

1 **Effects of trap confinement on personality measurements in**
2 **two terrestrial rodents**

3 **Allison M. Brehm, Sara Tironi, Alessio Mortelliti**

4 Department of Wildlife, Fisheries, and Conservation Biology

5 University of Maine, 5755 Nutting Hall, Orono, ME 04469, USA

6 **Short title:** Effects of trap confinement on personality measurements

7 **Abstract**

8 In recent years individual differences in the behavior of animals, or personalities, have been
9 shown to influence the response of individuals to changing environments and have important
10 ecological implications. As researchers strive to understand and predict the responses of
11 individuals and populations to anthropogenic changes, personality studies in wild populations
12 will likely continue to increase. Studies of personality in wild populations often require that
13 animals are live-trapped before behavioral observation can occur; however, it is unknown what
14 impact live trapping may have on the behavior of trapped individuals. Specifically, if the
15 duration of trap confinement directly influences behavior, then by obtaining wild animals
16 through live-trapping are we confounding the very measurements we are most interested in? To
17 investigate this question, we performed a study using two small mammal species. We positioned
18 high-definition trail cameras on Longworth small mammal traps in the field to observe capture
19 events and record the time of capture. We then measured personality in captured deer mice
20 (*Peromyscus maniculatus*) and southern red-backed voles (*Myodes gapperi*) using three
21 standardized tests. With a repeatability analysis, we confirmed which behaviors could be
22 considered personality traits, and through linear and generalized linear models, we found that the
23 time an animal had spent confined to a trap before testing did not affect the majority of behaviors
24 exhibited. Our results showed two weak behavioral effects of confinement duration on boldness
25 and docility depending on whether an individual had been trapped previously. Our results
26 suggest that personality measurements of wild, trapped small mammals are not determined by
27 trapping procedures, but that researchers should control for whether an animal is naïve to
28 trapping during analysis.

30 **Introduction**

31 Over the past few decades, the acknowledgement that many species of animals display
32 consistent individual differences in behavior, or *personalities*, has become widespread (1–4).
33 Personalities are heritable (5), have consequences for fitness (6–9), and can limit the ability of
34 individuals to exhibit behavioral plasticity (10) resulting in trade-offs where certain personality
35 types perform well in some ecological contexts but not in others (11). Because individual
36 personalities can determine the response of individuals to changing environments (12,13) and
37 have important ecological implications (14–16), personality studies in wild populations will
38 likely continue to increase as researchers strive to understand and predict the responses of
39 individuals and populations to anthropogenic changes (17–20).

40 Studies of personality in wild populations usually require that wild animals are live-
41 trapped so that one or more standardized behavioral tests can be undertaken (21–24) but see (25)
42 for a method of personality observation in non-captured animals. Because being trapped may
43 induce stress (26–31), the process of capturing animals and subsequently measuring their
44 personality offers additional challenges. Specifically, the stress of being trapped might influence
45 the behaviors exhibited by wild animals, confounding the very phenomena we are investigating.

46 Several studies have explored the relationship between live trapping and the stress
47 response of animals (29–31), and it is generally accepted that the stress of being captured
48 releases glucocorticoids into the bloodstream (32). Glucocorticoids act to elevate breathing rate,
49 heart rate, and blood pressure (29) which, following exposure to the threat of a predator attack,
50 stimulates the mobilization of energy to facilitate an escape. When an animal is confined to a
51 trap, however, this prolonged stressor may result in higher concentrations of glucocorticoids after
52 longer durations spent in a trap (30), perhaps impacting behaviors exhibited during routine

53 behavioral tests such as grooming, time spent moving, etc. (33–35). Thus far, studies looking to
54 assess this phenomenon have focused on the hormonal/physiological response to trap-induced
55 stress and results have been mixed (29,31,36). For example, live trapping does induce an initial
56 stress response in southern red-backed voles (*Myodes gapperi*) and meadow voles (*Microtus*
57 *pennsylvanicus*), but longer times spent in traps do not correlate with increased stress levels
58 (29,36). In contrast, studies found that in deer mice (*Peromyscus maniculatus*) and North
59 American red squirrels (*Tamiasciurus hudsonicus*) prolonged time spent in traps was positively
60 correlated with stress hormone levels (31,36). In either scenario, it is unknown whether the time
61 spent in traps may produce a behavioral response, since a change in stress hormones doesn't
62 necessarily precede a change in behavior. If confinement duration affected the behavior
63 exhibited during routine testing, this would require studies using personality data from trapped
64 animals to control for confinement duration. This could be done by: checking traps more
65 frequently, recording the time of capture (obtained using videos from camera traps placed on live
66 traps) then controlling for the duration using imposed covariates in analysis, or using devices that
67 signal when a capture has been made so that animals can be removed promptly (37,38).
68 Empirical evidence is needed to explore the relationship between the time spent in a trap and
69 behavioral response.

70 The objective of this study was to assess whether personality measurements obtained
71 from live-trapped individuals are being confounded by the amount of time spent inside of a trap.
72 Specifically, we sought to determine whether confinement duration affects the behaviors
73 exhibited in routine behavioral tests. To meet this objective, we conducted a field experiment
74 focused on the deer mouse (*Peromyscus maniculatus*) and the southern red-backed vole (*Myodes*
75 *gapperi*), which have been the subject of previous personality studies (16,39). Using high-

76 definition trail cameras positioned on Longworth small mammal traps in the field, we quantified
77 the duration of time that individuals had spent inside a trap before behavior was observed in
78 standardized behavioral tests the following morning. We explored these data to see whether
79 behaviors exhibited in behavioral tests varied with the time spent inside the trap.

80 Results from this study will have implications for researchers who measure personality
81 following the live-capture of an animal. These results will highlight whether we should take
82 additional steps to ensure that our behavioral measurements are accurate and not unduly
83 influenced by the trapping.

84 **Materials and methods**

85 **Study site and small mammal trapping**

86 This study was conducted in the Penobscot Experimental Forest (PEF, 44 51' N, 68 37'
87 W) at the southern edge of the Acadian forest in east-central Maine, USA. This experimental
88 forest consists of forest units chosen at random and logged separately with varying silvicultural
89 treatments (minimum of two replicates per treatment). Management units average 8.5 ha in area
90 (range 8.1–16.2 ha) and nearly 25 ha of forest (retained in two separate units) serves as reference
91 and has remained unmanaged since the late 1800s (39,40).

92 We implemented a large-scale mark-recapture study on six trapping grids (Figure 1): two
93 control (located in reference forest) and four experimental (two replicates in even-aged forest
94 units and two in units treated with a two-stage shelterwood with retention). Trapping grids were
95 0.81 ha in area and consisted of 100 flagged points spaced 10 m apart. One Longworth trap was
96 positioned at each flagged point. Traps were bedded with cotton and baited with a mixture of

97 sunflower seeds, oats, and freeze-dried mealworms. We positioned trapping grids close to the
98 center of the management unit to minimize edge-effects (mean distance between grids was 1.44
99 km; greater than the movements of our study species). We trapped at each trapping grid for three
100 consecutive days and nights and checked traps each morning and evening. Trapping occurred
101 once per month for five consecutive months each year (June–October 2016, 2017, 2018).

102 **Figure 1. Map of our study area at the Penobscot Experimental Forest, Maine U.S.A.**

103 **Behavioral tests**

104 We used three standard behavioral tests to measure personality of trapped individuals
105 (Figure 2): an *emergence* test to assess boldness (33,41), an *open-field* test to measure activity
106 and exploration in a novel environment (42,43), and a *handling bag* test to measure docility and
107 the response to handling by an observer (23,44–46). Behavioral tests were performed in the order
108 above prior to handling or marking. All tests and processing occurred at a base area in the home
109 grid of the focal individual.

110 **Figure 2. Three behavioral tests used to assess personality of deer mice (*Peromyscus*
111 *maniculatus*) and southern red-backed voles (*Myodes gapperi*).**

112 (A) An individual emerges from a Longworth trap in an emergence test. (B) An individual in
113 motion during an open-field test. (C) An observer suspends an individual over a controlled arena
114 during the handling bag test.

