

1 **Extended-spectrum beta-lactamase (ESBL)-producing and non-ESBL-
2 producing *Escherichia coli* isolates causing bacteremia in the
3 Netherlands (2014 – 2016) differ in clonal distribution, antimicrobial
4 resistance gene and virulence gene content**

5 Denise van Hout^{*1}, Tess D. Verschuuren¹, Patricia C.J. Bruijning-Verhagen^{1,2}, Thijs Bosch²,
6 Anita C. Schürch³, Rob J.L. Willems³, Marc J.M. Bonten^{1,3}, Jan A.J.W. Kluytmans^{1,4}

7

8 **Author affiliations:**

9 ¹ Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht,
10 University Utrecht, Utrecht, The Netherlands

11 ² Center for Infectious Disease Control, National Institute for Public Health and the Environment,
12 Bilthoven, The Netherlands

13 ³ Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, University
14 Utrecht, The Netherlands

15 ⁴ Microvida Laboratory for Medical Microbiology and Department of Infection Control, Amphia
16 Hospital, Breda, The Netherlands

17

18 *** Corresponding author:**

19 Denise van Hout
20 UMC Utrecht; Julius Center
21 Huispost nr. STR 6.131
22 P.O. Box 85500
23 3508 GA Utrecht
24 +31887567407
25 D.vanHout-3@umcutrecht.nl

26

27 Word count manuscript: 3325

28

29

30 **ABSTRACT**

31 **Background:** Knowledge on the molecular epidemiology of *Escherichia coli* causing *E. coli*
32 bacteremia (ECB) in the Netherlands is mostly based on extended-spectrum beta-lactamase-
33 producing *E. coli* (ESBL-Ec). We determined differences in clonality and resistance and
34 virulence gene (VG) content between non-ESBL-producing *E. coli* (non-ESBL-Ec) and ESBL-Ec
35 blood isolates with different epidemiological characteristics.

36 **Materials/methods:** A random selection of non-ESBL-Ec isolates as well as all available ESBL-
37 Ec blood isolates was obtained from two Dutch hospitals between 2014 and 2016. Whole
38 genome sequencing was performed to infer sequence types (STs), serotypes, acquired
39 antibiotic resistance genes and VG scores, based on presence of 49 predefined putative
40 pathogenic VG.

41 **Results:** ST73 was most prevalent among the 212 non-ESBL-Ec (N=26, 12.3%) and ST131
42 among the 69 ESBL-Ec (N=30, 43.5%). Prevalence of ST131 among non-ESBL-Ec was 10.4%
43 (N=22, *P* value < 0.001 compared to ESBL-Ec). O25:H4 was the most common serotype in both
44 non-ESBL-Ec and ESBL-Ec. Median acquired resistance gene counts were 1 (IQR 1 – 6) and 7
45 (IQR 4 – 9) for non-ESBL-Ec and ESBL-Ec, respectively (*P* value < 0.001). Among non-ESBL-
46 Ec, acquired resistance gene count was highest among blood isolates from a primary gastro-
47 intestinal focus (median 4, IQR 1 – 8). Median VG scores were 13 (IQR 9 – 20) and 12 (IQR 8 –
48 14) for non-ESBL-Ec and ESBL-Ec, respectively (*P* value = 0.002). VG scores among non-
49 ESBL-Ec from a primary urinary focus (median 15, IQR 11 – 21) were higher compared to non-
50 ESBL-Ec from a primary gastro-intestinal (median 10, IQR 6 – 13) or hepatic-biliary focus
51 (median 11, IQR 5 – 18) (*P* values = 0.007 and 0.036, respectively). VG content varied between
52 different *E. coli* STs.

53 **Conclusions:** Non-ESBL-Ec and ESBL-Ec blood isolates from two Dutch hospitals differed in
54 clonal distribution, resistance gene and VG content. Also, resistance gene and VG content
55 differed between non-ESBL-Ec from different primary foci of ECB.

56 INTRODUCTION

57 Despite advances in medical healthcare and in contrast to the decline in other infectious
58 diseases, the annual incidence of Gram-negative bacteremia in Europe is increasing [1–4].
59 *Escherichia coli* is the leading causative pathogen in Gram-negative bacteremia and is
60 associated with 30-day mortality up to 18% [1,4–6]. Antibiotic treatment options of *E. coli*
61 bacteremia (ECB) are getting compromised by the pandemic presence of extended-spectrum
62 beta-lactamases (ESBLs) [1–4]; enzymes that confer resistance to antibiotics commonly used
63 for ECB treatment such as third-generation cephalosporins. Genes encoding ESBLs are
64 encoded on mobile genetic elements and can be exchanged between strains by horizontal gene
65 transfer. In some European countries, the incidence of ECB with antibiotic-resistant strains
66 seems to increase faster than ECB caused by susceptible strains [1–4]. The individual patient
67 and financial burden is increased for ECB episodes that are caused by resistant *E. coli*. Yet,
68 ECB due to susceptible strains is far more common and therefore determines the major part of
69 the ECB disease burden in the population [1–4]. The majority of ECBs is of community onset
70 and is preceded by an infection in the urinary tract, but other sources, such as the hepatic-biliary
71 tract, also comprise important primary foci [4,7]. These clinical characteristics of ECB episodes
72 are important because they can indicate different target populations for prevention. More insight
73 in the molecular epidemiology of ESBL-negative as well as ESBL-positive ECB with different
74 clinical characteristics is needed to help identify key targets for the development of future
75 preventive strategies such as *E. coli* vaccines, which are currently being developed [8]. Up to
76 now, the molecular epidemiology of ECB in the Netherlands has been mainly described in
77 single-center studies [9] or among antimicrobial resistant isolates only [10]. Dutch studies
78 combining patient characteristics with high-resolution genetic data of *E. coli* isolates are limited,
79 specifically for ECB, with its potential severe clinical consequences.

80 In this study, we aimed to analyze the current population structure of ECB in the
81 Netherlands, with special attention to differences in antimicrobial resistance and virulence gene
82 content and clonal and serotype distribution between isolates with different clinical
83 epidemiological characteristics and between non-ESBL-producing *E. coli* (non-ESBL-Ec) and
84 ESBL-producing *E. coli* (ESBL-Ec) blood isolates.

