slot stor-
ing a remainder and one storing a counter, the first
slot assigned as part of the counter must have a value
smaller than the remainder of the object. This is suffi-
cient for indicating that the slot is a counter, because
by definition objects in the same run are stored in as-
cending order of their remainder values. The encoding
scheme for counters also employs some additional rules
to make sure that all combinations of remainder and
counter values can be stored and retrieved correctly
(to be explained below).

Our implementation of CQF, with a more
space-efficient counter encoding scheme

We adopted the implementation of CQF in Squeakr [13]
on the basis of its efficient C++ code and multi-
threading option, but we made two custom designs.
First, since our CQF was used for counting DNA se-
quences, we chose the ntHash function [28], which was
specifically designed for nucleotide sequences and was
shown to perform better than several mainstream hash
functions. Second, we proposed an alternative encod-
ing scheme for the counters, which combines ideas from
both the original encoding scheme used in CQF and
the Most-Significant Bit (MSB) encoding scheme. The
basic idea is to use the most significant bit to indicate
whether this counter still occupies additional slot(s),
rather than storing the remainder of the object again
after the last counter slot.

Specifically, suppose the occurrence count of an ob-
ject with remainder z is C, and each remainder oc-
cupies r bits. As in the case of the original encoding
scheme of CQF, how the occurrence count is stored in
CQF-deNoise depends on the values of C' and 7.

If C =1, a single slot is assigned that stores = as
its value. If C' > 1, multiple slots are assigned, with
the first slot storing = as its value and the remaining
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slots storing an encoding of the counter. Since such
counter slots are used only when C' > 1, we store C'—1
instead of C'. To determine how C' — 1 is represented,
we convert it into binary form and count the number
of bits required. Suppose b bits are needed, then (fbl]
slots are allocated, and the last » — 1 bits of each of
these slots together store the binary form of C' — 1.
After that, for all the counter slots except the last
one, the most significant bit among its r bits is set
to 1, to indicate that it is not the last slot of this
counter. Finally, if the number stored in the first of
these counter slots is larger than x, a slot storing the
value zero is added at the beginning as an additional
escape value.

There are several major differences between the orig-
inal encoding scheme of CQF and the encoding scheme
of CQF-deNoise:

o CQF stores x both before and after the counter
slots, while CQF-deNoise only stores it before the
counter slots. Instead, every counter slot reserves
the most significant bit to indicate whether there
are more counter slots to come or not.

o CQF reserves the values 0 and x for special mean-
ings, such that counter values need to be encoded
in a way that depends on z. In contrast, counter
values in CQF-deNoise can be easily determined
by simply ignoring the most significant bit of each
counter slot.

e CQF needs to specially handle the case z = 0
since it requires putting a value smaller than x in
the first counter slot. CQF-deNoise does not need
to consider x = 0 as a special case, since it only
requires putting a value not larger than = (rather
than smaller than ) in the first counter slot.

Table 4 shows some examples of how CQF and CQF-
deNoise encode the counter values.

Table 4 Encoding examples of CQF and CQF-deNoise. This
table contains examples that show how CQF and CQF-deNoise
encode the occurrence count C of an object with remainder =
containing » = 5 bits.

T C  CQF encoding CQF-deNoise encoding

4 1 00100 00100

4 2 00100,00100 00100,00001

4 3 00100,00001,00100 00100,00010

4 6  00100,00000,00101,00100 00100,00000,00101

4 17 00100,00000,10000,00100 00100,00000,10001,00000
4 64  00100,00011,00010,00100 00100,00000,10011,01111
4 128  00100,00000,00110,00111,00100  00100,00000,10111,01111
0 1 00000 00000

0 2 00000,00000 00000,00000,00001

0 3 00000,00000,00000 00000,00000,00010

0 4 00000,00001,00000,00000 00000,00000,00011

0 17 00000,01110,00000,00000 00000,00000,10001,00000
0 64  00000,00010,11110,00000,00000  00000,00000,10011,01111
0 128 00000,00101,00001,00000,00000  00000,00000,10111,01111

From Table 4, we can see that the encoding scheme
of CQF-deNoise rarely uses more slots than the scheme
of CQF. In fact, by not having the remainder stored
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twice before and after the counting slots, the encoding
scheme of CQF-deNoise usually consumes less space.
Table 5 compares the number of slots required by
the two encoding schemes for all possible occurrence
counts within two practical ranges in genomic appli-
cations. In these two settings, the encoding scheme of
CQF-deNoise consumes less memory in 61% and 22%
of the cases, respectively, while it consumes more mem-
ory in only 0% and 3% of the cases.