115 Behavioral tests were performed as follows: first, the animal was transferred directly
116 from the trap of capture into a clean, empty Longworth trap. This trap was then placed on the
117 floor of a box sized 46 x 46 x 60 cm (placed underneath a tarp to control for light levels and
118 perceived canopy cover). To create a more natural environment, the inside of the box had been

119 painted a light brown with a small amount of debris (dead leaves and pine needles) placed on the
120 floor. A digital camera (Nikon CoolPix S3700) was mounted facing the opening of the
121 Longworth trap, and the observer locked the trap door open before leaving the test area. After
122 three minutes, the observer returned and ended the test. Individuals were caught in a plastic bag
123 and then released into the center of the open-field arena. A five minute open-field test was
124 performed in an arena (46 x 46 x 50 cm), placed on a level platform with perceived canopy cover
125 controlled (39), and a mounted digital camera (Nikon CoolPix S3700) recorded the test. After
126 five minutes, an observer ended the recording, caught the animal in a plastic bag, and performed
127 a handling bag test by suspending the bag into the open-field arena to control the visual
128 surroundings. The observer measured the proportion of time that the individual spent immobile
129 during one minute (referred to as handling time hereafter). Traps used for emergence tests and
130 the open-field test box were cleaned thoroughly with 70% isopropyl alcohol and wiped with a
131 dry cloth in-between all tests. Behavioral tests were performed once monthly to ensure that
132 animals would not habituate to the tests.

133 After the completion of the behavioral tests, we anesthetized animals with isoflurane and
134 inserted PIT tags (Biomark MiniHPT8) subcutaneously at the midback. Animals were also
135 marked with a small animal ear tag (National Band, Style 1005-1) and a distinctive haircut. We
136 recorded sex, body mass (measured using a 100 g Pesola Lightline spring scale), body length, tail
137 length, reproductive status, and age class (juvenile, subadult, or adult). Animals were released at
138 the exact site of capture post-processing.

139 To quantify behavior from videotaped emergence and open-field tests, recordings were
140 played back in the laboratory. For emergence tests, an observer recorded the following: whether
141 or not the animal emerged (defined as all four feet having left the trap), the latency to emerge,

142 and the total time spent at the end of the tunnel before emerging. Open-field tests were analyzed
143 using the behavioral tracking software ANY-maze © (version 5.1; Stoelting CO, USA). For the
144 remainder of analyses, we focused on a reduced number of non-redundant behavioral variables
145 (16). See Table 1 for a complete list of the behaviors used.

Table 1. Personality variables measured in the deer mouse (*Peromyscus maniculatus*) and the southern red-backed vole (*Myodes gapperi*). Provided are: the behavior, description, behavioral test it was measured using, notes on interpretation, and a non-exhaustive list of references.

Personality		Behavioral			Sources
Behavior	trait	Description	Test	Notes about interpretation	
Handling time	Docility	Total number of seconds of inactivity during a 1-minute handling bag test	Handling bag	An individual's handling score is typically interpreted as a measure of the docility of an individual or as a response to confinement in a stressful area.	(23,44–46)
Latency to emerge	Boldness	Latency (in seconds) to emerge from trap in the emergence test. An animal was considered to have emerged when all four feet left the trap	Emergence	The latency to emerge from a shelter and into a novel or open environment is typically quantified on a bold/ timid continuum where decreased latency signals increased boldness.	(33,34,41)
Time at end of tunnel	Boldness	Total number of seconds spent at the end of the tunnel before emerging	Emergence	See note for Latency to emerge. Since mice who spent more time in the tunnel were less prone to emerge overall (cor = -0.42; $p < 0.05$), this suggests that these individuals had a more fearful/timid behavior and required more time to survey the arena before emergence. Consequently, we interpreted less time at the end of the tunnel to signal increased boldness.	
Mean speed	Activity	Mean speed in the open-field test in (m/s). Calculated by dividing the total distance traveled in	Open-field	This is a direct measurement of activity and locomotion in the open-field test arena.	(33,34)

		the test by the test duration			
Prop. time grooming	Anxiety	Proportion of test duration spent grooming	Open-field	Grooming in small mammals is typically considered an indicator of anxiety and stress. Previous studies have shown that in highly aversive environments, self-grooming is a form of de-arousal and the highest levels of grooming may indicate a lower anxiety level and better coping than lower levels of grooming. The open-field test exposes small mammals to several naturally aversive stimuli (i.e. bright light and novel, open areas). Thus, it is likely that to the deer mouse, a nocturnal species, the open-field test represents an environment of high aversiveness and increased grooming suggests less anxiety. In contrast, for the vole (a relatively diurnal species) low to moderate grooming seems to signal coping, whereas high levels of grooming indicate high anxiety.	(35,47,48)
Rear rate	Activity	Rate of rearing (rears/s). Rearing is defined as forelegs leaving the arena floor	Open-field	Rearing is typically assessed as correlating positively with activity.	(23,48,49)
Prop. time center	Boldness	Proportion of test duration spent in the center portion of the arena	Open-field	Thigmotaxis, or the avoidance of open spaces, is a common fear/anxiety reaction in small mammals (35) wherein individuals will maintain contact with perimeters. Consequently, the act of entering into open, “unsafe” areas is interpreted as boldness and avoidance of these areas indicates timidity.	(34,48,50–53)

146 Monitoring capture events

147 To observe the event of an individual's capture and calculate the time spent inside the
148 trap before behavioral testing, we positioned camera traps (Bushnell NatureView HD 119740)

149 facing the door of the Longworth trap and its surroundings. Cameras were positioned ~50–100
150 cm from the trap at a height of ~50 cm. 13 camera traps were used in total and were positioned
151 on a subset of the 100 available trap locations (Figure 3). We chose camera locations to optimize
152 the chance of observing capture events (hence, we chose trap locations that had successful
153 captures during the previous month’s trapping session). Cameras were positioned simultaneously
154 with Longworth traps and were kept active for the same duration as the traps (three consecutive
155 days and nights at each study grid). We monitored Longworth capture events using camera traps
156 from July–October 2018 (936 total camera trap nights). Cameras were programmed to record a
157 one-minute video whenever movement was perceived (with a one second delay between videos).
158 Because camera traps occasionally fail to detect movement, we also programmed them to take a
159 one-minute video once per hour (the “field scan” setting). This allowed us to approximate the
160 hour of capture in an instance where the camera failed to trigger at the capture event.

161 **Figure 3. A camera trap (Bushnell NatureView HD) monitors a Longworth trap in the**
162 **field.**

163 Videos of capture events were played back in the laboratory, and an observer identified
164 the individual by pairing the information of the date and trap with available capture data. The
165 observer then recorded the time that the individual entered the trap and calculated the total time
166 (in minutes) spent inside the trap before behavioral testing (taken from the time stamp of the
167 open-field video for consistency). This variable will be referred to hereafter as “time in trap”.
168 See S1 Video and S2 Video in the supporting information for examples of observed capture
169 events.

170 **S1 Video. Observed capture event of a southern red-backed vole (*Myodes gapperi*).**

171 **S2 Video. Observed capture event of a deermouse (*Peromyscus maniculatus*).**

172 Data analysis

173 To determine which behaviors could be considered personality, we first performed a
174 repeatability analysis on the behavioral variables obtained from the emergence, open-field, and
175 handling bag tests (54,55). For this analysis, we used data from our study population collected
176 during the 2016, 2017, and 2018 field seasons. We used R version 3.4.1 (56) and package *lme4*
177 (57) to run mixed-effects models and included potential confounding factors as covariates in the
178 models. Specifically, we included sex, body condition (calculated using the scaled mass index
179 (58)), silvicultural treatment, trapping session (June–October), and trapping year (2016, 2017, or
180 2018). Individual identity was included as a random intercept in the models to account for the
181 proportion of the variance that can be attributed to differences among individuals (59). As
182 response variables, we used the behavior of interest and ran separate mixed-effects models for
183 each behavior of interest. We assessed normality by visually inspecting Q–Q plots and
184 histograms of the residuals, and by plotting the fitted values against the residual values (60). We
185 logit-transformed the response variable when it was a proportion (59,61) to meet the assumption
186 of normality. We then calculated the adjusted repeatabilities and associated confidence intervals
187 (55,62–64) using methods described in detail by (16,39).

188 Once it was determined which behaviors were repeatable and could, therefore, be
189 considered personality, we tested the hypothesis that these behaviors would be influenced by the
190 time spent inside the Longworth trap before behavioral testing. We used a nested hypothesis
191 testing approach (65) using linear models and generalized linear models with the repeatable
192 behaviors as response variables. In the instances where we had repeated measures from the same
193 individual (because we caught their capture on a camera trap in subsequent trapping sessions),
194 we used only the first event (18 out of 92 individuals). Again, proportional response variables

195 were logit-transformed to meet the assumptions of normality, and count variables were examined
196 using generalized linear models with a poisson or negative binomial family (depending on
197 dispersion).

