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Abstract

Automatic de novo identification of the main regulons of a bacterium from genome and transcriptome
data remains a challenge. To address this task, we propose a statistical model of promoter DNA sequences
that can use information on exact positions of the transcription start sites and condition-dependent ex-
pression profiles. Two main novelties are to allow overlaps between motif occurrences and to incorporate
covariates summarising expression profiles (e.g. coordinates in projection spaces or hierarchical cluster-
ing trees). All parameters are estimated using a dedicated trans-dimensional Markov chain Monte Carlo
algorithm that adjusts, simultaneously, for many motifs and many expression covariates: the width and
palindromic properties of the corresponding position-weight matrices, the number of parameters to de-
scribe position with respect to the transcription start site, and the choice of relevant expression covariates.
A data-set of transcription start sites and expression profiles available for the Listeria monocytogenes is
analysed. The results validate the approach and provide a new global view of the transcription regulatory
network of this important model food-borne pathogen. A previously unreported motif that may play an
important role in the regulation of growth was found in promoter regions of ribosomal protein genes.

Introduction

Motif discovery in DNA sequences is an old problem of bioinformatics for which many approaches have
been developed [1, 2] but automatic de novo identification of the main regulons of an organism as
“simple” as a bacterium remains a challenge. The representation chosen for the motifs is at the heart
of the methodology. Word-based methods usually represent motifs as consensus strings written in an
alphabet allowing degenerate symbols and rely, for scoring, on an hypothesis testing framework to detect
deviation from a null hypothesis, such as Markov sequence [3] or equal occurrence frequencies between
co-expression clusters [4, 5]. Position-Weight Matrices (PWMs) are more precise description of motifs
that can account for the expected frequencies of the 4 DNA nucleotides (A,C,G,T) at each position
within the motif. Beside this probabilistic representation of the motif, a full probabilistic model involves
also a model for the background sequence (outside motif occurrences) and a model for the positions
of motif occurrences in the sequence set. Motif discovery is then cast as the problem of estimating
PWMs. The first algorithms implementing these ideas [6, 7] remain among the most powerful and
widely used tools to search for motifs based only on the nucleotide composition properties. Due to
motif degeneracy and limited number of occurrences, these approaches are usually successful only when
sequence data-sets enriched for particular motifs can be defined, most often based on experimental data.
Hence, transcriptional regulatory network reconstruction tends to be an incremental process in which
new components of the network are added one by one.

Chromatin immunoprecipitation (ChIP) is the experimental technique that had the deepest impact
on the field of motif discovery [2]. Nevertheless, the a priori selection of combinations of transcription
factors (TFs) and biological conditions is an intrinsic limitation of ChIP for de novo motif discovery at
a system level. Furthermore, a ChIP experiment requires either a specific antibody to recognise the TF
or genetic engineering of a functionally active tagged TF. In parallel to ChIP, microarrays and RNA-Seq
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have been extensively applied to compare gene expression between growth conditions and/or specific
mutants and results have been early and widely used for bacterial transcriptional network reconstruction
[8, 9]. With the goal to unravel globally the transcription regulatory network of a bacterium, expression
profiles across many conditions can be collected without focusing on specific TFs and without genetic
engineering [10, 11]. Genome-wide maps of transcription start sites (TSSs) constitute another type of
transcriptome data which allows to focus the search for regulatory motifs and is increasingly available
for bacteria [12, 13].

The development of specific methods for de novo motif discovery using expression profiles has at-
tracted less attention than the use of ChIP data. The task is also more difficult because the data are
not directly connected to a specific TF–DNA interaction. Nevertheless, a diversity of approaches has
been proposed based on different methodological concepts such as: mutual information in FIRE [14],
enrichment test in GEMS [4], or regression of expression data y given sequence data x in REDUCE [15]
and MatrixREDUCE [16]. The first two approaches involve transforming the expression data into one-
dimensional categorical values, while the third approach can directly accommodate multidimensional
continuous expression data. The algorithm implemented in RED2 [5] intends to bypass the need for
clustering of the first two approaches by applying enrichment tests or computing mutual information for
overlapping sets of genes that are close in the expression space (neighbourhoods). These approaches face
the difficulty to find appropriate summary or probabilistic models for expression data.

The alternative viewpoint adopted in this work consists in modelling the sequence data x given
the expression data y. A key benefit of this choice is to build directly upon the powerful sequence
modelling approaches for de novo motif discovery based on PWMs and full probabilistic modelling of the
sequences, establishing a continuum between discovery of motifs related and unrelated to the available
expression data. This makes it possible to envision the simultaneous use of the expression data and of all
the statistical properties of the sequence. In [10], we already proposed an approach for the discovery of
Sigma factor binding sites based on modelling x|y. The generality of the model was however limited since
it was specifically tailored for sigma factor binding sites whose specificity is to delineate and partition
the promoter space [17]. Regulation by sigma factors tends thus to correspond to a preponderant and
non-overlapping level of regulation that is particularly well captured by the structure of a hierarchical
clustering tree and did not justify to model the occurrence of more than one motif per sequence [10].
Incorporation of positional information proved helpful in the case of sigma factor binding sites [10] whose
positions are strongly constrained with respect to the TSS.