Table 5 Space efficiency of the encoding schemes of CQF and
CQF-deNoise. This table shows the numbers of counter values
C within the given ranges for which the encoding scheme of
CQF-deNoise requires one fewer (-1), the same (0) or one more
(1) counter slot, considering all possible remainders that
contain » = 8 bits.

Range Number of CQF-deNoise slots - number of CQF slots

of C -1 0 1

[1,2°%] 40,255  (61%) 25,279  (39%) 2 (0%)
[1,2'% | 2,731,697 (22%) | 12,541,391 (75%) | 504,128  (3%)

The de-noise method: overview

The main idea of our de-noise procedure is to identify
low-frequency k-mers and remove them from the CQF
during the counting process. The objectives are: 1) to
remove false k-mers as early as possible, and 2) to avoid
wrongly removing true k-mers. Intuitively, false k-mers
can be more confidently identified at the late stage of
counting, since at that time the true k-mers should
have clearly higher counts than the false ones. In con-
trast, at the early stage of counting, even true k-mers
may also have low counts, making them indistinguish-
able from the false k-mers. There is thus a trade-off
between our two objectives. We handle it by taking a
user-specified parameter of the tolerable ratio of true
k-mers being wrongly removed, to determine the num-
ber of rounds of noise removal and the suitable time
for performing each round.

Specifically, CQF-deNoise removes suspected false k-
mers m times during the counting process, including
one round at the end of counting. In each round, all sin-
gleton k-mers (i.e., those having an occurrence count of
one at that time) are considered the suspected false k-
mers. As a result, any k-mer with an occurrence count
larger than m is guaranteed to remain in the CQF
at the end of the counting process, although its final
count can be smaller than its original count by a dif-
ference up to m — 1. On the other hand, k-mers with
an occurrence count equal to or smaller than m may or
may not remain in the CQF at the end of the counting
process, depending on whether it appears exactly once
between every two rounds of noise removal.

The number of noise removal rounds, m, is deter-
mined as follows. First, define m’ as the largest in-
teger such that the fraction of true k-mers with an
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occurrence count of m’ or less is smaller than the user-
specified threshold. In other words, m/ serves as a con-
servative estimate of the maximum number of noise
removal rounds that can be performed, and it can be
estimated based on the genome size, sequencing depth
and sequencing error rate. On the other hand, as to be
explained below, the size of the CQF depends on the
number of noise removal rounds, and different num-
bers of rounds could lead to the same CQF size. For
instance, if m’ rounds and m’ — 1 rounds would both
lead to the same CQF size, it is better to use m’ — 1
rounds because the rate of wrongly removing true k-
mers would be smaller but the memory requirement
stays the same. Therefore, the actual number of rounds
of noise removal, m, is chosen as the smallest integer
such that the CQF size would be the same as the one
with m’ rounds of noise removal.

The de-noise method: estimating the true-to-false
k-mer ratio

Suppose the genome size is G and sequencing reads
each of length [ have been generated to an average
genome-wide depth-of-coverage of d. The total num-
ber of k-mers on these reads is N = S%(1 — k + 1).
Suppose that among these k-mers, the ratio of true k-
mers that come from the genome to false k-mers that
occur due to errors is R, the number of true k-mers will
be g—fi. Finally, if the number of unique true k-mers is
u, their average occurrence count will be %. Ac-
cordingly, the occurrence counts of the true k-mers are
expected to follow a Poisson distribution with param-
eter \ = %, and m’ = |[F~}(w)], where F
is the cumulative distribution function of the Poisson
distribution and w is the user-specified tolerable ratio
of true k-mers being wrongly removed.

In the above formula, [ and d are properties of the
sequencing data, k and w are user parameters, G is
either prior knowledge supplied by the user or esti-
mated using an efficient method such as ntCard [29],
which provides basic statistics of k-mers but cannot
give the occurrence counts of individual k-mers. The
total number of unique true k-mers, u, is not known
a priori, but an upper bound of it can be used, the
value of which can be obtained by assuming all k-mers
in the genome are unique. This leaves us with the last
variable, the true-to-false k-mer ratio, R.

