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1. ABSTRACT

The composition of the gut microbiome is impacted by a complex array of factors, from nutrient
composition and availability, to physical factors like temperature, pH and flow rate, as well as
interactions among the members of the microbial community. Many of these factors are
affected by the host, raising the question of how host genetic variation impacts microbiome
composition. Human studies confirm a role for host genetics, but opinions vary on just how
important is host genetic variation in determining gut microbiome composition. The mouse
model, by allowing far better control of genetics, nutrition, and other environmental factors, has
provided an excellent opportunity to extend this work, and the Diversity Outbred (DO) mice in
particular present a chance for mapping host genetic variants that influence specific attributes of
microbiome composition. Here we apply 16s sequencing to fecal samples of 247 DO mice and
perform QTL mapping on microbial abundances. In addition to finding a number of novel
associations, the concordance with heritabilities and associations with both human and mouse
studies was striking, including the phylum Tenericutes, family Ruminococcaceae, as well as
Staphylococcus and Turicibacter.

2. INTRODUCTION

The gastrointestinal tract of all vertebrates, including humans, harbors a complex
ecological community of highly diverse microbes referred to as the gut microbiota. The
microbiota colonizes the gut for the first time during the birth of the host and its composition is
influenced by many factors during the host’s life such as disease, diet, and antibiotics [Dash et
al. 2019, Battaglioli et al. 2018, Dudek-Wicher et al. 2018, Francino 2015]. Variation in the
human gut microbiome composition has also already been associated with host immune
responses [Round and Mazmanian 2009, Veiga et al. 2010, Garrett et al. 2010], metabolic
phenotypes [Turnbaugh et al. 2009, Ridaura et al. 2013], and diseases such as obesity [Ley et
al. 2005], heart disease [Fava 2006], and diabetes [Wen et al. 2008]. Given the roles of the gut
microbiome in complex human diseases, it is important to characterize the factors that impact
microbiome compaosition.

While it is clear that the gut microbiome compaosition is strongly impacted by environmental
exposures [Rothschild et al. 2018], the role of host genetics has only recently been implicated
[Goodrich et al. 2014a, Blekhman et al. 2015, Goodrich et al. 2016]. Studies have identified
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multiple genetic variants significantly associated with specific bacterial taxa abundances
[Goodrich et al. 2017, Bonder et al. 2016, Igartua et al. 2017, Davenport et al. 2015, Turpin et
al. 2016, Wang et al. 2016, Rothschild et al. 2018], despite the observation that generally the
primary determinants of microbiome composition are non-genetic [Rothschild et al. 2018].
Human genetic studies have significant limitations for accurate assessment of genetic effects on
the microbiome, including accessibility to large and diverse sample populations as well as a
general lack of control over confounding variables. One major limitation is that there is minimal
control of diet and other environmental factors, and so only the strongest genetic effects can be
detected.

The mouse model, with the ability to control diet, along with well-defined genetic
differences among inbred strains, provides a better opportunity to dissect genetic and
environmental factors impacting microbiome composition. Quantitative trait locus (QTL)
mapping efforts show that gut microbiota composition is a polygenic trait, with clearly mappable
genetic factors influencing the gut microbiome composition [Benson et al. 2010, McKnite et al.
2012, Snijders et al. 2016]. Standard QTL mapping approaches have low mapping resolution,
however, and advanced intercross lines provide one excellent means of improving mapping
resolution. Belheouane et al. [2017] performed genetic and 16S rRNA gene analysis of skin
microbiomes of a collection of 15-generation advanced intercross lines, and demonstrated that
the improved mapping resolution also improved the specificity and significance of genetic
associations. It is clear that the mouse model will provide further opportunities to dissect the
means by which the host genome can modulate microbiome composition. A logical next step is
a mapping experiment to identify portions of the genome that influence functional pathways that
modulate the microbiome.

Here we extend the analysis of the link between the host genome and microbiome using
the Diversity Outbred mouse model. The Diversity Outbred (DO) population is a heterogeneous
mouse stock derived from the same eight progenitor lines (A/J, C57BL/6J, 129S1/SvimJ,
NOD/ShiLt], NzO/HILtJ, CAST/EiJ, PWK/PhJ, and WSB/EiIJ) used to establish the
Collaborative Cross (CC) [Collaborative Cross Consortium 2012]. Mice from the CC lines at
early stages of inbreeding were used to establish the DO population, which is maintained by
randomized outbreeding among 175 mating pairs. The result is each individual DO mouse
represents a unique combination of segregating alleles, whose genome is a unigue mosaic of
the original eight progenitor lines. The advantages of this outbreeding include normal levels of
heterozygosity — similar to the human genetic condition — and substantially increased genetic
mapping resolution [Churchill et al. 2012]. The CC/DO mice founder progenitor lines have
already proven to be successful in identifying genetic associations with intestinal microbiome
composition [O’'Connor et al. 2014].

In this study, motivated by the high level of environmental control of the laboratory mouse
and the improved mapping resolution of the Diversity Outbred mouse system, we identified
genetic underpinnings of the gut microbiota of 247 Diversity Outbred mice. We uncover strong
evidence of host genetic factors influencing the composition of many specific attributes of the
gut microbiome. These included not only associations between specific host genetic variants
and abundances of particular bacterial taxa, but also associations with functional molecular
pathways.
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3. RESULTS

3.1. Variation of gut microbiota

High-throughput sequencing of fecal samples from 247 three month old male mice from
the Diversity Outbred Mouse Panel generated 15,149,384 16S rRNA gene sequences that
passed the quality filtering criteria after demultiplexing (see Materials and Methods). On
average, 61,334 sequences were obtained per sample (ranging from 17,658 to 135,803
sequences). Sequences were sorted into 57,014 operational taxonomic units (OTUs) at 97%
identity against the Greengenes 8_13 database using open-reference OTU picking. Next, OTUs
were summarized at five levels of taxonomy (phylum, class, order, family, genus). In order to
focus on the most abundant microbes, only the taxa present in at least 50% of samples (i.e.
present in 124 samples or more) were used for all following analysis, leaving a total of 80 taxa
to test at the five levels of taxonomy (7 phyla, 9 classes, 12 orders, 21 families, and 31 genera).
The most predominant taxa at the phylum level were Firmicutes (average relative abundance =
48.64%) and Bacteroidetes (46.41%), which is consistent with previous findings [Benson et al.
2010, McKnite et al. 2012, Org et al. 2015]. The relative abundances of these taxa were highly
variable, with Firmicutes ranging from 11% to 94%, and Bacteroidetes ranging from 1% to 88%

(Figure 1).
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Figure 1. Relative abundances of top ten most abundant phyla across the 247 mouse strains. Relative
abundances shown, mouse strains sorted by phylum Firmicutes, the most abundant phylum.

The top 8 most abundant genera were present in at least 99% of the samples. The two
most abundant genera were an unidentified genus within Bacteroidales family S24-7 (average
relative abundance = 43.89%, ranging from 1% to 88%) and another unidentified genus within
Clostridiales (32.35%, ranging from 4% to 78%), consistent with previous findings [Shin et al.
2016]. Stacked bar plots and box plots depicting relative abundance frequencies for all five
taxonomic levels are available in Figure S1.