This work develops a coherent probabilistic model of the DNA sequence to address the task of
automatic de novo identification of the main regulons (not restricted to sigma factors) of a bacterium from
genome and transcriptome data. Two main novelties of the proposed model are to allow overlaps between
motif occurrences and to incorporate covariates summarising expression profiles into the probability of
occurrence in a given promoter region. Covariates can correspond to the positions of the genes on an
axis such as obtained by PCA [18] or ICA [19, 20] but we also show how to use positions in a hierarchical
clustering trees [21, 8]. All the parameters are estimated in a Bayesian framework using a dedicated
trans-dimensional MCMC algorithm. In order to validate the approach, we applied it to the food-borne
pathogen L. monocytogenes on which a wealth of transcriptomics data has been collected owing to its
status as important human pathogen and model bacterium for the study of host-pathogen interaction and
bacterial transcriptomics [22]. Sources of transcriptome data include a landmark study using RNA-Seq
and high-density tiling arrays [23], an early use of genome-wide TSS mapping [24], and a comprehensive
work done to aggregate available transcriptome data-sets in a single database [25].

Methods and data

Probabilistic model of promoter sequences

Model overview

The sequence data considered here consists of N DNA sequences of same length L. Let denote by
x = (xn)n=1:N this set of sequences and xn,l ∈ {A, C, G, T} the nucleotide in position l of the nth sequence.
Probabilistic representation of these sequences involvesM+ 1 unobserved components that capture the
heterogeneity of nucleotide composition. These components consist ofMmotif models (PWMs), denoted
by (θ1, . . . , θM), with respective widths (w1, ...., wM) and a background Markov model of order v whose
parameters are denoted by θ0. All the M motifs are simultaneously searched for. For simplicity, the
model assumes zero or one occurrence per sequence (ZOOPS, [6]) of each motif but occurrences of
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different motifs are allowed and may even overlap. The occurrences of the different motifs are modelled
as mutually independent.

Statistical inference is carried out in a Bayesian framework and the parameters are thus treated as
random variables drawn from prior distributions. The Directed Acyclic Graph (DAG) of the model is
shown in Fig 1 and its complete mathematical presentation is found in S1 Appendix. We explain below
the purpose of the different variables with a focus on the most salient characteristics of the model.
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Figure 1: Hierarchical model of promoter sequences. DAG where vertices represent the variables
(parameters, hidden variables, observed data) and edges show the factorisation of the joint probability
distribution. Coloured areas highlight groups of variables that contribute to a same ingredient of the
model (e.g. yellow-ochre for incorporation of expression data). In this representation we show the
variables for only one motif m and one sequence n. Multidimensional variables (vectors or matrices) are
boldfaced; variables whose values change the dimension of the model are in blue; continuous random
variables are denoted by Greek letters.

The observed sequence data x is at the centre of this DAG. Connected to x, a = (am,n)m=1:M, n=1:N
is a layer of random variables that encode the position of the occurrences of the motifs, with am,n ∈
{0, 1, . . . ,L} being the position of motif m in sequence n; 0 encodes the absence of occurrence. For
practical reasons pertaining to the implementation of the update of the motif width wm in the MCMC
algorithm we do not systematically rely on the first position within motifm to record its position. Instead,
we use the reference position rm ∈ {1, . . . , wm} which allows motif occurrences to extend somewhat
outside of the sequences.

Incorporating expression data as covariates

Information from expression data is incorporated into the probability of occurrence of a motif via a
probit regression framework. Implementation of this model relies on a data augmentation scheme [26]
that introduces a Gaussian latent variable (zm,n).

Let’s consider the availability of a number C of vectors of continuous variables denoted by y =
(yn,c)n=1:N ,c=1:C that can be used as covariates. The standard probit model would write the probability
of occurrence of motif m in sequence n as

π(am,n > 0|y, β) = Φ(βm,0 +
∑
c=1:C

βm,cyn,c) , (1)
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where Φ is the cumulative distribution function of the standard normal distribution and β contains the
regression coefficients (βm,c ∈ R).

We developed an extension for this model that allows binarisation of expression covariates according
to automatically adjusted cut-offs. This extension is very appealing here because it can account for sharp
switches in the probability of occurrence as a function of the position of the sequence in the expression
space; exactly like if co-expression clusters defined on the basis of gene coordinates on axis c were also
entered as covariates. Importantly, these sharp switches do not imply a probability of occurrence jumping
between 0 and 1 as when increasing |βm,c| in the standard probit.

To allow automatic selection of the covariates relevant for the occurrences of motif m and their
binarisation (both choices impacting on model dimension), the model involves the following variables,

• tm = (tm,1, . . . , tm,C) where tm,c ∈ {0, 1} indicates whether covariate c should be taken into account;

• βm = (βm,0, βm,1, . . . , βm,C) where βm,c ∈ R represents, when tm,c = 1, a coefficient specific to
covariate c, βm,0 being the intercept parameter;

• gm = (gm,1, . . . , gm,C) where gm,c ∈ {0, 1} indicates, when tm,c = 1, whether the values in the
vector y·,c are binarised;

• hm = (hm,1, . . . , hm,C) where hm,c ∈ {1, . . . ,N − 1} indicates, when tm,c = 1 and gm,c = 1, the
rank in the vector y·,c of the value used for binarisation; y(hm,c),c denotes the corresponding cut-off.

In keeping with the probit regression framework, the probability of occurrence of motif m in sequence
n writes then as

π(am,n > 0|y, t, β, b, h) = Φ
(
βm,0 +

∑
c

βm,cI{tm,c = 1}ỹm,n,c

)
, (2)

where I is the indicator function (I{z} = 1 if z is true, 0 otherwise) and ỹm,n,c corresponds to yn,c after
taking into account a possible binarisation (see S1 Appendix for how binarised values depend on hm,c).
This model can capture a great diversity of relationships between expression covariates and probability
of motif occurrence (Fig 2ABC).

