

1 Curated Multiple Sequence Alignment for the Adenomatous
2 Polyposis Coli (APC) Gene and Accuracy of *In Silico*
3 Pathogenicity Predictions

4

5 Short Title: Sequence Alignment-Based In Silico Pathogenicity Predictions for APC

6

7 Alexander D. Karabachev¹, Dylan J. Martini^{1, #a}, David J. Hermel^{1, #b}, Dana Solcz¹, Marcy E.
8 Richardson², Tina Pesaran², Indra Neil Sarkar^{3,4}, Marc S. Greenblatt^{1*}

9

10 ¹ Department of Medicine, University of Vermont, Larner College of Medicine, Burlington VT;

11 ²Ambry Genetics, Aliso Viejo, CA;

12 ³Center for Biomedical Informatics, Brown University, Providence, RI

13 ⁴Rhode Island Quality Institute, Providence, RI

14 ^{#a}Current Address: Emory University School of Medicine, Atlanta, GA;

15 ^{#b}Current Address: Keck School of Medicine of USC, Los Angeles, CA;

16

17 *Corresponding Author:

18 Email: Marc.Greenblatt@uvmhealth.org (MSG)

19

20

21

22 **Abstract**

23 Computational algorithms are often used to assess pathogenicity of Variants of Uncertain
24 Significance (VUS) that are found in disease-associated genes. Most computational methods
25 include analysis of protein multiple sequence alignments (PMSA), assessing interspecies
26 variation. Careful validation of PMSA-based methods has been done for relatively few genes,
27 partially because creation of curated PMSAs is labor-intensive. We assessed how PMSA-based
28 computational tools predict the effects of the missense changes in the *APC* gene, in which
29 pathogenic variants cause Familial Adenomatous Polyposis. Most Pathogenic or Likely
30 Pathogenic *APC* variants are protein-truncating changes. However, public databases now
31 contain thousands of variants reported as missense. We created a curated *APC* PMSA that
32 contained >3 substitutions/site, which is large enough for statistically robust *in silico* analysis.
33 The creation of the PMSA was not easily automated, requiring significant querying and
34 computational analysis of protein and genome sequences. Of 1924 missense *APC* variants in
35 the NCBI ClinVar database, 1800 (93.5%) are reported as VUS. All but two missense variants
36 listed as P/LP occur at canonical splice or Exonic Splice Enhancer sites. Pathogenicity
37 predictions by five computational tools (Align-GVGD, SIFT, PolyPhen2, MAPP, REVEL) differed
38 widely in their predictions of Pathogenic/Likely Pathogenic (range 17.5–75.0%) and
39 Benign/Likely Benign (range 25.0–82.5%) for *APC* missense variants in ClinVar. When applied
40 to 21 missense variants reported in ClinVar as Benign, the five methods ranged in accuracy
41 from 76.2-100%. Computational PMSA-based methods can be an excellent classifier for
42 variants of some hereditary cancer genes. However, there may be characteristics of the *APC*
43 gene and protein that confound the results of *in silico* algorithms. A systematic study of these
44 features could greatly improve the automation of alignment-based techniques and the use of
45 predictive algorithms in hereditary cancer genes.

47 Author Summary

48 A critical problem in clinical genetics today is interpreting whether a genetic variant is benign or
49 causes disease (pathogenic). Some of the hardest variants to interpret are those that change
50 one amino acid for another in a protein sequence (a “missense variant”). Various computer
51 programs are often used to predict whether mutations in disease-associated genes likely cause
52 disease. Most computer programs involve studying how the gene has changed during
53 evolution, comparing the protein sequences of different species by aligning them with each
54 other. Variants in amino acids that have not tolerated mutation during evolution are usually
55 predicted to be pathogenic, and variants in amino acids that have tolerated variation are usually
56 predicted to be benign. High quality alignments are necessary to make accurate predictions.
57 However, creating high quality alignments is difficult, not easily automated, and requires
58 significant manual curation. Results from computer-generated predictions are used in current
59 published guidelines as one tool for evaluating whether variants will disrupt the protein function
60 and cause disease. These guidelines may be applied to genes in which single amino acid
61 substitutions do not commonly cause disease. One such example is the APC gene, which is
62 responsible for Familial Adenomatous Polyposis (FAP). Missense APC changes are not a
63 common cause of FAP. Our analysis of APC demonstrated the difficulty of generating an
64 accurate protein sequence alignment and the tendency of computer tools to overestimate the
65 damaging effects of amino acid substitutions. Our results suggest that the rules for using
66 computer-based tools to predict whether a variant causes disease should be modified when
67 applied to genes in which missense variants rarely cause disease.

68 **Introduction**

69 Multi-gene panel testing is now routine for identifying hereditary cancer susceptibility, leading to
70 increased detection of pathogenic mutations, which can improve clinical management.
71 However, testing often identifies variants of uncertain significance (VUS), which are often
72 missense amino acid (AA) substitutions, small in frame deletions and duplications, or non-
73 coding changes [1, 2]. VUS in genes that predispose to hereditary cancer and other disorders
74 are rapidly accumulating in variant databases. For example, the ClinVar database at the
75 National Center for Biotechnology Information at the United States National Library of Medicine
76 provides a freely accessible archive of variants with assertions regarding the pathogenicity of
77 each variant with the indicated phenotype from submitting laboratories and expert panels [3].
78 The classification of these VUS represents a major challenge in clinical genetics.

79 Computational (*in silico*) tools have been developed to help predict whether or not the protein
80 function will be disrupted (reviewed in [5]). *In silico* tools often use Protein Multiple Sequence
81 Alignments (PMSA) to consider the evolutionary conservation and biophysical properties of the
82 wild type and variant protein to make predictions of pathogenicity. PMSA-based computational
83 methods are complicated to use properly (reviewed in [5]). The PMSA must be of high quality
84 and sample enough species to provide reliable data [6,7]. These *in silico* methods have been
85 validated for relatively few hereditary cancer genes in which pathogenic missense variants are
86 not rare (BRCA1/2, the mismatch repair [MMR] genes, TP53, a few others) [6, 8, 9, 10, 11, 12].
87 They have not often been validated for other genes, and for some genes predictive value was
88 not strong [13]. However, they are often cited as evidence in favor or against pathogenicity of
89 variants for genes in which validation is lacking. The American College of Genetics and
90 Genomics (ACMG) and the Association for Molecular Pathology (AMP) published guidelines for
91 evaluating the pathogenicity of variants in Mendelian disease genes, including general rules for
92 the use of *in silico* tools [4].

93 Missense pathogenic variants are rare in some genes, including *APC*, the gene responsible for
94 Familial Adenomatous Polyposis (FAP). *APC* has been sequenced frequently in clinical genetic
95 testing, but few missense pathogenic variants have been identified, for reasons that have not
96 been clearly demonstrated [14]. The increase in clinical DNA sequencing tests for cancer
97 predisposition has led to an increase in missense VUSs in *APC* that require classification.