85 **METHODS**

86 **Study design**

87 Details of the study design, clinical epidemiological data collection and laboratory methods (i.e.
88 phenotypic ESBL detection) are described elsewhere [11]. In short, patients with ECB were
89 retrospectively identified from medical microbiological records in the University Medical Center
90 Utrecht (UMCU), a 1,042-bed tertiary care center and the Amphia Hospital in Breda, an 837-bed
91 teaching hospital. In each hospital, we selected a random sample of 40 isolates of unique
92 patients per year for the years 2014, 2015 and 2016, comprising ~24% of all first bacteremic *E.*
93 *coli* isolates in a year. In addition to this random sample, all ESBL-Ec blood isolates from 2014 –
94 2016 were selected from the two hospitals. Whole genome sequencing (WGS) was performed
95 by The Netherlands National Institute for Public Health and the Environment (RIVM) using the
96 Illumina HiSeq 2500 (BaseClear, Leiden, the Netherlands). All generated raw reads were
97 submitted to the European Nucleotide Archive (ENA) of the European Bioinformatics Institute
98 (EBI) under the study accession number PRJEB35000. De novo assembly was performed using
99 SPAdes genome assembler v.3.6.2 and the quality of assemblies was assessed using QUAST
100 [12]. Only genomes with an estimated genome size between 3 MB and 6 MB and number of
101 contigs not exceeding 1,000 were included in further analyses. Baseline clinical epidemiological
102 characteristics were compared between the non-ESBL-Ec and ESBL-Ec ECB episodes. ESBL-
103 production was defined as confirmed phenotypic ESBL-positivity, unless described otherwise
104 [11]. Baseline characteristics were compared by the Fisher's Exact or Pearson χ^2 test for

105 categorical variables and by Mann-Whitney U test for continuous variables when applicable. A
106 two-tailed *P* value <0.05 was considered statistically significant.

107 This study does not fall under the scope of the Medical Research Involving Human
108 Subjects Act. The Medical Research Ethics Committee of the UMCU has therefore waived the
109 need for official approval by the Ethics Committee (IRB number 18/056) and informed consent
110 was not obtained. All statistical analyses were performed with Statistical Package for Social
111 Sciences V.25.0 (SPSS, Chicago, Illinois, USA) and R Version 3.4.1. Boxplots were made with
112 R packages *ggplot2* and *ggpubr* and bar charts were made with Graphpad Prism Version 8.0.1.

113 **Multi-locus sequence types (MLST)**

114 Multi-locus sequence types (STs) were determined using *mlst2.0*
115 (<https://github.com/tseemann/mlst>) by scanning contig files against the *E. coli* PubMLST typing
116 scheme (updated May 12th, 2018). Clonal (i.e. ST) distribution was presented stratified for non-
117 ESBL-Ec and ESBL-Ec isolates and by epidemiological subgroup (i.e. community versus
118 hospital onset; different primary foci of ECB). Genotype (ST) diversity was analysed by
119 Simpson's diversity index [13].

120 **Serotyping**

121 We assigned serotypes by using the web-tool SerotypeFinder 2.0 from the Center for Genomic
122 Epidemiology at the Danish Technical University, Lyngby, Denmark
123 (<https://cge.cbs.dtu.dk/services/SerotypeFinder>) [14]. Simpson's index for serotype diversity was
124 calculated for non-ESBL-Ec and ESBL-Ec isolates. Serotype distribution among non-ESBL-Ec
125 and ESBL-Ec was compared to two current *E. coli* vaccine candidates [8,15], excluding those
126 isolates in which no definitive serotype could be defined, and the occurrence of serotypes was
127 described by primary focus of ECB.

128

129 **Antimicrobial resistance genes**

130 Abricate (<https://github.com/tseemann/abricate>) version 0.8.13 was used for mass screening of
131 contigs for antimicrobial resistance genes using the ResFinder 3.1.0 database (acquired
132 resistance genes only), date of download 24 January 2019 [16]. The thresholds for coverage
133 length and sequence identity were 80% and 95%, respectively. A resistance gene count was
134 made per isolate, which was defined as the total number of identified acquired resistance
135 genes. In case of double detection of identical resistance genes within a single isolate, they
136 were only counted once. The resistance gene counts were compared between non-ESBL-Ec
137 and ESBL-Ec with the non-parametric Wilcoxon rank sum test (for this comparison only, the
138 scores of the ESBL-Ec isolates were corrected for presence of the ESBL gene). Resistance
139 gene scores were then analysed for non-ESBL-Ec and ESBL-Ec separately and were compared
140 between isolates with different epidemiological characteristics and different STs using Kruskal-
141 Wallis one-way ANOVA. In case of an overall ANOVA P value <0.05 , post-hoc pairwise
142 comparisons were made and the Holm-Bonferroni P value correction was applied to account for
143 multiple testing. For pairwise comparisons, the non-parametric Wilcoxon rank sum test was
144 used.