198 We introduced predictor variables one by one to build a base model to control for most of
199 the variability in the data. Predictor variables included sex, body condition, silvicultural
200 treatment, trapping session, body mass, and a variable termed “naïve” which controlled for
201 whether the animal had been captured previously or was naïve to trapping. Models containing
202 each of these variables alone were compared to the null model using the Akaike information
203 criterion corrected for small sample size (AICc) (65,66) and models within 2.0 Δ AICc of the top
204 model were considered to have equal support. If more than one variable was better than the null,
205 a model including multiple additive effects was explored. Once this base model was built, we
206 compared this model to the same model with the addition of the variable “time in trap” to see
207 whether this addition improved the model by AICc. Previous research has shown that males and
208 females may respond differently to trap-induced stress (31), so we subsequently tested for an
209 interaction between the time spent in the trap and sex. Last, to test the hypothesis that individuals
210 who are naïve to trapping may be impacted by the time spent inside the trap differently than
211 individuals who have been captured previously, we tested for an interaction between time spent
212 in the trap and the variable “naïve”.

213 **Ethical note**

214 Animal trapping, handling, and marking procedures were approved by the University of
215 Maine’s Institutional Animal Care and Use Committee (IACUC number A2015_11_02).
216 Animals were anaesthetized with isoflurane prior to tagging, and tagging equipment was

217 sanitized with 70% isopropyl alcohol in between animals. All small mammal handling was
218 performed by trained researchers, and all efforts were made to minimize suffering by small
219 mammals.

220 **Results**

221 We examined behavioral data from standardized tests for 1791 observations from 603
222 individual deer mice and 1558 observations from 529 individual red-backed voles, and we found
223 all behavioral variables to be significantly repeatable, with a mean repeatability value of 0.81 for
224 deer mice and 0.78 for voles (Table 2). This indicates that these behaviors can be considered
225 personality (55,67). The mean 95% confidence intervals for these values were (0.79, 0.84) and
226 (0.74, 0.81), respectively (Table 2). The number of observations and individuals shown in Table 2
227 differ for behavioral variables obtained from the emergence and handling bag tests since these tests were
228 not performed in 2016. The mean number of repeated observations per individual was approximately
229 three for both deer mice and red-backed voles.

Table 2. Repeatability estimates for target behaviors measured in three behavioral tests (handling bag, emergence, and open-field) in deer mice (*Peromyscus maniculatus*) and southern red-backed voles (*Myodes gapperi*).

Behavioral Variable	Mean	Range	Repeatability (95% CI)	Observations	Individuals
<i>P. maniculatus</i>					
Handling time	15.41	(0, 60)	0.836 (0.807, 0.862)	1122	376
Latency to emerge	27.17	(0, 180)	0.812 (0.780, 0.842)	1122	376
Time at end of tunnel	7.15	(0, 180)	0.863 (0.841, 0.884)	1122	376
Mean speed (m/sec)	0.10	(0, 0.25)	0.832 (0.809, 0.853)	1791	603
Prop. time grooming	0.11	(0, 0.96)	0.762 (0.735, 0.792)	1791	603
Rear rate	0.19	(0, 0.68)	0.809 (0.785, 0.831)	1791	603
Prop. time center	0.03	(0, 0.73)	0.775 (0.747, 0.804)	1791	603
<i>M. gapperi</i>					
Handling time	47.77	(0, 60)	0.675 (0.62, 0.726)	940	305
Latency to emerge	34.94	(0, 180)	0.831 (0.799, 0.859)	940	305
Time at end of tunnel	12.05	(0, 180)	0.823 (0.791, 0.851)	940	305
Mean speed (m/sec)	0.05	(0, 0.20)	0.792 (0.765, 0.818)	1558	529

Prop. time grooming	0.06	(0, 0.81)	0.729 (0.694, 0.764)	1558	529
Rear rate	0.09	(0, 0.56)	0.770 (0.739, 0.801)	1558	529
Prop. time center	0.04	(0, 0.99)	0.827 (0.805, 0.850)	1558	529

Repeatability was calculated from univariate mixed-effect models with identity included as a random effect. Parametric bootstrapping was used to calculate 95% confidence intervals. See Methods for more information. Significant repeatability estimates are shown in bold.

230

231 In the majority of models (~86%) predicting behaviors exhibited in standardized tests, the
 232 top model did not include “time in trap”. Instead, out of the predictor variables considered (sex,
 233 body condition, silvicultural treatment, trapping session, body mass, and a variable termed
 234 “naïve” which controlled for whether the animal had been captured previously or was naïve to
 235 trapping) behaviors in deer mice were predicted by trapping session and body mass (Table 3,
 236 Figure 4a-b). Deer mice with greater body mass showed longer latencies to emerge from the
 237 emergence test and the proportion of time spent grooming in the open-field test correlated
 238 positively with trapping session ($\beta = 0.26$, $SE = 0.08$, $rsq = 0.20$ and $\beta = 0.58$, $SE = 0.16$, $rsq =$
 239 0.23, respectively). In two cases, (once for deer mice and once for voles) the top model included
 240 an interaction between “time in trap” and whether or not the individual was naïve to trapping
 241 (Figure 4c-d). Model fit was relatively low for top models (excluding those where the top model
 242 included only an intercept), with an average multiple R-squared value of 0.23 (Table 3).

Table 3. Model output of top-ranked linear models* predicting behaviors performed during standardized tests in deer mice (*Peromyscus maniculatus*) and southern red-backed voles (*Myodes gapperi*).

<i>P. maniculatus</i>				<i>Prop. time grooming</i>			
Latency to emerge	β	St.Error	P-value	(Intercept)	β	St.Error	P-value
(Intercept)	1.21	0.08	<0.001	(Intercept)	-3.88	0.51	<0.001
Body mass	0.26	0.08	0.003	Session	0.58	0.16	<0.001
R-squared	0.20			R-squared	0.23		
Observations	41			Observations	46		
Prop. time center	β	St.Error	P-value				

(Intercept)	-3.52	0.123	<0.001
Time in trap	0.17	0.12	0.18
Naïve	0.04	0.17	0.82
Time in trap*Naïve	-0.53	0.17	0.005
R-squared	0.19		
Observations	46		

<i>M. gapperi</i>			
Handling time	β	St.Error	P-value
(Intercept)	45.37	3.68	<0.001
Time in trap	-12.4	3.71	0.002
Naïve	6.04	4.53	0.19
Time in trap*Naïve	11.3	4.71	0.02
R-squared	0.28		
Observations	43		

* Only results from the top model (based on AICc scores) are shown. We have omitted occasions where the null model was the top model. See materials and methods for more information.

243

244 **Fig 4. Factors predicting repeatable behaviors performed in the open-field test in deer mice**
245 **(*Peromyscus maniculatus*) and southern red-backed voles (*Myodes gapperi*).** (a) Deer mice
246 with greater body mass took longer to emerge from the emergence test. (b) Trapping session
247 influenced the proportion of time deer mice spent grooming in the open-field test (2 refers to July
248 and 5 is October). (c) Deer mice who were naïve to trapping showed a negative relationship
249 between time in the trap and the proportion of time spent in the center portion of the open-field
250 test. Non-naïve mice showed the reverse relationship. (d) Voles who were not naïve to trapping
251 showed a negative relationship between time in the trap and handling time. Results were
252 obtained from linear models, and 95% CI from the models are shown. Variables “time in trap”
253 and “body mass” have been z-standardized, and the variables “latency to emerge”, “prop. time
254 grooming”, and “prop. time center” are on a log10 scale.

255 **Discussion**

256 We studied the effects of live trapping on behaviors performed during three standard
257 behavioral tests in deer mice and southern red-backed voles. Our major findings were that for
258 these species, 12 out of 14 behaviors exhibited during routine behavioral tests were not affected
259 by the amount of time that individuals had spent confined in traps. In the two instances where the
260 time spent confined in traps did predict behavior, effect sizes were relatively small, and the
261 direction of the relationship was different for individuals who were naïve to trapping than those
262 who had been trapped previously, indicating that an individual's previous experience with a trap
263 interacts with this process. Overall, these results suggest that personality data collected from
264 wild, trapped small mammals is not confounded by the trapping process and, where an effect
265 might be present, the predictive power of the time spent confined to traps is relatively weak and
266 possibly not affecting the overall interpretation of results.