98 Here we systematically apply *in silico* methods to *APC*, assessing the logistics and results of
99 using these commonly available tools to predict pathogenicity of missense variants in a gene for
100 which missense is an uncommon mechanism of pathogenicity.

101

102 **RESULTS**

103 **PMSA Creation**

104 Results from searching the NCBI Gene database for “*APC*” initially yielded reliable full length
105 *APC* protein sequences from 38 organisms. We encountered a number of challenges to the
106 simple automated assembly of a meaningful *APC* PMSA, including:

107 a) *Large inconsistencies with the APC human sequence.* In order to include only sequences
108 which accurately reflect human biology, such sequences were omitted.

109 b) *Multiple APC isoforms were found for 21 organisms.* To choose the most appropriate
110 isoform, all 104 sequences were aligned using Clustal2W. Isoforms that lacked a common
111 beginning protein sequence of MAA were deleted (N=26). When duplicate sequences were
112 found for the same species, the more complete sequence was used, and if similar length
113 isoforms of the same organism were found with a common sequence initiation, the lowest
114 number isoform was chosen.

115 c) *Large deletions or insertions.* Many of these could easily be identified as errors in automated
116 identification of exon-intron boundaries. In most cases we could identify the appropriate
117 boundary and either insert or delete the appropriate sequence. For insertions that were unique

118 to one organism, especially in areas of otherwise high homology, BLAST was used to seek
119 other homologues of the inserted sequence, and assessed the relevant nucleotide sequence for
120 plausible overlooked splice sites.

121 d) *Small deletions or insertions.* Short gaps that were confirmed to occur distant from an exon-
122 intron boundary were allowed. The longest such gap was AA 1631-1637 in *Loxodonta africana*
123 (African elephant) and *Trichechus manatus latirostris* (Florida manatee), a highly conserved
124 region in other sequences. Because of the close taxonomic relationship between these two
125 organisms, and the fact that their sequence was assembled on the same Broad Institute
126 platform as many other species in our alignment that lack the deletion, we assessed this gap as
127 likely real.

128 We constructed two PMSAs. Our goal was to create a curated PMSA that would optimize
129 predictions for pathogenicity of variants from computational algorithms. This 10-sequence
130 PMSA contained species chosen to reflect as closely as possible the 14-species PMSA
131 previously reported for analyzing variants and validating computational algorithms in the MMR
132 genes, in which missense VUS are common and *in silico* interpretation is frequently used [8].
133 We identified full length APC sequences for 11 of these 14 species. The 10-species PMSA that
134 we curated using the above criteria (Table 1, PMSA excerpt in Figure 1, full PMSA in
135 Supplementary Figure 1) contained five mammalian APC sequences plus chicken (*Gallus*
136 *gallus*), frog (*Xenopus laevis*), zebrafish (*Danio rerio*), sea urchin (*Strongylocentrotus*
137 *purpuratus*), and sea squirt (*Ciona intestinalis*). A larger PMSA with the full set of 38 full length
138 sequences also was constructed, with reconstitution of obvious missing exons but no detailed
139 curation (Supplementary Figure 2).

140

141

142 **Table 1.** APC amino acid sequences from the NCBI database used in the ten species APC
143 Protein Multiple Sequence Alignment (PMSA) and phylogenetic tree.

Species	APC
Human (<i>Homo sapiens</i>)	AAA03586.1
Monkey (<i>Macaca mulatta</i>)	XP_014996065.1
Cow (<i>Bos taurus</i>)	NP_001069454.2
Mouse (<i>Mus musculus</i>)	NP_031488.2
Opossum (<i>Monodelphis domestica</i>)	XP_007497871.1
Chicken (<i>Gallus gallus</i>)	XP_004949340.1
Frog (<i>Xenopus laevis</i>)	NP_001084351.1
Zebrafish (<i>Danio rerio</i>)	NP_001137312.1
Sea urchin (<i>Strongylocentrotus purpuratus</i>)	XP_783363.3
Sea squirt (<i>Ciona intestinalis</i>)	XP_018668496.1

144
145 Manual curation was often necessary to identify and label correct exon-intron boundaries and
146 address insertions, gaps, and poorly-conserved areas where the alignment was less certain. A
147 small amount of manual curation of gaps and insertions was required for vertebrate species.
148 The intronic regions flanking large insertions were examined and assessed as potential splice
149 sites. Sites with a high splice score (see Methods) were interpreted as actual splice sites and
150 retained for creation of the phylogenetic tree. Inserted sequences flanked by a lower than
151 average splice site were omitted from further analyses.
152 More extensive manual curation was required for *C. intestinalis* and *S. purpuratus*, the most
153 distant species used, to ensure an accurate alignment and tree. Using BLAST+ on insertions in
154 sea squirt and sea urchin that were not present in the human sequence, we identified
155 sequences with little homology on inspection to the vertebrate APC sequences. Exon 1 (M1 to
156 Q46) and Exon 5, 6, and 7 (A265 to K414) of sea squirt (*C. intestinalis*) and exon 6 (A260 to
157 F477) of sea urchin (*S. purpuratus*) did not align with the other APC sequences, returned
158 negative BLAST results, and were removed from the final PMSA. A region of *S. purpuratus*
159 was found with homology to a spindle fiber sequence, and a long region in its C-terminus was
160 homologous to a herpesvirus sequence. Because the exons containing these sequences also

161 contained regions with high homology to APC, the full exons were retained in our PMSA. A
162 large insertion in *S. purpuratus* containing many consecutive glutamines presumably represents
163 a coding region microsatellite. Sequences flanking this insertion were found with high splice
164 scores, so it was kept in the alignment.

165

166 **Evolutionary rate of APC:**

167 To predict if a given invariant position is invariant with statistical significance (>95% probability),
168 the PMSA must contain >3.0 substitutions/site [6, 7]. In addition to our ten-sequence PMSA,
169 curated alignments were created of nine and eight sequences that omitted the more distant
170 species *Ciona intestinalis* (sea squirt) and *Strongylocentrotus purpuratus* (sea urchin) (data not
171 shown). Applying the PHYLIP ProtPars package to the curated 8, 9, and 10 species APC
172 PMSAs, we calculated that our ten species curated APC alignment contained 3.3 substitutions
173 per site (subs/site), sufficient for proceeding with subsequent analyses (see Methods). Both
174 eight- and nine-sequence PMSAs, omitting the nonvertebrate species, contained fewer than
175 three subs/site. We calculated subs/site for six other PMSAs of cancer susceptibility genes
176 using the same 10 species found on the Align-GVGD website (Table 2). APC had a
177 comparable evolutionary rate with *CHEK2* and *PMS2*, whereas three MMR genes (*MLH1*,
178 *MSH2*, *MSH6*) were better conserved (1.6-2.1 subs/site), and *RAD51* was the most well-
179 conserved of the seven genes (0.62 subs/site).