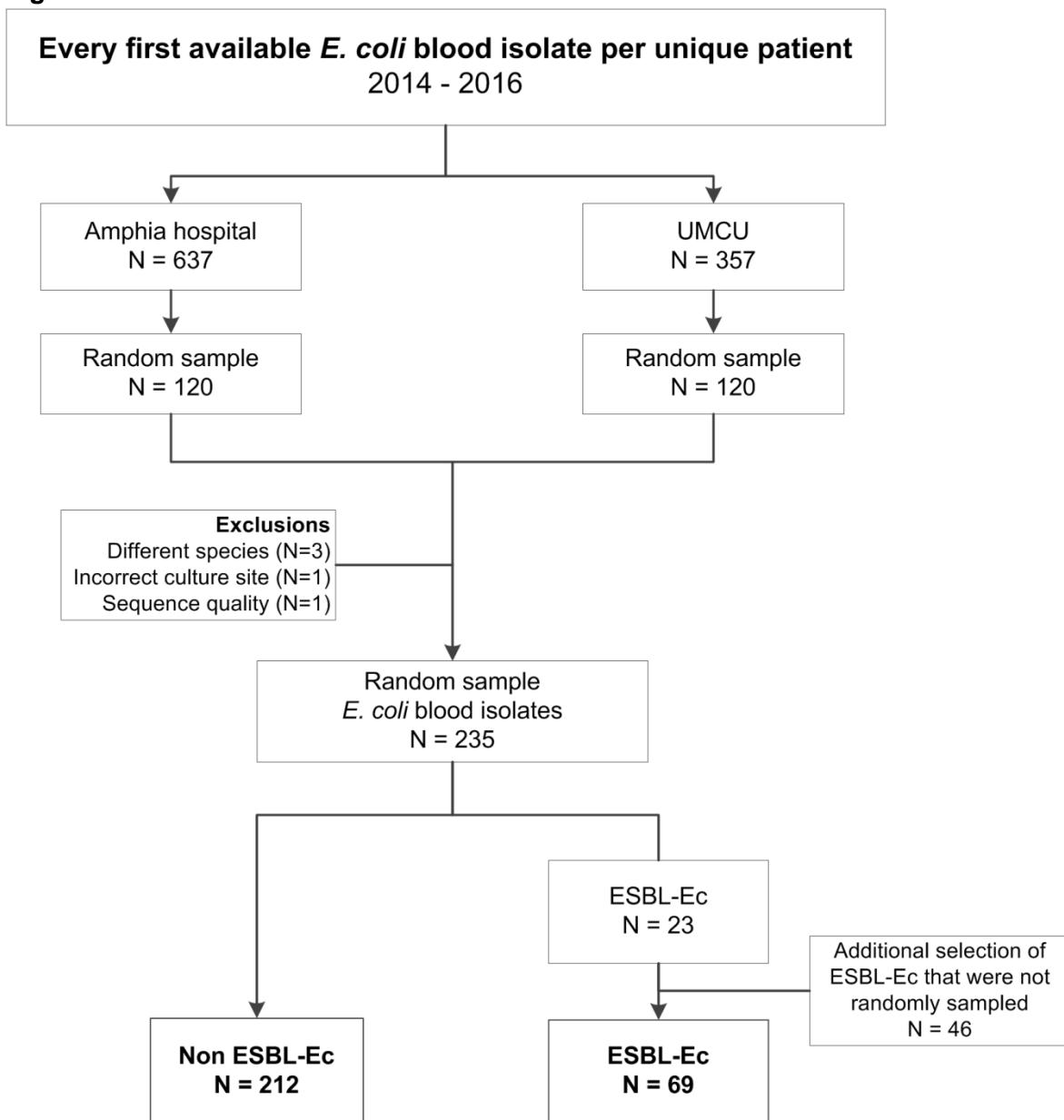
145 **Virulence genes**

146 The presence of putative virulence factor genes (VG) was identified using abricate version
147 0.8.13 for BLAST against the VFDB database (<http://www.mgc.ac.cn/VFs>), date of download 8
148 February 2019, with minimal coverage length and sequence identity 80% and 95% [17]. We
149 searched for 49 putative VG that were previously described as extra-intestinal pathogenic *E. coli*
150 (ExPEC)-associated VG [18–22]. If any of the predefined VG were not included in VFDB,
151 BLAST against the ecoli_VF_collection database was performed (date 8 February 2019), a
152 repository that contains known VG from VFDB supplemented with additional *E. coli* VG that
153 have been reported in literature [23]. The *kpsM*, *afa/dra* and *sfa/foc* operons were considered

154 present if any of the corresponding genes or allelic variants were identified. A virulence score
155 was made per isolate and was defined as the total number of pre specified VG, adjusted for
156 multiple detection of the *afa/dra* (Afa/Dr adhesins), *pap* (P fimbrial adhesins), *sfa/foc* (S and F1C
157 fimbrial adhesins) and *kpsM* (group 2 and III capsule) operons, as described previously [20]. If a
158 VG was detected multiple times within a single isolate (i.e. with different quality measures), it
159 was only counted once. These virulence scores were then compared between isolates with
160 different epidemiological characteristics and between different STs using Kruskal-Wallis one-
161 way ANOVA. In case of an overall ANOVA *P* value <0.05, post-hoc pairwise comparisons were
162 made with the non-parametric Wilcoxon rank sum test and the Holm-Bonferroni *P* value
163 correction was applied to account for multiple testing.

164 **RESULTS**

165 **Patient characteristics**


166 The isolate collection consisted of 212 phenotypic non-ESBL-Ec and 69 ESBL-Ec blood isolates
167 (Fig. 1). Distribution of age, sex, onset of infection and primary foci were comparable between
168 non-ESBL-Ec and ESBL-Ec bacteraemia episodes (Table 1). As compared to non-ESBL-Ec,
169 ECB episodes with ESBL-Ec were less often of community onset (63.8% versus 81.1%, *P* value
170 = 0.003). Crude 30-day and 1-year mortality were higher in ECB episodes caused by ESBL-Ec
171 (27.5% and 50.7%, respectively) compared to ECB episodes caused by non-ESBL-Ec (11.3%
172 and 29.2%, respectively) (both *P* values = 0.001).

173 **Clonal distribution**

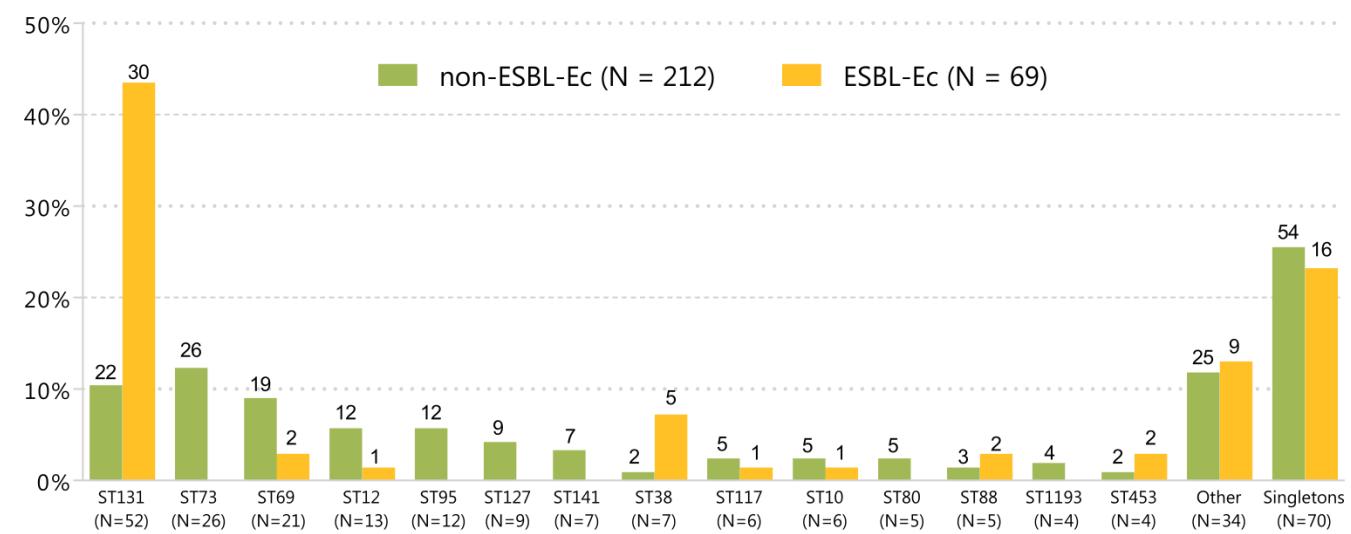
174 Among non-ESBL-Ec, ST73 was the most frequently observed ST (N = 26, 12.3%), followed by
175 ST131 (N = 22, 10.4%). Isolates of ST73, 95, 127, 141, 80 and 1193 were solely identified
176 among non-ESBL-Ec (Fig. 2). ST131 was dominant among ESBL-Ec (N = 30, 43.5%) and
177 prevalence was higher than among non-ESBL-Ec (*P* value < 0.001). Simpson's index for clonal
178 diversity was 95.6% (95% CI 94.4% – 96.8%) and 80.6% (95% CI 70.9% – 90.4%) for non-

179 ESBL-Ec and ESBL-Ec, respectively. The occurrence of different STs did not differ between
180 nosocomial and community onset ECB (S1 Appendix). ST131 was the dominant ST among
181 ESBL-positive ECB episodes with a primary urinary (63%) and gastro-intestinal focus (57%),
182 which was higher as compared to other primary foci of ESBL-positive ECB (i.e. 21% among
183 primary hepatic-biliary focus, see S1 Appendix).