267 Previous research has not explored the effects of live trapping on personality
268 measurements, however, studies investigating the impacts of live trapping on hormonal stress
269 responses have had mixed findings. Specifically, it has been shown in southern red-backed voles
270 and meadow voles that live trapping induces an initial stress response, but that this response is
271 not heightened following prolonged confinement inside traps (29,36). In our study, the observed
272 behavior of red-backed voles in behavioral tests was consistent with these findings and 6 out of 7
273 behaviors showed no correlation with the time that the animal had spent previously confined
274 inside of a trap. Previous studies investigating the correlation between stress response and
275 duration of trap confinement in deer mice saw that after prolonged time spent in traps, stress
276 hormone levels were significantly higher than after a short duration of trap confinement (36). By
277 contrast, our results show no correlation between 6 out of 7 behavioral measurements and trap
278 duration in the deer mouse. Although a hormonal change does not necessarily precede a change

279 in behavior, we would expect to see an observable behavioral change in individual deer mice
280 experiencing elevated glucocorticoid levels (for example, by affecting behaviors that indicate
281 activity level such as speed of locomotion and rearing). Instead, the one behavior in deer mice
282 for which “time in trap” occurred in the top model was the proportion of time spent in the center
283 of the open-field test, a behavior which is most commonly interpreted as indicating the degree of
284 boldness (Table 1). Interestingly, our results show that individuals who had never been trapped
285 previously behaved more boldly in the open-field test (spending more time in the center portion)
286 when their confinement duration was short rather than long. Individuals who had been trapped at
287 least once previously showed the opposite effect; bolder behavior was seen in animals who had
288 spent longer durations in the trap than those who had spent shorter durations (Figure 4c.). In
289 voles, the one behavior that was affected by the “time in trap” was handling time, or the amount
290 of time spent immobile during a one-minute handling bag test. This behavior is commonly used
291 to assess docility (Table 1). Our results showed that for non-naïve individuals only (i.e., only
292 those who had been trapped at least once previously), shorter durations in the trap correlated with
293 increased docility (Figure 4d.).

294 Since 86% of observed behaviors by deer mice and voles showed no correlation with the
295 variable “time in trap”, and all four variables indicating activity showed no correlations, we
296 suspect that the duration of trap confinement is not providing a prolonged stressor for small
297 mammals. It may be noteworthy that the previous trap response studies of deer mice and voles
298 used Sherman traps instead of the Longworth traps used in this study. Longworth traps differ
299 from Sherman traps in that they have a separate nest chamber (providing additional warmth and
300 protection). Additionally, we took steps to limit stress by ensure that bedding remained dry (i.e.,
301 limiting trapping in adverse weather and replacing damp bedding immediately), and providing

302 ample bait inside the traps. Further, we checked traps twice a day to limit confinement durations.
303 We can't speculate on whether these precautions were adequate in our study to stop a subsequent
304 release of glucocorticoids after the initial stressor of the trapping event, but regardless, prolonged
305 confinement in a Longworth trap does not seem to result in an observable change for the
306 majority of behaviors in either study species. Future research examining this relationship in other
307 species and other study populations will help to assess and confirm the generalizability of these
308 findings. In the two cases where "time in trap" showed relatively weak predictive power, both
309 arose as an interaction with the variable "naïve". We suggest that other studies investigating
310 personality in small mammals control in analyses for whether or not animals have been captured
311 previously.

312 An animal's personality depicts its unique way of experiencing the world and coping
313 with life's challenges (3). Using standardized behavioral tests, it is possible to capture different
314 components of an individual's complex personality, for example by observing activity levels and
315 interactions with novel objects and environments (33). Our results show some evidence that an
316 individual's behavior in standard tests can be predicted in part by body mass and seasonality
317 (Figure 4). Specifically, we found that heavier deer mice were slightly more timid than lighter
318 mice (seen in their longer latencies to emerge from the emergence test), and that mice groomed
319 more (indicating coping) in the autumn than they did in the early and mid-summer. These models
320 showed low fit to the data; suggesting that the complexity of an individual's personality is a
321 difficult thing to predict.

322 Personality studies on wild populations will likely continue to become more common as
323 further research demonstrates the cascade-effects that individual behavioral traits can have on
324 populations and communities (14,16,18,19,68). Hence, it is critical to ensure that the very

325 process we seek to illuminate is not being confounded by our methods of obtaining data. Our
326 findings provide evidence that time spent inside of Longworth traps does not determine
327 behaviors performed during standardized tests in two different small mammal species. Therefore,
328 our results suggest that personality measurements on wild, trapped small mammals are not
329 regulated by trapping procedures.

330 **Acknowledgments**

331 This work was supported by the USDA-National Institute of Food and Agriculture McIntire-
332 Stennis projects (ME041620 and ME041913) through the Maine Agricultural and Forest
333 Experiment Station. We also thank a number of dedicated field and lab technicians for helping
334 with data collection and video analysis, Bryn Evans for help with map preparation, Malcolm
335 Hunter for comments on a previous version of this manuscript, Laura Kenefic (U.S. Forest
336 Service), and Keith Kanoti for maintaining and facilitating research at the Penobscot
337 Experimental Forest. A special thanks goes to Sara Boone for support in the field.

338 **Author contributions**

339 AM, ST, and AMB conceived and designed the experiment. ST and AMB performed the
340 experiment. AMB analyzed the data and wrote the first draft of the manuscript. All authors
341 contributed to the final version of the manuscript.

342 **References**

- 343 1. Pennisi E. The power of personality. *Science*. 2016;352(6286):644–7.
- 344 2. Sih A, Bell AM, Johnson JC, Ziembra RE. Behavioral syndromes, an integrative overview.

345 Q Rev Biol. 2004;79(3):241–77.

346 3. Carere C, Maestripieri D. Animal personalities: behavior, physiology and evolution.

347 Chicago, Illinois: University of Chicago Press; 2013.

348 4. Gosling SD. From mice to men: what can we learn about personality from animal

349 research? Psychol Bull. 2001;127(1):45–86.

350 5. van Oers K, de Jong G, van Noordwijk AJ, Kempenaers B, Drent PJ. Contribution of

351 genetics to the study of animal personalities: a review of case studies. Behaviour.

352 2005;142(9–10):1185–206.

353 6. Smith BR, Blumstein DT. Fitness consequences of personality: a meta-analysis. Behav

354 Ecol. 2008;19(2):448–55.

355 7. Biro PA, Stamps JA. Are animal personality traits linked to life-history productivity?

356 Trends Ecol Evol. 2008;23(7):361–8.

357 8. Dingemanse NJ, Réale D. Natural selection and animal personality. Behaviour.

358 2005;142(9):1159–84. Available from:

359 <http://booksandjournals.brillonline.com/content/10.1163/156853905774539445>

360 9. Haage M, Maran T, Bergvall UA, Elmhagen B, Angerbjörn A. The influence of

361 spatiotemporal conditions and personality on survival in reintroductions—evolutionary

362 implications. Oecologia. 2017;183(1):45–56.

363 10. Dingemanse NJ, Kazem AJN, Re D, Wright J. Behavioural reaction norms: animal

364 personality meets individual plasticity. Trends Ecol Evol. 2009;25(2):81–9.

365 11. Sih A, Kats LB, Maurer EF. Behavioural correlations across situations and the evolution

366 of antipredator behaviour in a sunfish-salamander system. *Anim Behav*. 2003;65(1):29–
367 44.

368 12. Wong BBM, Candolin U. Behavioral responses to changing environments. *Behav Ecol*.
369 2015;26(3):665–73.

370 13. Tuomainen U, Candolin U. Behavioural responses to human-induced environmental
371 change. *Biol Rev*. 2011;86(3):640–57.

372 14. Sih A, Cote J, Evans M, Fogarty S, Pruitt J. Ecological implications of behavioural
373 syndromes. *Ecol Lett*. 2012;15(3):278–89.

374 15. Wolf M, Weissing FJ. Animal personalities: consequences for ecology and evolution.
375 *Trends Ecol Evol*. 2012;27(8):452–61. Available from:
376 <http://dx.doi.org/10.1016/j.tree.2012.05.001>

377 16. Brehm AM, Zydlowski J, Maynard GA, Mortelliti A. Land use change and the ecological
378 consequences of personality in small mammals. *Ecol Lett*. 2019; doi: 10.1111/ele.13324.

379 17. Miranda AC, Schielzeth H, Sonntag T, Partecke J. Urbanization and its effects on
380 personality traits: a result of microevolution or phenotypic plasticity? *Glob Chang Biol*.
381 2013;19(9):2634–44.