180

181 **Table 2.** Substitutions per site in PMSAs of seven hereditary cancer genes using 10 species
182 with evolutionary depth to sea squirt calculated using the PHYLIP ProtPars package.

183

Protein	Substitutions per site
PMS2	3.4
APC	3.3
CHEK2	3.2
MSH6	2.8

MLH1	2.1
MSH2	1.6
RAD51	0.62

184

185 **Phylogenetic Tree Construction**

186 Phylogenetic trees were generated using Bayesian, Maximum Likelihood, and Maximum
187 Parsimony -based methods. The methods yielded similar trees, and the Maximum Parsimony -
188 based examples are displayed in Figures 2A (10 species) and 2B (38 species). The
189 relationships of the *APC* sequences among different species was as expected with sea urchin
190 and sea squirt as the most distantly related organisms to humans.

191

192 **APC Variants from Public Databases**

193 In the LOVD database maintained by the International Society for Gastrointestinal Hereditary
194 Tumors (InSiGHT), in July 2013 there were a total of 46 *APC* missense variants. In ClinVar in
195 July 2018, there were a total of 4891 *APC* variants, of which 1988 are missense. Using filters of
196 “missense, pathogenic, likely pathogenic”, yielded nine variants in the ClinVar database with
197 assertions of Pathogenic/Likely Pathogenic (P/LP) and no conflicting interpretations of
198 pathogenicity per ClinVar criteria. Upon further examination, it was determined that two variants
199 were somatic mutations, and the pathogenicity of the other seven variants were inferred to be
200 from a splicing abnormality. Six were found to occur at canonical splice sites, and the seventh
201 occurs within an Exonic Splicing Enhancer sequence, with confirming RNA and *in vitro* evidence
202 of splicing alterations [15] (Supplementary Table). Thus, no pathogenic missense germline
203 *APC* variants were documented in ClinVar using these search parameters. There are n=21
204 variants (1.3% of all missense variants) with assertions of Benign or Likely Benign (B/LB). All of
205 these were classified using criteria other than *in silico* algorithms. Of the remaining variants in

206 ClinVar, 93.5% of the missense variants are reported as “Unknown Significance”; the rest are
207 classified as either “Other”, or display conflicting assertions of pathogenicity (Table 3).

208

209 **Supplementary Table 1.** Nine APC missense variants using filters for “missense, pathogenic,
210 likely pathogenic”.

APC Classified Pathogenic Variant	ClinVar Classification	Type of Variant
R141S	Pathogenic	Splice Site
K516N	Pathogenic	Splice Site
K581N	Likely Pathogenic	Splice Site
S634R	Likely Pathogenic	Exonic Splice Enhancer site
R653M	Pathogenic	Splice Site
R653G	Pathogenic	Splice Site
R653K	Pathogenic	Splice Site
G1120E	Pathogenic	Somatic
S1395C	Pathogenic	Somatic

211

212 Supplementary Table 1 Legend: Two are due to somatic mutations, six are located in canonical
213 splice sites and one occurs within an Exonic Splicing Enhancer sequence. [p.S1028N was
214 reclassified as pathogenic in the ClinVar database after we collected the data – Not included]
215 <https://preview.ncbi.nlm.nih.gov/clinvar/variation/428186/>

216

217 **Table 3.** APC missense variants from the NCBI ClinVar database with Clinical Significance

218 Classifications of: “Benign”, “Likely Benign”, “Pathogenic”, “Likely Pathogenic”, “Uncertain
219 Significance” and “Conflicting Interpretations of Pathogenicity”.

220

ClinVar “Clinical Significance” for APC	Missense Variants (N=1924)
Benign/Likely Benign	21 (1.1%)
Pathogenic/Likely Pathogenic	0 (0%)
Uncertain Significance	1800 (93.5%)
Conflicting Interpretations of Pathogenicity	103 (5.4%)

221

222 Table 3 Legend: Substitutions flanking the 12 splice sites found in Human APC were removed
223 from the list of selected missense variants. A total of 1924 variants that met the above
224 classification criteria and were not located in exon boundaries were used for analysis. Of the
225 1924 variants, 1.1% were classified as benign, none were classified as pathogenic and 98.9 %
226 were classified as uncertain or conflicting interpretation of pathogenicity.

227

228 **Computational methods to classify APC variants**

229 To predict the pathogenic effects of missense substitutions, multiple computational algorithms
230 based on PMSAs and evolutionary conservation have been developed. We applied five of these
231 tools (SIFT, PolyPhen2, Align-GVGD, MAPP, REVEL) to analyze APC missense variants.

232 For the n=21 variants classified in ClinVar as B/LB, the prediction algorithms showed good
233 concordance with each other and with the ClinVar classifications (Table 4A). REVEL and A-
234 GVGD showed 100% concordance with ClinVar, SIFT predicted 95.5%, PolyPhen2 81.8%, and
235 MAPP 77.8% to be Neutral. For the n=1904 variants classified as VUS, “Other”, or conflicting,
236 the output differed significantly among the four non-aggregating methods (excluding REVEL).

237 The proportion of variants predicted to be “Benign” were MAPP 25.0%, PolyPhen2 41.0%, SIFT
238 68.1%, Align-GVGD 82.5% (Table 4A). For MAPP, we initially used the cutoff score of 4.5
239 previously established to distinguish P/LP from B/LB *MLH1* and *MSH2* variants [8]. This cutoff
240 predicted 75% of APC VUS to be pathogenic, an improbable proportion. With no known
241 pathogenic missense variants, it is unclear what cutoff score is appropriate. The lowest MAPP
242 cutoff score (34.79) that achieved a specificity and total accuracy of 100% for classifying benign
243 variants predicts 2.6% of VUS as pathogenic.