184 **Figure 1.** Flowchart of selection of *E. coli* blood isolates

185
186

187 **Table 1.** Baseline epidemiological characteristics of *E. coli* bacteremia episodes


	Non-ESBL-Ec ^a N = 212		ESBL-Ec ^a N = 69		P value ^b
Median age, years (IQR)	69	(59 – 77)	69	(56 – 76)	0.802
Female sex (%)	102	(48.1)	32	(46.4)	0.802
Community onset (%)	172	(81.1)	44	(63.8)	0.003
Primary focus of ECB (%)					
Urinary tract	103	(48.6)	30	(43.5)	0.785
Hepatic-biliary	46	(21.7)	14	(20.3)	
Gastro-intestinal	23	(10.8)	7	(10.1)	
Other	10	(4.7)	5	(7.2)	
Unknown	30	(14.2)	13	(18.8)	
Urinary catheter (%)	69	(32.5)	28	(40.6)	0.223
Ward (%)					
Non-ICU	182	(85.8)	58	(84.1)	0.714
ICU	30	(14.2)	11	(15.9)	
Mortality (%)					
30-day	24	(11.3)	19	(27.5)	0.001
1-year	62	(29.2)	35	(50.7)	0.001

ECB, *E. coli* bacteremia; ESBL, extended-spectrum beta-lactamase; ESBL-Ec, ESBL-producing *E. coli*; ICU, intensive care unit; IQR, interquartile range; non-ESBL-Ec, non-ESBL-producing *E. coli*

^aESBL-positivity based on phenotype.

^bP value of comparison between non-ESBL-Ec versus ESBL-Ec, calculated with Pearson's χ^2 , Fisher's exact, or Mann-Whitney U test when applicable. P values in italic represent P values <0.05.

188 **Figure 2.** ST distribution among non-ESBL-Ec versus ESBL-Ec^a in order of frequency^b

189
190 ESBL-Ec, ESBL-producing *E. coli*; non-ESBL-Ec, non-ESBL-producing *E. coli*; ST, sequence type

191 ^aESBL-positivity based on phenotypic ESBL production.

192 ^bMissing STs and STs that occurred ≤ 3 times are grouped in "Other". STs that only occurred once are grouped in 193 "Singletons". The height of each individual bars represents the proportion of the ST within the group of non-ESBL-Ec 194 and ESBL-Ec, respectively. The numbers represent the absolute numbers of occurrence.

195 **Serotypes**

196 The most common serotype O25:H4 was identified in 19 (9.0%) non-ESBL-Ec and 24 (34.8%)
197 ESBL-Ec isolates, which largely reflected the prevalence of ST131 in each group (Table 2).
198 Multiple serotypes only occurred among non-ESBL-Ec, such as O6:H1 and O6:H31. ST73 was
199 most often of serotype O6:H1 (16 / 26, 61.5%). Simpson's index for serotype diversity was
200 96.7% (95% CI 95.8% – 97.6%) and 83.8% (95% CI 76.9% – 90.6%) for non-ESBL-Ec and
201 ESBL-Ec, respectively. Non-ESBL-Ec and ESBL-Ec isolates from ECB episodes with a primary
202 focus in the urinary tract were most often of O serotype O6 (15 / 103, 14.6%) and O25 (17 / 30,
203 56.7%), respectively (S2 Appendix). For ECB episodes with a primary focus in the hepatic-
204 biliary tract, O25 was the most prevalent O serotype among non-ESBL-Ec (7 / 46, 15.2%) and
205 O8 (4 / 14, 28.6%) among ESBL-Ec isolates (S2 Appendix).

206 53 (25.0%) non-ESBL-Ec and 25 (36.2%) ESBL-Ec isolates belonged to either O1, O2,
207 O6 or O25, the serotypes of the 4-valent *E. coli* vaccine that has reached phase 2 development
208 stage [8,24], whereas the majority of non-ESBL-Ec (N = 113; 53.3%) and ESBL-Ec isolates (N =
209 35; 50.7%) belonged to one of the O serotypes of the new 10-valent conjugant *E. coli* vaccine
210 (ExPEC-10V) that is currently in development [15].

211 **Antimicrobial resistance genes**

212 In total, 69 unique acquired resistance genes were identified (S3 Appendix). ESBL-genes were
213 detected in 65 (94.2%) of 69 *E. coli* blood isolates with phenotypic ESBL production. *bla*_{CTX-M-15}
214 was the most prevalent ESBL gene (N = 28, 43.1%), followed by *bla*_{CTX-M-9} (N = 14, 21.5%) and
215 *bla*_{CTX-M-27} (N = 9, 13.8%). Assemblies of the phenotypic ESBL-Ec isolates in which no ESBL-
216 gene was identified with the used bioinformatics pipeline (N = 4) were individually uploaded on
217 the DTU Resfinder 3.1.0 website (date 11 March 2019, thresholds for coverage length 80% and
218 sequence identity 95%); these isolates remained genotypically ESBL-negative. One of these
219 isolates was positive for *bla*_{C^{MY}-2} (AmpC gene).

220 The median acquired resistance gene count for non-ESBL-Ec versus ESBL-Ec was 1
221 (IQR 1 – 6) versus 7 (IQR 4 – 9) (P value < 0.001). Among non-ESBL-Ec, acquired resistance
222 gene counts were not different between community and hospital-onset ECB episodes (S3
223 Appendix). Among non-ESBL-Ec, there were statistically significant differences in resistance
224 gene count for different primary foci of ECB, but absolute differences were small: median
225 resistance gene count from ECB with a primary hepatic-biliary focus was 1 (IQR 1 – 1), whereas
226 for a primary urinary focus this was 2 (IQR 1 – 6) (P value \leq 0.001), for a primary gastro-
227 intestinal focus this was 4 (IQR 1 – 8) (P value \leq 0.01 for comparison to hepatic-biliary focus)
228 and for an unknown primary focus this was 2 (IQR 1 – 7) (P value \leq 0.0001 for comparison to
229 hepatic-biliary focus) (S3 Appendix). Among ESBL-Ec isolates, there were no statistical
230 significant differences in acquired resistance gene counts between community and hospital-
231 onset ECB or different primary foci of ECB (S3 Appendix). There were no statistically significant
232 differences observed in resistance gene count among non-ESBL-Ec or ESBL-Ec isolates of
233 different clonal background (Fig. 3 and S3 Appendix).