382 18. Merrick MJ, Koprowski JL. Should we consider individual behavior differences in applied
383 wildlife conservation studies? *Biol Conserv*. 2017;209:34–44. Available from:
384 <http://dx.doi.org/10.1016/j.biocon.2017.01.021>

385 19. Lapiendra O, Schoener TW, Leal M, Losos JB, Kolbe JJ. Predator-driven natural selection
386 on risk-taking behavior in anole lizards. *Science*. 2018;360(6392):1017–20.

387 20. Berger-Tal O, Blumstein DT, Carroll S, Fisher RN, Mesnick SL, Owen MA, et al. A
388 systematic survey of the integration of animal behavior into conservation. *Conserv Biol.*
389 2016;30(4):744–53.

390 21. Carter AJ, Heinsohn R, Goldizen AW, Biro PA. Boldness, trappability and sampling bias
391 in wild lizards. *YANBE* [Internet]. 2012;83(4):1051–8. Available from:
392 <http://dx.doi.org/10.1016/j.anbehav.2012.01.033>

393 22. Boon AK, Réale D, Boutin S. Personality, habitat use, and their consequences for survival
394 in North American red squirrels *Tamiasciurus hudsonicus*. *Oikos*. 2008;117(April):1321–
395 8.

396 23. Martin JGA, Réale D. Temperament, risk assessment and habituation to novelty in eastern
397 chipmunks, *Tamias striatus*. *Anim Behav*. 2008;75(1):309–18.

398 24. Carere C, Drent PJ, Privitera L, Koolhaas JM, Groothuis TGG. Personalities in great tits,
399 *Parus major*: stability and consistency. *Anim Behav*. 2005;70(4):795–805.

400 25. Dammhahn M, Almeling L. Is risk taking during foraging a personality trait? A field test
401 for cross-context consistency in boldness. *Anim Behav* [Internet]. 2012;84(5):1131–9.
402 Available from: <http://dx.doi.org/10.1016/j.anbehav.2012.08.014>

403 26. Ortiz RM, Worthy GAJ. Effects of capture on adrenal steroid and vasopressin
404 concentrations in free-ranging bottlenose dolphins (*Tursiops truncatus*). *Comp Biochem
405 Physiol - A Mol Integr Physiol*. 2000;125(3):317–24.

406 27. Boonstra R, Mccoll CJ, Karels TJ. Reproduction at all costs : The adaptive stress response
407 of male arctic ground squirrels. *America (NY)*. 2009;82(7):1930–46.

408 28. Reeder DAM, Kosteczko NS, Kunz TH, Widmaier EP. Changes in baseline and stress-
409 induced glucocorticoid levels during the active period in free-ranging male and female
410 little brown myotis, *Myotis lucifugus* (Chiroptera: Vespertilionidae). *Gen Comp
411 Endocrinol.* 2004;136(2):260–9.

412 29. Fletcher QE, Boonstra R. Impact of live trapping on the stress response of the meadow
413 vole (*Microtus pennsylvanicus*). *J Zool.* 2006;270(3):473–8.

414 30. Kenagy NJPGJ. Seasonal changes in plasma testosterone and glucocorticosteroids in free-
415 living male yellow-pine chipmunks and the response to capture and handling. 2000;245–
416 51.

417 31. Bosson CO, Islam Z, Boonstra R, Bosson CO, Prés R. The impact of live trapping and
418 trap model on the stress profiles of North American red squirrels. *J Zool.* 2012;288:159–
419 69.

420 32. Sapolsky RM, Romero ML, Munck AU. How do glucocorticoids influence stress
421 responses? Integrating permissive, suppressive, stimulatory, and preparative actions.
422 *Endocr Rev.* 2000;21(1):55–89.

423 33. Carter AJ, Feeney WE, Marshall HH, Cowlishaw G, Heinsohn R. Animal personality:
424 what are behavioural ecologists measuring? *Biol Rev.* 2013;88(2):465–75.

425 34. Gracceva G, Herde A, Groothuis TGG, Koolhaas JM, Palme R, Eccard JA. Turning shy
426 on a winter's day: effects of season on personality and stress response in *Microtus arvalis*.
427 *Ethology.* 2014;120(8):753–67.

428 35. Kalueff A V., Stewart AM, Song C, Berridge KC, Graybiel AM, Fentress JC.

429 Neurobiology of rodent self-grooming and its value for translational neuroscience. *Nat*
430 *Rev Neurosci.* 2016;17(1):45–59.

431 36. Harper JM, Austad SN. Effect of capture and season on fecal glucocorticoid levels in deer
432 mice (*Peromyscus maniculatus*) and red-backed voles (*Clethrionomys gapperi*). *Gen*
433 *Comp Endocrinol.* 2001;123(3):337–44.

434 37. Benevides AFL, Hansen H, Hess SC. Design and evaluation of a simple signaling device
435 for live traps. *J Wildl Manage.* 2008;72(6):1434–6.

436 38. Larkin RP, Vandeelen TR, Sabick RM, Gosselink TE, Warner RE. Electronic signaling
437 for prompt removal of an animal from a trap. *Wildl Soc Bull.* 2003;31(2):392–8.
438 Available from: <http://www.jstor.org/stable/3784318>

439 39. Brehm AM, Mortelliti A. Mind the trap: large-scale field experiment shows that
440 trappability is not a proxy for personality. *Anim Behav.* 2018;142:101–12. Available
441 from: <https://doi.org/10.1016/j.anbehav.2018.06.009>

442 40. Brissette JC, Kenefic LS. History of the penobscot experimental forest, 1950-2010. In:
443 Penobscot experimental forest: 60 years of research and demonstration in Maine, 1950-
444 2010 GTR-NRS-P-123. USDA Forest Service; 2014. p. 1–20.

445 41. Brown C, Braithwaite VA. Effects of predation pressure on the cognitive ability of the
446 poeciliid *Brachyraphis episopi*. *Behav Ecol.* 2004;16(2):482–7.

447 42. Perals D, Griffin AS, Bartomeus I, Sol D. Revisiting the open-field test: what does it
448 really tell us about animal personality? *Anim Behav.* 2017;123:69–79.

449 43. Walsh RN, Cummins R a. The open-field test: a critical review. *Psychol Bull.*

450 1976;83(3):482–504.

451 44. Boon AK, Réale D, Boutin S. The interaction between personality, offspring fitness and
452 food abundance in North American red squirrels. *Ecol Lett.* 2007;10(11):1094–104.

453 45. Montiglio PO, Garant D, Pelletier F, Réale D. Personality differences are related to long-
454 term stress reactivity in a population of wild eastern chipmunks, *Tamias striatus*. *Anim*
455 *Behav.* 2012;84(4):1071–9. Available from:
456 <http://dx.doi.org/10.1016/j.anbehav.2012.08.010>

457 46. Taylor RW, Boutin S, Humphries MM, Mcadam AG. Selection on female behaviour
458 fluctuates with offspring environment. *J Evol Biol.* 2014;27(11):2308–21.

459 47. Fernández-Teruel A, Estanislau C. Meanings of self-grooming depend on an inverted U-
460 shaped function with aversiveness. *Nat Rev Neurosci.* 2016;17(9):591. Available from:
461 <http://dx.doi.org/10.1038/nrn.2016.102>

462 48. Choleris E, Thomas A, Kavaliers M, Prato F. A detailed ethological analysis of the mouse
463 open field test: effects of diazepam, chlordiazepoxide and an extremely low frequency
464 pulsed magnetic field. *Neurosci Biobehav Rev.* 2001;25(2001):235–60. Available from:
465 <http://www.sciencedirect.com/science/article/pii/S0149763401000112>

466 49. Prut L, Belzung C. The open field as a paradigm to measure the effects of drugs on
467 anxiety-like behaviors: a review. *Eur J Pharmacol.* 2003;463(1–3):3–33.

468 50. Eccard JA, Herde A. Consistency in boldness, activity and exploration at different stages
469 of life. *BMC Ecol.* 2013;103(1):61–8.

470 51. Ramos A, Berton O, Mormède P, Chaouloff F. A multiple-test study of anxiety-related

471 behaviours in six inbred rat strains. *Behav Brain Res.* 1997;85(1):57–69.

472 52. Treit D, Fundytus M. Thigmotaxis as a test for anxiolytic activity in rats. *Pharmacol*
473 *Biochem Behav.* 1989;31:959–62. Available from: papers2://publication/uuid/5F4FD48A-712B-4CFC-AC12-0C54750B2FF9

474

475 53. Barnett S. *The Rat - A Study in Behavior*. ANU Press; 1976.

476 54. Cleasby IR, Nakagawa S, Schielzeth H. Quantifying the predictability of behaviour:
477 statistical approaches for the study of between-individual variation in the within-
478 individual variance. *Methods Ecol Evol.* 2015;6(1):27–37.