When dealing with uneven sequence counts across samples, microbiome studies
commonly normalize the data by rarefying sequence counts, which consists of randomly
selecting from each sample an equal number of sequences without replacement [Weiss et al.
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2017]. It has been argued, however, that rarefaction is not an ideal approach due to valuable
data being discarded [McMurdie and Holmes 2014]. Therefore, we decided to present our
analysis of the non-rarefied data using sequence counts per sample as a covariate, noting also
that the rarefied data provided highly concordant results (see Supplemental Material).

3.2. Heritability estimation

Each of the 247 individual mice used in this study was genetically unique. The unit of
inference for phenotypes was the relative abundance of each taxon in each individual, while the
units of genetic inference were the SNP genotypes at each of 57,973 sites for each mouse
using the mouse array. We estimated narrow-sense “SNP” heritability (h?) using a linear mixed
model in R-package Ime4qtl [Ziyatdinov et al. 2018]. A linear mixed model was used to predict
whether the effects of the autosomal genotype on the phenotype is proportional to the genetic
similarity between the mice, after adjustment for known factors. Thus, calculations were based
on the kinship matrix (genetic similarity), expression of a phenotype (taxon abundance) across
all samples, and additional covariates (such as sequencing lane, read counts, and cage effect).
Significance was assessed by an exact (restricted) likelihood ratio test using R-package
RLRsim [Scheipl et al. 2008]. More details can be found in Materials and Methods. In total, 27
of the 80 tested taxa were heritable (nominal p-value < 0.05), with 3 additional taxa having
statistically suggestive heritabilities of 20% or more (nominal p-value < 0.1) (Table S1A).
Proportion variance estimates for kinship and cage for all taxa are presented in Figure 2.
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Figure 2. Proportion variance estimates for kinship and cage for all taxa. Proportion of variance for each taxon
that can be explained by additive effects (heritability) using a kinship or Genomic Relationship Matrix (GRM) (green),
cage effects (orange), and unexplained residual effects (blue). Taxa marked with a red asterisk have statistically
suggestive QTL (adj. p-value < 0.1).

The most heritable taxon was the class Mollicutes with a heritability estimate of 39% (p-
value of 0.002) (Table 1). Within Mollicutes, an unidentified genus in order RF39 was also found
to be highly heritable, with a heritability of 34% (p-value 0.010) and the genus Anaeroplasma
has a heritability of 28% (p-value 0.013). Within class Clostridia, an unidentified genus in order
Clostridiales showed a heritability of 38% (p-value 0.0106). Furthermore, the genus
Lactobacillus within class Bacilli and the entire Firmicutes phylum were also heritable, at 36%
(p-value 0.008) and 23% (p-value 0.049) respectively. The genus Turicibacter within class
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Bacilli had high heritability estimates as well at 35% (p-value 0.0043) and 28% (p-value 0.029)
respectively. Given the large proportion of the microbiome is composed of either Firmicutes or
Bacteroidales, their proportions are strongly negatively correlated. This means that the high
heritability of Firmicutes abundance implies also a high heritability of the order Bacteroidales
(31%, p-value 0.013), as well as an abundant unidentified genus in family S24-7 (heritability of
32%, p-value 0.014).

Table 1. Heritability of taxa at five taxonomic levels. Only showing ranked results with heritability above 20%.
Results with p-value < 0.05 (statistically significant) are bolded. When results were identical across taxa in the same
phylogenetic branch, only the lowest (most specific) taxon was kept. The designations p_, ¢c_, o_, f , and g_ are for

phylum, class, order, family, and genus, respectively. Complete table of heritability results, incl_uding rarefied data,
can be found in Tables S1A-B.

Heritability % p-value

p_Tenericutes;c_Mollicutes 39% 0.002
p_Firmicutes;c_Clostridia;o_Clostridiales;f_Unclassified;g_Unclassified 38% 0.011
p_Firmicutes;c_Bacilli;o_Lactobacillales;f_Lactobacillaceae;g_Lactobacillus 36% 0.008
p_Firmicutes;c_Bacilli;o_Turicibacteriales;f_Turicibacteraceae;g_Turicibacter 35% 0.043
p_Tenericutes;c_Mollicutes;o_RF39;f_Unclassified;g_Unclassified 34% 0.010
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;f_S24.7;g_Unclassified 32% 0.014
% p_Firmicutes;c_Clostridia;o_Clostridiales;f_Clostridiaceae;g_Clostridium 31% 0.022
Ly p_Tenericutes;c_Mollicutes;o_Anaeroplasmatales;f_Anaeroplasmataceae;g_Anaeroplasma 28% 0.013
p_Firmicutes;c_Clostridia;o_Clostridiales 28% 0.029
p_Firmicutes;c_Bacilli 28% 0.029
p_Firmicutes;c_Clostridia;o_Clostridiales;f_Lachnospiraceae;g_Coprococcus 25% 0.019
p_Firmicutes 23% 0.049
p_Firmicutes;c_Erysipelotrichi;o_Erysipelotrichales;f_Erysipelotrichaceae;g_Coprobacillus 23% 0.063
p_Proteobacteria;c_ Gammaproteobacteria;o_Enterobacteriales;f_Enterobacteriaceae 20% 0.071

3.3. QTL Mapping

QTL mapping of the bacterial taxa at the five taxonomic levels revealed significant findings
that suggest statistically significant associations between host genotype and abundances of
certain taxa. QTL regions on autosomes were found using the R-package Ime4qtl [Ziyatdinov et
al. 2018]. Significance was assessed first by comparison of models with and without genotype
via a likelihood ratio test, followed by a genome-wide permutation test. The reported p-values
were corrected for multiple testing across SNPs (but not across taxa). In total, genetic
associations with 3 taxa were found to be statistically significant (adj. p-value < 0.05), and
genetic associations with 3 additional taxa were statistically suggestive (adj. p-value < 0.1)
(Table 2, Table S2A).
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We found statistically significant QTL associated with the abundance of family
Ruminococcaceae, order Bacillales, and genus Staphylococcus (Table 2). We also found
statistically suggestive QTL associated with phylum Bacteroidetes, order Bacteroidales, and
class Mollicutes. Multiple QTL for various taxa overlapped with the QTL regions for their parent
taxa, such as QTL hit for genus Staphylococcus (which is below the taxonomic branch for order
Bacillales) overlapping the QTL hit for order Bacillales (Table 2). These overlaps are a common
occurrence in both the significant and non-significant QTL (Table S2A).

