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1. ABSTRACT 

The composition of the gut microbiome is impacted by a complex array of factors, from nutrient 

composition and availability, to physical factors like temperature, pH and flow rate, as well as 

interactions among the members of the microbial community.  Many of these factors are 

affected by the host, raising the question of how host genetic variation impacts microbiome 

composition. Human studies confirm a role for host genetics, but opinions vary on just how 

important is host genetic variation in determining gut microbiome composition. The mouse 

model, by allowing far better control of genetics, nutrition, and other environmental factors, has 

provided an excellent opportunity to extend this work, and the Diversity Outbred (DO) mice in 

particular present a chance for mapping host genetic variants that influence specific attributes of 

microbiome composition.  Here we apply 16s sequencing to fecal samples of 247 DO mice and 

perform QTL mapping on microbial abundances.  In addition to finding a number of novel 

associations, the concordance with heritabilities and associations with both human and mouse 

studies was striking, including the phylum Tenericutes, family Ruminococcaceae, as well as 

Staphylococcus and Turicibacter. 

2. INTRODUCTION 

The gastrointestinal tract of all vertebrates, including humans, harbors a complex 

ecological community of highly diverse microbes referred to as the gut microbiota. The 

microbiota colonizes the gut for the first time during the birth of the host and its composition is 

influenced by many factors during the host’s life such as disease, diet, and antibiotics [Dash et 

al. 2019, Battaglioli et al. 2018, Dudek-Wicher et al. 2018, Francino 2015]. Variation in the 

human gut microbiome composition has also already been associated with host immune 

responses [Round and Mazmanian 2009, Veiga et al. 2010, Garrett et al. 2010], metabolic 

phenotypes [Turnbaugh et al. 2009, Ridaura et al. 2013], and diseases such as obesity [Ley et 

al. 2005], heart disease [Fava 2006], and diabetes [Wen et al. 2008]. Given the roles of the gut 

microbiome in complex human diseases, it is important to characterize the factors that impact 

microbiome composition.  

While it is clear that the gut microbiome composition is strongly impacted by environmental 

exposures [Rothschild et al. 2018], the role of host genetics has only recently been implicated 

[Goodrich et al. 2014a, Blekhman et al. 2015, Goodrich et al. 2016]. Studies have identified 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2019. ; https://doi.org/10.1101/722744doi: bioRxiv preprint 

https://doi.org/10.1101/722744
http://creativecommons.org/licenses/by-nc-nd/4.0/


2 

multiple genetic variants significantly associated with specific bacterial taxa abundances 

[Goodrich et al. 2017, Bonder et al. 2016, Igartua et al. 2017, Davenport et al. 2015, Turpin et 

al. 2016, Wang et al. 2016, Rothschild et al. 2018], despite the observation that generally the 

primary determinants of microbiome composition are non-genetic [Rothschild et al. 2018]. 

Human genetic studies have significant limitations for accurate assessment of genetic effects on 

the microbiome, including accessibility to large and diverse sample populations as well as a 

general lack of control over confounding variables. One major limitation is that there is minimal 

control of diet and other environmental factors, and so only the strongest genetic effects can be 

detected. 

The mouse model, with the ability to control diet, along with well-defined genetic 

differences among inbred strains, provides a better opportunity to dissect genetic and 

environmental factors impacting microbiome composition. Quantitative trait locus (QTL) 

mapping efforts show that gut microbiota composition is a polygenic trait, with clearly mappable 

genetic factors influencing the gut microbiome composition [Benson et al. 2010, McKnite et al. 

2012, Snijders et al. 2016]. Standard QTL mapping approaches have low mapping resolution, 

however, and advanced intercross lines provide one excellent means of improving mapping 

resolution. Belheouane et al. [2017] performed genetic and 16S rRNA gene analysis of skin 

microbiomes of a collection of 15-generation advanced intercross lines, and demonstrated that 

the improved mapping resolution also improved the specificity and significance of genetic 

associations. It is clear that the mouse model will provide further opportunities to dissect the 

means by which the host genome can modulate microbiome composition. A logical next step is 

a mapping experiment to identify portions of the genome that influence functional pathways that 

modulate the microbiome. 

Here we extend the analysis of the link between the host genome and microbiome using 

the Diversity Outbred mouse model. The Diversity Outbred (DO) population is a heterogeneous 

mouse stock derived from the same eight progenitor lines (A/J, C57BL/6J, 129S1/SvImJ, 

NOD/ShiLtJ, NZO/HlLtJ, CAST/EiJ, PWK/PhJ, and WSB/EiJ) used to establish the 

Collaborative Cross (CC) [Collaborative Cross Consortium 2012]. Mice from the CC lines at 

early stages of inbreeding were used to establish the DO population, which is maintained by 

randomized outbreeding among 175 mating pairs. The result is each individual DO mouse 

represents a unique combination of segregating alleles, whose genome is a unique mosaic of 

the original eight progenitor lines. The advantages of this outbreeding include normal levels of 

heterozygosity — similar to the human genetic condition — and substantially increased genetic 

mapping resolution [Churchill et al. 2012]. The CC/DO mice founder progenitor lines have 

already proven to be successful in identifying genetic associations with intestinal microbiome 

composition [O’Connor et al. 2014]. 