Handling trees as covariates

Further extending the model described by Eq (2), we consider that covariates can come not only as
vectors of continuous values but also in the form of trees. Indeed, the binarisation proposed above makes
it also possible to incorporate whole tree structures in the regression model. In this case, binarisation
involves the choice of node instead of a cut-off value along an axis.

Here, trees are obtained from expression data by usual techniques of hierarchical clustering. They
are thus rooted, binary, with all leaves at a same distance from the root. Such a tree covariate c, can
be conveniently encoded (topology and branch lengths) as a vector of N − 1 internal node heights and
a sc(N − 1)× 2 matrix that identifies the pair of subtrees merged at each internal node that, together,
replace the vector yc when the covariate c is a tree. Choice of a node allows to associate different
probabilities of motif occurrence inside and outside the hanging sub-tree (Figure 2D).

Modelling occurrence positions

DNA sequences are aligned with respect to experimentally determined TSSs such that the position of
motif occurrence encoded in am,n corresponds to a precise position relative to the TSS.

Given an occurrence of motif m in sequence n (event {am,n > 0} modelled by the extended probit),
the probability density function of its exact position is a piece-wise constant function defined by km
breakpoints located at dm = (dm,k)k=1:km

and the probabilities λm = (λm,k)k=1:km
to find the occurrence

between each of these breakpoints.

Allowing motif occurrences to overlap

The model allows motif occurrences to overlap. This feature underpins the simplifying assumption of
mutual independence between the occurrences of theM motifs made when modelling the position of the
motif with respect to the TSS and the link with expression data. Another key benefit of allowing overlap
between motif occurrences is to allow the update motif width (wm) without having to avoid collisions of
motif occurrences.
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Expression covariate corresponding to position 
in a hierarchical clustering treeD

A Expression covariate corresponding to the projection 
on an axis (without and with binarisation) B Two expression covariates defined as positions 

on axes without binarisation

C Two expression covariates defined as positions 
on axes with binarisation

Figure 2: Graphical illustration of the use of the extended probit model. A Linking probability
of motif occurrence to one expression covariate. Upper plot: classical probit model. Lower plot: probit
model with covariate binarisation. Three sets of regression coefficients are illustrated for each case. B
Linking probability of motif occurrence to two expression covariates (one set of regression coefficients).
C Linking the probability of motif occurrence to two expression covariates with binarisation (one set
of regression coefficients). D Linking probability of motif occurrence to position in a tree (three sets of
regression coefficients).

When on,l motifs overlap position l in sequence n, xn,l is modelled as drawn from the arithmetic
mean of PWM columns, namely

π(xn,l|a, r, θ, on,l ≥ 1) =
1

on,l

∑
m∈On,l

θm,l−am,n+rm,xn,l
, (3)

where On,l denotes the set of motifs that overlap position l, and θm,w,u is the probability of nucleotide u
at position w of motif m. The resulting density can be seen as the marginal of an equal-weight mixture.
In keeping with the usual data augmentation scheme for Bayesian inference of mixture models [27], a
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layer of latent random variables (denoted by b) is introduced to encode the disambiguation of the overlaps
at each position (n, l) of the sequence set.

Palindromic motifs

Dimeric nature and symmetry of many TFs explain that many of the known binding motifs are palin-
dromic in the sense that symmetric positions with respect to the centre of the motif appear as mirrored
according to Watson-Crick base pairing rule (A : T and C : G). Palindromic constraints on PWMs reduce
the dimension of the model, increasing the amount of data available to estimate each parameter and
decreasing the size of the search space for the parameter values.

Instead of imposing a strict palindromic constraint on all or a subset of the motifs, we developed a
more flexible representation that allows, for each motif m, intermediate states between non-palindromic
and fully-palindromic structures. The following set of variables define the active constraints on θm =
(θm,w,u)w=1:wm,u∈{A,C,G,T}:

• pm, a binary variable indicating if the motif m has a (possibly partial) palindromic structure,

• cm ∈ {1.5, 2, 2.5, . . . , wm−0.5}, a discrete variable recording the position of the centre of symmetry
of the palindromic structure; the range for cm allows two types of palindromic structure (“even”
and “odd”, where the odd type contains a central unpaired column at w = cm);

• qm,w, a binary variable to indicate whether columns w and 2cm − w are paired, i.e. θm,w,u =
θm,2cm−w,ū when (u, ū) is a Watson-Crick pair.

There are several motivations for this representation. First, identifying as many motifs as possible
simultaneously is incompatible with having all the motifs palindromic. Second, intermediate states allow
to design algorithms that gradually increase or decrease the number of free parameters. Finally, while
some symmetry is often obvious, it may be unclear to which extent a biological motif is fully palindromic
or partially palindromic.

Bayesian inference

The priors used intend to be non-informative and a Markov Chain Monte Carlo (MCMC) algorithm was
built to sample the joint posterior

a, b, v, θ0, w, p, c, q, θ, r, k, d, λ, t, β, δ, h | x, y . (4)

To cope with the high dimension of the target, the algorithm is a block MCMC sampler [28] composed of
14 types of steps designed to update separate subsets (blocks) of variables. A sweep combines the different
steps. Dimension changes rely on the Reversible-Jump methodology [29]. They are needed to update the
Markov order of the background (variable v), the active covariates and their possible binarisation (block
tm,c, gm,c, hm,c), and the variables encoding the palindromic structure of the motif (block pm, cm, qm).
Under circumstances where the probability distribution of the variables whose dimension is modified can
be integrated-out, the Reversible-Jump can be done in a Gibbs manner, i.e. by direct sampling from
the conditional distribution. The algorithm proceeds this way for the joint update of (tm,c, gm,c, hm,c)
and the joint update of (pm, cm, qm). Correctness of the MCMC algorithm was carefully checked by
implementing a successive-conditional simulator to reveal analytical and coding errors [30]. The MCMC
algorithm is described in S1 Appendix and has been implemented in C++ in the program Multiple.