Table 2. QTL regions for taxa at five taxonomic levels. Only showing ranked results with adj. p-value < 0.1
(statistically suggestive). Results with adj. p-value < 0.05 (statistically significant) are bolded. When results were
overlapping across taxa in the same phylogenetic branch (such as p_Bacteroidetes and o_Bacteroidales),
permutations were calculated only for the lowest (most specific) taxon. The designations p_, ¢c_, o_, f_, and g_ are for
phylum, class, order, family, and genus, respectively. Complete table of QTL results, including rarefied data, can be
found in Tables S2A-B.

chr*  maxlod®  pos® from¢ to® p-value  adj.p-value perm.p-value
p_Bacteroidetes 5 7.1 118.27  118.01 118.42 297E-05 0.089 NA
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales 5 7.20 117.73  117.43 117.76 2.46E-05 0.085 0.105
5 6.84 117.79 117.79 117.80 5.06E-05 0.085 0.192
5 7.49 118.58 118.01 118.81 1.38E-05 0.085 0.061
p_Firmicutes;c_Bacilli;o_Bacillales 19 8.37 27.02 26.55 27.42 2.38E-06 0.042 NA
p_Firmicutes;c_Bacilli;o_Bacillales;f_Staphylococcaceae;g_Staphylococcus 19 8.30 27.04 26.51 27.46 2.73E-06 0.023 0.008
]
E 19 7.97 27.82 27.61 28.20 5.36E-06 0.023 0.022
19 6.68 32.10 31.83 32.28 6.82E-05 0.075 0.243
19 6.56 32.43 32.43 32.46 8.73E-05 0.078 0.292
p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae 5 7.12 31.93 31.90 32.16 2.91E-05 0.046 0.169
5 7.27T 32.52 32.27 33.36 2.14E-05 0.046 0.111
2 6.87 170.57 170.51 170.64 4.7T1E-05 0.048 0.09
p_Tenericutes;c_Mollicutes 1 7.00 121.32 120.23 125.20 3.66E-05 0.089 0.155

*Chromosome in which lies the QTL

®Maximum LOD score within the QTL

*Pasition in the chromosome where the maximum LOD score is found
“Chromosomal position where the QTL begins

¢ Chromosomal position where the QTL ends

Looking at specific QTL, we identified the genes Insig2 and Ksr2 on the highest point in
the region for the class Mollicutes (chr1:121,315,223, LOD = 7.002) and the order Bacteroidales
(chr5:117,733,508, LOD = 7.203) respectively. INSIG2 plays a central role in the pathway by
which the circadian clock regulates liver lipid metabolism [Zhang et al. 2017] and Ksr2 has been
implicated in being associated with BMI and severe early-onset obesity through large scale
GWAS studies [Milaneschi et al. 2019].

3.4. OTU level analysis

Next, we decided to increase the specificity of the taxonomic classifications to operational
taxonomic units (OTUs) by compiling all OTUs identified within taxa that had statistically
suggestive QTL (Table 2). We filtered out OTUs that were present in less than 50% of the
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samples, resulting in 362 OTUs. QTL mapping performed on these selected OTUs resulted in
59 OTUs with at least one statistically suggestive association. Additionally, 99 OTUs were found
to be heritable (h?> > 20%, p-value < 0.05), of which 28 OTUs also had statistically suggestive
QTL (Tables S3 and S4). Proportion variance estimates for kinship and cage for all tested
OTUs are presented in Figure S3.

QTL associations to OTUs varied compared to overlapping QTL regions associated to
taxa at higher taxonomic levels, some were sharper and stronger, others were less specific and
wider (Table 3). These results are interesting because a sharper QTL peak associated with an
OTU may suggest that the overlapping QTL region associated with the broader taxonomic
group is being driven by that specific OTU. On the other hand, if the overlapping QTL region
associated with the broader taxonomic group is smaller and more specific than the region seen
on an individual OTU, this might suggest a cumulative effect of multiple sub-taxonomies driving
a stronger signal at the broader taxonomic level. For example, QTL for OTU 338796 and
New.CleanUp.ReferenceOTU 170146 within family Ruminococcaceae were both statistically
significant and overlapped with the QTL region for Ruminococcaceae, but the QTL for the OTUs
were both wider.

Table 3. QTL regions for OTUs. Only showing OTUs with adj. p-value < 0.1 (statistically suggestive) and with a QTL
region overlapping QTL from higher-level taxonomies. Results with adj. p-value < 0.05 (statistically significant) are
bolded. Complete table of QTL results for OTUs can be found in Tables S4.

chr maxlod pos from to p-value adj.p-value perm.p-value
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;0TU_421792 5 5.87 118.69 118.63 118.82 3.26E-04 0.076 0.642
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;OTU_460953 5 5.79 118.69 118.58 118.79  3.B4E-04 0.078 NA
p_Bacteroidetes,c_Bacteroidia,o_Bacteroidales;0TU_190835 5 5.67 118.67 118.58 118.74 4.77E-04 0.076 NA
p_Bacteroidetes;c_Bacteroidia;o_Bacteroidales;OTU_209408 5 7.02 118.67 118.50 118.82 3.53E-05 0.064 NA
p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae; OTU_NR.OTU100 5 8.22 31.93 30.25 32.08 3.23E-06 0.064 0.023
"_E p_Firmicutes;c_Clostridia;o_Clostridiales;f_Rumir ;OTU_338796 2 8.15 170.57 169.64 170.96  3.T4E-06 0.023 0.023
p_Fimmicutes;c Clostridia;o_Clostridiales;f Ruminococcaceae; OTU NR.OTU25 5 7.65 31.83 31.34 32.00 1.01E-05 0.076 0.088
5 7.36 32,27 32.11 32.40 1.80E-05 0.076 0.048
5 7.36 32.27 32.11 32.39 1.80E-05 0.076 0.081
p_Fimmicutes;c Clostridia;o_Clostridiales;f Ruminococcaceae; OTU 336810 2 6.32 170.54 170.48 170.56 1.39E-04 0.100 NA
p_Firmicutes;c_Clostridia;o_Clostridiales;f_Ruminococcaceae;OTU_NCR.OTU170146 5 7.63 36.01 32.27 36.22 1.05E-05 0.030 NA

3.5. Comparison to other studies

Results from other published studies on heritabilities of the various bacterial taxa in the gut
microbiome of mice, pigs, and humans were compiled and compared with our results (Figure
3). A full comparison of heritabilities among all analyzed taxa in our study and other studies can
be found in Table S5.

Family S24-7 within order Bacteroidales had a high heritability in our study (h? = 0.32) and
it has been reported as heritable and significant in both mice (h? = 0.60 in Org et al. 2015) and
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humans (h® = 0.33 in Turpin et al. 2016) (Figure 3). Genus Lactobacillus was found to have a
high and significant heritability (h* = 0.36) and it was also found to be highly heritable in one
mouse study (h? = 0.74 in O’Connor et al. 2014) and both highly heritable and significant in a pig
study (h* = 0.34 in Camarinha-Silva et al. 2017) and multiple human studies (h? = 0.36 in
Davenport et al. 2015, 0.26 in Turpin et al. 2016, and 0.15 in Lim et al. 2017). Genus
Turicibacter, also within class Bacilli, was found to have a high and significant heritability as well
(h* = 0.57) and was found to be highly heritable in one mouse study (h* = 0.54 in Org et al.
2015) and display a strong QTL association in another ( ). Turicibacter was
also found to be significantly heritable in human studies (h?* = 0.26 in Turpin et al. 2016 and 0.36
in Goodrich et al. 2016). Under the class Clostridia and still within the phylum Firmicutes, family
Christensenellaceae in our rarefied dataset had a high, significant heritability (h? = 0.31) that did
not appear in our non-rarefied dataset. In human studies, Christensenellaceae has been found
to be highly heritable and statistically significant (h* = 0.64 in Turpin et al. 2016, 0.42 in
Goodrich et al. 2016, and 0.31 in Lim et al. 2017). Additionally, we found genus Clostridium to
have a high and significant heritability (h* = 0.31) that was also seen in other human studies as
well (h* = 0.24 in Goodrich et al. 2016 and 0.46 in Davenport et al. 2015). The genus
Coprococcus was also significant and highly heritable from our study (h? = 0.25) as well as in
various human studies (h? = 0.46 in Davenport et al. 2015 and 0.16 in Lim et al. 2017).

