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ABSTRACT

Biodiversity is thought to prevent decline in community function in response to changing
environmental conditions through replacement of organisms with similar functional capacity but
different optimal growth characteristics. We examined how this concept trandates to the within-
gene level by exploring seasonal dynamics of within-gene diversity for genesinvolved in
nitrogen cycling in hyporheic zone communities. Nitrification genes displayed low richness—
defined as the number of unique within-gene phylotypes—across seasons. Conversely,
denitrification genes varied in both richness and the degree to which phylotypes were recruited
or lost. These results demonstrate that there is not a universal mechanism for maintaining
community functional potential for nitrogen cycling activities, even across seasonal
environmental shifts to which communities would be expected to be well adapted. As such,
extreme environmental changes could have very different effects on the stability of the different
nitrogen cycle activities. These outcomes suggest a need to modify existing conceptual models
that link biodiversity to microbiome function to incorporate within-gene diversity. Specifically,
we suggest an expanded conceptualization that (1) recognizes component steps (genes) with low
diversity as potential bottlenecks influencing pathway-level function, and (2) includes variation
in both the number of entities (e.g. species, phylotypes) that can contribute to a given process
and the turnover of those entities in response to shifting conditions. Building these concepts into
process-based ecosystem models represents an exciting opportunity to connect within-gene-scale

ecological dynamics to ecosystem-scale services.
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INTRODUCTION

High microbial diversity has been observed in aimost all environments that have been examined
(Gibbons and Gilbert 2015). It iswidely believed that this diversity provides functional stability
to ecosystems experiencing fluctuations in environmental conditions by the presence of
organisms having overlapping functional capabilities but different conditions under which they
optimally function (Allison and Martiny 2008; Hooper et al. 2005; Rosenfeld 2002; Shade et al.
2012; Torsvik and Ovreas 2002; Walker 1992; Y achi and Loreau 1999). In a fluctuating
environment, conditions that impair the growth of some populations will stimulate the growth of
others, and overall community function is maintained. Maintenance of higher diversity therefore
allows a community to respond more rapidly to a disturbance or environmental shift and reduces
its dependence on (or susceptibility to) recruitment of new organismsto fill vacant niches. The

dynamics of diversity at the functional gene level, however, have not been well explored.

Cooperative metabolism in natural microbial communities has long been suspected, but only
recently have metagenomic studies revealed its extent. The component steps of complex
metabolic pathways, such as denitrification, sulfur oxidation, and organic carbon degradation,
have been observed to be distributed across multiple organisms more frequently than they are co-
resident in asingle organism (Anantharaman et al. 2016; Mobberley et al. 2017). Distributed
metabolism likely reflects efficiency gains from specialization and division of labor (West and
Cooper 2016). This partitioning, however, puts component steps of critical ecosystem processes
under different selective pressures, according to which organism encodes them. Temporal

dynamics of diversity and abundance may, therefore, vary significantly across component steps.

Nitrogen cycling is an excellent and ubiquitous example of a complex, distributed process. While

complete denitrifier organisms, such as Pseudomonas aeruginosa and Parcoccus denitrificans,
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have been isolated and described, it has long been suspected that many organisms encode partial
pathways and can act in concert to cycle nitrogen between its reduced and oxidized forms (Zumft
1997). More recently, genome sequence data from both isolates and environmental samples has
shown that many organisms encode various subsets of denitrification activities (Anantharaman et
al. 2016; Graf et al. 2014). Several previous studies have investigated the abundance and
distribution of nitrogen cycling activities in environmental microbiomes (Bru et al. 2011,
Graham et al. 2014; Kell et a. 2011; Nelson et al. 2015; Nelson et al. 2016; Stoliker et al. 2016),
none yet have specifically tracked the diversity of individual gene familiesthat comprise

nitrogen transformation pathways across fluctuating environmental conditions.

Here we take advantage of seasonal shiftsin hydrology and agueous geochemistry within a
hyporheic zone system that have been shown to ater microbial community structure (Graham et
al. 2016a; Graham et al. 2017), and examine the temporal dynamics of diversity within major N-
cycling genes encoding steps in nitrification and denitrification. Some component steps
consistently showed very low diversity, while others displayed significant temporal variation in
the level of diversity and turnover in the contributing phylotypes across divergent environmental
conditions. The observed heterogeneity through time and across component steps indicates that
predictive ecosystem models that explicitly represent microbial communities should account for

variation in and dynamics of within-gene diversity of component steps of key processes.

RESULTS

Seasonal environmental changes. Sediment communities from the hyporheic zone of the
Columbia River along the Hanford Reach were sampled from April 30, 2014 to November 25,
2014, using sand packs deployed at three locations (T2, T3, and T4) for six weeks at atime

(Graham et al. 2016b). Water chemistry data taken in parallel at the three sites showed similar,
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90 Vet not identical temporal patterns. A mid-year shift in hydraulic regime was observed, with
91  higher influx of surface water in the spring resulting in higher levels of dissolved organic carbon
92  (measured as non-purgeable organic carbon) (NPOC) (0.8-1.0 mg/L) (Fig 1A) and low levels of
93 nitrate (10-15 uM) (Fig 1B), transitioning to a more groundwater-influenced condition in the
94  fall, increasing the nitrate concentrations (up to 300 uM) and decreasing NPOC concentration
95  (down to <0.4 mg/L). Because the groundwater in this system is oxic, the DO concentration was
96 fairly constant for the duration of sampling, ranging from ~60-100% saturation (Fig 1C). The
97  water temperature followed expected seasonal trends, warming in the summer and cooling in the
98 fall (Fig 1D). Sampling times were categorized as early (Apr 30 through Jul 22) or late (Sep 2
99  through Nov 30), based on these observations.