Data set for application to Listeria monocytogenes

Transcription start sites and expression profiles

To define promoter sequences and to align them with respect to TSSs, we used the repertoire of 2,299
TSSs mapped at 1 bp resolution on L. monocytogenes EGDe genome sequence [24]. Promoter sequences
were defined as the 121 bp spanning from position -100 to +20 relative to each TSS, in keeping with
the size of the regions that we previously found to be enriched for the presence of known TF binding
sites [11]. To remove promoter sequence overlaps on a same strand, we used a simple greedy procedure
that incorporated non-overlapping promoters one-by-one in the order of decreasing read-count (reflecting
level of experimental support and transcriptional activity for the TSS [24]). This led to a set of 1,545
non-overlapping promoter regions (67% of the initial list of TSSs).
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For the expression data, we relied on the compendium data-set established by aggregation of many dif-
ferent studies to build the listeriomics website [25]. As downloaded, the data had dimensions 3,159×254,
where each row corresponds to a gene of L.monocytogenes EGDe and each column corresponds to the log
of an expression ratio (log fold-change) comparing two samples (mutants, growth conditions, strains . . . )
from a same study. Some columns and rows contained many missing values due to the heterogeneity of
technologies. The number of columns was reduced from 254 to 165 after discarding the columns with a
number of missing values higher than 1.5 times the median. In parallel, the number of rows was reduced
from 3,159 to 2,825 based on the same criterion. Finally, the gene name associated with each TSS [24]
permitted to match 1,512 out of 1,545 non-overlapping promoter sequences to one of these 2,825 genes
with expression data. This resulted in an expression matrix of dimension 1,512×165 whose 165 columns
represented 31 published expression studies, and included 17 RNA-Seq and 25 tiling array profiles.

Building covariates for motif discovery

Both hierarchical clustering and projection methods were used as dimension reduction techniques to
summarise the expression matrix. Two types of hierarchical clustering were applied corresponding to
different options of hclust function provided by R stats package: Ward and average-link based on Pearson
distance (1− r, where r is Pearson correlation coefficient). The distances between genes needed to build
the trees were computed after centring and scaling of the rows (genes) of a symmetric expression matrix
obtained by duplicating each column with a negative sign to remove the effect of the arbitrary orientation
of the log fold-changes.

As projection methods, we applied PCA and ICA implemented in functions prcomp (package stats)
and fastICA [31] of R without scaling the expression data. For PCA, we kept the 20 first components
of the PCA (accounting for 68.8% of the total variance) after examining the rate of decrease of the
residual variance. When applying ICA, the target dimension (number of components) is fixed before
numerical optimisation and the algorithm can converge to different projections that share only a subset
of components. In keeping with the idea developed by [20], we choose the target dimension K = 40 after
examining the stability of the components and only stable components were used. Here, we used average-
link clustering based on absolute Pearson correlation coefficient (r) between columns of the source matrix
(dimension 1,512×K) and a cut-off |r| ≥ 0.8 to compare components between runs. The algorithm was
run 100 times which lead to 26 components found in at least 80% of the runs.

The final set of 50 covariates used in the motif discovery analysis consisted of the 20 first PCA
components (covariates numbered 1 to 20), the 26 stable ICA components (covariates numbered 21
to 46), and the hierarchical clustering trees obtained by Ward and average-link methods (covariates
numbered 47 and 48). The two trees were further duplicated (covariates 49 and 50) to make it possible
for the model to use two nodes of the same tree.

Results

Exploration of the posterior landscape

Dynamics of evolution of the parameters describing the M motif components during MCMC runs con-
firmed that the algorithm was able to adjust simultaneously the characteristics of many PWMs. To
illustrate the algorithm behaviour, Fig 3A depicts the parallel evolution in a same MCMC run of two
PWMs in terms of width, nucleotide composition, and palindromic structure.

For de novo motif discovery, it was important to show that stability of a motif component across
tens of thousands of MCMC sweeps as seen in Fig 3A was not caused by slow-mixing but truly reflected
attraction to peaks of the posterior density and should therefore be treated as relevant motif predictions.
Since reaching similar motif components independently from different starting points is indicative of the
second scenario, we performed 10 independent parallel runs of the MCMC algorithm. Each run consisted
of 50,000 MCMC sweeps from a random starting point andM was fixed to 75 (≈ 4 weeks of CPU time).
Only the last 10,000 sweeps were used in our analysis to characterise the posterior distributions after
recording the values of the variables every 100 sweeps.

The 10 runs produced information on 750 (10 × 75) motif components that were named from M1.0
(random seed 1, motif 0) to M10.74. We analysed and compared these motif components to extract
distinct well supported motifs that were not only stable across the last 10,000 sweeps but also found
in at least two runs. To declare that two motif components correspond in fact to the same motif, we
compared the sets of positions in the sequences that were predicted to be covered by the occurrences
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Figure 3: Exploration of the posterior landscape. A Convergence plots for two motifs across the
50,000 sweeps of the algorithm. Coloured dot points correspond to PWM columns, colour indicates
the most likely nucleotide (green for A, blue for C, orange for G, red for T) and diameter reflects the
information content of the nucleotide frequency. Increase or decrease of the width of the PWM on the
5’- and 3’-sides are represented by change in the number of coloured dots (on lower and upper side of the
coloured area, respectively). A black vertical line is drawn at sweep number 40,000 (end of our burn-in
period). Grey vertical lines indicate sweeps at which the y-coordinate was re-centred for the purpose of
the representation. Evolution of the palindromic structure is represented in insert plots (at lower scale)
where the evolution of PWM width is represented by a red area and paired columns are indicated by black
and white dots. B Hierarchical clustering of motif components to extract stable motifs. Only a fraction
of the tree is represented here (75 motif components out of 750). High-level clusters (defined by height
0.75) are represented here by different colours. Motifs belonging to the final list of 40 representative
stable motifs are indicated by filled circles.
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of each motif which summarise the information of the different ingredients of the motif model (PWM,
preferential position with respect to TSS, link with expression data). Namely, we considered the positions
with estimated posterior probability of coverage greater than 0.5 and the pairwise distance between two
motif components i and j was computed as

d(i, j) = 1− 2N(i, j)