244

245 **Table 4A. Predictions of substitution severity with different *in silico* programs**

246

Method	Classification	Benign Variants (N=21)			VUS (N=1904)
		Total (%)	Specificity	Total Accuracy	Predictions: Total (%)
ClinVar	Pathogenic	0 (0%)	-	-	-
	Benign	21 (100%)			-
REVEL	Deleterious (REVEL score ≥ 0.5)	0 (0%)	100%	100%	N/A
	Neutral (REVEL score < 0.5)	21 (100%)			N/A
	Class C65 (Deleterious moderate)	0 (0%)	100%	100%	77 (4.0%)
	Class C55 (Deleterious supporting)	0 (0%)			37 (1.9%)
	Class C45 (Deleterious supporting)	0 (0%)			8 (0.42%)
	Class C35 (Deleterious supporting)	0 (0%)			27 (1.4%)
	Class C25 (Deleterious supporting)	0 (0%)			64 (3.3%)
A-GVGD	Class C15 (Deleterious supporting)	0 (0%)			120 (6.3%)
	Class C0 (Neutral)	21 (100%)			1571 (82.5%)
SIFT	Deleterious	1 (4.8%)	95.4%	95.2%	608 (31.9%)
	Tolerated	20 (95.2%)			1296 (68.1%)
PolyPhen2	Probably Damaging	1 (4.8%)	84.0%	80.9%	814 (42.8%)
	Possibly Damaging	3 (13.3%)			309 (16.2%)
	Benign	17 (80.9%)			781 (41.0%)
MAPP	Pathogenic (MAPP score ≥ 4.5)	5 (23.8%)	80.7%	76.2%	1428 (75.0%)
	Neutral (MAPP score < 4.5)	16 (76.2%)			476 (25.0%)

247

248 Table 4A Legend: Predictions of pathogenicity for APC missense variants were made using
249 REVEL, A-GVGD, SIFT, PolyPhen2 and MAPP. REVEL output classes were designated as
250 “Deleterious” for variants with a REVEL score ≥ 0.5 and “Neutral” with a REVEL score < 0.5
251 [16]. Assigning A-GVGD output Classes as “Neutral”, “Deleterious moderate” and “Deleterious
252 supporting” are based on probabilities from [17] and quantitative modeling of the ACMG/AMP
253 criteria for assigning pathogenicity [4, 18]. SIFT predicts substitutions with SIFT scores less than
254 0.05 as “Deleterious” and scores equal to or greater than 0.05 as “Tolerated” [19]. PolyPhen2
255 predicts variants based on a Position Specific Independent Count (PSIC) score as “Benign” and
256 “Probably Damaging” with high confidence, while a prediction of “Possibly Damaging” is
257 predicted to be damaging, but with low confidence [20]. For MAPP, we used a cutoff score of
258 4.5 to predict “Pathogenic” versus “Neutral” substitutions based the cutoff used to distinguish
259 pathogenic and neutral variants for MLH1 and MSH2. [8].

260

261 We explored the hypothesis that protein structural features would be associated with the
262 likelihood that a VUS was pathogenic or benign. APC contains multiple repeats of the β -catenin
263 binding and armadillo repeats, plus domains for oligomerization, and binding to microtubules,
264 and EB1 and DLG proteins [21]. We hypothesized that missense variants 1) in the β -catenin
265 binding and armadillo repeats would be neutral, since there was domain redundancy, 2) in the
266 non-repeated domains would be more likely to be pathogenic, and 3) in unstructured regions
267 would be neutral. There was no difference in the distribution of variants classified in ClinVar as
268 neutral versus VUS relative to the beta catenin, armadillo, or other domains (Table 4b).

269

270 **Table 4B.** Proportion of Benign/Likely Benign variants and Variants of Unknown Significance by
271 APC Protein Structural Feature.

Domain	Benign/Likely Benign	Unknown Significance
Beta catenin	5 (23.8%)	606 (31.8%)
Armadillo	1 (4.8%)	156 (8.2%)
Other domains	4 (19.0%)	378 (19.9%)
Not in domain	11 (52.4%)	764 (40.1%)
Total	21	1904

272

273 Per our examination of the ClinVar database in May 2018, all APC missense mutations noted as
274 P/LP were found to be somatic mutations, or located in canonical splice sites, or located in
275 Exonic Splicing Enhancer sequences. Shortly after we closed our data set, p.S1028N, located
276 in the first of four highly conserved 15-amino acid repeats within the β -catenin binding domain,
277 was submitted to ClinVar by Ambry Genetics and classified as Likely Pathogenic. The evidence
278 for this classification includes, as per the ACMG/AMP guidelines, segregation score
279 (PP1_Strong, six meioses), phenotype score (PS4_Moderate), functional domain (PM1 [22]),
280 population frequency score (PM2_Supporting) and *in silico* data (PP3). There is no evidence of
281 splice abnormality. This variant would reach LP regardless of *in silico* analysis. Further scrutiny
282 of variants in this region demonstrates one other variant, p.N1026S, classified as “Conflicting

283 Interpretations of Pathogenicity” in ClinVar, which satisfies the ACMG/AMP guidelines as LP.
284 The same criteria (PP1_Strong, PS4_Moderate, PM1, PM2) can be applied to p.N1026S, in
285 addition to a functional defect (PS3) as reported in the literature [23, 22]. N1026 and S1028 are
286 both located in the first 15-amino acid repeat of the β -catenin binding domain and after careful
287 review are the only LP/P APC missense variants that we found in ClinVar in July 2018 that
288 satisfy the ACMG/AMP guidelines.

289

290 **DISCUSSION**

291 *In silico* tools have been validated with accepted standards for relatively few genes, and the field
292 would greatly benefit from refinement of standards for applying these tools. Factors that have
293 been shown to be important for interpreting the output and reliability of computational algorithms
294 include quality of PMSA (reviewed in [5]), and choice of variant data sets [24]. An important
295 factor regarding data sets that has emerged recently is how predictors should not be evaluated
296 on variants or proteins that were used to train their prediction models. This circularity could
297 result in predictive values that are artificially inflated [24, 25], and could occur with either likely
298 pathogenic or likely benign variants. We suggest that not enough attention has been assigned
299 to an additional important factor, the likelihood that missense substitution is a major mechanism
300 of pathogenicity for a gene.

301 Our analysis suggests possible revisions to the ACMG/AMP classification scheme for
302 pathogenicity, which defines multiple criteria for evidence of benign or pathogenic effect, with
303 strength ranging from “Supporting” to “Very Strong”, and rules for combining different types of
304 evidence [4]. For example, criterion BP1, “Missense variant in a gene for which primarily
305 truncating variants are known to cause disease”, is relevant to APC. By this criterion, any
306 missense APC variant is given “Supporting” evidence, the lowest level, favoring benign

307 classification of missense variants. Further study may help determine whether this criterion for
308 benign classification should be upgraded from “Supporting” (for which estimated Odds of
309 Pathogenicity is low [18], discussed below) to a higher level for these variants. The PP2
310 criterion for pathogenicity presupposes that missense is a common mechanism for mutation;
311 future studies should assess whether it is being inappropriately used when missense is a rare or
312 unknown mechanism for a given gene.