In this study, motivated by the high level of environmental control of the laboratory mouse 

and the improved mapping resolution of the Diversity Outbred mouse system, we identified 

genetic underpinnings of the gut microbiota of 247 Diversity Outbred mice. We uncover strong 

evidence of host genetic factors influencing the composition of many specific attributes of the 

gut microbiome. These included not only associations between specific host genetic variants 

and abundances of particular bacterial taxa, but also associations with functional molecular 

pathways.  
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3. RESULTS 

3.1. Variation of gut microbiota 

High-throughput sequencing of fecal samples from 247 three month old male mice from 

the Diversity Outbred Mouse Panel generated 15,149,384 16S rRNA gene sequences that 

passed the quality filtering criteria after demultiplexing (see Materials and Methods). On 

average, 61,334 sequences were obtained per sample (ranging from 17,658 to 135,803 

sequences). Sequences were sorted into 57,014 operational taxonomic units (OTUs) at 97% 

identity against the Greengenes 8_13 database using open-reference OTU picking. Next, OTUs 

were summarized at five levels of taxonomy (phylum, class, order, family, genus). In order to 

focus on the most abundant microbes, only the taxa present in at least 50% of samples (i.e. 

present in 124 samples or more) were used for all following analysis, leaving a total of 80 taxa 

to test at the five levels of taxonomy (7 phyla, 9 classes, 12 orders, 21 families, and 31 genera). 

The most predominant taxa at the phylum level were Firmicutes (average relative abundance = 

48.64%) and Bacteroidetes (46.41%), which is consistent with previous findings [Benson et al. 

2010, McKnite et al. 2012, Org et al. 2015]. The relative abundances of these taxa were highly 

variable, with Firmicutes ranging from 11% to 94%, and Bacteroidetes ranging from 1% to 88% 

(Figure 1). 

 

 
Figure 1. Relative abundances of top ten most abundant phyla across the 247 mouse strains. Relative 

abundances shown, mouse strains sorted by phylum Firmicutes, the most abundant phylum.  
 

The top 8 most abundant genera were present in at least 99% of the samples. The two 

most abundant genera were an unidentified genus within Bacteroidales family S24-7 (average 

relative abundance = 43.89%, ranging from 1% to 88%) and another unidentified genus within 

Clostridiales (32.35%, ranging from 4% to 78%), consistent with previous findings [Shin et al. 

2016]. Stacked bar plots and box plots depicting relative abundance frequencies for all five 

taxonomic levels are available in Figure S1. 

When dealing with uneven sequence counts across samples, microbiome studies 

commonly normalize the data by rarefying sequence counts, which consists of randomly 

selecting from each sample an equal number of sequences without replacement [Weiss et al. 
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2017]. It has been argued, however, that rarefaction is not an ideal approach due to valuable 

data being discarded [McMurdie and Holmes 2014]. Therefore, we decided to present our 

analysis of the non-rarefied data using sequence counts per sample as a covariate, noting also 

that the rarefied data provided highly concordant results (see Supplemental Material).  

3.2. Heritability estimation 

Each of the 247 individual mice used in this study was genetically unique. The unit of 

inference for phenotypes was the relative abundance of each taxon in each individual, while the 

units of genetic inference were the SNP genotypes at each of 57,973 sites for each mouse 

using the mouse array. We estimated narrow-sense “SNP” heritability (h2) using a linear mixed 

model in R-package lme4qtl [Ziyatdinov et al. 2018]. A linear mixed model was used to predict 

whether the effects of the autosomal genotype on the phenotype is proportional to the genetic 

similarity between the mice, after adjustment for known factors. Thus, calculations were based 

on the kinship matrix (genetic similarity), expression of a phenotype (taxon abundance) across 

all samples, and additional covariates (such as sequencing lane, read counts, and cage effect). 

Significance was assessed by an exact (restricted) likelihood ratio test using R-package 

RLRsim [Scheipl et al. 2008]. More details can be found in Materials and Methods. In total, 27 

of the 80 tested taxa were heritable (nominal p-value < 0.05), with 3 additional taxa having 

statistically suggestive heritabilities of 20% or more (nominal p-value < 0.1) (Table S1A). 

Proportion variance estimates for kinship and cage for all taxa are presented in Figure 2. 
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Figure 2. Proportion variance estimates for kinship and cage for all taxa. Proportion of variance for each taxon 

that can be explained by additive effects (heritability) using a kinship or Genomic Relationship Matrix (GRM) (green), 

cage effects (orange), and unexplained residual effects (blue). Taxa marked with a red asterisk have statistically 

suggestive QTL (adj. p-value < 0.1). 