234

235

Table 2. Serotype distribution among *E. coli* blood isolates, stratified for ESBL-positivity

	Non-ESBL-Ec N = 212 (%)	ESBL-Ec^a N = 69 (%)
O25:H4 (%)	19 (9.0)	24 (34.8)
O6:H1 (%)	16 (7.5)	-
O2/O50:H6 (%)	10 (4.7)	-
O6:H31 (%)	9 (4.2)	-
O15:H18 (%)	7 (3.3)	2 (2.9)
O17/O44/O77:H18 (%)	8 (3.8)	-
O4:H5 (%)	7 (3.3)	1 (1.4)
O75:H5 (%)	8 (3.8)	-
O8:H9	5 (2.4)	2 (2.9)
O16:H5 (%)	3 (1.4)	3 (4.3)
O86:H18	1 (0.5)	4 (5.8)
O4:H1 (%)	5 (2.4)	-
O1:H7	4 (1.9)	-
O117:H4	4 (1.9)	-
O2/O50:H1	4 (1.9)	-
O23:H16	2 (0.9)	2 (2.9)
O25:H1	4 (1.9)	-
O18/O18ac:H7	3 (1.4)	-
O2/O50:H7	3 (1.4)	-
O45:H7	3 (1.4)	-
O75:H7	3 (1.4)	-
O8:H17	3 (1.4)	-
O9:H17	-	2 (2.9)
O9/O104:H9	-	2 (2.9)
O13/O135:H4	2 (0.9)	-
O18:H1	2 (0.9)	-
O18:H5	2 (0.9)	-
O22:H1	2 (0.9)	-
O24:H4	2 (0.9)	-
O8:H10	2 (0.9)	-
O8:H25	2 (0.9)	-
O8:H30	2 (0.9)	-
Singletons	45 (21.2)	13 (18.8)
Unknown	20 (9.4)	14 (20.3)

^aESBL-positivity based on phenotypic ESBL production.

ESBL, extended-spectrum beta-lactamase; ESBL-Ec, ESBL-producing *E. coli*, non-ESBL-Ec, non-ESBL-producing *E. coli*

236

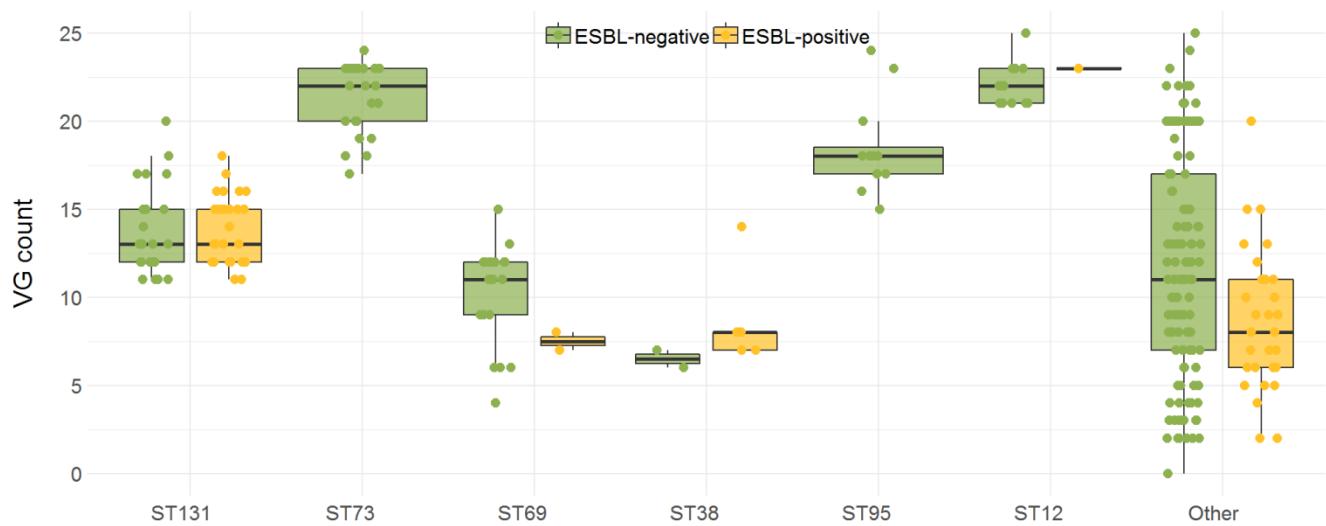
237

238 ^aESBL-positivity based on phenotypic ESBL production.

239 Boxplots display median resistance gene count and inter quartile range (IQR); every dot represents a single isolate.
240 Only STs that occurred >5% within non-ESBL-Ec or ESBL-Ec were grouped into main groups, the rest was
241 categorized as "Other". Results of the pairwise comparisons between STs can be found in S3 Appendix.

242 Virulence genes

243 Of the 49 predefined ExPEC-associated VG, 44 (89.8%) were detected in at least one *E. coli*
244 blood isolate (S4 Appendix). The median VG score was 13 (IQR 9 – 20) for non-ESBL-Ec and
245 12 (IQR 8 – 14) for ESBL-Ec blood isolates (P value = 0.002). In one non-ESBL-Ec isolate no
246 predefined ExPEC-associated VG was detected, while a maximum VG score of 25 was found in
247 two non-ESBL-Ec isolates.


248 For non-ESBL-Ec and ESBL-Ec isolates, there was no significant difference in the VG
249 score between isolates that caused community or hospital onset ECB (S4 Appendix). Non-
250 ESBL-Ec isolates that caused ECB with a primary gastro-intestinal focus and hepatic-biliary
251 focus had lower VG scores (median 10, IQR 6 – 13 and median 11, IQR 5 – 18, respectively) as
252 compared to isolates with a primary focus in the urinary tract (median 15, IQR 11 – 21) (P value
253 = 0.007 and P value = 0.036, respectively) (see S4 Appendix). Among non-ESBL-Ec and
254 ESBL-Ec, there were no statistical significant differences in VG scores between isolates of
255 patients without versus with a urinary catheter, between patients alive or deceased after 30

256 days or between patients admitted to the intensive care unit (ICU) versus a non-ICU ward (S4
257 Appendix).

258 There was heterogeneity in VG scores between non-ESBL-Ec of different STs, this was
259 less pronounced for ESBL-Ec isolates (Fig. 4 and S4 Appendix). ESBL-negative ST38 had the
260 lowest average VG score (median 7, IQR 6 – 7) and ESBL-positive ST12 had the highest VG
261 score (median 23, IQR 23 – 23). Median VG score of both ESBL-negative and ESBL-positive
262 ST131 isolates was 13 (IQR 12 – 15). All pairwise comparisons between ESBL-negative STs
263 yielded Holm-Bonferroni adjusted P values < 0.05 , except for the comparison ST12 versus
264 ST73 and all pairwise comparisons that included ST38.