The clade within the phylum Tenericutes including genus Anaeroplasma gave high and
statistically significant heritabilities in both our rarefied and non-rarefied datasets (Figure 3).
Few other studies found similar results either because they did not include these taxa in their
study or their results gave weaker heritabilities with non-significant p-values. Nonetheless, one
mouse study did find a high heritability for genus Anaeroplasma (h® = 0.48 in O’Connor et al.
2014). In human studies, significant heritabilities were found for phylum Tenericutes (h? = 0.34
in Goodrich et al. 2016 and 0.23 in Lim et al. 2017), class Mollicutes (h* = 0.32 in Goodrich et al.
2016 and 0.23 in Lim et al. 2017), and order RF39 (h? = 0.31 in Goodrich et al. 2016).

Both our non-rarefied and rarefied datasets gave insignificant heritability estimates of 0.02
for the genus Akkermansia and all the way up its taxonomic branch to phylum Verrucomicrobia,
yet estimates from Org et al. 2015 were as high as h? = 0.92, and heritability of Akkermansia
from O’Connor et al. 2014 was h? = 0.62 in mice. Studies conducted using human microbiome
samples show a diversity of heritability estimates for this taxonomic branch: moderately high
and significant (h? = 0.30 for both in Turpin et al. 2016), low and significant (h?> = 0.15 for
Verrucomicrobia and h? = 0.14 for Akkermansia in Goodrich et al. 2016), and close to zero and
non-significant (up to h? = 0.01 for Akkermansia in Davenport et al. 2015, and 0.05 for
Verrucomicrobia and 0.06 for Akkermansia in Lim et al. 2017).
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Heritability
Mouse Human Pigs
Our Org O'Coniior Goodrich Davenport Turpin| Lim Camarinha-
nonR R |Al M F Avg One '16 W S € Silva
p_Bacteroidetes 0.53 0.73/0.00|0.02 0.08 0.33 |0.25 0.20
Lc_Bacteroidia 0.53 0.73/0.00|0.02 0.08 0.33 0.20
Lo_Bacten::idaIes 0.53 0.73/0.00|0.02 0.08 0.00(0.00] 0.33 |0.25 0.00
Lt 5247 0.60 0.00/0.00 0.33
p_Firmicutes 0.23 |0.22]0.56|0.71(0.77(0.15|0.16 0.00 ]0.00|0.00|0.00] 0.18 |0.10
|—c_Bacilli 0.28 [0.24 0.74(0.76|0.01|0.00 0.03 0.19 |0.35
o_Lactobacillales 0.55]0.00(0.00 0.00 0.10 |0.33
L—f_lactobacillaceae 0.04 0.13 026 |o.az7| 0.0
L—g_Lactobacillus 0.04 0.00[0.19] 026 [0.15
o_Turicibacterales 0.54|0.75|( 0.12 0.26
L—f_Turicibacteraceae 0.54[0.75 0.12 0.26
‘—g_Turicibacter 0.54]0.75 0.12 0.29 0.00/0.19(0.13] 0.26 0.00
L—c_Clostridia 0.28 | 0.58 0.77|0.00(0.03 0.03 022 [0.07] 0.00
|—o_Clostridiales 7]|0.58 0.77|0.00|0.03 0.03 ]0.00|0.00|0.00] 0.33 |0.07 0.00
f_Christensenellaceae 0.31
f_Clostridiaceae 0.00 |{0.00|0.61 0.80(0.09(0.05 030 [0.3s] 0.00| 035 |0.34
L ¢ clostridium 024 |o0.10 0.04| 0.20 [0.14] o0.10
f_Lachnospiraceae 0.07 |0.08]0.52(0.60(0.69 0.07 0.16 |0.13(0.00 0.17 ]0.15 0.09
L g_Coprococcus 0.25 0.28/0.61]/0.55]0.00{0.02 0.19 0.09 0.06 0.04 ]0.16
p_Tenericutes 0.06 |0.23
I—c_MoIIicutes 0.18 |0.23
o_Anaeroplasmatales 0.28
Lf_AnaeropIasmataceae

L—g_Anaeroplasma| 0.28 0.48
o_RF39 0.18
p_Verrucomicrobia 0.02 (0.11]0.54 0.13 0.15 0.30 |0.05
I—c_Verrucomicrobiae 0.02 (0.11]0.54 0.13 0.14 0.30
l—o_Verrucomicrobiales 0.02 |0.11]0.54 0.13 0.14 0.30
[—f_Verrucomicrobiaceae 0.02 |0.11]0.54 0.13 0.14 0.30 |0.06
|_g_Akkermansia | 0.02 [0.11]0.54 0.13 0.14 |0.00|/0.01]|0.00| 0.30 |0.06

Figure 3. Comparison of taxon heritabilities across mouse, human, and pig studies. The green shading over
heritability estimates ranges from lowest heritability estimate (white) to highest heritability estimate (green) in a given
study. Statistically significant results are shown in bold font. For our Diversity Outbred study, we report both non-
rarefied (nonR) and rarefied (R) results. For Org et al. [2015] we report results using all mice (All), just males (M), just
females (F), an average per strain (Avg), and a single mouse per strain (One). Org et al. [2015] and O’Connor et al.
[2014] did not report significances. For Goodrich et al. [2016] the estimates are calculated by the ACE model, bold
values indicate estimates with a 95% confidence interval not overlapping 0. For Davenport et al. [2015] the estimates
are the proportion of variance explained (PVE) estimates (“chip heritability”), we report winter (W), summer (S), and
combined seasons (C) datasets, and bold values indicate estimates with a standard error not overlapping 0. For
Turpin et al. [2016] and Lim et al. [2017] estimates are polygenic heritability (H2r). For Camarinha-Silva et al. [2017]
estimates are narrow-sense heritability (h2). Grey indicates that the taxon was not observed or excluded in a given
study. Figure adapted from Goodrich et al. [2016]. Selected comparisons shown, full comparison found in Table S5.

In addition to comparing our heritability estimates with other studies, we also contrasted
our QTL mapping results of the gut microbiome with those from previous findings (Figure 4). A
full comparison of QTL among all analyzed taxa in our study and other studies can be found in
Table S5.

We identified statistically significant QTL associations for the order Bacillales as well as for
the family Staphylococcaceae and the genus Staphylococcus within Bacillales in chromosome
19; another mouse study also found statistically significant QTL associations for all of the same
taxa but on chromosome 17 [McKnite et al. 2012]. A human microbiome study found statistically
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significant QTL regions for the class Bacilli, which comprise the above mentioned order and
families [Blekhman et al. 2015].