100

101 Organism-level diversity. Organismal diversity was measured by 16S rRNA amplicon sequence

102  analysis and extraction and assembly of rplB gene sequences from the metagenomic data sets

103 (Fig 2). Asreported previously (Graham et al. 2016a), species richness correlated best with

104  water temperature. Diversity, as measured by the inverse Simpson statistic, was high and

105  mirrored species richness, suggesting high evenness. Two late samples, October 14 and

106  November 25, showed high richness but low diversity, driven by a bloom of Bacteroidetes

107  Species.

108

109  Diversty of N-cycling genes. The temporal phylogenetic profile of each gene of interest was

110  examined to elucidate the richness and diversity of genes comprising the nitrification and

111 denitrification processes. M etagenomic reads contai ning sequence from the genes of interest

112 were extracted from the total data set and assembled to yield partial and full-length gene
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113 sequences (Supplementary Data 1). Phylogeny was determined for each assembled sequence,
114  and phylotypes were defined at 90% amino acid sequence identity, sincethat level of similarity
115  istypical between organisms of the same genus (Konstantinidis and Tiedje 2005). Richness was
116  quantified for each gene as the number of distinct phylotypes identified. It was expected that
117  detectable gene diversity would be considerably lower than organismal diversity, since 1) these
118  activities are encoded by a subset of organisms, and 2) the assembly protocol is less sensitive
119  than amplicon analysis, and thus only genes from abundant organisms are likely to be detected.
120  Temporal diversity dynamics (turnover) were assessed by calculating the mean variance of

121 relative abundance for phylotypes across time, and using a cumulative inverse Simpson

122 calculation to examine species gain/loss (Fig 3).

123 Didtinct diversity and turnover patterns were observed for each gene. The narG and nosZ genes,
124  encoding the nitrate reductase large subunit and nitrous oxide reductase, respectively, had higher
125  phylotype richness than the other nitrogen cycle genes examined (for nosZ vs norB, Welch’'s t-
126  test p-value=0.0014, df=13.587), and their phylotype profiles had equivalent stability (Levene
127  test p-value=0.1277) (Fig 3, Fig S1A and Fig S2A). While nirK/nirS (distinct types of nitrite
128  reductase) and norB (nitric oxide reductase) had lower richness, their phylotype profile

129  variability was significantly higher than for narG (Levene test p-values=0.00003, 0.0001,

130  respectively), and were near significance for nosZ (Levene test p-values=0.0113, 0.0609 for

131  nosZl and nosZIl) (Fig 3, Fig S3A and Fig $4A). Both genes encoding activitiesinvolved in
132 nitrification had extremely low phylotype diversity, amoA (ammonia oxidase) with 2 phylotypes,
133  one bacterial and one archaeal, and nxrA (nitrite oxidase apha subunit) having 7 observed, but

134  one overwhelmingly dominant phylotype (Fig S5A). The low richness for amoA exaggerates the
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135  phylotype abundance variance values, thus we consider the low richness to be the significant

136  aspect of the amoA gene.

137  Community dynamics appeared to largely recycle afixed pool of taxa. A cumulative diversity
138  (inverse Simpson) plot showed all genes except nosZ plateauing or declining, indicating that the
139  establishment of novel organisms with these genesinto the community is rare (Fig 4). Seasonal
140  effects were also observed. The amoA phylotype content was stable early and variable late, while
141 narG, norB, and nirKS showed the reciprocal pattern, and nxrA showed no change in the level of
142  variability.

143

144  Abundance of N-cycling genes. To assess temporal changes in the overall abundances of genes
145  involved in denitrification and nitrification, the sets of all (i.e., unassembled) metagenomic reads
146  containing sequence from the genes of interest were enumerated, and the representation of each
147  gene within the community was normalized across samples using counts of the conserved,

148  single-copy rplB gene as aproxy for number of individuals sampled. Although gene abundances
149  wererelatively constant over time, the average abundances differed widely between genes. The
150  narG gene, thefirst step in denitrification, was observed to be in 25-30% of the population,

151  while nirK/nirSwas represented in 35-45% of the population, and norB in 14-18% (Fig 5A).

152 Nitrous oxide reductase genes (nosZ) were present in ~25% of the populations, however it is of
153  notethat the dominant form was nosZll (also referred to in the literature as the *atypical nosZ’), a
154  distinct family of nitrous oxide reductases typically found in non-denitrifying organisms (Graf et
155  al. 2014; Jones et al. 2014; Sanford et al. 2012). Nitrification genes showed more of a seasonal
156  shift in abundance. The amoA gene, summing both the bacterial and archaeal versions, showed a

157  low constant abundance of ~5% in early time points, and increased up near 30% late in the year
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158  (Fig 5B). Unexpectedly, nxrA showed little correlation with amoA, displaying atrend of gradual
159  increase, ranging from 5% to 18%, early, and constancy late.