Here we describe an algorithm that can compute this
ratio based on the error profile of sequencing reads,
i.e., the base error rate of each read position. The er-
ror profile is platform dependent. For example, for II-
lumina short reads, the base error rate is highest at
the beginning and at the end of each read. If the er-
ror profile is not available, one may instead assume
a constant base error rate at each read position, in
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which case the true-to-false k-mer ratio can be com-
puted using a simple formula as we will see below. For
simplicity, we assume that whenever an error occurs
in a k-mer, the resulting k-mer always does not exist
in the genome, although in reality a small portion of
these error-containing k-mers can actually be found in
the genome.

The main difficulty of this calculation is that there
are spatial dependencies in two ways. First, if a base
error appears at a read position, it turns all k-mers
that overlap this position into false k-mers at the same
time. Second, if multiple base errors appear at nearby
positions, together they create a smaller number of
false k-mers (with some false k-mers containing multi-
ple errors) than when they are far apart.

To handle these spatial dependencies, we use a dy-
namic programming algorithm to compute the prob-
abilities of error positions. Suppose the error profile
is given in the form of a length-I vector of base error
probabilities e, where [ is the length of each sequenc-
ing read. We define a two-dimensional table V (i, j) to
denote the probability that among the k consecutive
positions ending at position ¢ (where i ranges from k
to 1), the j-th of them is the last position with a base
error. For example, if k = 4, V(6,2) is the probabil-
ity that among read positions 3, 4, 5 and 6, the last
error occurs at position 4 (which is the second posi-
tion among these positions). We also define V' (¢,0) as
the probability that among the k consecutive positions
ending at position %, there is not a base error.

Table V is initialized by considering the first row,
1= k:

Ck ifj=k
Vikj) =3 el =) =eVikj+)es ifjelk—1]
=i (1—ep) =V(k, 1)z if j =0

The remaining rows of V can be filled in according
to the values in the previous row:

e; ifj=k
Vi, j) = { Vii—1,j+1)(1—e) if j e [Lk—1]
V(i-1,1)+V(@i—1,0)](1—e) ifj=0

Since we assume that a k-mer is a true k-mer if and
only if there is not a base error in any of the k posi-
tions, the expected number of true k-mers in a read is
Z'li:k V(4,0). Therefore, the true-to-false k-mer ratio

3oy V(3:0)
I—k+1-3L_, V(3,0)°

The V table contains (I—k+1)(k-+1) entries, each re-
quiring a constant amount of time to fill in. Therefore,
the time complexity of the algorithm is O((I — k)k),
which is also a constant with fixed k and [. The space
complexity is O(k), since once a row has been filled in,
all entries in the previous row can be discarded.

If the detailed error profile is not available and every
read position is assumed to have the same base error

rate of eq, it can be easily proved that the true-to-false
(1—eo)®
T (T—cg)""

is given by R =

k-mer ratio is R =
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To test our algorithm, we generated a simulated data
set using ART [30] assuming the Ilumina MiSeq v3
protocol. Using the F. vesca reference genome FraVe-
sHawaii_1.0, we generated reads of [=250bp to an av-
erage genome-wide depth-of-coverage of d = 50x. By
aligning the reads to the reference, the average base
error rate was found to be 0.4%, and the actual ratio
of true k-mers to false k-mers was 8.929 when k was
set to 28. When we assumed every position to have the
same base error rate of eg = 0.4%, we obtained an esti-
mated true-to-false k-mer ratio of R = 8.409 based on
the above formula. When we instead ran our dynamic
programming algorithm using the platform-specific er-
ror profile, we obtained an estimated true-to-false k-
mer ratio of R = 8.873, which is closer to the actual
value of 8.929.

If the error profile involves indels, which are common
for some platforms such as PacBio SMRT sequencing,
our dynamic programming algorithm can be extended
to handle additional insertion and deletion states be-
tween read positions. We do not further pursue this
direction in the current study.

The de-noise method: time of performing de-noise
With the true-to-false k-mer ratio estimated, the num-
ber of rounds of k-mer removal can be computed ac-
cordingly as explained. The next question is when the
other m — 1 rounds should be carried out. Based on
the variables defined above, the total number of false
k-mers is RL_H. To keep the size of the CQF at its mini-
mum, it would be the best to remove these false k-mers
evenly across the m rounds of removal, assuming that
many of them occur only once in all the reads (and
thus they can be removed in any of the m rounds).
Based on this idea, in the worst case, if all the true
k-mers have already been encountered before the tar-
get number of false k-mers have been encountered, the
CQF will contain u + ﬁ unique k-mers in total.
This threshold serves as the trigger to start the next
round of k-mer removal.