313 Our work confirms that PMSA construction remains a labor-intensive task [26]. Current
314 automated tools do not align unstructured regions accurately, resulting in errors that require
315 manual curation of protein and nucleotide sequences in order to optimally curate a full
316 alignment. For many genes, accurate PMSA can prove important for *in silico* analysis of variant
317 pathogenicity [5]. There is no consensus in the assessment of PMSA quality, although metrics
318 have been proposed [27]. We and others have proposed that a PMSA should include enough
319 sequences to contain three subs/site in order for predictions to be statistically robust [6, 7], and
320 for APC we achieved this threshold with the addition of non-vertebrate sequences. We chose
321 our sequences to be consistent with PMSAs of other cancer susceptibility genes for which *in*
322 *silico* algorithms have proven to be valuable tools for variant classification. PMSAs for 15 such
323 genes are posted on the Align-GVGD (<http://agvgd.hci.utah.edu/about.php>) web site. We hope
324 to promote standardization of methods for the purposes of *in silico* analysis for variant
325 classification. It remains to be determined whether a consistent set of sequences will be most
326 appropriate for other gene sets. The creation and validation of our APC PMSA did identify
327 interesting features of gene evolution and of genome annotation and analysis, and we anticipate
328 that PMSAs across gene families are likely to elucidate specific structure-function relationships
329 and molecular pathways of critical cellular functions. The full APC PMSA can be seen in
330 Supplementary Figure 1, where it can be used for purposes that are beyond the scope of this
331 paper.

332 One cannot assume that *in silico* tools that are valuable predictors for one gene will perform as
333 well for other genes. The majority of *APC* missense variants in ClinVar are likely to be benign,
334 given the paucity of missense pathogenic variants identified in over two decades of clinical *APC*
335 testing. An example of a similar gene is *CDH1*, in which pathogenic missense variants also are
336 rare. An expert panel studying the *CDH1* gene has recommended that computational methods
337 not be used for missense *CDH1* variants [28]. Thus, tools that work well for genes that are
338 commonly inactivated by missense changes [29, 30, 8, 12] can be misleading for genes that are
339 rarely inactivated by missense. For such genes, traditional *in silico* tools will likely overestimate
340 the probability of pathogenicity of any missense variant.

341 The ClinGen Sequence Variant Interpretation working group has estimated that the “Supporting”
342 level of evidence confers approximately 2.08/1 odds in favor of pathogenicity [18], or a 67.5%
343 probability of pathogenicity. Our current analyses of *APC* variants suggest that the likelihood
344 that a missense *APC* variant is pathogenic is far lower than 1%. Despite this, our curated *APC*
345 PMSA and several *in silico* prediction tools all predicted a significant fraction of missense
346 variants to be pathogenic. The methods that we used varied widely in their predictions for *APC*
347 VUS; predictions of Pathogenic or Likely Pathogenic ranged from 17.5% to 75%, all of which are
348 higher than the likely figure by at least an order of magnitude. This provides mathematical
349 support for not using *in silico* evidence in favor of pathogenicity (PP3 in the ACMG/AMP scheme
350 [4]) for these genes. One approach might be to create a decision tree in which a gene must
351 meet specific criteria before *in silico* evidence is applied. More work is needed in order to
352 understand which genes require pre-curation to assess whether PMSA-based or other *in silico*
353 methods are likely to be useful. A difference between functional or structural relevance to the
354 protein and clinical relevance may occur if the assayed function is not crucial to the phenotype,
355 or perhaps from domain redundancy or other protein structural features.

356 Another important factor regarding data sets is whether the subject was being tested because of
357 clinical suspicion, or whether broad panel testing, whole exome or whole genome sequencing
358 yielded a variant in the absence of any known clinical features. The degree of clinical suspicion
359 is difficult to discern from the majority of ClinVar *APC* variants. The prior probability of
360 pathogenicity [8] will be much lower for a variant discovered incidentally through whole exome
361 sequencing compared with one identified through clinical testing because of a strong history of
362 polyposis and/or colon cancer, with intermediate scenarios also possible.

363 Computational methods can be an excellent classifier for missense variants in hereditary cancer
364 genes where missense is a common mechanism of pathogenicity [8-12]. However, known
365 pathogenic *APC* missense germline variants are rare. It is possible that none exist outside of
366 the first 15-amino acid repeat of the β -catenin binding domain, and it is unknown how many
367 other pathogenic missense variants are located in this 15 amino acid repeat, complicating the
368 use of computational tools. Further analysis of this region is necessary to understand the role of
369 missense *APC* variants and the value of *in silico* algorithms. The β -catenin binding repeats may
370 be the only specific region of 15 AA out of the 2843 AA of *APC* in which *in silico* methods may
371 be predictive of clinical pathogenicity. A similar observation to the use of *in silico* analysis has
372 been made regarding the BRCT domain of *BRCA1* [5]. There may be characteristics of the
373 *APC* gene and protein that confound the results of *in silico* algorithms. One plausible hypothesis
374 for the failure of missense variants to abrogate *APC* function is the redundancy of *APC*
375 important structural elements (armadillo repeats, β -catenin and axin binding sites) [21], so the
376 inactivation of a single repeat might not eliminate binding to the target to a clinically relevant
377 level.

378 Defining features that distinguish genes for which missense is a common (e.g., MMR genes [8])
379 versus uncommon (e.g., *CDH1* [31, 28], *RB1* [32]) pathogenic mechanism would significantly
380 improve the application of *in silico* tools to variant classification. We propose that *in silico*

381 methods to assess missense variants (PP3 and BP4 in the ACMG/AMP guidelines [4]) be used
382 sparingly for any gene where strong evidence suggests that missense rarely causes
383 pathogenicity. Future work might consider whether BP4 (concordance for “benign” classification
384 among multiple methods) might be replaced by BP1 (truncation predominates, missense
385 unlikely) in such cases. Our results suggest that a systematic study of variant pathogenicity and
386 protein features such as domain structure is warranted to improve the use of predictive
387 algorithms in hereditary cancer genes.

388

389

390 **Methods**

391 Sequence and variant data are publically available from databases at the NLM. The study
392 protocol was determined to be exempt from human subject regulations by Western IRB, as the
393 data were de-identified.

394 **APC Sequences and Multiple Sequence Alignments, Phylogenetic analysis**

395 Amino acid sequences were collected by searching NCBI’s online Gene database
396 (<http://www.ncbi.nlm.nih.gov/gene>), for “APC” in 2013, 2015, and 2018. PMSAs were made
397 using Clustal Omega from the European Bioinformatics Institute (EBI)
398 (<https://www.ebi.ac.uk/Tools/msa/clustalo>) and MUSCLE v3.8.31 [33] and examined using
399 Mesquite, a software for evolutionary biology (<http://mesquiteproject.wikispaces.com/>) [40].