160

161  Environmental drivers. Regression analysis was performed to determine which, if any, of the
162  environmental parameters measured was associated with changesin diversity for the genes of
163  interest. Water temperature, dissolved oxygen (DO), dissolved organic carbon (measured as non-
164  purgeable organic carbon, NPOC), and chloride (Cl") measurements were used. Cl" isa

165  conservativeindicator of the ratio of surface- to groundwater content in the hyporheic zone of
166  the study system (Stegen et al. 2018). Other measured constituents, NOs” and SO, had strong
167  positive correlations with Cl” (Fig S6). Correlations between diversity (inverse Simpson),

168  richness, and abundance were tested against the environmental parameters. The strongest

169  relationships were with groundwater content (using Cl™ as a proxy), with denitrification genes
170  narG (R?=0.38; p=0.04) and nosZ (R?*=0.50; p=0.02) increasing in diversity (Fig S7),

171 nitrification genes amoA (R°=0.41; p=0.03) and nxrA (R?*=0.44; p=0.03) increasing in abundance
172 (Fig S8), and narG (R?=0.47; p=0.02) decreasing in abundance. Groundwater showed weaker
173 correspondence with increasing richness of nxrA (R?=0.29; p=0.09), decreasing richness of

174  nirKS(R?=0.27; p=0.10) (Fig S9), and decreasing abundance of norB (R°=0.35; p=0.06). NPOC
175  had strongest correlations with the nitrification genes, showing a negative relationship with nxrA
176  diversity (R?=0.31; p=0.08), and a positive relationship with nirKSrichness (R*=0.39; p=0.04)
177 and narG abundance (R°=0.30; p=0.08). Temperature had a significant negative relationship

178  with nxrA diversity (R*=0.33; p=0.08) and richness (R*=0.45; p=0.03).

179

180 DISCUSSION
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181  Shadeet al., intheir review of microbial resistance and resilience, suggest that thereis“no ‘one-
182  sizefitsall’ response of microbial diversity and function to disturbance.” (Shade et a. 2012).

183  Whilethis perspective is undoubtedly true, it leaves open the possibility that there are general
184  patternsor rules that govern particular subsets or components of microbial communities. Here
185  we begin to look for such patterns at a deeper level than previously examined by exploring

186  dynamicsin gene abundance and diversity within important biogeochemical processesin

187  response to seasonal environmental changes. Building from recent work showing that component
188  stepsin biogeochemical processes are encoded by separate microbial taxa (Anantharaman et al.
189  2016; Mobberley et al. 2017), we hypothesized that within-gene diversity varies between

190  component steps, and further that temporal dynamics of diversity would vary between steps. Our
191  metagenomic data from a dynamic groundwater-surface water mixing zone were consistent with
192  thishypothesis and demonstrated that within-gene diversity and the dynamics of that diversity
193  arevariable across genes. This outcome suggests that acommunity’ s taxonomic diversity or the
194  abundance or diversity of any single (proxy) geneis not be areliable predictor of stability in

195  functional potential for multi-step biogeochemical processes, and that portions of the community
196  that encode component steps with low within-gene diversity may be the most critical when

197  considering potential decreases in function. Therefore, there is aneed to shift the focus of

198  analyses from taxonomic diversity or ‘representative’ gene abundances to acomprehensive

199  understanding of within-gene diversity and dynamics across processes. Below we place these
200 discoveriesin context of previous work and point toward how they can be used to improve

201 predictive models of system function.

202 Divergty dynamics of nitrification genes. The nitrification process showed low diversity at the

203  two steps examined (Fig 6), leading to the possibility that these activities are susceptible to loss
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204  or suppressed function. Nitrification was originally described as a cooperative process, requiring
205  an ammonia oxidizing organism that produces nitrite and a nitrite oxidizing organism that

206 convertsthe nitrite to nitrate (Winogradsky 1890). Recently, organisms have been identified that
207  have both activities (comammox) (Daims et al. 2015). The range of organisms known to encode
208 nitrification activitiesis narrow, although it does include both Bacteria (Nitrosomonas and

209  Nitrospira) and Archaea (Thaumarchchaeota). The observed abundance of nitrifying organisms
210  insediment communities, both freshwater and marine, suggests nitrification is an important

211 activity in the subsurface environment (Lansdown et al. 2014; Stoliker et al. 2016; Wang €t al.
212 2012). The limited taxonomic distribution of nitrification activitiesin the hyporheic community
213 was expected, however the low diversity, one phylotype for nxrA, and one sequence apiece for
214  thebacterial and archaeal amoAs (Fig S5A and S5B) is extreme. This lack of diversity suggests
215  these activities could be unstable, given observations demonstrating that community-level

216 functional stability increases with diversity (Allison and Martiny 2008; Girvan et al. 2005;

217  Tilman et al. 1997). However, we observed very stable abundance of these organisms across the
218  seasonal shift in water chemistry, suggesting that the organisms encoding these activities are well
219  adapted to the range of environmental conditions historically experienced by this community.
220  Any extraordinary shift in biotic (e.g., viruses, predation) or abiotic (e.g., redox potential,

221  temperature) conditions that selects against the small number of taxainvolved in nitrification,
222 however, could quickly degrade the community’s nitrification potential. With no other apparent
223 organismsavailable to supplement or take over thisrole, this fundamental service could be

224  degraded or lost from this community, with unknown repercussions for the microbial community
225  andthelarger ecosystem (Dobson et a. 2006; Worm et al. 2006). Recently, nitrifiers, and in

226  particular Archaeal nitrifiers, have been shown to be active in carbon fixation in freshwater

10
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227  benthic sediments (Orsi 2018). Thusloss of nitrifiers could impact coupled carbon-nitrogen

228  cycling in the subsurface and associated river corridors.