N(i) +N(j)
, (5)

where N(i) and N(j) denote the total number of positions covered by each motif and N(i, j) is the
number of positions covered by both motifs. With this formula, d(i, j) = 0 if the positions covered are
exactly the same and d(i, j) = 1 if they do not overlap. A special case of no overlap corresponds to
N(i) = 0 which concerned 190 of the 750 motifs and typically reflected instability during the last 10,000
sweeps. The minimal distance that we observed between two motif components within the same run was
0.59 and 92.7% of the motif components where at distance ≥ 0.9 of any other motif components from
the same run. This shows that allowing motif occurrences to overlap in the model is an effective strategy
to enforce the convergence of motif components to distinct motifs.

The list of distinct well supported motifs was established after average-link hierarchical clustering of
the 750 motifs based on the distance defined in Eq (5). This tree whose a section is shown in Fig 3B
was cut at two different heights: 0.75 to define high-level clusters that separate well-distinct motifs; 0.25
to define low-level clusters containing very similar motifs. In each high-level cluster containing at least
one low-level cluster, a representative motif was selected as the member of the low-level clusters with the
highest N(i). This procedure defined the set of 40 representative motifs reported in Table 1.

Fig 4 shows several examples of estimated links between expression covariates and motif occurrences
as captured by the extended probit model, including covariates that were binarised or not and trees.
The average number of expression covariates used (i.e. with tm,c = 1) to describe the patterns of
presence/absence of each of the 40 motifs in the set of sequences ranged from 1.02 (for M61.5) to 6.45
(for M71.2). Distinguishing the two types of covariates, the range was 0.28 to 4.94 for the covariates
of type “vector” and 0.60 to 2.65 for the covariates of type “tree”. Fig 4ABC show three examples
(M33.8, M20.1, and M68.1) of strong associations defined as those where a covariate has an estimated
posterior probability of being used greater than 0.9. As expected given that we did not try to avoid
redundancy between the covariates, strong association with a specific covariate did not cover all the cases
of clear association between the presence/absence of a motif and the expression covariates (Fig 4DEF).
Nevertheless a total of 9 motifs were strongly associated with one covariate of type vector and remarkably
all these associations concerned covariates defined by ICA (none defined by PCA).

From validation by comparison with known motifs and regulons to new in-
sights on L. monocytogenes transcription network

The 40 distinct well supported motifs exhibit considerable diversity in terms of abundance, preferred
position with respect to the TSS, link with expression data, and PWM characteristics (width, information
content, palindromic structure). Table 1 summarises the main characteristics of each motif. Fig 5
provides a graphical representation for two of these motifs. Similar figures are available for all motifs in
S1 Fig and the numerical values of the PWM parameters are found in S1 File. Lists of genes associated
with each motif and precise positions of occurrences are reported in S2 File and S3 File.

Three complementary approaches were used to connect the 40 motifs discovered by our de novo
approach to known regulons. The first was comparison with lists of genes collected from tables published
in several expression studies and positions of transcription factor binding sites recorded in the RegPrecise
database [32]; the second approach was comparison with 188 reference PWMs derived from sequence
alignments extracted from the propagated RegPrecise database (accessed in July, 2018) for different
taxonomic groups in the Firmicutes phylum: Listeriaceae (25 PWMs) and Staphylococcaceae (39 PWMs)
and Bacillales (124 PWMs). The third approach consisted in dedicated literature searches associated
with a careful manual examination of (i) genes downstream the promoters in which the motif was
predicted to occur (ii) conditions in which the log fold-change deviated the most from 0 (iii) characteristics
of PWMs and preferred positions of motif occurrences with respect to TSSs. These lines of observation
provided convergent clues for many of the identified TFs.

Connections to known regulons are reported in the rightmost column of Table 1. Most of the motifs
with high number of occurrences were found to describe general characteristics of promoter regions
(variations on the themes of SigA -10 and -35 boxes, nucleotide composition around TSS, Ribosome
Binding Site). Systematic comparison with RegPrecise PWMs was particularly informative for the
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Figure 4: Estimated links between expression covariates and motif occurrences. Examples
are shown for different motifs and covariates (indicated in subplot titles). Colour scale from blue to
yellow reflects the estimated probability of motif occurrence given by the extended probit model (i.e.
summarising the information from the expression data). Red dots indicate sequences in which the motif
is found (estimated posterior probability of motif occurrence was ≥ 0.5).

identification of BglR2, CcpA, CcpB, Fur, LexA, LiaR, and Rex. Among the other identified TFs,
SigB and SigL were identified based on position with respect to the TSS, comparison with sigma factor
consensus defined for B. subtilis [10], as well as overlap with previous experimental data on SigL (also
known as RpoN or sigma54) and SigB regulons in L. monocytogenes [33, 34, 35]. S2 Fig provides a
graphical representation of the prediction of the SigB regulon from the joint occurrence of boxes -10 and
-35 and of the comparison with previous studies. In brief, 89 promoter regions are predicted to contain
both the -10 and -35 boxes, 88 out of them were previously reported as probable members of the SigB
regulon in either [34] or [35]. Spx was identified based on (i) its position with respect to the TSS just
upstream of the SigA -35 box, (ii) sequence properties reported for Spx in B. subtilis described as an
AGCA element at position -44 [36], and (iii) literature data on the Spx-regulon of L. monocytogenes [37].
PWMs found for PrfA and VirR, two key transcription regulators involved in L. monocytogenes virulence,
were in line with previously described sequence properties [38, 39]. Taken together, correspondences with
known motifs validate our approach for de novo discovery and suggest that other motifs listed in Table 1
may also correspond to biologically relevant motifs.