Although in the above discussion we ignored repeats
in the genome, as shown in the Results section, our
procedure is effective in removing false k-mers in our
empirical tests.

Another limitation of the above derivations is that
we used the probability for a true k-mer to have an
occurrence count no more than m to quantify wrong
removals, but such k-mers are not necessarily removed
by our procedure, since each of them would not be
removed if there are two new occurrences of it between
two rounds of removal. Therefore the wrong removal
rate was over-estimated.

A more accurate wrong removal rate can be calcu-
lated as follows. Suppose there are m rounds of re-
moval, which separate all the k-mers into m bins with
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the i-th bin containing b; k-mers. Then in order for a
true k-mer with a total occurrence count of ¢ < m to
be wrongly removed, these ¢ occurrences must be dis-
tributed into ¢ different bins, and there are (T) differ-
ent ways. For the specific way involving bins i1, io, ..., ic
where 1 < 43 < i9 < ... < i < m, the probabil-
ity of happening is H;Zl % assuming the occur-
rence order of k-mers is random. The wrong removal
rate for k-mers having ¢ occurrence counts can then
be computed by summing the (T) probabilities. This
calculation is feasible only when the number of k-mer
removal rounds is small, and is thus not implemented
in CQF-deNoise.

Comparing CQF-deNoise with other k-mer
counting methods

We compared the running time and memory usage of
CQF-deNoise with four other k-mer counting methods
using four data sets with diverse properties (Table 1).
All our tests were run on a machine with Intel(R)
Xeon(R) CPUs (E7-4850 v3 @2.20GHz with 112 cores
and 35.8MB L3 cache) and 504GB RAM. All programs
were run with 16 threads. Running time was defined as
the wall clock time, during which the program loaded
and parsed the sequencing data, counted the k-mers,
and wrote the results to output files on the disk. Mem-
ory consumption was defined as the peak resident set
size (RSS).

All methods were tested for k = 28 and k = 55,
which are values also used in some previous studies [13,
15]. To handle the issue that sequencing reads could
come from either strand, among each k-mer and its
reverse complement, we converted the one with a larger
hash value to the one with a smaller hash value before
counting.

To make the comparisons fair, we ran all programs
with the option of removing singleton k-mers cho-
sen if this option was provided as follows. For BF-
Counter, it had the ability to remove singleton k-
mers by only counting the non-singletons in the sec-
ond structure. For CQF-deNoise, we set the wrong
removal rate tolerance threshold w to the conserva-
tive value of 1/genome-size, and let the algorithm de-
termine the number of rounds of noise removal au-
tomatically. We found that the number of noise re-
moval rounds remained unchanged for long ranges of
this threshold value (Table 6), showing that the count-
ing results would be highly stable for different values
used. For Jellyfish2 and KMC3, we selected the mode
to save k-mers with an occurrence count at least 2.
Squeakr did not provide an option for removing sin-
gleton k-mers. Since a brute-force enumeration of all
the k-mers and removal of the singletons after counting
could be very slow, we did not perform it.
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Table 6 Statistics for running CQF-deNoise on 4 dataset with k=28. The wrong removal rate tolerance thresholds were
automatically determined by CQF-deNoise. The ranges of wrong removal rate tolerance thresholds show the values of this
parameter used that would lead to the same number of noise removal rounds.

Species q Estimated mean  Wrong removal rate Number of Range of wrong removal rate  Actual wrong
coverage of true tolerance threshold noise removal  tolerance thresholds leading to  removal
k-mers rounds the same number of noise re- rate of true

moval rounds k-mers

C. elegans 29 171  8.4x107° 17 [1.6x107°T, 1] 1.6x10~°T

F. vesca 31 29  2.9x107° 2 [1.1x10719, 7.3x1074] 1.1x10710

Z. mays 33 60 6.2x10710 1 [5.3x10725, 6.9x1079] 5.3x10725

H. sapiens 33 61 3.7x10710 11 [4.3x1071%, 1] 43x10715

BFCounter and Jellyfish2 required the maximum
number of unique k-mers as input, which we computed
using ntCard [29]. CQF-deNoise required the number
of true k-mers as an estimation of genome size and
the total number of k-mers as inputs, and Squeakr
required the number of slots in the CQF as input,
which were all estimated based on the output of nt-
Card. CQF-deNoise also used the results of ntCard to
determine the fraction of singleton k-mers for estimat-
ing the base error rate ey in the comparisons. In the
time measurements, the running time of ntCard was
also added to the total running time of Squeakr and
CQF-deNoise but not BFCounter or Jellyfish2, since
the latter two methods could also obtain their required
inputs by some faster means.