229  Diversity dynamics of denitrification genes. Denitrification genes have been identified in a broad
230 range of taxa (Shapleigh 2013), and as such, our expectation was that within the hyporheic zone
231 community there would be a high diversity across all component steps (Graham et al. 2016c;

232 Schimd 1995). While we did observe considerable overall abundance of all genes, the levels of
233 richnessfor the genes representing the individual activities varied, ranging from 52 phylotypes
234  for nitrate reduction (narG) to 23 phylotypes for nitrite reductase (nirK and nirS) (Fig 6). This
235  observation supports the concept that denitrification genes are distributed among members of the
236 community as partial pathways or individual genes (Bru et al. 2011; Kell et a. 2011). Further,
237  therewas a surprising distribution of nitrous oxide reductase genes, with the type Il form

238 (nosZll), which istypically found in non-denitrifying organisms (Sanford et al. 2012), having
239  much greater abundance and richness (49 phylotypes) than the type | form (nosZl, 2 phylotypes).
240  Temporal variance of within-gene diversity for genesinvolved in both nitrification and

241  denitrification demonstrates that the organisms encoding these activities are sensitive to different
242  ecological selection pressures and thus different strategies are required to maintain functional

243 potential in response to perturbation. For genes with high phylotype richness, high temporal

244  abundance variance indicates a changing phylotype profile (nirKS norB). These functions may
245  be maintained through resilient microbial taxathat recover rapidly from environmental change.
246 Conversely, low temporal variance (narG, nosZ) indicates a stable phylotype profile. These

247  functions are maintained through resistant taxa that persist across a broad range of environmental
248  conditions, with the possibility that the other low abundance phylotypes are capable of

249  supplanting them should they fail under different conditions.

11
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It is notable that while all genes associated with denitrification had high phylotype richness (in
contrast to nitrification genes), the genes associated with intermediate reactions had higher
temporal diversity variance than narG (Fig 2), which encodes the initial step in denitrification
(i.e, nitrate reduction). One explanation for the observed differences could be that there are
different levels of competition for the substrates fueling each activity. Intermediate substrates
nitrite and nitric oxide may be produced slowly and/or consumed quickly, especially considering
there are multiple cellular processes for which they are intermediates and they are both toxic to
cells. Supporting this contention, nitrite is typically undetectable in samples from this location,
while nitrate is readily detectable (Graham et al. 2017). Low availability would lead to high
substrate competition, which could result in the increased phylotype turnover observed in nirK,
nirSand norB genes. Modeling the redundancy provided to a process by within-gene diversity
thus requires an understanding of temporal variation in the selective pressures for each gene

involved.

Influence of seasonal changes in hydrogeochemsitry. Seasonal changes in groundwater to surface
water ratios appear to be a major influence on N-cycling functional potentia in microbial
communities. Increase in groundwater content corresponded to increasing per-capita abundance
of nitrification genes and decreasing abundance/increasing diversity of denitrification genes. The
nirKS and norB gene families, which displayed similar high phylotype turnover behavior, were
not smilar in their response to the environmental parameters measured, with nirKSshowing a
decrease in richness in response to groundwater while norB showed a decrease in abundance.
The nar G and nosZ gene families, which showed more stable profiles, both increased in diversity
in response to groundwater, however, nosZ did so through increased richness, while narG likely

gained evenness through reduced abundance of dominant phylotypes. Organic carbon (NPOC)

12
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273 had amuch weaker association with gene-level metrics, relative to groundwater. A group of co-
274  occurring organisms with a negative correlation to groundwater has been reported in this

275  sediment system (Graham et al. 2017). The group is dominated by Alpha-, Beta- and

276  Gammaproteobacteria, Bacteroidetes and Planctomycetes, the same taxa that encode nearly all of
277  theidentified denitrification genes. Strong homogenous selection was shown to be the

278  mechanism structuring this group (Graham et a. 2016a). Taken together, these data suggest that
279  some factor other than carbon that iswithin the groundwater is the selective force driving the
280  diversity dynamics of these organisms carrying N-cycling genes. A likely candidateisthe N

281  content of groundwater, which is significantly higher than that of the surface water (Stegen et al.

282  2018).

283  Genediversity and processresilience. Conceptualizing and studying diversity within individual
284  genefamiliesis adeparture from the contemporary perspective that largely focuses on

285  organismal diversity or abundances of gene families. Variation in diversity across component
286  stepsof key biogeochemical processes and the dynamics of within-gene diversity in response to
287  environmental change is therefore unexplored. This hampers our ability to predict ecosystem
288  responsesto future environmental changes. To illustrate the importance of diversity across

289  individual component steps of biogeochemical processes, we use the analogy of an electrical
290  circuit (Fig 7). Continuity from one step to the next is required for the full process/circuit to
291  function. To preserveintegrity of the circuit there is parallélization within each component step,
292  whereby there are multiple options for completing a given step (Condition A). In abiological
293  context, this manifests as multiple organisms encoding the same activity through different aleles
294  of the same gene. Under different environmental conditions, various options may not be

295 available either because the conditions are not favorable to the expression or operation of the

13
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296  gene, or the organism encoding that gene is eiminated from the community. The function is
297  maintained by the availability or introduction of alternates that can function under the new

298  conditions (Condition B). Conditions may exist, however, under which no options for agiven
299  component step are available to the system, for example if an anaerobic system was exposed to
300 sufficient oxygen to inhibit nitrous oxide reductase activity. This scenario will prevent the full
301  biogeochemical process (e.g., denitrification) from completing, at least temporarily, even if the
302  some component steps are functioning (Condition C). Steps with low within-gene diversity are
303 morelikely to experience environmental conditions that cause all options to be eliminated. Just
304 asachainisonly asstrong asits weakest link, the ability of a metabolic pathway to continue

305  functioning is determined by the component step with the lowest diversity.