400 Misaligned areas were manually adjusted after the MUSCLE alignment. Gaps and insertions in
401 the PMSA were analyzed to determine if the sequences in question were likely true indels or
402 likely to be artifacts of computer analysis of genome annotation. BLAST searches were
403 performed of inserted runs of AAs that did not align with any other species in our PMSA, using
404 Protein BLAST, with default settings and query sequences of minimum length 30. For a

405 “positive BLAST”, the sequence results needed to show the presence of either homologs of the
406 query sequence in APC from other organisms or from known protein domains. For a “negative
407 BLAST”, the only result was the sequence from the species used in the search query. Exon
408 boundaries were identified using the NCBI Gene Database. If an entire exon from one species
409 did not align with the other sequences and was deemed BLAST negative, that exon was
410 removed from the PMSA, using the rationale that it would be irrelevant to a variant found in
411 humans.

412 Phylogenetic trees were constructed from the curated APC alignment using a Maximum
413 Parsimony-based method implemented in PAUP* (Phylogenetic Analysis Using Parsimony
414 [*and Other Methods]), Version 4, Maximum Likelihood [34, 39], and Bayesian method as
415 implemented in MrBayes [35].

416 Nucleotide regions flanking prospective indels were analyzed using two splice site calculators:
417 (1) SpliceSiteFrame, (<http://ibis.tau.ac.il/ssat/SpliceSiteFrame.htm>), a splice site calculator from
418 Tel Aviv University, and (2) the online tool from the GENIE program [36]
419 (http://rulai.cshl.edu/new_alt_exon_db2/HTML/score.html). The maximum 3' score for a perfect
420 splice site would be 14.2, and the score for a perfect 5' splice score would be 12.6; these rarely
421 occur. Average scores for the 3' and 5' sites are 7.9 and 8.1 respectively.

422 Substitution per site

423 Absolute conservation of an amino acid in a PMSA can be determined with statistical
424 significance ($P < 0.05$) if the PMSA contains at least three substitutions per site (subs/site, i.e.,
425 three times as many variants among all sequences as there are codons in the gene [6, 7]. In
426 order to determine if APC alignments contained three subs/site, we used the PHYLIP
427 (Phylogeny Inference Package) version 3.6a2 ProtPars program from the University of
428 Washington, Department of Genetics (<http://evolution.genetics.washington.edu/phylip.html>), with
429 the alignment converted to PHYLIP format. To convert the alignment from Clustal Omega

430 format to PHYLIP format and all other formats used during the analyses, the EMBOSS Seqret
431 from EBI (https://www.ebi.ac.uk/Tools/sfc/emboss_seqret/) and Mesquite Version 3.51 tools
432 were used (<https://www.mesquiteproject.org/>).

433 ***Predictions of Effects of APC Missense Substitutions***

434 In July 2013, 46 APC missense variants were collected from the LOVD database maintained by
435 the International Society for Gastrointestinal Hereditary Tumors (InSiGHT). On May 30, 2018,
436 4891 variants observed by clinical genetic testing were collected from the ClinVar database
437 (<http://www.ncbi.nlm.nih.gov/clinvar/>).

438 **Computational Algorithms:** The pathogenicity of each missense variant recorded in ClinVar
439 was predicted using the programs Align-GVGD, SIFT, PolyPhen2 MAPP, and REVEL.

440 **AlignGVGD** uses PMSAs and the biophysical properties of amino acid substitutions to calculate
441 the range of variation at each position. Each variant is assigned a grade of C65 to C0
442 representing decreasing probability of deleterious, with C0 representing likely neutral AA
443 substitutions. [37] (<http://aqvgd.hci.utah.edu/about.php>).

444 **SIFT** (*Sorting Intolerant From Tolerant*) creates position specific scoring matrices derived from
445 PMSAs. Each missense substitution predicted as “Tolerated” or “Affects Protein Function” [19].
446 (<http://sift.bii.a-star.edu.sg/>).

447 **PolyPhen2** combines its own pre-built sequence alignment with protein structural
448 characteristics, calculating a score used to classify each variant into three categories: benign,
449 possibly damaging and probably damaging. (<http://genetics.bwh.harvard.edu/pph2/index.shtml>)
450 [20]. We combined the categories of “possibly damaging” and “probably damaging”.

451 **MAPP** (*Multivariate Analysis of Protein Polymorphisms*) also combines a PMSA with the
452 physicochemical characteristics of each AA position, predicting which AA should be deleterious
453 and which should be neutral at each position in the PMSA [38]
454 (<http://www.ngrl.org.uk/Manchester/page/mapp-multivariate-analysis-protein-polymorphism>).

455 **REVEL** (*Rare Exome Variant Ensemble Learner*) [16] is an ensemble method that uses
456 machine learning to combine the results of 13 individual predictors, using independent test sets
457 that did not overlap with sets used to train its component features. REVEL output classes were
458 designated as “Deleterious” for variants with a REVEL score ≥ 0.5 and “Neutral” with a REVEL
459 score < 0.5 [16].

460

461

462 **ACKNOWLEDGMENTS:**

463 We are grateful for ongoing illuminating discussions with our colleagues on the ClinGen
464 Sequence Variant Interpretation Working group and the InSiGHT Variant Interpretation
465 Committee.

466

467 **DISCLOSURES OF CONFLICT OF INTEREST:**

468 MER and TP are employees of Ambry Genetics, Inc.

469 REFERENCES:

470 1. Hermel, D., McKinnon, W., Wood, M. and Greenblatt, M. (2016). Multi-gene panel testing for
471 hereditary cancer susceptibility in a rural Familial Cancer Program. *Familial Cancer*, 16(1),
472 pp.159-166.

473 2. Yurgelun M, Allen B, Kaldate R, Bowles K, Judkins T, Kaushik P et al. Identification of a
474 Variety of Mutations in Cancer Predisposition Genes in Patients With Suspected Lynch
475 Syndrome. *Gastroenterology*. 2015;149(3):604-613.e20.

476 3. Landrum M, Lee J, Benson M, Brown G, Chao C, Chitipiralla S et al. ClinVar: improving
477 access to variant interpretations and supporting evidence. *Nucleic Acids Research*.
478 2017;46(D1):D1062-D1067.

479 4. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al. Standards and guidelines
480 for the interpretation of sequence variants: a joint consensus recommendation of the
481 American College of Medical Genetics and Genomics and the Association for Molecular
482 Pathology. *Genetics in Medicine*. 2015;17(5):405-423.

483 5. Tavtigian S, Greenblatt M, Lesueur F, Byrnes G. In silico analysis of missense substitutions
484 using sequence-alignment based methods. *Human Mutation*. 2008;29(11):1327-1336.

485 6. Greenblatt M, Beaudet J, Gump J, Godin K, Trombley L, Koh J et al. Detailed computational
486 study of p53 and p16: using evolutionary sequence analysis and disease-associated
487 mutations to predict the functional consequences of allelic variants. *Oncogene*.
488 2003;22(8):1150-1163.

489 7. Cooper G, Brudno M. Quantitative Estimates of Sequence Divergence for Comparative
490 Analyses of Mammalian Genomes. *Genome Research*. 2003;13(5):813-820.