Squeakr could use x86 bit manipulation instructions
to speed up its counting by a factor of 2-4 [13]. Our
machine did not support these instructions. Although
the resulting running time could not fully reflect the
counting speed of Squeakr, CQF-deNoise was also dis-
advantaged in the same way, because our implementa-
tion could also use these instructions. When running
Squeakr, we used the fast ntHash function [28] rather
than the default Murmur hash function.

For all other parameters of the k-mer counting meth-
ods, we used their default values.

K-mer counts-based clustering of single cells
For 10x scRNA-seq data, we considered two strategies
for selecting the high-quality cells to analyze. In the
first strategy, the N cells (identified by their barcodes)
with the highest UMI counts are selected, where IV is
a user parameter. The second strategy, adopted from
CellRanger, first computes the 99th percentile of the
UMI counts in the top N cells. It then selects all cells
with an UMI count at least one-tenth of that value
for the analysis. Both strategies are provided as user
options in our implementation. On the other, for the
particular 10x data set we analyzed in this study, we
considered only the 713 cells selected by CellRanger
for a fair comparison of the two methods.

We compared two approaches to defining k-mer
count profiles of single cells. In the first approach, all
k-mers on the scRNA-seq reads were counted. In the

second approach, only the k-mers on protein-coding
transcripts were counted, and the “genome size” was
defined as their total length. To use the second ap-
proach, we first used the gffread utility in cufflinks
(v2.2.1) [31] with options “-CME” to extract 120,463
mRNA sequences with CDS features from the Ref-
Seq human gene annotation corresponding to refer-
ence genome GRCh38.p12. We then extracted all the
k-mers on these sequences and stored them in a Bloom
filter. For each k-mer on the scRNA-seq reads, we first
checked its presence in the Bloom filter, and inserted
into the CQF only if it was found.

For both approaches, after k-mer counting we first
normalized each counter by dividing it by the total
count in the whole CQF. We then computed the dis-
tance between every two cells as the sum of the ab-
solute difference of these normalized counts of every
object in the two CQFs, where the count of a non-
existing object was defined as 0 (when the object was
only contained in the CQF of the other cell but not
this one). Finally, for each cell we kept only the dis-
tance values of its five nearest neighbors and set all
the other distance values to the maximum value of
one, such that the final distance measure corresponds
to one that comes from a weighted nearest-neighbor
graph.

In our implementation, both k-mer counting and the
distance matrix calculation can be run with multiple
threads in parallel.

To benchmark the k-mer-based analysis results,
we ran CellRanger (v3.0.2) to produce the two-
dimensional projection of cells and the cell clusters.
The options “~localcores” and “~localmem” were used.

We used SingleR (v1.0) to annotate the cell types of
single cells with default settings. For our k-mer-based
approach, it took the distance matrix as input. For
CellRanger, it took the filtered feature matrix as input.

Additional tools provided in our implementation

We provide a list of additional tools for various CQF
operations, including downsizing, intersection, addi-
tion, and subtraction, which are useful in different ap-
plications. These tools enable logical and arithmetic
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operations to be directly performed on the object oc-
currence counts efficiently rather than the raw se-
quencing reads that would require a lot more time.

Downsizing is to resize a CQF that uses p; bits of
hash value to one that uses pa (p1 > p2) bits. One use
of it is to compress the data structure to use less space,
especially when the occupancy is low. It also facilitates
other operations such as taking the intersection or dif-
ference of two CQFs. Downsizing can be efficiently per-
formed by simply iterating through all the objects in
the original CQF and inserting the transformed hash
values into the new CQF, keeping only the first ps bits
of its original signature as its new signature. Since ob-
jects originally having the same quotient will still have
the same quotient after the downsizing, their sort order
is maintained, which avoids shifting of the contents,
the part usually most time consuming during object
insertion.

Intersection is to identify the objects commonly con-
tained in two CQFs and produce two new CQFs that
contain only the common objects and their corre-
sponding counts in the original CQF's.

Addition and subtraction respectively compute the
sum and difference of the object occurrence counts in
two CQFs. In the case of subtraction, objects with a
resulting negative count are removed from the output

CQF.

Code availability

Our implementation of CQF-deNoise is available at
https://github.com/Christina-hshi/CQF-deNoise.git
under the BSD 3-Clause license.
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