306  We propose that accounting for the influence of environmental variation on realized

307  biogeochemical rates in predictive models should connect environmental conditions to the

308  dynamics of component steps. Doing so would allow models to account for variation in the
309  susceptibility of each step to perturbation, based on within-gene diversity and dynamics. For
310 example, reaction network models could represent the combined influence of gene-level

311  abundance and diversity on continued function during and after perturbation. Recent modeling
312  developments open up such opportunities, such as Song et al.’ s reaction network model that
313 explicitly represents control of enzyme expression at each step along a given biogeochemical
314 pathway (Song et al. 2017). Thismodd could be easily modified to represent different levels of
315  diversity and abundance of gene phylotypes across component steps. Numerical experiments
316  using the resulting model could comprehensively explore the sensitivity of biogeochemical
317  function to among-step variation in within-gene diversity and dynamics. We also contend that

318 thereisaneed to incorporate within-gene diversity into our conceptualization of diversity and
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319  focus on understanding the ecological processes governing diversity within individual genes.
320 Merging such ecological knowledge with mechanistic biogeochemical models should improve
321 our ability to predict biogeochemical function under future environmental conditions.

322

323  Experimental Procedures

324  Sampling. Sediment communities were captured using sand packs incubated within piezometers
325 asdescribed (Graham et a. 2016a). Briefly, 1.2 m, fully-screened, stainless steel piezometers
326  (5.25cminner diameter) were deployed along the margin of the Columbia River at

327  approximately 46° 22" 15.80”N, 119° 16’ 31.52"W. Sand packs composed of ~80 cm® of locally-
328  sourced medium grade sand (>0.425mm <1.7mm) packed into 2 x 4.5”, 18/8 mesh stainless
329  sted infuser plugged with Pyrex fiber glass were stexilized by combustion at 450°C for 8hr and
330 then deployed in pairsfor six week incubations collected at three week intervals from April 30,
331 2014 to November 25, 2014. Upon retrieval, paired sand packs were combined and

332 homogenized. A ~145 mL subsample was flash-frozen and transported on dry ice back to the
333  laboratory for metagenomic analysis. Aqueous samples were taken as previously described

334 (Graham et al. 2016a). Briefly, at each piezometer, peristaltic pumps and manifolds were purged
335  for 10-15 minutes. Following the purge, water was pumped through 0.22 um polyethersulfone
336 Sterivex filtersfor 30 minutes. Filtered water was used for water chemistry analysis.

337

338  Water Chemistry. Water chemistry was determined as previously described (Graham et al.
339  20164a). Briefly, water temperature was measured with a handheld meter (Ultrameter 11, Myron L
340 Co Carlshad, CA). A YSI Pro ODO handheld with an optical DO probe (YSI Inc. Yellow

341 Springs, OH) was used to measure dissolved oxygen. NPOC was determined by the combustion
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342  catalytic oxidation/NDIR method using a Shimadzu TOC-Vcsh with ASI-V auto sampler

343  (Shimadzu Scientific Instruments, Columbia, MD). Samples were acidified with 2 N HCI and
344  sparged for 5 minutes to remove DIC. The sample was then injected into the furnace set to

345  680°C. Nitrate concentrations were determined on a Dionex ICS-2000 anion chromatograph with
346 ASA0 auto sampler. A 25-minute gradient method was used with a 25-uL injection volume and a
347 1 mL/min flow rate at 30°C (EPA-NERL: 300.0).

348

349  DNA extraction. Genomic DNA was prepared from sediment samples as previously described
350 (Graham et al. 2016a). Briefly, to release biomass, thawed samples were suspended in 20mL of
351  chilled PBS/0.1% Na-pyrophosphate solution and vortexed for 1 min. The suspended fraction
352 was decanted to a fresh tube and centrifuged for 15’ at 7000 x g at 10°C. DNA was extracted
353  from the resulting pellets using the MoBio PowerSoil kit in plate format (MoBio Laboratories,
354  Inc., Carlsbad, CA) following manufacturer’ s instructions with the addition of a 2 hour

355  proteinase-K incubation at 55°C prior to bead-beating to facilitate cell lysis.