491 8. Thompson B, Greenblatt M, Vallee M, Herkert J, Tessereau C, Young E et al. Calibration of
492 Multiple In Silico Tools for Predicting Pathogenicity of Mismatch Repair Gene Missense
493 Substitutions. *Human Mutation*. 2012;34(1):255-265.

494 9. Tavtigian S, Samollow P, de Silva D, Thomas A. An Analysis of Unclassified Missense
495 Substitutions in Human BRCA1. *Familial Cancer*. 2006;5(1):77-88.

496 10. Goldgar D, Easton D, Byrnes G, Spurdle A, Iversen E, Greenblatt M. Genetic evidence and
497 integration of various data sources for classifying uncertain variants into a single model.
498 *Human Mutation*. 2008;29(11):1265-1272.

499 11. Abkevich V, Zharkikh A, Deffenbaugh AM, Frank D, Chen Y, Shattuck D, Skolnick MH, Gutin
500 A, Tavtigian SV. Analysis of missense variation in human BRCA1 in the context of
501 interspecific sequence variation. *Journal of Medical Genetics*. 2004;41(7):492-507.

502 12. Miller P, Duraisamy S, Newell J, Chan P, Tie M, Rogers A et al. Classifying variants of
503 CDKN2A using computational and laboratory studies. *Human Mutation*. 2011;32(8):900-911.

504 13. Rishishwar L, Varghese N, Tyagi E, Harvey S, Jordan I, McCarty N. Relating the Disease
505 Mutation Spectrum to the Evolution of the Cystic Fibrosis Transmembrane Conductance
506 Regulator (CFTR). *PLoS ONE*. 2012;7(8):e42336.

507 14. Scott R, Crooks R, Rose L, Attia J, Thakkinstian A, Thomas L et al. Germline Missense
508 Changes in the APC Gene and Their Relationship to Disease. *Heredity Cancer in Clinical*
509 *Practice*. 2004;2(2):81.

510 15. Grandval P, Blayau M, Buisine M, Coulet F, Maugard C, Pinson S et al. The UMD-APC
511 Database, a Model of Nation-Wide Knowledge Base: Update with Data from 3,581
512 Variations. *Human Mutation*. 2014;35(5):532-536.

513 16. Ioannidis N, Rothstein J, Pejaver V, Middha S, McDonnell S, Baheti S et al. REVEL: An
514 Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants. *The*
515 *American Journal of Human Genetics*. 2016;99(4):877-885.

516 17. Tavtigian, S., Deffenbaugh, Yin, Judkins, Scholl, Samollow, De Silva, Zharkikh, Thomas.
517 Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of
518 eight recurrent substitutions as neutral. *Journal of Medical Genetics*. 2005;43(4):295-305.

519 18. Tavtigian S, Greenblatt M, Harrison S, Nussbaum R, Prabhu S, Boucher K et al. Modeling
520 the ACMG/AMP variant classification guidelines as a Bayesian classification framework.
521 *Genetics in Medicine*. 2018;20(9):1054-1060.

522 19. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. *Nucleic
523 Acids Research*. 2003;31(13):3812-3814.

524 20. Adzhubei I, Jordan D, Sunyaev S. Predicting Functional Effect of Human Missense
525 Mutations Using PolyPhen-2. *Current Protocols in Human Genetics*. 2013;76(1):7.20.1-
526 7.20.41.

527 21. Aoki K, Taketo M. Adenomatous polyposis coli (APC): a multi-functional tumor suppressor
528 gene. *Journal of Cell Science*. 2007;120(19):3327-3335.

529 22. Huber A, Weis W. The Structure of the β -Catenin/E-Cadherin Complex and the Molecular
530 Basis of Diverse Ligand Recognition by β -Catenin. *Cell*. 2001;105(3):391-402.

531 23. Menéndez M, González S, Obrador-Hevia A, Domínguez A, Pujol M, Valls J et al.
532 Functional Characterization of the Novel APC N1026S Variant Associated With Attenuated
533 Familial Adenomatous Polyposis. *Gastroenterology*. 2008;134(1):56-64.

534 24. Grimm D, Azencott C, Aicheler F, Gieraths U, MacArthur D, Samocha K et al. The
535 Evaluation of Tools Used to Predict the Impact of Missense Variants Is Hindered by Two
536 Types of Circularity. *Human Mutation*. 2015;36(5):513-523.

537 25. Drost M, Tiersma Y, Thompson B, Frederiksen J, Keijzers G, Glubb D et al. A functional
538 assay-based procedure to classify mismatch repair gene variants in Lynch syndrome.
539 *Genetics in Medicine*. 2018;.

540 26. Adebali O, Reznik A, Ory D, Zhulin I. Establishing the precise evolutionary history of a gene
541 improves prediction of disease-causing missense mutations. *Genetics in Medicine*.
542 2016;18(10):1029-1036.

543 27. Ortuño F, Valenzuela O, Rojas F, Pomares H, Florido J, Urquiza J et al. Optimizing multiple
544 sequence alignments using a genetic algorithm based on three objectives: structural

545 information, non-gaps percentage and totally conserved columns. *Bioinformatics*.
546 2013;29(17):2112-2121.

547 28. Lee K, Krempely K, Roberts M, Anderson M, Carneiro F, Chao E et al. Specifications of the
548 ACMG/AMP variant curation guidelines for the analysis of germline CDH1 sequence
549 variants. *Human Mutation*. 2018;39(11):1553-1568.

550 29. Goldgar D, Easton D, Deffenbaugh A, Monteiro A, Tavtigian S, Couch F. Integrated
551 Evaluation of DNA Sequence Variants of Unknown Clinical Significance: Application to
552 BRCA1 and BRCA2. *The American Journal of Human Genetics*. 2004;75(4):535-544.

553 30. Easton D, Deffenbaugh A, Pruss D, Frye C, Wenstrup R, Allen-Brady K et al. A Systematic
554 Genetic Assessment of 1,433 Sequence Variants of Unknown Clinical Significance in the
555 BRCA1 and BRCA2 Breast Cancer–Predisposition Genes. *The American Journal of Human
556 Genetics*. 2007;81(5):873-883.

557 31. Hansford S, Kaurah P, Li-Chang H, Woo M, Senz J, Pinheiro H et al. Hereditary Diffuse
558 Gastric Cancer Syndrome. *JAMA Oncology*. 2015;1(1):23.

559 32. Dommering C, Mol B, Moll A, Burton M, Cloos J, Dorsman J et al. RB1mutation spectrum in
560 a comprehensive nationwide cohort of retinoblastoma patients. *Journal of Medical Genetics*.
561 2014;51(6):366-374.

562 33. Edgar R. MUSCLE: multiple sequence alignment with high accuracy and high throughput.
563 *Nucleic Acids Research*. 2004;32(5):1792-1797.