 

The most heritable taxon was the class Mollicutes with a heritability estimate of 39% (p-

value of 0.002) (Table 1). Within Mollicutes, an unidentified genus in order RF39 was also found 

to be highly heritable, with a heritability of 34% (p-value 0.010) and the genus Anaeroplasma 

has a heritability of 28% (p-value 0.013). Within class Clostridia, an unidentified genus in order 

Clostridiales showed a heritability of 38% (p-value 0.0106). Furthermore, the genus 

Lactobacillus within class Bacilli and the entire Firmicutes phylum were also heritable, at 36% 

(p-value 0.008) and 23% (p-value 0.049) respectively. The genus Turicibacter within class 
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Bacilli had high heritability estimates as well at 35% (p-value 0.0043) and 28% (p-value 0.029) 

respectively. Given the large proportion of the microbiome is composed of either Firmicutes or 

Bacteroidales, their proportions are strongly negatively correlated. This means that the high 

heritability of Firmicutes abundance implies also a high heritability of the order Bacteroidales 

(31%, p-value 0.013), as well as an abundant unidentified genus in family S24-7 (heritability of 

32%, p-value 0.014). 

 
Table 1. Heritability of taxa at five taxonomic levels. Only showing ranked results with heritability above 20%. 
Results with p-value < 0.05 (statistically significant) are bolded. When results were identical across taxa in the same 
phylogenetic branch, only the lowest (most specific) taxon was kept. The designations p_, c_, o_, f_, and g_ are for 
phylum, class, order, family, and genus, respectively. Complete table of heritability results, including rarefied data, 
can be found in Tables S1A-B. 

 

3.3. QTL Mapping 

QTL mapping of the bacterial taxa at the five taxonomic levels revealed significant findings 

that suggest statistically significant associations between host genotype and abundances of 

certain taxa. QTL regions on autosomes were found using the R-package lme4qtl [Ziyatdinov et 

al. 2018]. Significance was assessed first by comparison of models with and without genotype 

via a likelihood ratio test, followed by a genome-wide permutation test. The reported p-values 

were corrected for multiple testing across SNPs (but not across taxa). In total, genetic 

associations with 3 taxa were found to be statistically significant (adj. p-value < 0.05), and 

genetic associations with 3 additional taxa were statistically suggestive (adj. p-value < 0.1) 

(Table 2, Table S2A).  
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We found statistically significant QTL associated with the abundance of family 

Ruminococcaceae, order Bacillales, and genus Staphylococcus (Table 2). We also found 

statistically suggestive QTL associated with phylum Bacteroidetes, order Bacteroidales, and 

class Mollicutes. Multiple QTL for various taxa overlapped with the QTL regions for their parent 

taxa, such as QTL hit for genus Staphylococcus (which is below the taxonomic branch for order 

Bacillales) overlapping the QTL hit for order Bacillales (Table 2). These overlaps are a common 

occurrence in both the significant and non-significant QTL (Table S2A).  

 
Table 2. QTL regions for taxa at five taxonomic levels. Only showing ranked results with adj. p-value < 0.1 
(statistically suggestive). Results with adj. p-value < 0.05 (statistically significant) are bolded. When results were 
overlapping across taxa in the same phylogenetic branch (such as p_Bacteroidetes and o_Bacteroidales), 
permutations were calculated only for the lowest (most specific) taxon. The designations p_, c_, o_, f_, and g_ are for 
phylum, class, order, family, and genus, respectively. Complete table of QTL results, including rarefied data, can be 
found in Tables S2A-B. 

 
 

Looking at specific QTL, we identified the genes Insig2 and Ksr2 on the highest point in 

the region for the class Mollicutes (chr1:121,315,223, LOD = 7.002) and the order Bacteroidales 

(chr5:117,733,508, LOD = 7.203) respectively. INSIG2 plays a central role in the pathway by 

which the circadian clock regulates liver lipid metabolism [Zhang et al. 2017] and Ksr2 has been 

implicated in being associated with BMI and severe early-onset obesity through large scale 

GWAS studies [Milaneschi et al. 2019].  

 

3.4. OTU level analysis 

Next, we decided to increase the specificity of the taxonomic classifications to operational 

taxonomic units (OTUs) by compiling all OTUs identified within taxa that had statistically 

suggestive QTL (Table 2). We filtered out OTUs that were present in less than 50% of the 
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samples, resulting in 362 OTUs. QTL mapping performed on these selected OTUs resulted in 

59 OTUs with at least one statistically suggestive association. Additionally, 99 OTUs were found 

to be heritable (h2 > 20%, p-value < 0.05), of which 28 OTUs also had statistically suggestive 

QTL (Tables S3 and S4). Proportion variance estimates for kinship and cage for all tested 

OTUs are presented in Figure S3. 

QTL associations to OTUs varied compared to overlapping QTL regions associated to 

taxa at higher taxonomic levels, some were sharper and stronger, others were less specific and 

wider (Table 3). These results are interesting because a sharper QTL peak associated with an 

OTU may suggest that the overlapping QTL region associated with the broader taxonomic 

group is being driven by that specific OTU. On the other hand, if the overlapping QTL region 

associated with the broader taxonomic group is smaller and more specific than the region seen 

on an individual OTU, this might suggest a cumulative effect of multiple sub-taxonomies driving 

a stronger signal at the broader taxonomic level. For example, QTL for OTU 338796 and 

New.CleanUp.ReferenceOTU 170146 within family Ruminococcaceae were both statistically 

significant and overlapped with the QTL region for Ruminococcaceae, but the QTL for the OTUs 

were both wider. 