356

357  Sequencing. Genomic DNA purified from sandpack samples was submitted to the Joint Genome
358 Institute under JGI/EM SL proposal 1781 for paired-end sequencing on an Illumina HiSeq 2500
359  sequencer. Results from the sequencing are presented in Table S1. Data sets are available

360  through the JGI Genome Portal (http://genome.jgi.doe.gov). Project identifiers arelisted in Table

361 Sl.
362
363  Metagenomic analysis. To quantitate gene families of interest, hidden Markov models (HMMSs)

364  were obtained or built and searched against raw metagenomic reads. HMMs used in this study
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365 arelisted in Table 1. HMMswere searched against raw reads using MaxRebo (Lee Ann McCue,
366  unpubl.), which transates each read in six frames, and searches the translations against the target
367 HMM(s), usng HMMer (Eddy 2011) on adistributed, high-performance computing framework.
368  Output was screened for reads with a significant score (e-value < 1e-25) against the HMM. Raw
369  countswere converted to RPKM (reads per kilobase of gene length per million reads) using the
370 HMM length x 3 as the gene length. Results from forward and reverse reads were averaged and
371 normalized against the summed RPKMs of the rplB and rplB_arch models. Individual genes of
372 interest were assembled from the combined metagenomic datasets using the Xander assembler
373 (Wang et al. 2015) and the HMMs listed in Table 1 and associated required files. Resulting

374  contigs were clustered at 90% amino acid identity (Supplementary Data 1) to define

375  phylotypes. Phylogeny was assessed by aligning protein sequences with mafft v7.164b (Katoh et
376  a. 2002; Katoh and Standley 2013) and constructing approximated maximum-likelihood trees
377 using FastTreev2.1.9 (Price et al. 2010). Phylotype profiles were determined by searching

378 individua metagenomic read sets against the resulting gene contigs and calculating RPKM

379  values and normalizing against the summed phylotype RPKM for the gene. Bray-Curtis

380 dissmilarity between samples for each gene was calculated using the R package vegan (Dixon
381  2003), and resulting values were used to generate a boxplot.

382

383  Community analysis. Amplicon data used was from Graham et al., 2016b. Bray-Curtis distance
384  was determined as described below, and plotted using R.

385

386  Satistics. Bray-Curtis dissimilarity, as implemented in the R package vegan (Dixon 2003), was

387  used to measure beta diversity. Values were averaged for both the total dataset and the T4 dataset
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388  aone. Early (n=6) versus late (n=5) gene abundance comparisons were tested for significance
389  using the Mann-Whitney-Wilcoxon test asimplemented in R v.3.3.2 (https://www.r-project.org).
390  For turnover heatmaps, assembled sequences were searched against the read set to estimate

391  individual abundances. Sequences were then clustered into phylotypes at 90% identity, and

392  abundances summed. The relative abundance of each phylotype was then determined by dividing
393 itsabundance by the summed abundance of all phylotypes of the gene in question. Trees were
394  determined from nucleic acid sequence alignments (mafft) using the maximum-likelihood

395  approach implemented in FastTree. Inverse Simpson statistic for the assembled sequences was
396  calculated cumulatively for each gene at each time point, also using the vegan package. Linear
397  regressions and associated R? and p-values were calculated in R v3.3.2.

398
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411 Tablel. HMMsused in thisstudy

Gene HMM Source
Nitratereductase, alpha subunit (narG) narG FunGene'

Cu-containing nitrite reductase (nirK)

Clade! nirk1 PNNL?
Cladell nirK2 PNNL
Fe-containing nitritereductase (nirS) nirS FunGene
Nitric oxide reductase (nor B)
Copper norB_cNor FunGene
quinone norB_gNor FunGene
Nitrous oxide reductase
nosZl nosZ FunGene
‘non-denitrifying’ (nosZll) nosZ_a2 FunGene
Ammonia monooxygenase
bacterial amoA_AOB FunGene
archaeal amoA_AOA FunGene
Nitrite oxidoreductase, alpha subunit nxrA-1 PNNL
Ribosomal protein RplB
bacterial rplB FunGene
archaeal rplB_arch PNNL

412 ' Available at https://github.com/rdpstaff/X ander_assembler
413 2 Available at https://github.com/wichne/Xander_files

414
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415  Figurelegends

416  Figure 1. Water chemistry and temper atur e of sampled sites. Piezometer T2, light gray;

417  piezometer T3, dark gray; piezometer T4, black. For comparison, data for adjacent river water is
418  presented (blue). The vertical dotted line indicates the date at which the hyporeheic zone

419  hydraulic regime changes from surface water intrusion to groundwater discharge.

420  Figure 2. Sediment microbial community continuously changes across the year. Distance-
421  decay plot of all 16SrRNA amplicon data, amplicon data from only site T4, and rplB genes

422  assembled from all metagenomes.

423 Figure 3. Relationship between phylotype richness and tur nover. Unique sequences

424  assembled from the metagenomic dataset were clustered into phylotypes using a 90% amino acid
425  identity cutoff.

426  Figure4. Changein cumulative diversity over time. Inverse Simpson was cal cul ated

427  cumulatively for each time point for each gene or functional gene class (nirK and nirS counts
428  were combined; archaeal and bacterial amoA types were combined) and the difference from the
429 initial (April 30) diversity measure determined. Most genes' values plateau, indicating sample-
430  to-sample changesin diversity are within afinite pool of phylotypes. Increase indicates

431  introduction of new phylotypes, or increases in evenness. Decrease for amoA isdriven by a

432  decrease in evenness between the bacterial and archaeal phylotypes (Fig S5A), whereas the early
433  decrease for nirKSwasdriven largely by speciesloss (Fig S3A).