564 34. Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large
565 phylogenies. *Bioinformatics*. 2014;30(9):1312-1313.

566 35. Ronquist F, Huelsenbeck J. MrBayes 3: Bayesian phylogenetic inference under mixed
567 models. *Bioinformatics*. 2003;19(12):1572-1574.

568 36. Reese M, Eeckman F, Kulp D, Haussler D. Improved Splice Site Detection in Genie. *Journal
569 of Computational Biology*. 1997;4(3):311-323.

570 37. Tavtigian SV, Byrnes GB, Goldgar DE, Thomas A. Classification of rare missense
571 substitutions, using risk surfaces, with genetic-and molecular-epidemiology applications
572 Hum Mutat. 2008 Nov;29(11):1342-54.

573 38. Stone EA, Sidow A. Physicochemical constraint violation by missense substitutions
574 mediates impairment of protein function and disease severity. Genome Research.
575 2005;15(7):978-986.

576 39. Swofford, D. L. 2002. PAUP*. Phylogenetic Analysis Using Parsimony (*and Other
577 Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.

578 40. Maddison, W. P. and D.R. Maddison. 2018. Mesquite: a modular system for evolutionary
579 analysis. Version 3.51 <http://www.mesquiteproject.org>

580 **FIGURES**

581

582

583 Figure 1. Excerpt of the curated APC alignment generated from the MSA program Clustal
584 Omega.

585 Exon boundaries are labeled in red with a black background. The red highlighted region in the
586 human sequence corresponds to a portion of an Armadillo Repeat domain.

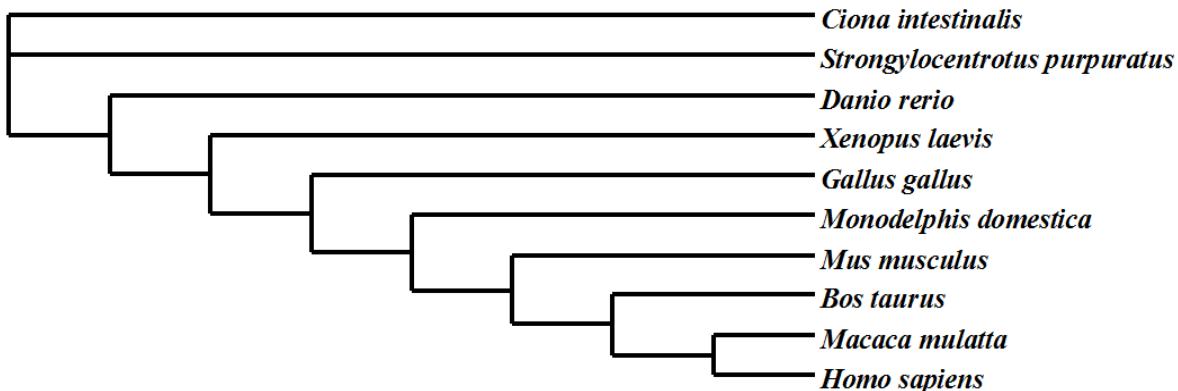
587

588

589

590

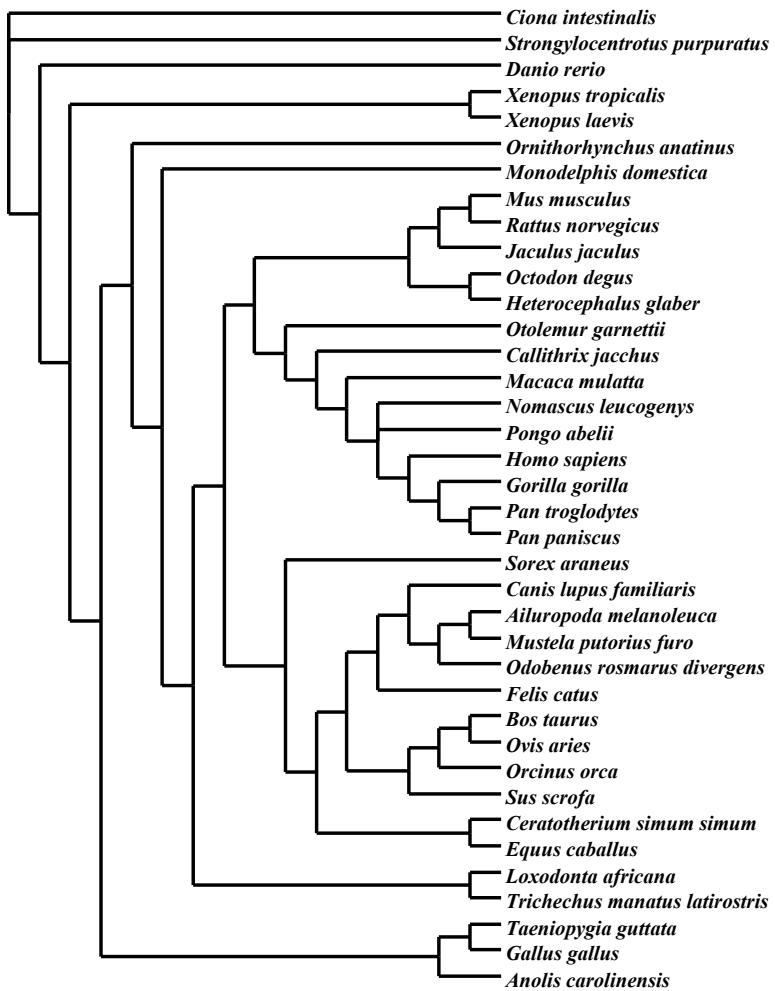
591


592

593

504

505


506

597

598 **Figure 2A. Ten species phylogenetic consensus tree for the APC protein constructed**
599 **using the computational phylogenetics program PAUP* (Phylogenetic Analysis Using**
600 **Parsimony *and other methods).**

601

603 **Figure 2B. Thirty-eight species phylogenetic consensus tree for the APC protein**
604 **constructed using the computational phylogenetics program PAUP* (Phylogenetic**
605 **Analysis Using Parsimony *and other methods).**

606

607

608

609

610

611

612

613 **(PDF in Separate File)**

614 **Supplementary Figure 1. Curated 10-Species APC alignment.** PMSA was generated from
615 the program Clustal Omega. Exon boundaries are labeled in red with a black background. The
616 domains are highlighted throughout the alignment. Grey is oligomerization domain, red is
617 Armadillo repeats, yellow is Beta Catenin Repeats, green is a sequence with homology to the
618 herpes virus (PHA03307), turquoise is the Basic domain, and purple is the EB1 and HDLG
619 binding site.

620

621

622 **(PDF in Separate File)**

623 **Supplementary Figure 2. 38-Species APC alignment.** PMSA was generated from the
624 program Clustal Omega. No annotation is added.

625

626