 

Table 3. QTL regions for OTUs. Only showing OTUs with adj. p-value < 0.1 (statistically suggestive) and with a QTL 
region overlapping QTL from higher-level taxonomies. Results with adj. p-value < 0.05 (statistically significant) are 
bolded. Complete table of QTL results for OTUs can be found in Tables S4. 

 

 

3.5. Comparison to other studies 

Results from other published studies on heritabilities of the various bacterial taxa in the gut 

microbiome of mice, pigs, and humans were compiled and compared with our results (Figure 

3). A full comparison of heritabilities among all analyzed taxa in our study and other studies can 

be found in Table S5.  

Family S24-7 within order Bacteroidales had a high heritability in our study (h2 = 0.32) and 

it has been reported as heritable and significant in both mice (h2 = 0.60 in Org et al. 2015) and 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2019. ; https://doi.org/10.1101/722744doi: bioRxiv preprint 

https://doi.org/10.1101/722744
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 

humans (h2 = 0.33 in Turpin et al. 2016) (Figure 3). Genus Lactobacillus was found to have a 

high and significant heritability (h2 = 0.36) and it was also found to be highly heritable in one 

mouse study (h2 = 0.74 in O’Connor et al. 2014) and both highly heritable and significant in a pig 

study (h2 = 0.34 in Camarinha-Silva et al. 2017) and multiple human studies (h2 = 0.36 in 

Davenport et al. 2015, 0.26 in Turpin et al. 2016, and 0.15 in Lim et al. 2017). Genus 

Turicibacter, also within class Bacilli, was found to have a high and significant heritability as well 

(h2 = 0.57) and was found to be highly heritable in one mouse study (h2 = 0.54 in Org et al. 

2015) and display a strong QTL association in another (Kemis et al. 2019). Turicibacter was 

also found to be significantly heritable in human studies (h2 = 0.26 in Turpin et al. 2016 and 0.36 

in Goodrich et al. 2016). Under the class Clostridia and still within the phylum Firmicutes, family 

Christensenellaceae in our rarefied dataset had a high, significant heritability (h2 = 0.31) that did 

not appear in our non-rarefied dataset. In human studies, Christensenellaceae has been found 

to be highly heritable and statistically significant (h2 = 0.64 in Turpin et al. 2016, 0.42 in 

Goodrich et al. 2016, and 0.31 in Lim et al. 2017). Additionally, we found genus Clostridium to 

have a high and significant heritability (h2 = 0.31) that was also seen in other human studies as 

well (h2 = 0.24 in Goodrich et al. 2016 and 0.46 in Davenport et al. 2015). The genus 

Coprococcus was also significant and highly heritable from our study (h2 = 0.25) as well as in 

various human studies (h2 = 0.46 in Davenport et al. 2015 and 0.16 in Lim et al. 2017). 

The clade within the phylum Tenericutes including genus Anaeroplasma gave high and 

statistically significant heritabilities in both our rarefied and non-rarefied datasets (Figure 3). 

Few other studies found similar results either because they did not include these taxa in their 

study or their results gave weaker heritabilities with non-significant p-values. Nonetheless, one 

mouse study did find a high heritability for genus Anaeroplasma (h2 = 0.48 in O’Connor et al. 

2014). In human studies, significant heritabilities were found for phylum Tenericutes (h2 = 0.34 

in Goodrich et al. 2016 and 0.23 in Lim et al. 2017), class Mollicutes (h2 = 0.32 in Goodrich et al. 

2016 and 0.23 in Lim et al. 2017), and order RF39 (h2 = 0.31 in Goodrich et al. 2016). 

Both our non-rarefied and rarefied datasets gave insignificant heritability estimates of 0.02 

for the genus Akkermansia and all the way up its taxonomic branch to phylum Verrucomicrobia, 

yet estimates from Org et al. 2015 were as high as h2 = 0.92, and heritability of Akkermansia 

from O’Connor et al. 2014 was h2 = 0.62 in mice. Studies conducted using human microbiome 

samples show a diversity of heritability estimates for this taxonomic branch: moderately high 

and significant (h2 = 0.30 for both in Turpin et al. 2016), low and significant (h2 = 0.15 for 

Verrucomicrobia and h2 = 0.14 for Akkermansia in Goodrich et al. 2016), and close to zero and 

non-significant (up to h2 = 0.01 for Akkermansia in Davenport et al. 2015, and 0.05 for 

Verrucomicrobia and 0.06 for Akkermansia in Lim et al. 2017). 
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Figure 3. Comparison of taxon heritabilities across mouse, human, and pig studies. The green shading over 

heritability estimates ranges from lowest heritability estimate (white) to highest heritability estimate (green) in a given 

study. Statistically significant results are shown in bold font. For our Diversity Outbred study, we report both non-

rarefied (nonR) and rarefied (R) results. For Org et al. [2015] we report results using all mice (All), just males (M), just 

females (F), an average per strain (Avg), and a single mouse per strain (One). Org et al. [2015] and O’Connor et al. 