434  Figure5. Per-capita abundance of denitrification and nitrification genes. RPKM for each
435  gene was normalized against the RPKM for the rpl B gene as a proxy for the number of

436  individuals sampled. A Denitrification genes. B Nitrification genes.
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437  Figure 6. Redundancy diagram of nitrification and denitrification activities. Individual lines
438  represent phylotypes. Colors represent different HMMs used to identify genes of each family: for
439  AmoA, blue=amoA_AOA, red=amoA_AOB; for NirKS, red=nirK1, blue=nirK2, green=nirS;
440  for NorB, yellow=gNorB, blue=cNorB; for NosZ, magenta=nosZI, green=nosZ_a2; NxrA and
441  NarG each only had one model.

442  Figure7. Circuit diagram of a metabolic pathway. Stepsin series convert substrates (S), to
443  variousintermediates (11, 12), to a product (P). Redundancy is represented by parallel paths,

444  which can be regulated individually (denoted by arrow gates). Under conditions A and B,

445  product is produced, but by different paths, whereas under condition C, although the blue and

446  green stepsare active, neither of the orange steps are, preventing production of 12 and P.

21


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/722785; this version posted August 2, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

aCC-BY-NC-ND 4.0 International license.

REFERENCES

Allison, S. D., and J. B. Martiny. 2008. Colloquium paper: resistance, resilience, and redundancy in
microbial communities. Proc Natl Acad Sci U S A 105 Suppl 1: 11512-11519.

Anantharaman, K. and others 2016. Thousands of microbial genomes shed light on interconnected
biogeochemical processes in an aquifer system. Nat Commun 7: 13219.

Bru, D. and others 2011. Determinants of the distribution of nitrogen-cycling microbial communities at
the landscape scale. ISME J 5: 532-542.

Daims, H. and others 2015. Complete nitrification by Nitrospira bacteria. Nature 528: 504-509.

Dixon, P. 2003. VEGAN, a package of R functions for community ecology. J Veg Sci 14: 927-930.

Dobson, A. and others 2006. Habitat loss, trophic collapse, and the decline of ecosystem services.
Ecology 87: 1915-1924.

Eddy, S. R. 2011. Accelerated Profile HMM Searches. PLoS Comput Biol 7: €1002195.

Gibbons, S. M., and J. A. Gilbert. 2015. Microbial diversity--exploration of natural ecosystems and
microbiomes. Curr Opin Genet Dev 35: 66-72.

Girvan, M. S., C. D. Campbell, K. Killham, J. I. Prosser, and L. A. Glover. 2005. Bacterial diversity promotes
community stability and functional resilience after perturbation. Environ Microbiol 7: 301-313.

Graf, D. R. H., C. M. Jones, and S. Hallin. 2014. Intergenomic Comparisons Highlight Modularity of the
Denitrification Pathway and Underpin the Importance of Community Structure for N20
Emissions. Plos One 9.

Graham, E. B. and others 2016a. Coupling Spatiotemporal Community Assembly Processes to Changes in
Microbial Metabolism. Frontiers in Microbiology 7.

---. 2016b. Coupling Spatiotemporal Community Assembly Processes to Changes in Microbial

Metabolism. Front Microbiol.

22


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/722785; this version posted August 2, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

aCC-BY-NC-ND 4.0 International license.

Graham, E. B. and others 2017. Deterministic influences exceed dispersal effects on hydrologically-
connected microbiomes. Environ Microbiol 19: 1552-1567.

Graham, E. B. and others 2016c. Microbes as Engines of Ecosystem Function: When Does Community
Structure Enhance Predictions of Ecosystem Processes? Front Microbiol 7: 214.

Graham, E. B. and others 2014. Do we need to understand microbial communities to predict ecosystem
function? A comparison of statistical models of nitrogen cycling processes. Soil Biol Biochem 68:
279-282.

Hooper, D. U. and others 2005. Effects of biodiversity on ecosystem functioning: A consensus of current
knowledge. Ecol Monogr 75: 3-35.

Jones, C. M. and others 2014. Recently identified microbial guild mediates soil N20 sink capacity. Nat
Clim Change 4: 801-805.

Katoh, K., K. Misawa, K. Kuma, and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence
alignment based on fast Fourier transform. Nucleic Acids Res 30: 3059-3066.

Katoh, K., and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7:
improvements in performance and usability. Mol Biol Evol 30: 772-780.

Keil, D. and others 2011. Influence of land-use intensity on the spatial distribution of N-cycling
microorganisms in grassland soils. Fems Microbiol Ecol 77: 95-106.

Konstantinidis, K. T., and J. M. Tiedje. 2005. Genomic insights that advance the species definition for
prokaryotes. Proc Natl Acad Sci U S A 102: 2567-2572.

Lansdown, K. and others 2014. Fine-Scale in Situ Measurement of Riverbed Nitrate Production and
Consumption in an Armored Permeable Riverbed. Environ Sci Technol 48: 4425-4434,

Mobberley, J. M. and others 2017. Organismal and spatial partitioning of energy and macronutrient

transformations within a hypersaline mat. Fems Microbiol Ecol 93.

23


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/722785; this version posted August 2, 2019. The copyright holder for this preprint (which was not

certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

aCC-BY-NC-ND 4.0 International license.

Nelson, M. B., R. Berlemont, A. C. Martiny, and J. B. Martiny. 2015. Nitrogen Cycling Potential of a
Grassland Litter Microbial Community. Appl Environ Microbiol 81: 7012-7022.