Among the predicted regulons that we have not been able to connect to literature data, the most
spectacular by its size and functional homogeneity of the regulated genes (genes encoding the translation

10
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Figure 5: Two examples of motifs for known TFs rediscovered by our algorithm. These motifs
were identified as corresponding to the binding sites of LiaR (M68.1 subplot A) and as the -10 box of
the SigB binding sites (M29.8 subplot B). First row: sequence logo. Second row: estimated probability
distribution function for the 5’-end of the occurrence (in blue) and probability of having the position
covered by the occurrence (in orange). These probabilities are conditional on the presence of the motif
in the promoter sequence. Third row: average log fold-change of expression level for downstream genes
across the 165 pairs of conditions that were used to define the expression covariates.

apparatus, including ribosomal proteins), is associated with motif M58.7. Importantly, even when motifs
could be linked to previously known TFs, being able to identify them in a de novo and automated
manner can shed a new light on the corresponding regulons. For instance, our results suggest that
LiaR regulon may be about twice larger than previously identified by differential expression analysis
of the liaS-deletion mutant vs. wild-type [40]. Ordered by the number of TSSs as in Table 1, the
predicted regulons for which we have identified a TF are: SigB, CcpA, Rex, LiaR, Fur, LexA, VirR, Spx,
BglR2, SigL, PrfA. Additional biological observations made based on these predictions are reported in
S2 Appendix.

Comparison with other methods

We compared our results to those of different algorithms able to handle the data-set of 1, 512 sequences
and 1, 512 × 165 expression matrix for de novo motif discovery. These algorithms are based on PWM
estimation from the sole sequence data-set (MEME, [6]) or search specifically for motifs connected to
the expression data using motif representations that can be either consensus string written in IUPAC
degenerated symbols (FIRE and RED2, [14, 5]) or PWMs (MatrixREDUCE, [16]). Input data, parameter
settings, and results are detailed in S2 Appendix.
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Motif discovery without auxiliary data using MEME (see S2 Appendix) returned only up to 8 motifs
with E-value less than at 1. These motifs included motifs describing general properties of the L. mono-
cytogenes promoter regions, such as SigA -10 box, the presence of a RBS and of T-rich elements (our
M59.9), as well as more specific motifs that are relatively abundant and/or of high information content
(IC1 in Table 1): M70.6, CcpA, and Fur. A variant of the sequence element described by M20.1 and
M61.3 is also found.

The three algorithms (MatrixREDUCE, FIRE, and RED2) searching for motifs related to expression
data returned only short motifs (lengths up to 9) due to the use of k-mers as seeds in the initial steps
of the searches (see S2 Appendix). With some parameter settings, they were all able to retrieve SigB
-10 box (M29.8) which presents the particularity of being abundant and to exhibit a strong link to
expression profile. It is also short and contains adjacent high information content PWM columns which
makes it ideally suited for approaches based on k-mers (Fig 5B). MatrixREDUCE also discovered a short
motif that corresponds to the central part of PrfA. This motif presents the particularity of exhibiting,
by far, the strongest link with expression data among all the motifs that we discovered (see column FC
in Table 1). Thus, comparison of our results with those of these four algorithms illustrates the interest
of the statistical model described in this work: it combines the benefits of the purely sequence-based
approaches, like MEME, and the benefits of algorithms that can only find motifs linked to expression
data like MatrixREDUCE, FIRE and RED2.

Finally, to better understand the contributions of different ingredients of our model to the results
obtained on the L. monocytogenes data set, we examined the results of 5 sub-models that did not
incorporate one or several of the three ingredients (position with respect to TSS, expression profiles, and
palindromic structures). The results detailed in S2 Appendix show that all the motifs were not sensitive
to the same model ingredients and many were sensitive to several ingredients which attests the interest
of an integrative statistical model.

Discussion

The model and its associated trans-dimensional MCMC algorithm provides a new integrated framework
for the discovery of regulatory motifs in bacteria with the help of transcriptome data (exact positions of
TSSs and expression profiles).

A novel and key point of our sequence model is to allow motif occurrence overlaps. This simplifies
the model and facilitates MCMC updates when searching for multiple motifs. Importantly, we show
here that it prevents different PWM components of the model to converge to the same motif, thereby
providing a alternative to the heuristic consisting in searching for motifs one-at-a-time and masking
predicted occurrences in subsequent searches to avoid rediscovery of the same motifs (as implemented in
MEME [6]). In this aspect, explicit modelling of motif occurrence overlaps appears as a proper statistical
framework to implement what [41] named “repulsion” and for which they proposed incorporating ad-hoc
repulsive forces between parallel MCMC runs. Binding sites do overlap in bacterial genomes [42] and our
choice of modelling the contribution of different motifs that overlap by averaging the nucleotide emission
probability density functions (PWM columns) is the simplest but probably not the most biologically
realistic. Indeed, we also considered a more complicated model in which PWM columns corresponding
to motifs that overlap contribute as a function of their information content. This satisfies the intuition
that if two motifs overlap and one has a strong preference for a nucleotide at a particular position whereas
the other has no or little preference, the motif with the strong preference tends to “impose” its choice.
In S1 Appendix, we refer to this model as the θ-dependent weight mixture model of motif overlap and
we describe its implementation. Because of its drawbacks (a dependence structure making that θ can no
longer be marginalised out) we have decided to use here only the simple model of motif overlap.