265

266 **Figure 4.** ExPEC-associated VG score in different STs, stratified for ESBL-positivity^a

267
268 ^aESBL-positivity based on phenotypic ESBL production.

269 Boxplots display median VG score and inter quartile range (IQR); every dot represents a single isolate. Only STs that
270 occurred >5% within non-ESBL-Ec or ESBL-Ec were grouped into main groups, the rest was categorized as "Other".
271 Results of pairwise comparisons between STs can be found in S4 Appendix.

272

273 **DISCUSSION**

274 In this study, we found that ESBL-producing *E. coli* blood isolates were different from non-
275 ESBL-producing *E. coli* causing bacteraemia in terms of clonal distribution, serotype distribution,
276 antimicrobial resistance gene count and VG scores.

277 In line with previous research, the clonal distribution among ESBL-Ec blood isolates was
278 less diverse as compared to non-ESBL-Ec [25–27]. This was mainly caused by the
279 predominance of ST131 within ESBL-Ec, as has been described before [28,29]. In contrast,
280 ST73, a ST that is known for its susceptibility to antibiotics [28], was only identified among non-
281 ESBL-Ec blood isolates. The association between ESBL phenotype and STs in *E. coli*, which is
282 repeatedly found, implies that the genetic make-up of strains contributes to the ability to acquire
283 and subsequently maintain plasmids carrying ESBL genes. Indeed, a recent large-scale study
284 that compared the pan-genomes of invasive *E. coli* isolates, including ST131 and ST73,
285 suggested that due to ongoing adaptation to long term human intestinal colonisation and
286 consequent evolutionary gene selection, ST131 might have become able to reduce the fitness
287 costs of long term plasmid maintenance [30,31]. It has been hypothesized that this is also true
288 for other *E. coli* lineages that are associated with multi-drug resistance. Reducing the fitness
289 costs of replicating plasmids encoding multi-drug resistance will result in having competitive
290 advantage over other intestinal strains [32].

291 We hypothesized that the clonal distribution and resistance gene and VG content would
292 differ between ECB episodes of community and hospital onset and between different primary
293 foci, as a result of adaptive evolution of intestinal *E. coli*. We observed some statistical
294 significant differences in resistance gene count and VG scores among non-ESBL-Ec from
295 different primary foci of ECB, such as higher VG scores of blood isolates from a primary urinary
296 focus as compared to isolates from a primary focus in the gastro-intestinal or hepatic-biliary
297 tract. However, absolute differences in median gene counts were small and the clinical
298 significance remains unclear. In the current study, we found that differences in molecular
299 content mostly depended on phenotypic ESBL-production and STs. This confirms the findings
300 from a recent study that was performed in Scotland [33]. In that study, there were combinations
301 of VGs as well as a particular accessory gene composition that differentiated between STs
302 rather than between epidemiological factors. The association between ST69 and community

303 onset ECB, as found in the Scottish study, was not identified in the current study. Other
304 differences were the large proportion of *E. coli* isolates from ECB episodes that were deemed
305 hospital-acquired (62%) as compared to our study (18.4% for ESBL-negative and 36.2% for
306 ESBL-positive ECB) and in that study, analyses were not stratified for ESBL-positivity.

307 Interestingly, in our study, isolates that belonged to ST73 had low resistance gene
308 content but relatively high VG scores as compared to other STs. Furthermore, the average VG
309 score among non-ESBL-Ec was slightly higher in comparison to ESBL-Ec blood isolates, which
310 demonstrates that ESBL-positivity in *E. coli* is not necessarily related to an increased VG
311 content. These findings do not support the theory that increased virulence of resistant strains
312 causes the increased incidence of resistant ECB as compared to sensitive ECB. This theory has
313 been suggested for other pathogens, such as MRSA [1,34,35].

314 We identified serotype O25:H4 as the most prevalent serotype causing ESBL-negative
315 as well as ESBL-positive ECB in The Netherlands, followed by O6:H1. The serotype distribution
316 among non-ESBL-Ec was more heterogeneous as compared to ESBL-Ec, similar to the
317 differences in clonal diversity between these two groups [36]. A large recent European
318 surveillance study that included 1,110 *E. coli* blood isolates from adults between 2011 and 2017
319 showed that there is heterogeneity in serotype distribution among different countries, which
320 highlights the need for country specific data, such as provided in the current study [15]. We
321 showed that the coverage of the new potential 10-valent vaccine was higher as compared to the
322 4-valent vaccine and was actually doubled for non-ESBL-Ec bacteraemia. Findings of the
323 current study can be used for future studies and can help further evaluation and implementation
324 of *E. coli* vaccines.

325 Strengths of the current study are the multicenter design and combination of
326 epidemiological characteristics and highly discriminatory genetic data. There are also important
327 limitations. Firstly, *E. coli* is a heterogeneous species, of which the seven MLST genes only
328 constitute a small proportion of the entire gene content. Because we also only investigated a

329 small fraction of the genes that are commonly part of the accessory genome, such as VGs and
330 acquired resistance genes, we may have missed genomic differences that could have
331 importantly contributed to ecological specialization in the different clinically relevant primary foci.
332 Secondly, we selected *E. coli* isolates from a tertiary care center and teaching hospital from the
333 Netherlands from two different regions, which we considered to be representative of the
334 Netherlands. The description of strains that were identified here might not be entirely
335 generalizable to other countries since there could be differences between circulating *E. coli*
336 strains, dependent on local population characteristics and antimicrobial resistance levels.
337 Thirdly, many pairwise comparisons between subgroups were performed, which increases the
338 risk of false-positive findings (i.e. type I errors). Even though we applied a strict *P* value
339 correction for multiple testing, this naturally does not eliminate the risk of false-positive findings.
340 The analyses on resistance gene and VG content should therefore be viewed as hypothesis
341 generating.

342 In conclusion, associations between clinical characteristics of ECB episodes and
343 molecular content of *E. coli* isolates were limited. However, we did identify important differences
344 in clonality, serotypes, antimicrobial resistance genes and VG scores between non-ESBL-Ec
345 and ESBL-Ec blood isolates that reached beyond their phenotypic ESBL-positivity. Future
346 studies that aim to describe the molecular epidemiology of ECB should therefore preferably
347 focus on *E. coli* without preselection on ESBL-positivity, to limit the risk of inferring
348 characteristics of resistant *E. coli* to the *E. coli* population as a whole. Furthermore, a more
349 thorough understanding of the molecular epidemiology of ECB and specifically studies that
350 further disclose targets for surveillance or infection-prevention will help to reduce the occurrence
351 of this invasive infectious disease with its severe potential consequences.

352

353

354 **FUNDING**

355 This study was internally funded by the Netherlands National Institute for Public Health and the
356 Environment (RIVM) and the University Medical Center Utrecht (UMCU) and the authors
357 received no specific funding for this work.