Nelson, M. B., A. C. Martiny, and J. B. Martiny. 2016. Global biogeography of microbial nitrogen-cycling
traits in soil. Proc Natl Acad Sci U S A 113: 8033-8040.

Price, M. N., P. S. Dehal, and A. P. Arkin. 2010. FastTree 2--approximately maximum-likelihood trees for
large alignments. PLoS One 5: €9490.

Rosenfeld, J. S. 2002. Functional redundancy in ecology and conservation. Qikos 98: 156-162.

Sanford, R. A. and others 2012. Unexpected nondenitrifier nitrous oxide reductase gene diversity and
abundance in soils. Proc Natl Acad Sci U S A 109: 19709-19714.

Schimel, J. 1995. Ecosystem Consequences of Microbial Diversity and Community Structure. Ecol Stu An
113: 239-254.

Shade, A. and others 2012. Fundamentals of microbial community resistance and resilience. Frontiers in
Microbiology 3.

Shapleigh, J. P. 2013. Denitrifying Prokaryotes, p. 405-425. In E. Rosenberg, E. F. Delong, S. Lory, E.
Stackebrandt and F. Thompson [eds.], The Prokaryotes: Prokaryotic Physiology and
Biochemistry. Springer Berlin Heidelberg.

Song, H. S., N. Goldberg, A. Mahajan, and D. Ramkrishna. 2017. Sequential computation of elementary
modes and minimal cut sets in genome-scale metabolic networks using alternate integer linear
programming. Bioinformatics 33: 2345-2353.

Stegen, J. C. and others 2018. Influences of organic carbon speciation on hyporheic corridor
biogeochemistry and microbial ecology. Nat Commun 9: 585.

Stoliker, D. L. and others 2016. Hydrologic Controls on Nitrogen Cycling Processes and Functional Gene
Abundance in Sediments of a Groundwater Flow-Through Lake. Environ Sci Technol 50: 3649-

3657.

24


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/722785; this version posted August 2, 2019. The copyright holder for this preprint (which was not
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license.

517 Tilman, D., J. Knops, D. Wedin, P. Reich, M. Ritchie, and E. Siemann. 1997. The influence of functional
518 diversity and composition on ecosystem processes. Science 277: 1300-1302.

519 Torsvik, V., and L. Ovreas. 2002. Microbial diversity and function in soil: from genes to ecosystems. Curr
520 Opin Microbiol 5: 240-245.

521  Walker, B. H. 1992. Biodiversity and Ecological Redundancy. Conserv Biol 6: 18-23.

522  Wang, Q. and others 2015. Xander: employing a novel method for efficient gene-targeted metagenomic
523 assembly. Microbiome 3: 32.

524 Wang, 2. Y., Y. Qi,J. Wang, and Y. S. Pei. 2012. Characteristics of aerobic and anaerobic ammonium-
525 oxidizing bacteria in the hyporheic zone of a contaminated river. World J Microb Biot 28: 2801-
526 2811.

527 West, S. A,, and G. A. Cooper. 2016. Division of labour in microorganisms: an evolutionary perspective.
528 Nature Reviews Microbiology 14: 716.

529 Winogradsky, S. 1890. Recherches sur les organismes de la nitrification. Ann. Inst. Pasteur 4: 213-231.
530 Worm, B. and others 2006. Impacts of biodiversity loss on ocean ecosystem services. Science 314: 787-
531 790.

532 Yachi, S., and M. Loreau. 1999. Biodiversity and ecosystem productivity in a fluctuating environment:
533 The insurance hypothesis. P Natl Acad Sci USA 96: 1463-1468.

534  Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol Mol Biol Rev 61: 533-

535 616.

536

25


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

—I
-
feli]
£

NPOC

Nitrate

4 E-04

4 E-(4



https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

Cm

o rplB

165
e 16S_T4|

90 S0

Apsepuaissig siung-Aeig

200

150

100

20

Days between Samples


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

Median variance of normalized relative abundance

0.1

0.01

0.001

0.0001

0.00001

-l AmoA
Nirks
[ ]
- NorB NosZ
3 |
[ NxrA m NarG
10 20 30 40 50 60

Phylotype richness


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

10

—hnosZ —amoA —nxrA

—norB

—nirkKS

—narG

=] o =t o~ =]

Xapul uosdwis asJaAu| ul a8ueyd aAlje|nWNI

09Q-€T
NON-6T
NON-GT
NON-T
0-8T
POt
das-0z
das-9
any-€¢
any-6
INr-9¢
Inr-21
unr-gg
unf-yT
AeN-TE
AeN-LT

Ae|N-€

1dy-6T


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

0.5

=
=

gene copies per capita
=] =]
%] (S5

=]
-

%
@

03

0.2

01

gene copies per capita

=

ota i A
\";11'1" 1.1*»“"'" 3 I.L’“ﬂ-!II Q‘bﬁl'@]ll
"-—l—_f_

W A "] e
T;‘L’n ,lnnyb.". » R@‘i #,Il@"n

— gt E
—rirKSS
B

— 0


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

Nitrification

NH;

AmoA

Denitrification

NO;

NarG

NO,

NO,

NxrA

NirkS

NO

NO;

NorB

N,O

NosZ


https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

Condition A

ConditionB

ConditionC



https://doi.org/10.1101/722785
http://creativecommons.org/licenses/by-nc-nd/4.0/