By modelling the sequence and incorporating expression data as covariates, the method inherits
the good-behaviour of pure sequence-based approaches grounded on well-established statistical models
of DNA sequences, such as implemented in MEME [6]. This can be connected to earlier works that
have incorporated external data in sequence models for motif discovery via the definition of informative
priors to favour motifs whose occurrences are found in regions of the genome that are more likely to
contain binding sites; for instance because they are conserved between species or depleted in nucleosomes
[43, 44, 45]. In our work, the relevant covariates that describe how the probability of occurrence of a
motif differs between promoters are automatically selected together with the coefficients that specify
their contributions and this is achieved simultaneously for many motifs. We also show how we can
account for covariates with complex structures such as the positions of the sequences in a tree. The
idea of using a tree whose topology and branch lengths reflect similarities between activity profiles is
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to provide an alternative to the use of a predefined set of co-expression clusters. It is also found in
the previous model and algorithm that we specifically developed for de novo discovery of sigma factor
binding sites [10]. However, the probabilistic models are completely different. In [10], to give to sequences
which are close in the tree (hence in the expression space) a greater chance to harbour binding sites for
the same sigma factor, the occurrences of the different possible motifs are modelled as resulting from
an “evolution” process along the branches of the tree. The motivation for introducing here the use of
a probit model was to handle more complex representations of the expression space than a single tree.
With our extended probit model, several concurrent description of the expression space can coexist (trees,
continuous vectors) and the algorithm selects and combines the most relevant, with the possibility to
binarise continuous vectors according to automatically adjusted cut-off values.

A limitation of our approach is that each run takes several weeks on a data-set like the one studied
in this study. Most of the time is spent in the update of a (positions of the motif occurrences). Thus,
time complexity of a MCMC sweep is approximately proportional to the total length of the sequences
times the total width of the PWMs plus a small term roughly in the square of the total width for taking
motif occurrence overlaps into account. Furthermore, the analysis that we conducted is based on several
runs that serve to unambiguously identify peaks in the posterior landscape. These peaks are identified
by the convergence of several runs to the same neighbourhood in a space of very large dimension. Here,
we limited our analysis to 10 runs that were conducted in parallel. These 10 runs allowed to identify 40
stable motifs but it would not be surprising to find several other motifs by adding more runs, since some
of the biologically known motifs have here only be found by 2 or 3 runs (Rex, Spx, CcpB). Future studies
on other data-sets may include more runs. Computational cost is however compensated by simultaneous
search for all motifs using all the expression data.

As mentioned in the introduction, L. monocytogenes was well-suited for a proof-of-principle applica-
tion of the method. Its regulatory network contains features shared with the related Gram-positive model
bacterium B. subtilis and features that are specific, such as those involved in pathogenicity. Comparison
of our list of 40 motifs with literature data validated the method by proving its ability to re-discover, in
a pure de novo manner, regulons of many known TFs.

In essence, the method is based on the search for “over-represented” motifs whose modelling signif-
icantly improves the probabilistic representation of the DNA sequence as measured in the likelihood.
It is thus only adapted to identify the regulons of TFs playing the coordinating roles of regulating the
expression of several to many transcription units. These so-called global transcription factors are op-
posed to local TFs that account for the vast majority of TFs in bacteria but regulate only one or very
few targets in a specific biological pathway [46, 47]. For regulons of TFs that have been previously sub-
jected to analyses by transcriptomics (e.g. SigB, LexA, Fur, LiaR, PrfA, VirR), our results contain de
novo predictions based on the presence of motif occurrences made in a unified framework incorporating
experimentally determined TSS position and expression data. This is interesting since contributions of
direct and indirect regulations have not always been fully disentangled in literature by identification of
transcription factors binding sites. Our results also contain the first published global predictions for
the regulons of several TFs whose importance is suggested by knowledge in other bacteria such as B.
subtilis, but which have not yet been experimentally studied in L. monocytogenes (CcpA, Rex, and Spx).
Detection of Spx binding sites is a particularly striking achievement since its consists of a very short
motif with a constrained position of occurrence directly upstream of SigA -35 box which remained elusive
until the use of dedicated ChIP experiments and regression analyses in B. subtilis [36].

A motivation of our work was to allow the discovery of new important regulons. An interesting
result, is the identification of a partially palindromic motif whose central PWM columns corresponds to
palindromic consensus ACGTAYYCGT (M58.7 in Table 1 and S1 Fig) whose occurrences were consistently
found upstream of genes encoding the translation apparatus suggesting a role in the control of growth rate.
In the Gram-positive model bacterium Bacillus subtilis, as well as in Escherichia coli, by a mechanism
known as the stringent response [48, 49]. In both bacteria, and probably also in L. monocytogenes [50],
this regulatory mechanism acts by decreasing the production of the translation apparatus components
when the resources in the medium become too scarce. Univocal coupling between available resources and
growth rate is however not necessarily the most appropriate in all circumstances. Existence of dedicated
regulatory mechanisms allowing to keep control of the growth rate, even in the presence of nutrients,
may thus not seem unexpected, in particular for an intracellular pathogen like L. monocytogenes. We
hypothesise that the new regulon that we detected in L. monocytogenes may be an instance of such a
mechanism whose biological role and regulatory molecules remain to be identified.
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Table 1: Summary of the 40 stable motifs identified in L. monocytogenes EGD-e
motifa #b #(0.8-0.2)c Wd IC1e Palf Posg FCh Runsi Commentj