479 55. Dingemanse NJ, Dochtermann NA. Quantifying individual variation in behaviour: mixed-
480 effect modelling approaches. *J Anim Ecol.* 2013;82(1):39–54.

481 56. R Core Team. R: A language and environment for statistical computing. R Found Stat
482 Comput. 2017; Available from: <http://www.r-project.org/>

483 57. Bates DM, Maechler M, Bolker BM, Walker S. *lme4: Linear mixed-effects models using*
484 *Eigen and S4*. 2015.

485 58. Peig J, Green AJ. New perspectives for estimating body condition from mass/length data:
486 the scaled mass index as an alternative method. *Oikos.* 2009;118(12):1883–91.

487 59. Zuur AF, Leno EN, Walker N, Saveliev AA, Smith GM. *Mixed effects models and*
488 *extensions in ecology with R*. New York: Springer-Verlag New York; 2009.

489 60. Sokal VL, Rohlf FJ. *Biometry: the principles and practice of statistics in biological*
490 *research*. 3rd ed. New York: Freeman; 1995.

491 61. Warton DI, Hui FKC. The arcsine is asinine: the analysis of proportions in ecology.

492 Ecology. 2011;92(1):3–10.

493 62. Nakagawa S, Schielzeth H. Repeatability for Gaussian and non-Gaussian data: a practical
494 guide for biologists. *Biol Rev.* 2010;85(4):935–56.

495 63. Stoffel MA, Nakagawa S, Schielzeth H. rptR: Repeatability estimation and variance
496 decomposition by generalized linear mixed-effects models. *Methods Ecol Evol.*
497 2017;8(11):1639–44. Available from: <http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12797/full>

498

499 64. Houslay TM, Wilson AJ. Avoiding the misuse of BLUP in behavioural ecology. *Behav*
500 *Ecol.* 2017;28(4):948–52.

501 65. Burnham KP, Anderson DR. Model selection and multimodel inference: a practical
502 information - theoretic approach. 2nd ed. New York: Springer-Verlag New York; 2002.

503 66. Buckland ST, Burnham KP, Augustin NH. Model selection: an integral part of inference.
504 *Biometrics.* 1997;53(2):603–18.

505 67. Bell AM, Hankison SJ, Laskowski KL. The repeatability of behaviour: a meta-analysis.
506 *Anim Behav.* 2009;77(4):771–83. Available from:
507 <http://dx.doi.org/10.1016/j.anbehav.2008.12.022>

508 68. Lapiendra O, Chejanovski Z, Kolbe JJ. Urbanization and biological invasion shape animal
509 personalities. *Glob Chang Biol.* 2017;23(2):592–603.