Family Ruminococcaceae has been previously found to have significant QTL associations
both in mice (chromosome 12, [Benson et al. 2010]) and humans ([Blekhman et al. 2015]). In
our study, Ruminococcaceae was identified to be associated with chromosomes 2 and 5. We
also identified a QTL hit for the phylum Bacteroidetes in chromosome 5 while another mouse
study identified a significant hit in chromosome 14 [Wang et al. 2015]. Within Bacteroidetes,
even though we did not find any significant QTL results for the genus Bacteroides, many other
mouse studies did (chr 4 in McKnite et al. 2012, chr 9,16,18 in Leamy et al. 2014, chr 1 in Wang
et al. 2015, and chr 11 in Bubier et al. 2018) as well as a human study [Blekhman et al. 2015].

Phylum Tenericutes had a significant hit in chromosome 1 in both our non-rarefied and
rarefied datasets, and family Lachnospiraceae had a statistically suggestive QTL in
chromosome 10 in our rarefied dataset but not in our non-rarefied dataset. Both of these taxa
had significant QTL in a human study [Blekhman et al. 2015].

QTL/GWAS signals
Mouse Human
Our !
Benson| McKnite| Leamy Wang ‘15 Bubier| Blekhman

p_Bacteroidetes
L c_Bacteroidia
L o_Bacteroidales
l—f_Bacteroidaceae
L_g_Bacteroides

p_Firmicutes
c_Bacilli
|—o_BaciIIaIes
l—f_Sta phylococcaceae
(- g_Staphylococcus
c_Clostridia
I—o_CIostridiaIes

l:f_Lachnospiraceae
f_Ruminococcaceae

p_Tenericutes
L—c_Mollicutes

Figure 4. Comparison of taxa with QTL associations across mouse and human studies. Associations with each
taxon are marked in blue if statistically suggestive and bolded if statistically significant, or dark grey if not significant.
The chromosome number were the QTL were found are denoted in each box. Light gray indicates that the taxon was
not observed or excluded in a given study. For our Diversity Outbred study, we report both non-rarefied (nonR) and
rarefied (R) results. Figure adapted from Goodrich et al. [2016]. Selected comparisons shown, full comparison found
in Table S5.

3.6. Gene level analysis

Examining the QTL mapping results from previous studies, it was apparent that although
different studies might all have found significant QTL regions for a particular bacteria taxon, they
identified different genomic positions as showing associations. In order to identify common
pathways shared by different QTL regions, we ran a cumulative geneset pathway analysis on
the genes within our identified regions and the genes within the regions indicated in other
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studies. In total, there were 60 significant QTLs with an additional 256 suggestive hits across
the six taxonomic levels (phylum, class, order, family, genus, and OTU) (Table S2 and S4).

Of the analyzed gene subsets, the collection of genes within QTL among the taxa and
OTUs that fall under the family Ruminococcaceae returned the most significant results. The
Ingenuity Pathway Analysis (IPA) software was employed to analyze and categorize our
geneset (IPA®, QIAGEN Redwood City, CA). Overall, 372 genes from 58 statistically significant
and suggestive Ruminococcaceae QTL (Table S6) were submitted to IPA. A core analysis to
find associated pathways and diseases generated multiple gene networks that revealed genes
strongly associated with ovarian, breast, and colon cancer pathways (Figure 5A-B).

Five genes, Vegfa, Kat2b, Smad4, Fgfr2, and Yesl, from our gene set were found to be
highly linked to ovarian cancer (p-value = 5.43 x 10®) (Figure 5A). Although all of these genes
have been identified to be related to ovarian cancer pathways, we recognized Smad4 as a well-
known and prevalent tumor suppressor gene. SMAD4 mediates the TGF-beta signaling
pathway and occurs frequently in pancreatic and colorectal cancers with malignant progression
and appears occasionally in other human cancers [Miyaki et al. 2003]. Additionally, five genes
from our input gene set were found to be significantly associated with breast cancer pathways
(p-value = 1.17 x 10°) (Figure 5B). Though the results are sparse and under studied,
Ruminococcaceae abundance and breast cancer have been linked in previous studies. One
study shows that Ruminococcaceae abundance was significantly higher in postmenopausal
breast cancer patients when compared to normal healthy patients [Yang et al. 2017].

Genes from our significant Ruminococcaceae QTL were also found to be associated with
colon carcinoma (p-value = 6.67 x 10°) and colorectal carcinoma (p-value = 1.75 x 10™) (Figure
5A) and associations between these bacteria and colorectal cancer (CRC) have been studied
before. Ruminococcaceae was found to be significantly less abundant in cancerous colorectal
tissue compared to healthy intestinal lumen [Chen et al. 2012]. Furthermore, another study
showed findings that suggest Ruminococcaceae provides beneficial effects against risk of
colorectal cancer [Ericsson et al. 2015].

In addition to having genes associated with specific cancers, various genes from our
Ruminococcaceae gene set were found to have direct interactions with the well known and
prevalent cancer gene Tp53. Figure 5C from IPA depicts a gene network containing 21 genes
from the Ingenuity Knowledge Base and 14 genes from our input gene set, 5 of which (Sorbs1,
Staul, Cox15, Ran, and Glb1l) have direct interactions with the widely known tumor suppressor
gene Tp53. TP53 has been shown to be a critical player in tumor development and how tumor
cells avoid apoptosis, and mutations in Tp53 have been identified in numerous types of cancers
[Petitjean et al. 2007, Greenblatt et al. 1994, Levine et al. 1991, Volgenstein et al. 2010].
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Figure 5. Ingenuity Pathway Analysis (IPA) interaction network generated from genes within
Ruminococcaceae QTL. Genes circled in color are all part of specific associated pathways as specified below.
Genes colored in gray belong to our dataset whereas un-colored genes are other closely associated genes added by
IPA. Refer to Tables S7A-C for a list of these associated genes from our dataset. (A) The network shows genes
found within Ruminococcaceae QTL strongly associate with pathways related to ovarian cancer (circled in pink) and
colon carcinoma and colorectal carcinoma (circled in light blue). (B) The network shows genes found within
Ruminococcaceae QTL strongly associate with pathways related to breast cancer (circled in pink). (C) The network
shows genes found within Ruminococcaceae QTL strongly associated with hallmark cancer gene Tp53 (circled in

purple).

We compiled the results from all of our significant QTL under the order Bacillales and used
the genes from within the QTL regions to run gene set functional pathway analyses and found
these bacteria to be highly associated with pathways involved in lipid and sphingolipid
metabolism. IPA identified our input genes Vidir and Sgmsl to be related to multiple lipid
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metabolism pathways (p-value = 5.23 x 10® to 5.14 x 10™) (Figure S4, Table S8A) and DAVID
functional annotation tool [Huang et al. 2008] identified our genes VIdIr, Sgms1, and Asah2 to
be related to lipid metabolism (p-value = 0.0048) as well as genes Sgmsl and Asah2 to be
related to sphingolipid metabolism (p-value = 0.0063) (Table S8B). Associations between gut
microbiota and host lipid metabolism have been investigated previously, and proof of causality
between specific microbial associations with lipid metabolism and sphingolipid production has
been demonstrated [Ghazalpour et al. 2016, Heaver et al. 2018, Johnson et al. 2019, Brown et
al. 2019].