[2014] did not report significances. For Goodrich et al. [2016] the estimates are calculated by the ACE model, bold 

values indicate estimates with a 95% confidence interval not overlapping 0. For Davenport et al. [2015] the estimates 

are the proportion of variance explained (PVE) estimates (“chip heritability”), we report winter (W), summer (S), and 

combined seasons (C) datasets, and bold values indicate estimates with a standard error not overlapping 0. For 

Turpin et al. [2016] and Lim et al. [2017] estimates are polygenic heritability (H2r). For Camarinha-Silva et al. [2017] 

estimates are narrow-sense heritability (h
2
). Grey indicates that the taxon was not observed or excluded in a given 

study. Figure adapted from Goodrich et al. [2016]. Selected comparisons shown, full comparison found in Table S5. 

 

In addition to comparing our heritability estimates with other studies, we also contrasted 

our QTL mapping results of the gut microbiome with those from previous findings (Figure 4). A 

full comparison of QTL among all analyzed taxa in our study and other studies can be found in 

Table S5. 

We identified statistically significant QTL associations for the order Bacillales as well as for 

the family Staphylococcaceae and the genus Staphylococcus within Bacillales in chromosome 

19; another mouse study also found statistically significant QTL associations for all of the same 

taxa but on chromosome 17 [McKnite et al. 2012]. A human microbiome study found statistically 
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significant QTL regions for the class Bacilli, which comprise the above mentioned order and 

families [Blekhman et al. 2015]. 

Family Ruminococcaceae has been previously found to have significant QTL associations 

both in mice (chromosome 12, [Benson et al. 2010]) and humans ([Blekhman et al. 2015]). In 

our study, Ruminococcaceae was identified to be associated with chromosomes 2 and 5. We 

also identified a QTL hit for the phylum Bacteroidetes in chromosome 5 while another mouse 

study identified a significant hit in chromosome 14 [Wang et al. 2015]. Within Bacteroidetes, 

even though we did not find any significant QTL results for the genus Bacteroides, many other 

mouse studies did (chr 4 in McKnite et al. 2012, chr 9,16,18 in Leamy et al. 2014, chr 1 in Wang 

et al. 2015, and chr 11 in Bubier et al. 2018) as well as a human study [Blekhman et al. 2015].  

Phylum Tenericutes had a significant hit in chromosome 1 in both our non-rarefied and 

rarefied datasets, and family Lachnospiraceae had a statistically suggestive QTL in 

chromosome 10 in our rarefied dataset but not in our non-rarefied dataset. Both of these taxa 

had significant QTL in a human study [Blekhman et al. 2015]. 

 
Figure 4. Comparison of taxa with QTL associations across mouse and human studies. Associations with each 

taxon are marked in blue if statistically suggestive and bolded if statistically significant, or dark grey if not significant. 
The chromosome number were the QTL were found are denoted in each box. Light gray indicates that the taxon was 
not observed or excluded in a given study. For our Diversity Outbred study, we report both non-rarefied (nonR) and 
rarefied (R) results. Figure adapted from Goodrich et al. [2016]. Selected comparisons shown, full comparison found 
in Table S5. 
 

3.6. Gene level analysis 

Examining the QTL mapping results from previous studies, it was apparent that although 

different studies might all have found significant QTL regions for a particular bacteria taxon, they 

identified different genomic positions as showing associations. In order to identify common 

pathways shared by different QTL regions, we ran a cumulative geneset pathway analysis on 

the genes within our identified regions and the genes within the regions indicated in other 
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studies. In total, there were 60 significant QTLs with an additional 256 suggestive hits across 

the six taxonomic levels (phylum, class, order, family, genus, and OTU) (Table S2 and S4).  

Of the analyzed gene subsets, the collection of genes within QTL among the taxa and 

OTUs that fall under the family Ruminococcaceae returned the most significant results. The 

Ingenuity Pathway Analysis (IPA) software was employed to analyze and categorize our 

geneset (IPA®, QIAGEN Redwood City, CA). Overall, 372 genes from 58 statistically significant 

and suggestive Ruminococcaceae QTL (Table S6) were submitted to IPA. A core analysis to 

find associated pathways and diseases generated multiple gene networks that revealed genes 

strongly associated with ovarian, breast, and colon cancer pathways (Figure 5A-B).  

Five genes, Vegfa, Kat2b, Smad4, Fgfr2, and Yes1, from our gene set were found to be 

highly linked to ovarian cancer (p-value = 5.43 x 10-6) (Figure 5A). Although all of these genes 

have been identified to be related to ovarian cancer pathways, we recognized Smad4 as a well-

known and prevalent tumor suppressor gene. SMAD4 mediates the TGF-beta signaling 

pathway and occurs frequently in pancreatic and colorectal cancers with malignant progression 

and appears occasionally in other human cancers [Miyaki et al. 2003]. Additionally, five genes 

from our input gene set were found to be significantly associated with breast cancer pathways 

(p-value = 1.17 x 10-5) (Figure 5B). Though the results are sparse and under studied, 

Ruminococcaceae abundance and breast cancer have been linked in previous studies. One 

study shows that Ruminococcaceae abundance was significantly higher in postmenopausal 

breast cancer patients when compared to normal healthy patients [Yang et al. 2017].  