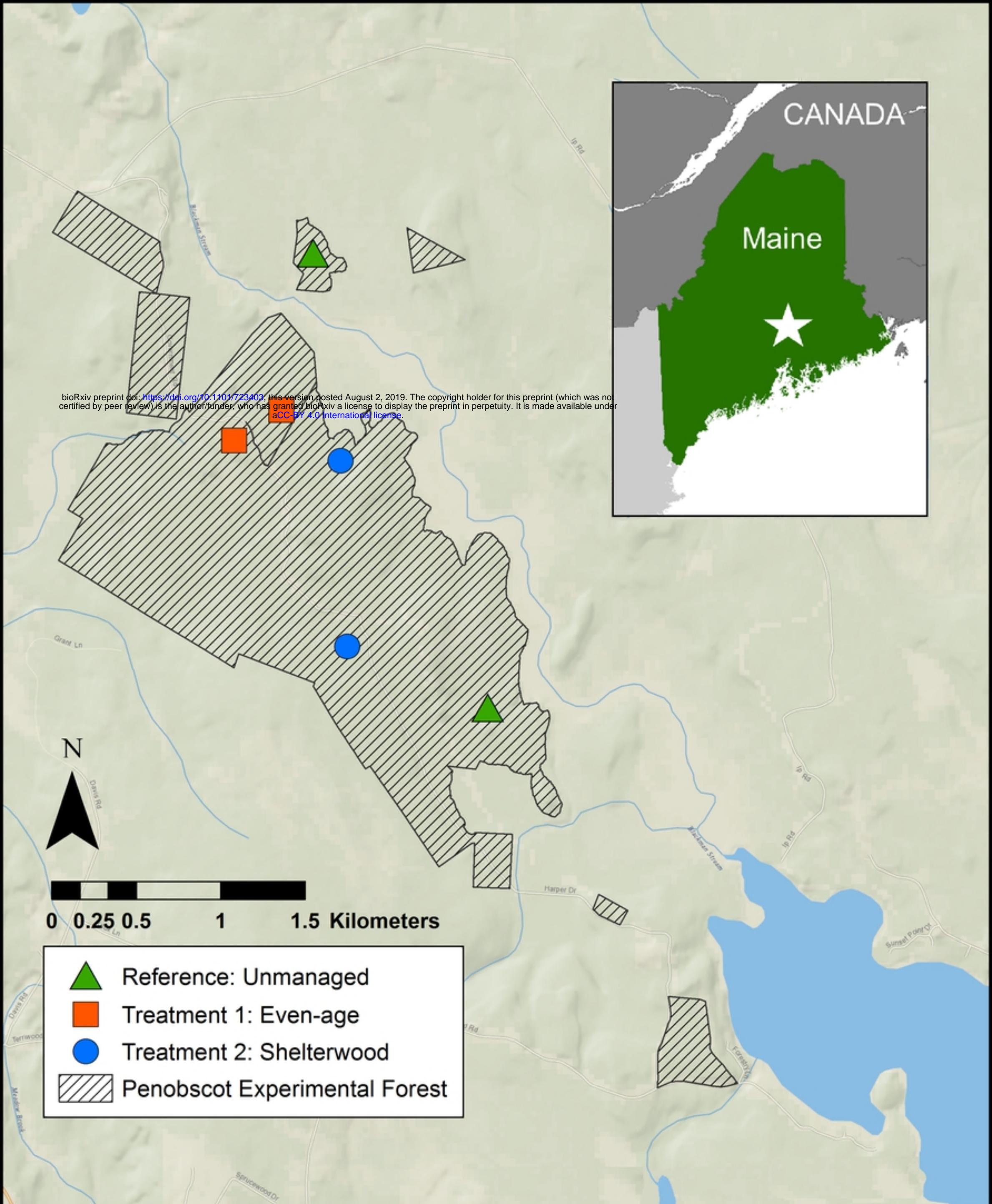


Figure1

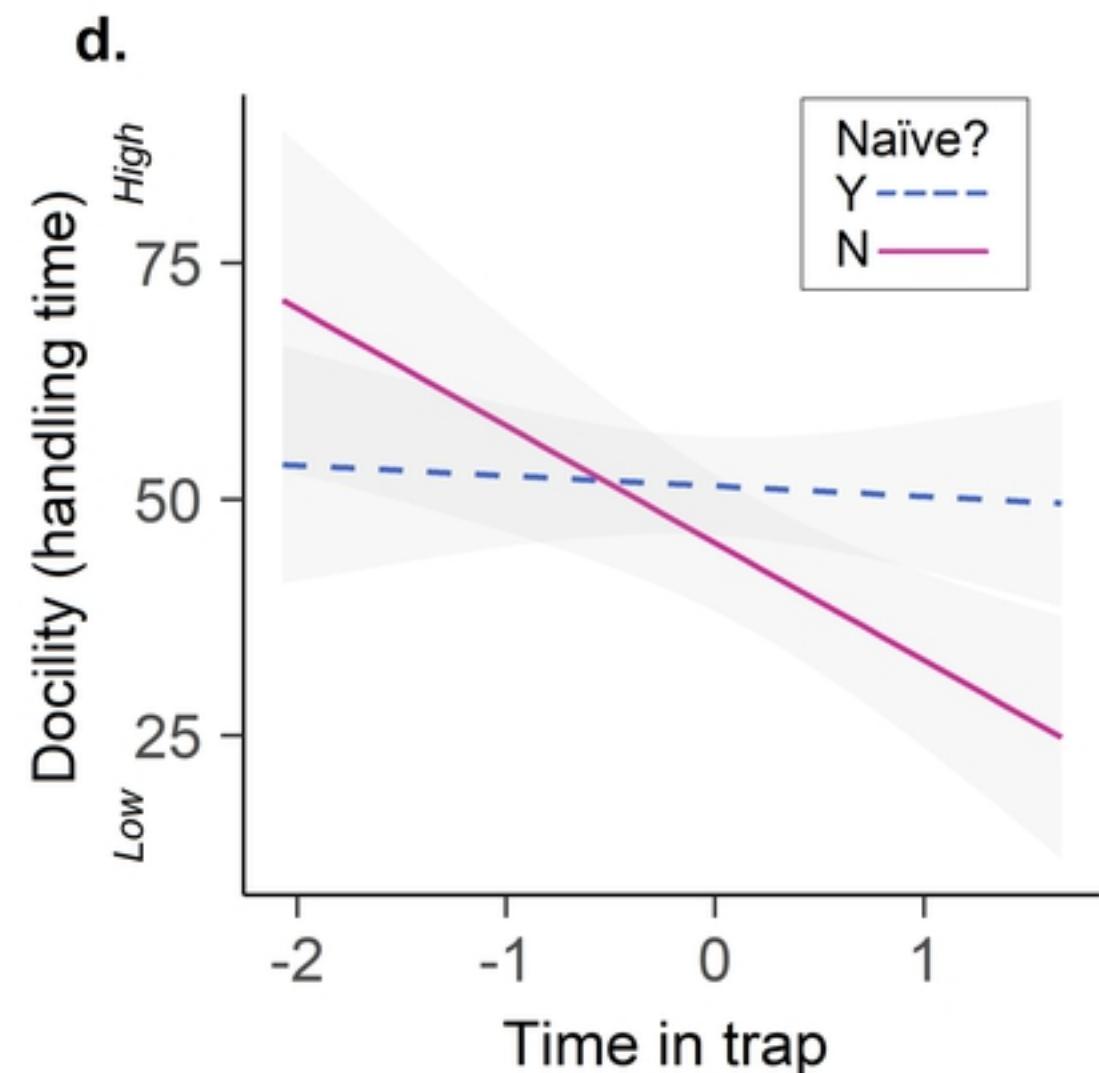
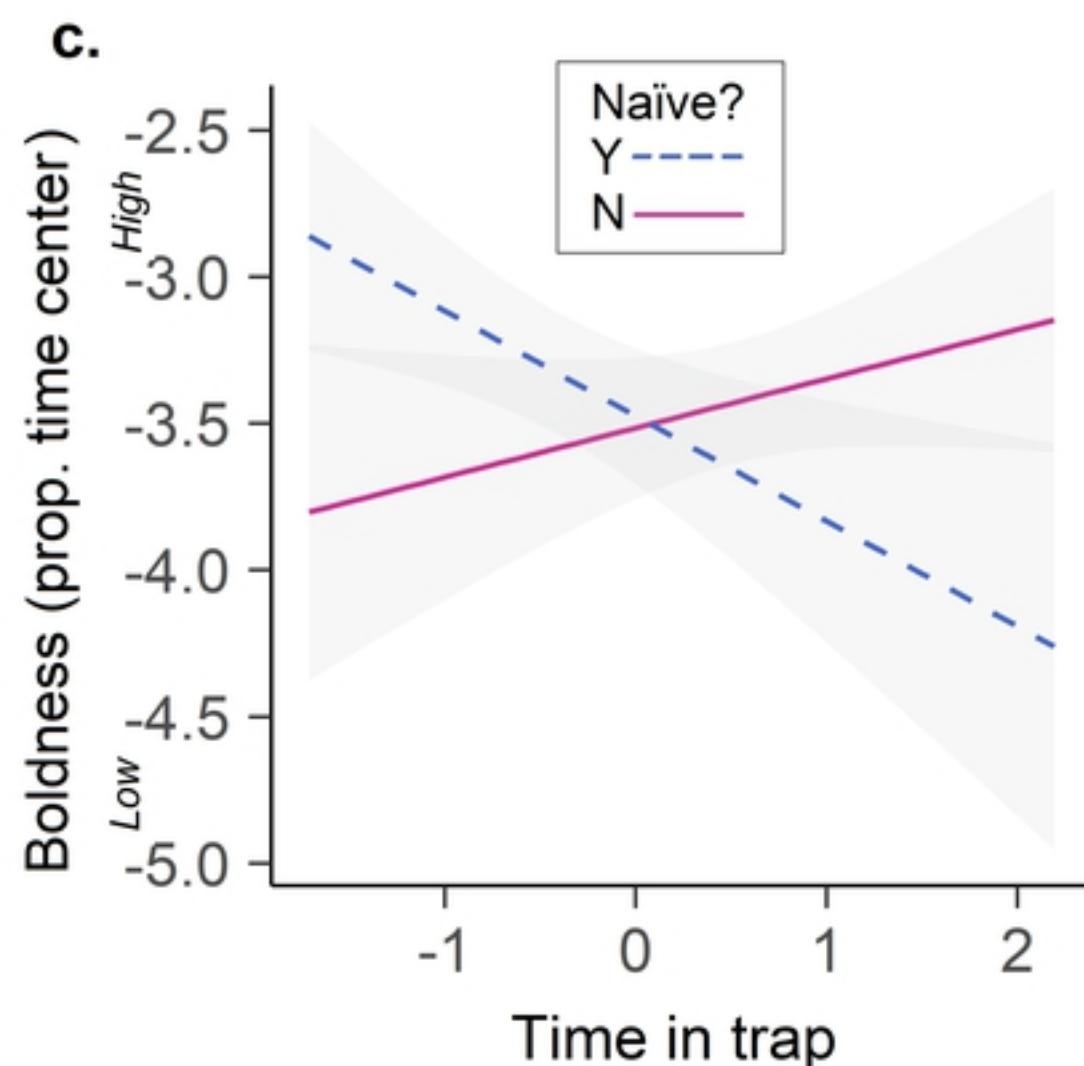
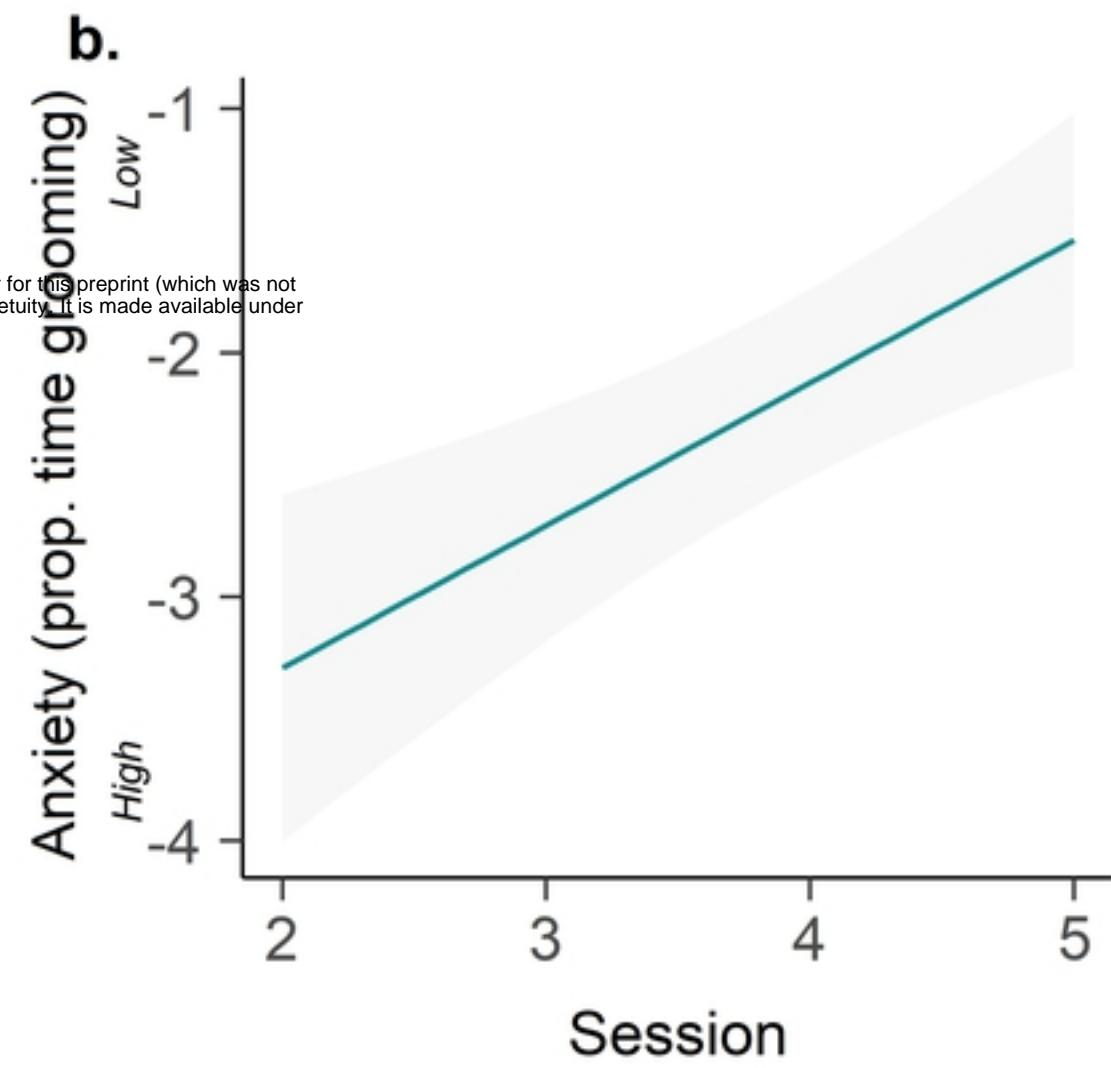
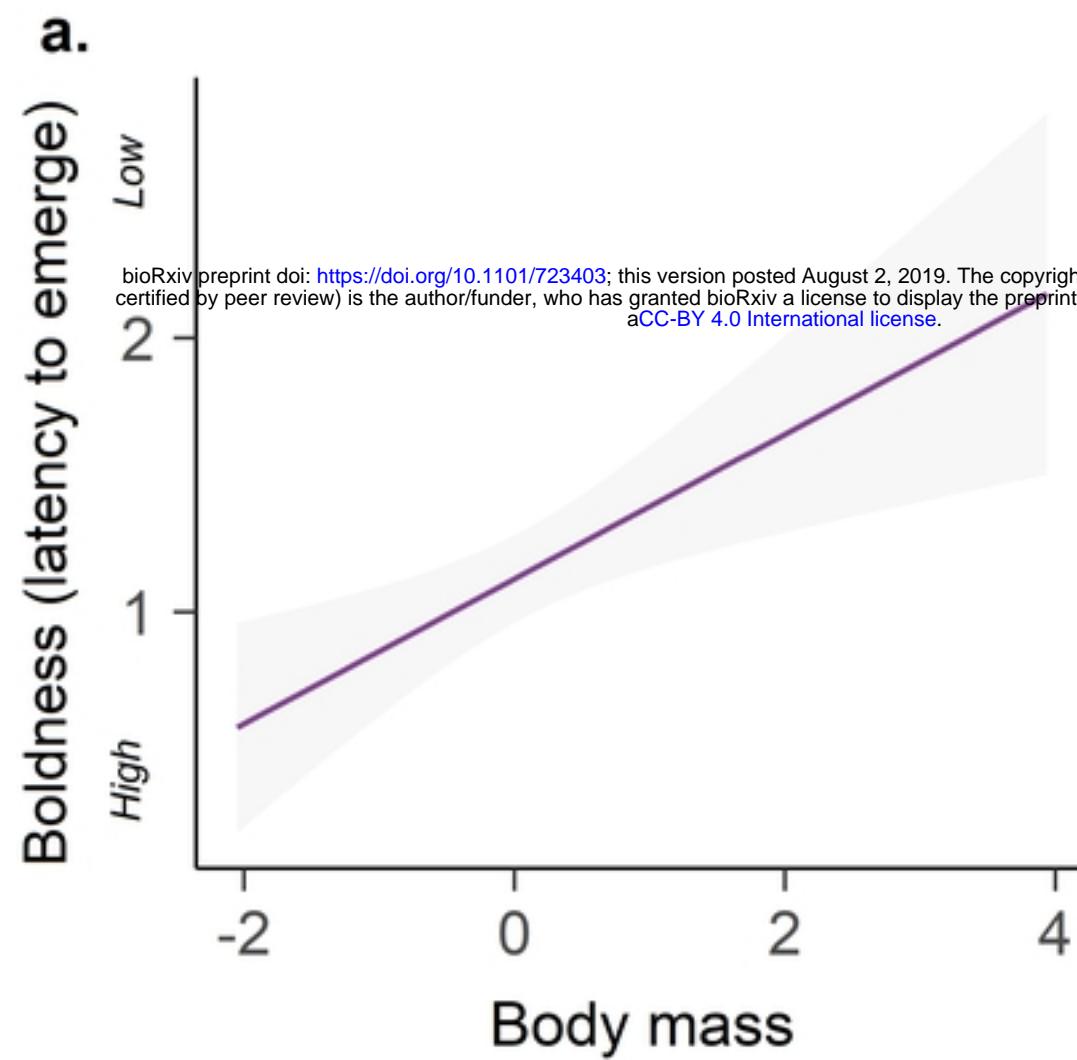