4. DISCUSSION

There exists a complex and multifaceted relationship between the gut microbiome and its
host's genome, where recent studies are beginning to show the true magnitude of these
connections. Our results seek to further understand this relationship by identifying functional
and disease pathways that may be associated with specific bacterial abundances in the mouse
gut microbiome.

SNPs with the highest LOD in the QTL regions for Mollicutes and Bacteroidales were
found to lie within genes Insig2 and Ksr2 respectively. Insig2 encodes a transmembrane protein
that releases SREBP proteins to the endoplasmic reticulum where they exert control over lipid
metabolism [Paschos et al. 2017]. Relationships between gut microbiome and lipid metabolism
have already been established [Velagapudi et al. 2010, Li et al. 2008], and our reported
association between Mollicutes and Insig2 further suggest some kind of interaction between
Mollicutes abundance and lipid metabolism. Gene Ksr2 is known to be associated with BMI and
early-onset obesity, as Ksr2 variants impair cellular fatty acid oxidation and glucose oxidation,
often leading to hyperphagia, low heart rate, reduced basal metabolic rate, and severe insulin
resistance [Pearce et al. 2013]. This provides potential pathways by which Ksr2 may lead to
severe cases of obesity. Additionally, Bacteroidetes relative abundance has been shown to be
50% lower in genetically obese ob/ob mice compared to lean mice while Firmicutes relative
abundance was higher by a corresponding amount [Ley et al. 2005]. The association we find
between Bacteroidales and Ksr2 may suggests a potential relationship between Bacteroidales
abundance and risk for obesity.

Using the total set of genes from within all 58 statistically significant and suggestive QTL
regions for taxa within the family Ruminococcaceae, we identified multiple networks, each of 35
functionally interrelated genes, enriched in disease pathways for ovarian, breast, and colon
cancer. Evidence of functional associations between ovarian cancer and Ruminococcaceae is
lacking, but various studies have confirmed findings showing increased Ruminococcaceae
abundance in breast cancer patients compared to normal healthy individuals [Fernandez et al.
2018, Zhu et al. 2018]. While these studies did not uncover a directionality to this association,
the significant differences in microbiome composition could be used as independent biomarkers
of breast cancer [Zhu et al. 2018]. In addition to specific links between the family
Ruminococcaceae and breast cancer, associations between the gut microbiome and breast
cancer have been flagged [Fernandez et al. 2018]. This includes associations between
perturbations in the gut microbiome and circulating estrogen levels and metabolites, produced
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by several bacteria including Ruminococcaceae and also known as the estrobolome, which can
affect the risk for breast cancer [Plottel and Blaser 2011, Fuhrman et al. 2014]. Indeed, the gut
microbiome can influence estrogen metabolism through enterohepatic circulation [Adlercreutz et
al. 1984, Flores et al. 2012], and thus could be implicated in breast cancer by interacting with
estrogen metabolism [Minelli et al. 1990, Goedert et al. 2015]. Outside the gut microbiome, a
study looked at the relationship between the breast tissue microbiome and breast cancer and
also found significantly different microbiome composition and functions between women with
benign and malignant breast disease [Hieken et al. 2016]. In aggregate, these studies support a
role for microbes in the risk of breast carcinogenesis and our study extends this relationship by
identifying specific genes involved in breast cancer pathways that may mediate this connection.

Our functional gene networks also revealed genes involved in colon cancer pathways.
Ruminococcaceae abundance has been shown to be negatively correlated with risk for
colorectal cancer (CRC) [Chen et al. 2012, Ericsson et al. 2015]. Looking beyond the specificity
of Ruminococcaceae, various other studies have shown strong evidence for a link between the
gut microbiome and risk for CRC. Microbiota in the colon form biofilms that line the mucosal
surface, and a study has shown evidence suggesting that this biofilm structure may impact
cellular proliferation and cancer growth by affecting the metabolome and down-regulating or up-
regulating the production and release of metabolites favorable for tumor cells [Johnson et al.
2015]. General decreased microbial community diversity has been shown to be significantly
correlated with risk for CRC in a study that compared CRC case subjects to control healthy
subjects [Ahn et al. 2013]. Additionally, a study identified the enrichment and depletion of
several bacterial populations associated with CRC and used this information in addition to
known clinical risk factors for CRC to build a predictive model for evaluating risk for CRC. Used
as a screening tool, this new predictive model that included microbial abundances improved
accuracy by more than 50 folds [Zackular et al. 2014]. This not only confirms the existence of
strong associations between the gut microbiome and CRC, but also raises the possibility that
these data may be used as a potential diagnostic tool for clinical purposes.

In addition to revealing potential disease pathways associated with Ruminococcaceae, our
geneset pathway analysis also unveiled connections between multiple genes to the well-
characterized cancer gene Tp53. Genes Sorbsl and Staul found in our QTL analysis have
been shown to be down-regulated in cells that have undergone p53-mediated immortalization
and transformation as a direct or indirect result of Ras signaling activity [Boiko et al. 2006].
Furthermore, another study showed through gene ontology analysis that p53 regulates various
mitochondrial bioenergetic pathways including the up-regulation of our gene Cox15 involved in
ATP synthesis [Mak et al. 2017]. The same study also found that p53 regulates various genes
involved in cardiac tissue function including the down-regulation of our gene Ran involved in
major signal transduction pathways [Mak et al. 2017]. P53 was further found to decrease the
activity of mouse SA beta-Galactosidase protein (encoded by our gene Glbl) in mouse
mesothelial cells as well as in mouse embryonic fibroblast cells [Pietruska et al. 2007, Wang et
al. 2007]. With multiple genes from within our significant Ruminococcaceae QTL exhibiting
interactions with the popular tumor suppressor gene Tp53, it is highly suggestive that
Ruminococcaceae abundance may be in some way linked to cancer development and tumor
cell proliferation.
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Similar geneset pathway analysis was conducted for the QTL under the order Bacillales
and significant associations were found between various genes and lipid metabolism. Although
specific interactions between Bacillales and lipid metabolism have not been thoroughly studied
before, previous studies have elucidated a relationship between the gut microbiome and the
metabolome. One study discovered increased energy metabolites in conventionally raised mice
compared to germ free mice and further found microbiome composition to influence levels of
various lipid classes, most significantly on triglyceride and phosphatidylcholine molecular
species [Velagapudi et al. 2010]. Furthermore, systems biology analysis comparing human baby
microbiota to normal microbiota in mice found that metabolism of dietary lipids was specifically
influenced by the microbiome [Li et al. 2008]. In mouse, a study confirmed the microbiome to
exert a strong impact on the metabolism of bile acids with increased bile acid levels in various
gut compartments in germ free mice, suggesting that gut microbiome composition may affect
host lipid metabolism through bile acid metabolism [Claus et al. 2008].

Comparing our results with other studies, we found little overlap in the specific bacterial
taxa studied as well as the calculated heritabilities and QTL results. This is most likely due to
the limited number of existing studies discussing heritabilities and QTL mappings of bacteria
within the gut microbiome. Additionally, the absence of a standardized methodology for
performing these studies leads to use of different procedures and analytical methods, making it
increasingly difficult to compare results across studies [Goodrich et al. 2017]. Ultimately, the
current state of the field for profiling different characteristics of the gut microbiome is still rapidly
evolving and as it matures and more studies are undertaken, it will become easier to compare
and validate results.