Genes from our significant Ruminococcaceae QTL were also found to be associated with 

colon carcinoma (p-value = 6.67 x 10-5) and colorectal carcinoma (p-value = 1.75 x 10-4) (Figure 

5A) and associations between these bacteria and colorectal cancer (CRC) have been studied 

before. Ruminococcaceae was found to be significantly less abundant in cancerous colorectal 

tissue compared to healthy intestinal lumen [Chen et al. 2012]. Furthermore, another study 

showed findings that suggest Ruminococcaceae provides beneficial effects against risk of 

colorectal cancer [Ericsson et al. 2015].  

In addition to having genes associated with specific cancers, various genes from our 

Ruminococcaceae gene set were found to have direct interactions with the well known and 

prevalent cancer gene Tp53. Figure 5C from IPA depicts a gene network containing 21 genes 

from the Ingenuity Knowledge Base and 14 genes from our input gene set, 5 of which (Sorbs1, 

Stau1, Cox15, Ran, and Glb1) have direct interactions with the widely known tumor suppressor 

gene Tp53. TP53 has been shown to be a critical player in tumor development and how tumor 

cells avoid apoptosis, and mutations in Tp53 have been identified in numerous types of cancers 

[Petitjean et al. 2007, Greenblatt et al. 1994, Levine et al. 1991, Volgenstein et al. 2010].  
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Figure 5. Ingenuity Pathway Analysis (IPA) interaction network generated from genes within 
Ruminococcaceae QTL. Genes circled in color are all part of specific associated pathways as specified below. 

Genes colored in gray belong to our dataset whereas un-colored genes are other closely associated genes added by 
IPA. Refer to Tables S7A-C for a list of these associated genes from our dataset. (A) The network shows genes 

found within Ruminococcaceae QTL strongly associate with pathways related to ovarian cancer (circled in pink) and 
colon carcinoma and colorectal carcinoma (circled in light blue). (B) The network shows genes found within 
Ruminococcaceae QTL strongly associate with pathways related to breast cancer (circled in pink). (C) The network 
shows genes found within Ruminococcaceae QTL strongly associated with hallmark cancer gene Tp53 (circled in 
purple). 
 

We compiled the results from all of our significant QTL under the order Bacillales and used 

the genes from within the QTL regions to run gene set functional pathway analyses and found 

these bacteria to be highly associated with pathways involved in lipid and sphingolipid 

metabolism. IPA identified our input genes Vldlr and Sgms1 to be related to multiple lipid 
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metabolism pathways (p-value = 5.23 x 10-8 to 5.14 x 10-4) (Figure S4, Table S8A) and DAVID 

functional annotation tool [Huang et al. 2008] identified our genes Vldlr, Sgms1, and Asah2 to 

be related to lipid metabolism (p-value = 0.0048) as well as genes Sgms1 and Asah2 to be 

related to sphingolipid metabolism (p-value = 0.0063) (Table S8B). Associations between gut 

microbiota and host lipid metabolism have been investigated previously, and proof of causality 

between specific microbial associations with lipid metabolism and sphingolipid production has 

been demonstrated [Ghazalpour et al. 2016, Heaver et al. 2018, Johnson et al. 2019, Brown et 

al. 2019]. 

 

4. DISCUSSION 

There exists a complex and multifaceted relationship between the gut microbiome and its 

host’s genome, where recent studies are beginning to show the true magnitude of these 

connections. Our results seek to further understand this relationship by identifying functional 

and disease pathways that may be associated with specific bacterial abundances in the mouse 

gut microbiome.  

SNPs with the highest LOD in the QTL regions for Mollicutes and Bacteroidales were 

found to lie within genes Insig2 and Ksr2 respectively. Insig2 encodes a transmembrane protein 

that releases SREBP proteins to the endoplasmic reticulum where they exert control over lipid 

metabolism [Paschos et al. 2017]. Relationships between gut microbiome and lipid metabolism 

have already been established [Velagapudi et al. 2010, Li et al. 2008], and our reported 

association between Mollicutes and Insig2 further suggest some kind of interaction between 

Mollicutes abundance and lipid metabolism. Gene Ksr2 is known to be associated with BMI and 

early-onset obesity, as Ksr2 variants impair cellular fatty acid oxidation and glucose oxidation, 

often leading to hyperphagia, low heart rate, reduced basal metabolic rate, and severe insulin 

resistance [Pearce et al. 2013]. This provides potential pathways by which Ksr2 may lead to 

severe cases of obesity. Additionally, Bacteroidetes relative abundance has been shown to be 

50% lower in genetically obese ob/ob mice compared to lean mice while Firmicutes relative 

abundance was higher by a corresponding amount [Ley et al. 2005]. The association we find 

between Bacteroidales and Ksr2 may suggests a potential relationship between Bacteroidales 

abundance and risk for obesity. 

Using the total set of genes from within all 58 statistically significant and suggestive QTL 

regions for taxa within the family Ruminococcaceae, we identified multiple networks, each of 35 

functionally interrelated genes, enriched in disease pathways for ovarian, breast, and colon 

cancer. Evidence of functional associations between ovarian cancer and Ruminococcaceae is 

lacking, but various studies have confirmed findings showing increased Ruminococcaceae 

abundance in breast cancer patients compared to normal healthy individuals [Fernández et al. 