M71.2 1,325 1,174-1,435 9 3 1.3 -9 [1] 0.44 7:10 SigA -10
M71.8 1,308 848-1,506 6 2 1.6 1 [1] 0.46 13:16 TSS (A)
M36.4 1,033 552-1,382 6 3 0 -32 [2] 0.48 10:10 SigA -35 (TTG)
M55.7 836 117-1,486 5 0 1.7 -25 [40] 0.58 3:7 SigA -10 extension (CT)
M8.3 792 331-1,273 5 1 0 4 [1] 0.53 10:15 TSS (G)
M9.10 735 447-1,165 8 4 0.6 -13 [1] 0.50 7:8 SigA (extended -10, TG)
M61.5 561 171-1,153 5 5 0 14 [10] 0.41 6:8 RBS (GGAGG)
M59.9 297 96-844 21 7 0 -60 [42] 0.36 4:10 T-rich element
M26.1 252 107-640 13 5 2.1 -79 [23] 0.73 6:10 SigA -10 on reverse strand
M27.6 240 153-590 6 5 0.4 -33 [2] 0.48 6:6 SigA -35 (TTGAC)
M29.8 122 91-150 12 4 2.2 -13 [2] 3.06 10:10 SigB -10
M9.1 116 43-368 22 2 5.6 -75 [37] 1.18 2:8 loose
M18.2 108 47-355 6 6 0.3 9 [12] 0.52 2:8 RBS (GAGGTG)
M12.4 97 71-109 7 4 0.6 -32 [3] 3.87 10:10 SigB -35
M69.4 87 59-128 15 8 10.9 -30 [53] 1.75 10:10 CcpA (CRE-box)
M42.8 62 14-295 17 0 0.2 -86 [21] 0.61 2:4 loose
M31.4 39 16-81 23 8 18.8 -40 [61] 1.88 2:2 Rex
M68.1 31 20-47 20 5 15 -46 [25] 3.00 10:10 LiaR
M58.7 27 14-40 19 6 9.9 -47 [56] 3.23 9:10 -
M62.3 26 18-34 20 13 16.2 -16 [67] 1.89 10:10 Fur
M38.10 22 18-38 15 8 12.1 -19 [28] 2.36 9:10 LexA
M53.9 20 8-50 20 8 15.1 -47 [60] 1.52 10:10 VirR
M2.6 19 12-53 9 4 1.1 -49 [2] 1.12 3:5 Spx
M13.7 19 7-48 21 5 1.4 -58 [69] 0.89 2:3 -
M61.6 14 9-16 25 14 16.3 -29 [3] 0.81 9:10 BglR2
M54.1 14 6-40 23 8 1 -56 [61] 1.04 2:5 -
M61.4 13 7-25 25 6 0.9 -37 [62] 1.20 2:2 -
M50.10 13 7-43 21 5 9.6 -77 [28] 0.93 2:2 -
M70.6 11 7-19 24 22 19.2 -44 [63] 1.28 10:10 -
M3.1 9 4-20 21 9 15.5 -43 [62] 1.52 10:10 -
M33.8 8 7-13 22 11 4.2 -24 [23] 2.78 9:10 SigL
M49.4 7 6-11 23 12 16.8 -35 [19] 10.55 10:10 PrfA
M20.1 7 5-7 25 16 5.4 -55 [3] 6.64 10:10 -
M17.4 7 5-14 24 9 14.8 -39 [61] 1.14 3:4 CcpB
M73.4 6 4-7 20 5 4.2 -44 [8] 5.03 6:6 -
M61.3 6 5-10 25 22 6.4 -33 [4] 3.14 10:10 -
M2.1 6 4-8 22 9 13 -33 [56] 1.05 2:5 -
M18.6 4 3-8 25 9 17.2 -51 [55] 1.25 6:7 -
M29.1 3 2-6 25 1 3 -39 [62] 1.64 9:10 loose
M59.2 2 0-13 23 2 5.1 -52 [63] 2.43 4:5 loose

a unique motif identifier build as Mxx.yy where yy identifies the run and xx the motif in the run; b

number of promoter regions where the motif is predicted to occur (estimated posterior probability ≥
0.5), used to order the motifs; c number of TSSs when the posterior probability cut-off is set to 0.8
(very likely) or 0.2 (possible); d motif width corresponding to the number of columns included in the
PWM with posterior probability ≥ 0.5; e number of columns in the PWM with high information
content, i.e. 2 +

∑
u∈{A,C,G,T} θm,w,u log2(θm,w,u) ≥ 1; f estimated number of paired columns in the

PWM reflecting the degree of palindromness (in boldface when high); g median position of occurrence
for the middle of the motif with respect to the TSS (inter-quartile range reported between brackets),
both numbers are derived from the estimated probability density function for the position described by
the variables Km, λm,. and dm,.;

h maximum across the 165 pairs of conditions for the median of the
expression values (log fold-change) associated with the TSSs counted in the second column; i number of
parallel runs (out of 10) in which this motif was found as obtained by clustering based on amount of
overlaps between occurrences, written in the format xx:yy where xx and yy are the numbers obtained
with cut-offs 75% of overlap and 25% of overlap, respectively; j link to known TFs if identified or other
observations.
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