Although our results support the claim that host genetics can impact the gut microbiome
composition in ways that are relevant to the health of the host, our study has some limitations.
The biggest limitation to the power of the study is its relatively small sample size (n = 247 DO
mice). Conducting QTL mapping with small sample sizes may lead to the ‘Beavis effect’ which is
a failure to detect QTL of small effect sizes as well as an overestimation of effect size of the
QTL that are discovered [Miles et al. 2008]. Our study also shares all the weaknesses common
to the Diversity Outbred design: since the genome of each mouse is a unique mosaic of the 8
strains from the CC population, the genotype of each DO mouse is irreproducible. This limits the
amount and manner of phenotyping that can be done, and it makes replicating results within the
DO population difficult. However, this limitation could be partially circumvented by using the CC
lines as a form of validation, since they can provide reproducible genotypes [Svenson et al.
2012]. Another limitation is the current lack of experimental validations of associations between
disease pathways (such as those for ovarian, breast, and colon cancer) and specific taxa within
gut microbiome composition, making it difficult to confirm any associations we find between
genes and bacterial abundances.

Our results provide insight into the complex interplay between host genetics and the gut
microbiome, and isolate potential associations between microbial taxa and QTL that may be
involved in pathological disease phenotypes. Additional studies are required to verify
associations between specific genes and taxon abundance in the gut microbiome, such as
performing gene knockouts and observing the effects on microbiome composition. While most
of the variation in the gut microbiome composition is not due to genetics but rather
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environmental factors [Rothschild et al. 2018], attributes of the gut microbiome that are clearly
heritable may provide important insights about host-microbiome interactions and mechanisms
that impact microbiome composition. The direct genotype-phenotype association approach in
this study could be applied to illuminate novel associations between genetic variants and their
effects on microbial abundances involved in the microbiome through the mechanism of a
complex disease of interest. Understanding the interactions between a host's genome and its
microbiome composition may also aid in our understanding of complex diseases and their
mechanisms and potentially aid in developing medical treatments.
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5. MATERIALS AND METHODS

5.1. Animal population and sample collection

Male mice from the Diversity Outbred Mouse Panel were obtained from The Jackson
Laboratory (Bar Harbor, ME, USA) at 6 weeks of age. Mice were group housed (5 animals per
cage) for 2 weeks of post-travel acclimation, and then single housed at identical conditions. All
mice were reared on chow diet. Fecal pellets from 249 mice were collected at 3 months old (two
samples were later discarded, leaving a final analyzed dataset of 247 mice). Pellets were stored
in Eppendorf tubes placed on dry ice and moved to a -80°C freezer until processing.

5.2 Microbial DNA extraction, 16S rRNA gene PCR, and sequencing

Microbial community DNA was extracted from one single frozen pellet per sample using
the MO BIO PowerSoil-htp DNA Isolation Kit (MO BIO Laboratories, Inc., cat # 12955-4), but
instead of vortexing, samples were placed in a BioSpec 1001 Mini-Beadbeater-96 for 2 minutes.
We used 10-50 ng of sample DNA in duplicate 50 pl PCR reactions with 5 PRIME HotMasterMix
and 0.1 uM forward and reverse primers. We amplified the V4 region of 16S using the universal
primers 515F and barcoded 806R and the PCR program previously described [Caporaso et al.
2011], but with 25 cycles. We purified amplicons using the Mag-Bind® E-Z Pure Kit (Omega
Bio-tek, cat # M1380) and quantified with Invitrogen Quant-iT™ PicoGreen® dsDNA Reagent,
and 100 ng of amplicons from each sample were pooled and paired end sequenced (2x250bp)
on an lllumina MiSeq instrument at Cornell Biotechnology Resource Center Genomics Facility.

5.3. 16S data processing

We performed demultiplexing of the 16S rRNA gene sequences and OTU picking using
open source software package Quantitative Insights Into Microbial Ecology (QIIME) version
1.9.0 with default methods [Caporaso et al. 2010]. The total number of sequencing reads was
15,149,384, with an average of 61,334 sequences per sample and ranging from 17,658 to
135,803. Open-reference OTU picking at 97% identity was performed against the Greengenes
8 13 database. 12% of sequences failed to map in the first step of closed-reference OTU
picking. The taxonomic assignment of the reference sequence was used as the taxonomy for
each OTU. ‘NR’ within taxa names represents New Reference OTUs defined as those with
sequences that failed to match the reference and are clustered de novo. Random subsamples
were used to create a new reference OTU collection and ‘NCR’ represents New Clean-up
Reference OTUs that failed to match the new reference OTU collection [Rideout et al. 2014].

For the non-rarefied data, read count was used as an additional covariate during QTL
mapping to reduce the effect of sequencing depth. A rarefied dataset was also used for
heritability estimates and QTL mapping, as explained in Supplemental Material. Two extreme
outliers were omitted from further analysis, yielding a total of 247 samples. To differentiate the
non-rarefied taxa from the rarefied taxa, we use ‘NonR’ to represent the non-rarefied dataset
and ‘R’ to represent the rarefied dataset.

For heritability estimates and QTL mapping, a filter was applied across all 247 samples
that removed any taxon that was not present in more than 50% of the samples. Relative
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abundance of reads (number of reads clustered to each taxa divided by the total number of
reads in a given sample) was used as the tested phenotype.

Stacked bar plots of the most abundant taxa within each taxonomic level were plotted with
R-package ggplot2. A box-plot was first generated for each taxonomic level depicting the
abundances of the taxa within that taxonomic level across the 247 samples (Figure S1). The
top ten taxa with the highest average abundances are selected to be plotted in the stacked bar
plot, ordered by the most abundant taxon. A heatmap that correlates similarities between taxa
from the non-rarefied and rarefied datasets based on the Pearson correlation coefficient was
plotted using the R-package corrplot (Figure S2).

5.4. SNP genotyping

SNP genotyping was done at the Jackson Laboratories on each of the 247 mice using The
Mega Mouse Universal Genotyping Array (MegaMUGA). A total of 57,973 SNPs passed QC
metrics and were used in the heritability and mapping analysis reported here.

5.5 Heritability calculations

Heritabilities of the various bacterial taxa were quantified and calculated on autosomes
using a linear mixed model as implemented in R-package Ime4qtl via the relmatLmer() function
[Ziyatdinov et al. 2018] (https://github.com/variani/lme4qtl). This linear mixed model enables us
to decompose variability into genetic and environmental components. The variance of the

genetic component is expected to be ¢ Z K, where K is a kinship matrix normalized as

proposed in Kang et al. 2010. The kinship matrix in specified via the “relmat” argument in
relmatLmer(). To account for the potentially confounding effects of shared cages during
acclimation (as noted above in Section 5.1), we also included cage as a random effect in our

model. Thus, the model included estimates of variance of the genetic component (o ; ) and
the cage component (o Eage ), and the residual variance due to unspecified environmental
factors (¢ 2, ).