2018, Zhu et al. 2018]. While these studies did not uncover a directionality to this association, 

the significant differences in microbiome composition could be used as independent biomarkers 

of breast cancer [Zhu et al. 2018]. In addition to specific links between the family 

Ruminococcaceae and breast cancer, associations between the gut microbiome and breast 

cancer have been flagged [Fernández et al. 2018]. This includes associations between 

perturbations in the gut microbiome and circulating estrogen levels and metabolites, produced 
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by several bacteria including Ruminococcaceae and also known as the estrobolome, which can 

affect the risk for breast cancer [Plottel and Blaser 2011, Fuhrman et al. 2014]. Indeed, the gut 

microbiome can influence estrogen metabolism through enterohepatic circulation [Adlercreutz et 

al. 1984, Flores et al. 2012], and thus could be implicated in breast cancer by interacting with 

estrogen metabolism [Minelli et al. 1990, Goedert et al. 2015]. Outside the gut microbiome, a 

study looked at the relationship between the breast tissue microbiome and breast cancer and 

also found significantly different microbiome composition and functions between women with 

benign and malignant breast disease [Hieken et al. 2016]. In aggregate, these studies support a 

role for microbes in the risk of breast carcinogenesis and our study extends this relationship by 

identifying specific genes involved in breast cancer pathways that may mediate this connection. 

Our functional gene networks also revealed genes involved in colon cancer pathways. 

Ruminococcaceae abundance has been shown to be negatively correlated with risk for 

colorectal cancer (CRC) [Chen et al. 2012, Ericsson et al. 2015]. Looking beyond the specificity 

of Ruminococcaceae, various other studies have shown strong evidence for a link between the 

gut microbiome and risk for CRC. Microbiota in the colon form biofilms that line the mucosal 

surface, and a study has shown evidence suggesting that this biofilm structure may impact 

cellular proliferation and cancer growth by affecting the metabolome and down-regulating or up-

regulating the production and release of metabolites favorable for tumor cells [Johnson et al. 

2015]. General decreased microbial community diversity has been shown to be significantly 

correlated with risk for CRC in a study that compared CRC case subjects to control healthy 

subjects [Ahn et al. 2013]. Additionally, a study identified the enrichment and depletion of 

several bacterial populations associated with CRC and used this information in addition to 

known clinical risk factors for CRC to build a predictive model for evaluating risk for CRC. Used 

as a screening tool, this new predictive model that included microbial abundances improved 

accuracy by more than 50 folds [Zackular et al. 2014]. This not only confirms the existence of 

strong associations between the gut microbiome and CRC, but also raises the possibility that 

these data may be used as a potential diagnostic tool for clinical purposes. 

In addition to revealing potential disease pathways associated with Ruminococcaceae, our 

geneset pathway analysis also unveiled connections between multiple genes to the well-

characterized cancer gene Tp53. Genes Sorbs1 and Stau1 found in our QTL analysis have 

been shown to be down-regulated in cells that have undergone p53-mediated immortalization 

and transformation as a direct or indirect result of Ras signaling activity [Boiko et al. 2006]. 

Furthermore, another study showed through gene ontology analysis that p53 regulates various 

mitochondrial bioenergetic pathways including the up-regulation of our gene Cox15 involved in 

ATP synthesis [Mak et al. 2017]. The same study also found that p53 regulates various genes 

involved in cardiac tissue function including the down-regulation of our gene Ran involved in 

major signal transduction pathways [Mak et al. 2017]. P53 was further found to decrease the 

activity of mouse SA beta-Galactosidase protein (encoded by our gene Glb1) in mouse 

mesothelial cells as well as in mouse embryonic fibroblast cells [Pietruska et al. 2007, Wang et 

al. 2007]. With multiple genes from within our significant Ruminococcaceae QTL exhibiting 

interactions with the popular tumor suppressor gene Tp53, it is highly suggestive that 

Ruminococcaceae abundance may be in some way linked to cancer development and tumor 

cell proliferation. 
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Similar geneset pathway analysis was conducted for the QTL under the order Bacillales 

and significant associations were found between various genes and lipid metabolism. Although 

specific interactions between Bacillales and lipid metabolism have not been thoroughly studied 

before, previous studies have elucidated a relationship between the gut microbiome and the 

metabolome. One study discovered increased energy metabolites in conventionally raised mice 

compared to germ free mice and further found microbiome composition to influence levels of 

various lipid classes, most significantly on triglyceride and phosphatidylcholine molecular 

species [Velagapudi et al. 2010]. Furthermore, systems biology analysis comparing human baby 

microbiota to normal microbiota in mice found that metabolism of dietary lipids was specifically 

influenced by the microbiome [Li et al. 2008]. In mouse, a study confirmed the microbiome to 

exert a strong impact on the metabolism of bile acids with increased bile acid levels in various 

gut compartments in germ free mice, suggesting that gut microbiome composition may affect 

host lipid metabolism through bile acid metabolism [Claus et al. 2008]. 