358 **ACKNOWLEDGMENTS**

359 We would sincerely like to thank Kim van der Zwaluw, Carlo Verhulst and Judith Vlooswijk for
360 their contributions in the laboratory execution of the study. Preliminary results of this paper were
361 presented at the 29th European Congress of Clinical Microbiology & Infectious Diseases,
362 Amsterdam, the Netherlands, 13-16 April 2019 (P1450).

363 **AUTHOR CONTRIBUTIONS**

Author	Roles
D. van Hout	Conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, validation, visualization, writing – original draft preparation, writing – review & editing
T.D. Verschuren	Conceptualization, data curation, formal analysis, investigation, methodology, project administration, software, validation, writing – review & editing
P.C.J. Bruijning-Verhagen	Conceptualization, formal analysis, methodology, supervision, validation, writing – review & editing
T. Bosch	Conceptualization, data curation, formal analysis, investigation, methodology, funding acquisition, resources, software, supervision, writing – review & editing
A.C. Schürch	Methodology, software, resources, supervision, validation, writing – review & editing
R.J.L. Willems	Methodology, software, resources, supervision, writing – review & editing
M.J.M. Bonten	Conceptualization, formal analysis, funding acquisition, resources, supervision, writing – review & editing
J.A.J.W. Kluytmans	Conceptualization, formal analysis, resources, supervision, writing – review & editing

364

365 **REFERENCES**

366 1. de Kraker MEA, Jarlier V, Monen JCM, Heuer OE, van de Sande N, Grundmann H. The changing
367 epidemiology of bacteraemias in Europe: trends from the European Antimicrobial Resistance
368 Surveillance System. Clin Microbiol Infect. 2013;19: 860–868. doi:10.1111/1469-0691.12028

369 2. Van Der Steen M, Leenstra T, Kluytmans JA JW, Van Der Bij AK. Trends in expanded-spectrum
370 cephalosporin-resistant *Escherichia coli* and *Klebsiella pneumoniae* among Dutch clinical isolates,
371 from 2008 to 2012. *PLoS One*. 2015;10: e0138088. doi:10.1371/journal.pone.0138088

372 3. Schlackow I, Stoesser N, Walker AS, Crook DW, Peto TEA, Wyllie DH. Increasing incidence of
373 *Escherichia coli* bacteraemia is driven by an increase in antibiotic-resistant isolates: electronic
374 database study in Oxfordshire 1999-2011. *J Antimicrob Chemother*. 2012;67: 1514-1524.
375 doi:10.1093/jac/dks082

376 4. Vihta K-D, Stoesser N, Llewelyn MJ, Quan TP, Davies T, Fawcett NJ, et al. Trends over time in
377 *Escherichia coli* bloodstream infections, urinary tract infections, and antibiotic susceptibilities in
378 Oxfordshire, UK, 1998-2016: a study of electronic health records. *Lancet Infect Dis*. 2018;18:
379 1138-1149. doi:10.1016/S1473-3099(18)30353-0

380 5. Abernethy JK, Johnson AP, Guy R, Hinton N, Sheridan EA, Hope RJ. Thirty day all-cause
381 mortality in patients with *Escherichia coli* bacteraemia in England. *Clin Microbiol Infect*. 2015;21:
382 251.e1-8. doi:10.1016/j.cmi.2015.01.001

383 6. Fitzpatrick JM, Biswas JS, Edgeworth JD, Islam J, Jenkins N, Judge R, et al. Gram-negative
384 bacteraemia; a multi-centre prospective evaluation of empiric antibiotic therapy and outcome in
385 English acute hospitals. *Clin Microbiol Infect*. 2016;22: 244-251. doi:10.1016/j.cmi.2015.10.034

386 7. Abernethy J, Guy R, Sheridan EA, Hopkins S, Kiernan M, Wilcox MH, et al. Epidemiology of
387 *Escherichia coli* bacteraemia in England: results of an enhanced sentinel surveillance programme.
388 *J Hosp Infect*. 2017;95: 365-375. doi:10.1016/j.jhin.2016.12.008

389 8. Huttner A, Hatz C, van den Doppelstein G, Abbanat D, Hornacek A, Frolich R, et al. Safety,
390 immunogenicity, and preliminary clinical efficacy of a vaccine against extraintestinal pathogenic
391 *Escherichia coli* in women with a history of recurrent urinary tract infection: a randomised, single-
392 blind, placebo-controlled phase 1b trial. *Lancet Infect Dis*. 2017;17: 528-537. doi:10.1016/S1473-
393 3099(17)30108-1

394 9. Overdevest ITMA, Bergmans AMC, Verweij JJ, Vissers J, Bax N, Snelders E, et al. Prevalence of
395 phylogenotypes and O25/ST131 in susceptible and extended-spectrum β -lactamase-producing
396 *Escherichia coli* isolates, the Netherlands. *Clin Microbiol Infect*. 2015;21: 570.e1-e4.
397 doi:10.1016/j.cmi.2015.02.020

398 10. Van Der Bij AK, Peirano G, Goessens WHF, Van Der Vorm ER, Van Westreenen M, Pitout JDD.
399 Clinical and molecular characteristics of extended-spectrum- β -lactamase-producing *Escherichia*
400 *coli* causing bacteraemia in the Rotterdam Area, Netherlands. *Antimicrob Agents Chemother*.
401 2011;55: 3576-3578. doi:10.1128/AAC.00074-11

402 11. van Hout D, Verschuur TD., Bruijning-Verhagen PCJ., Bosch T., Reuland EA., Fluit AC., et al.
403 Design of the EPIGENEC Study: Assessing the EPIdemiology and GENetics of *Escherichia coli* in
404 the Netherlands. *Preprints*. 2019; 2019020066. doi:10.20944/preprints201902.0066.v1

405 12. Gurevich A, Saveliev V, Vyahhi N, Tesler G. QUAST: quality assessment tool for genome
406 assemblies. *Bioinformatics*. 2013;29: 1072-1075. doi:10.1093/bioinformatics/btt086

407 13. Simpson EH. Measurement of diversity. *Nature*. 1949;163.

408 14. Joensen KG, Tetzschner AMM, Iguchi A, Aarestrup FM, Scheutz F. Rapid and Easy In Silico
409 Serotyping of *Escherichia coli* Isolates by Use of Whole-Genome Sequencing Data. *J Clin*
410 *Microbiol*. 2015;53: 2410-2426. doi:10.1128/JCM.00008-15

411 15. Geurtsen J, Weerdenburg E, Davies T, Go O, Spiessens B, Geet G Van, et al. Extraintestinal
412 pathogenic *Escherichia coli* surveillance study to determine O-serotype prevalence and antibiotic
413 resistance in blood isolates collected in Europe, 2011-2017. *ECCMID Conf #P1451*.