The narrow sense heritability was then estimated as:

2
g g

h? =

2 2 2
0 5 *+0 Cage *O0 s

Sequencing lane was included as a covariate in both non-rarefied and rarefied datasets.
For our non-rarefied dataset, narrow sense heritabilities were calculated using the number of
read counts as an additional covariate. Significance of heritability estimates was assessed by
conducting a restricted likelihood ratio test using the exactRLRT() function in the R-package
RLRsim [Scheipl et al. 2008], as applied in Supplementary Note 3 in Ziyatdinov et al. 2018.

5.6. QTL Mapping

For QTL mapping, the relative abundances were rank Z-transformed using R-package
DOQTL [Gatti et al. 2014] and then mapped using a linear mixed model in R-package
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Imedqtl::relmatLmer() [Ziyatdinov et al. 2018] on autosomes with kinship included as random
effect to account for genetic relatedness among animals. For the bacterial taxa from the five
taxonomic levels, we generated QTL mappings for all taxa that passed the 50% zero cut-off (i.e.
those present in at least 50% of the mice), with the taxa designated as the phenotype.
Sequencing lane (fixed effect) and cage (random effect) were included in both non-rarefied and
rarefied datasets. We included read count as an additional covariate (fixed effect) for our non-
rarefied dataset. Significant and suggestive associations were identified in a two-step
procedure. First, we applied likelihood ratio tests comparing models with and without genotype.
P-values derived from these tests were adjusted for multiple testing across SNPs (within a given
taxon) using R function p.adjust() with method “BH” [Benjamini and Hochberg 1995]. In the
second step, we conducted permutation tests (1000 permutations) for taxa that had
associations with adjusted p-value < 0.1 in the first step.

For every bacterial taxon from the five taxonomic levels with a statistically significant QTL
association, we mapped the OTUs belonging to that taxon. We applied a 50% zero cut-off filter
to only retain common OTUs. With the OTUs obtained, we generated QTL mappings and
assessed significance just as we had done for the five taxonomic levels.

5.7. Gene Set Pathway Analysis
We used the open-source online DAVID annotation tool [Huang et al. 2008] and the
Ingenuity Pathway Analysis (IPA®, QIAGEN Redwood City, CA) software to conduct gene set

pathway analysis. We used DAVID v6.8 and their functional annotation tool to reduce large
gene sets into smaller groups of functionally related genes. A list of gene names was uploaded
onto the website with the identifier parameter set to ‘official_gene_symbol’ and the species Mus
musculus selected. DAVID then outputs a list of categories, such as functional, gene ontology,
tissue expression, and others, which contained subsets of the inputted gene set. Within each
category, DAVID also lists more specific categories and by displaying the genes for each sub-
category, we were able to view which of the genes from our gene list were found to be
associated with various different classifications. From the association results, a p-value filter
allowed us to view only the results above a certain EASE p-value threshold, a modified Fisher-
Exact p-value score. We chose the groupings with shown higher significance and reinforced the
results outputted by DAVID with KEGG pathway database [Kanehisa et al. 2017] by simply
confirming the presence of each gene in their organized category, as by DAVID, in KEGG’s
online database.

Using IPA, a new “core analysis project” was created and then our list of genes was
uploaded as a dataset with parameters chosen to fit the formatting of our gene list. Before
running the analysis, we set the reference set to be Ingenuity® Knowledge Base and then ran
our analysis. IPA uses multiple categories to classify the inputted gene set and we focused on
their disease and functions category. Others include expression, regulatory effects, and other
canonical pathways. Additionally, IPA generates networks of genes proven to be either directly
or indirectly related to each other. We chose the most significant network outputted and
identified the intersection of that network with the network relating the genes in our QTL with the
respective disease.
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5.8. Data Availability
All scripts will be on GitHub. 16S data are on the Short Read Archive.
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8. Supplemental Material

Figure S1 - Taxa relative abundance frequencies - Stacked bar plots and box plots
depicting relative abundance frequencies of the top ten most abundant taxa for each of
five taxonomic levels. Relative abundance frequencies are plotted for taxa levels from
both the non-rarefied and the rarefied datasets.

Figure S2 - Correlation plot between non-rarefied and rarefied taxa. Heatmap
depicting the Pearson correlations between the relative common taxa abundances in
non-rarefied (NonR) and rarefied (R) data, revealing that the same taxa from both non-
rarefied and rarefied datasets always group closer together than with other taxa,
followed by taxa belonging to the same clade.

Figure S3 - Proportion variance estimates for kinship and cage for all OTUs.
Proportion of variance for each OTU that can be explained by additive effects
(heritability) using a kinship or Genomic Relationship Matrix (GRM) (green), cage effects
(orange), and unexplained residual effects (blue). Taxa marked with a red asterisk have
statistically suggestive QTL (adj. p-value < 0.1).

Figure S4 - IPA network for Bacillales QTL - Genes circled in purple are all part of the
lipid metabolism pathway. Genes colored in gray belong to our dataset whereas un-
colored genes are other closely associated genes added by IPA. Refer to Tables S6A
for a list of these associated genes from our dataset.

Table S1 - Heritability results at 5 taxonomic levels - Complete heritability
measurements (h?) as well as their respective p-values for all tested taxonomies at the 5
taxonomic levels from the non-rarefied (A) and rarefied (B) datasets.

Table S2 - QTL results at 5 taxonomic levels - QTL regions and their respective p-
values at the 5 taxonomic levels from the non-rarefied (A) and rarefied (B) datasets.
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Table S3 - Heritability results at OTU level in non-rarefied dataset - Complete
heritability measurements (h?) as well as their respective p-values for all tested
taxonomies at the OTU level from the non-rarefied dataset
Table S4 - QTL results at OTU level in non-rarefied dataset - QTL regions and their
respective p-values at the OTU level from the non-rarefied dataset
Table S5 - Comparison of heritabilities and QTL with other studies - Comparison of
taxa heritabilities and QTL across mouse, human, and pig studies.
Table S6 - Ruminococcaceae genes used for gene-set analysis - List of 372 genes
from all significant QTL for taxa and OTUs under family Ruminococcaceae. Some genes
were found in multiple QTL and all sources for those QTL are listed.
Table S7 - Genes included in networks from Figure 5 - List of all genes that are part
of the IPA networks from Figure 5A (A), Figure 5B (B), and Figure 5C (C). All sources
for each gene are listed as well.

Table S8 - Genes from gene set analysis using QTL under Bacillales - Using the set of
genes from all significant QTL from taxa under Bacillales, (A) lists the genes from IPA
network in Figure S4 and (B) shows results from DAVID functional annotation tool.

Link to Supplemental Figures:
https://docs.google.com/document/d/ImSQOrNyCYPdyTOfBul3Q4dgRDgaVg88M5KmMG
LpnExBw/edit

Link to Supplemental Tables:
https://docs.google.com/spreadsheets/d/1sqgH4jg3rODC2USulu LCHNzC652Nh90QQ
WT59V5hbbQ/edit

Link to Supplemental Material:
https://docs.google.com/document/d/10QVyICh1MaH282ipYWRIWDQuUY6C0yn1P6A0IX
fIXzvc/edit
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