Figure 4

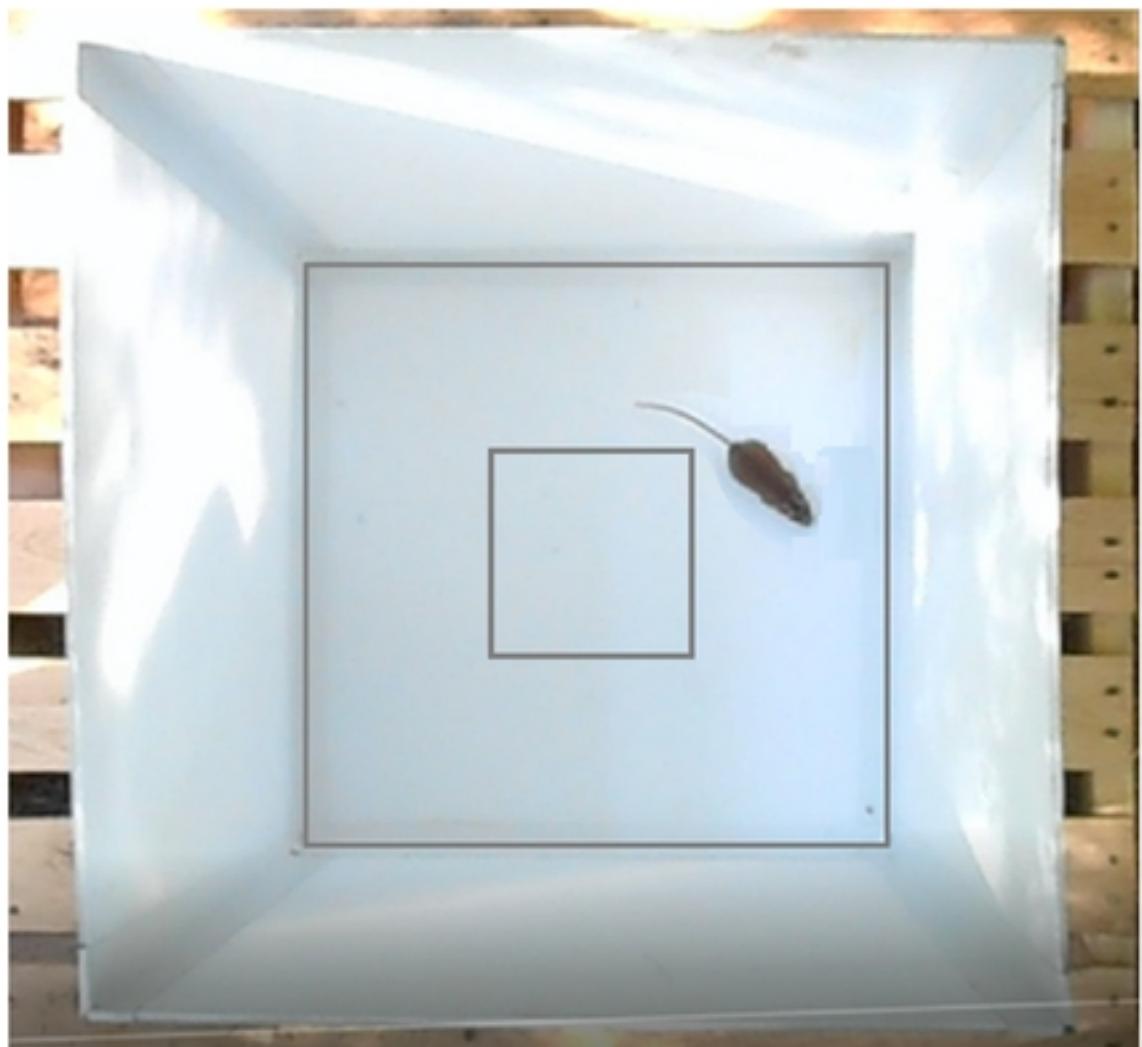

A**C****B**

Figure2

Figure3