414 16. Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, et al. Identification of
415 acquired antimicrobial resistance genes. *J Antimicrob Chemother.* 2012;67: 2640–2644.
416 doi:10.1093/jac/dks261

417 17. Liu B, Zheng D, Jin Q, Chen L, Yang J. VFDB 2019: a comparative pathogenomic platform with an
418 interactive web interface. *Nucleic Acids Res.* 2019;47: D687–D692. doi:10.1093/nar/gky1080

419 18. Johnson JR, Stell AL. Extended Virulence Genotypes of *Escherichia coli* Strains from Patients with
420 Urosepsis in Relation to Phylogeny and Host Compromise. *J Infect Dis.* 2000;181: 261–72.
421 doi:10.1086/315217

422 19. Johnson JR, Johnston BD, Porter S, Thuras P, Aziz M, Price LB. Accessory Traits and
423 Phylogenetic Background Predict *Escherichia coli* Extraintestinal Virulence Better Than Does
424 Ecological Source. *J Infect Dis.* 2019;219: 121–132. doi:10.1093/infdis/jiy459

425 20. Johnson JR, Porter S, Johnston B, Kuskowski MA, Spurbeck RR, Mobley HLT, et al. Host
426 Characteristics and Bacterial Traits Predict Experimental Virulence for *Escherichia coli*
427 Bloodstream Isolates From Patients With Urosepsis. *Open Forum Infect Dis.* 2015;2: ofv083.
428 doi:10.1093/ofid/ofv083

429 21. Dale AP, Woodford N. Extra-intestinal pathogenic *Escherichia coli* (ExPEC): Disease, carriage and
430 clones. *J Infect.* 2015;71: 615–626. doi:10.1016/j.jinf.2015.09.009

431 22. Dale AP, Pandey AK, Hesp RJ, Belogiannis K, Laver JR, Shone CC, et al. Genomes of
432 *Escherichia coli* bacteraemia isolates originating from urinary tract foci contain more virulence-
433 associated genes than those from non-urinary foci and neutropenic hosts. *J Infect.* 2018;77: 534–
434 543. doi:10.1016/j.jinf.2018.10.011

435 23. Leimbach A. *ecoli_VF_collection*: V.0.1. Zenodo. [Internet]. 2016. Available:
436 <http://dx.doi.org/10.5281/zenodo.56686>.

437 24. Frenck RW, Ervin J, Chu L, Abbanat D, Spiessens B, Go O, et al. Safety and immunogenicity of a
438 vaccine for extra-intestinal pathogenic *Escherichia coli* (ESTELLA): a phase 2 randomised
439 controlled trial. *Lancet Infect Dis.* 2019;19: 631–640. doi:10.1016/S1473-3099(18)30803-X

440 25. Mathers AJ, Peirano G, Pitout JDD. The role of epidemic resistance plasmids and international
441 high-risk clones in the spread of multidrug-resistant Enterobacteriaceae. *Clin Microbiol Rev.*
442 2015;28: 565–591. doi:10.1128/CMR.00116-14

443 26. Hertz FB, Nielsen JB, Schonning K, Littauer P, Knudsen JD, Lobner-Olesen A, et al. “Population
444 structure of drug-susceptible,-resistant and ESBL-producing *Escherichia coli* from community-
445 acquired urinary tract”. *BMC Microbiol.* 2016;16: 63. doi:10.1186/s12866-016-0681-z

446 27. Manges AR, Geum HM, Guo A, Edens TJ, Fibke CD, Pitout JDD. Global Extraintestinal
447 Pathogenic *Escherichia coli* (ExPEC) Lineages. *Clin Microbiol Rev.* 2019;32.
448 doi:10.1128/CMR.00135-18

449 28. Kallonen T, Brodrick HJ, Harris SR, Corander J, Brown NM, Martin V, et al. Systematic
450 longitudinal survey of invasive *Escherichia coli* in England demonstrates a stable population
451 structure only transiently disturbed by the emergence of ST131. *Genome Res.* 2017;27: 1437–
452 1449. doi:10.1101/gr.216606.116

453 29. Nicolas-Chanoine M-H, Bertrand X, Madec J-Y. *Escherichia coli* ST131, an intriguing clonal group.
454 *Clin Microbiol Rev.* 2014;27: 543–574. doi:10.1128/CMR.00125-13

455 30. McNally A, Oren Y, Kelly D, Pascoe B, Dunn S, Sreecharan T, et al. Combined Analysis of
456 Variation in Core, Accessory and Regulatory Genome Regions Provides a Super-Resolution View
457 into the Evolution of Bacterial Populations. *PLoS Genet.* 2016;12: e1006280.

458 doi:10.1371/journal.pgen.1006280

459 31. McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM, Horner C, et al. Diversification of
460 Colonization Factors in a Multidrug-Resistant *Escherichia coli* Lineage Evolving under Negative
461 Frequency-Dependent Selection. *MBio*. 2019;10: e00644-19. doi:10.1128/mBio.00644-19

462 32. Dunn SJ, Connor C, McNally A. The evolution and transmission of multi-drug resistant *Escherichia*
463 *coli* and *Klebsiella pneumoniae*: the complexity of clones and plasmids. *Curr Opin Microbiol*.
464 2019;51: 51–56. doi:10.1016/j.mib.2019.06.004

465 33. Goswami C, Fox S, Holden M, Connor M, Leanord A, Evans TJ. Genetic analysis of invasive
466 *Escherichia coli* in Scotland reveals determinants of healthcare-associated versus community-
467 acquired infections. *Microb genomics*. 2018;4. doi:10.1099/mgen.0.000190

468 34. Laupland KB, Lyytikäinen O, Sgaard M, Kennedy KJ, Knudsen JD, Ostergaard C, et al. The
469 changing epidemiology of *Staphylococcus aureus* bloodstream infection: a multinational
470 population-based surveillance study. *Clin Microbiol Infect*. 2013;19: 465–471. doi:10.1111/j.1469-
471 0691.2012.03903.x

472 35. Mostofsky E, Lipsitch M, Regev-Yochay G. Is methicillin-resistant *Staphylococcus aureus*
473 replacing methicillin-susceptible *S. aureus*? *J Antimicrob Chemother*. 2011;66: 2199–2214.
474 doi:10.1093/jac/dkr278

475 36. Ciesielczuk H, Jenkins C, Chattaway M, Doumith M, Hope R, Woodford N, et al. Trends in ExPEC
476 serogroups in the UK and their significance. *Eur J Clin Microbiol Infect Dis*. Germany; 2016;35:
477 1661–1666. doi:10.1007/s10096-016-2707-8

478

479

480 SUPPORTING INFORMATION

481

482 **S1 Appendix**

483 **S2 Appendix**

484 S3 Appendix

485 **S4 Appendix**

486