Comparing our results with other studies, we found little overlap in the specific bacterial 

taxa studied as well as the calculated heritabilities and QTL results. This is most likely due to 

the limited number of existing studies discussing heritabilities and QTL mappings of bacteria 

within the gut microbiome. Additionally, the absence of a standardized methodology for 

performing these studies leads to use of different procedures and analytical methods, making it 

increasingly difficult to compare results across studies [Goodrich et al. 2017]. Ultimately, the 

current state of the field for profiling different characteristics of the gut microbiome is still rapidly 

evolving and as it matures and more studies are undertaken, it will become easier to compare 

and validate results. 

Although our results support the claim that host genetics can impact the gut microbiome 

composition in ways that are relevant to the health of the host, our study has some limitations. 

The biggest limitation to the power of the study is its relatively small sample size (n = 247 DO 

mice). Conducting QTL mapping with small sample sizes may lead to the ‘Beavis effect’ which is 

a failure to detect QTL of small effect sizes as well as an overestimation of effect size of the 

QTL that are discovered [Miles et al. 2008]. Our study also shares all the weaknesses common 

to the Diversity Outbred design: since the genome of each mouse is a unique mosaic of the 8 

strains from the CC population, the genotype of each DO mouse is irreproducible. This limits the 

amount and manner of phenotyping that can be done, and it makes replicating results within the 

DO population difficult. However, this limitation could be partially circumvented by using the CC 

lines as a form of validation, since they can provide reproducible genotypes [Svenson et al. 

2012]. Another limitation is the current lack of experimental validations of associations between 

disease pathways (such as those for ovarian, breast, and colon cancer) and specific taxa within 

gut microbiome composition, making it difficult to confirm any associations we find between 

genes and bacterial abundances. 

Our results provide insight into the complex interplay between host genetics and the gut 

microbiome, and isolate potential associations between microbial taxa and QTL that may be 

involved in pathological disease phenotypes. Additional studies are required to verify 

associations between specific genes and taxon abundance in the gut microbiome, such as 

performing gene knockouts and observing the effects on microbiome composition. While most 

of the variation in the gut microbiome composition is not due to genetics but rather 
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environmental factors [Rothschild et al. 2018], attributes of the gut microbiome that are clearly 

heritable may provide important insights about host-microbiome interactions and mechanisms 

that impact microbiome composition. The direct genotype-phenotype association approach in 

this study could be applied to illuminate novel associations between genetic variants and their 

effects on microbial abundances involved in the microbiome through the mechanism of a 

complex disease of interest. Understanding the interactions between a host’s genome and its 

microbiome composition may also aid in our understanding of complex diseases and their 

mechanisms and potentially aid in developing medical treatments.  
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5. MATERIALS AND METHODS 

5.1. Animal population and sample collection 

Male mice from the Diversity Outbred Mouse Panel were obtained from The Jackson 

Laboratory (Bar Harbor, ME, USA) at 6 weeks of age. Mice were group housed (5 animals per 

cage) for 2 weeks of post-travel acclimation, and then single housed at identical conditions. All 

mice were reared on chow diet. Fecal pellets from 249 mice were collected at 3 months old (two 

samples were later discarded, leaving a final analyzed dataset of 247 mice). Pellets were stored 

in Eppendorf tubes placed on dry ice and moved to a -80°C freezer until processing. 

5.2 Microbial DNA extraction, 16S rRNA gene PCR, and sequencing 

Microbial community DNA was extracted from one single frozen pellet per sample using 

the MO BIO PowerSoil-htp DNA Isolation Kit (MO BIO Laboratories, Inc., cat # 12955-4), but 

instead of vortexing, samples were placed in a BioSpec 1001 Mini-Beadbeater-96 for 2 minutes. 

We used 10-50 ng of sample DNA in duplicate 50 µl PCR reactions with 5 PRIME HotMasterMix 

and 0.1 µM forward and reverse primers. We amplified the V4 region of 16S using the universal 

primers 515F and barcoded 806R and the PCR program previously described [Caporaso et al. 

2011], but with 25 cycles. We purified amplicons using the Mag-Bind® E-Z Pure Kit (Omega 

Bio-tek, cat # M1380) and quantified with Invitrogen Quant-iT™ PicoGreen® dsDNA Reagent, 

and 100 ng of amplicons from each sample were pooled and paired end sequenced (2x250bp) 

on an Illumina MiSeq instrument at Cornell Biotechnology Resource Center Genomics Facility. 

5.3. 16S data processing 

We performed demultiplexing of the 16S rRNA gene sequences and OTU picking using 

open source software package Quantitative Insights Into Microbial Ecology (QIIME) version 

1.9.0 with default methods [Caporaso et al. 2010]. The total number of sequencing reads was 

15,149,384, with an average of 61,334 sequences per sample and ranging from 17,658 to 

135,803. Open-reference OTU picking at 97% identity was performed against the Greengenes 

8_13 database. 12% of sequences failed to map in the first step of closed-reference OTU 

picking. The taxonomic assignment of the reference sequence was used as the taxonomy for 

each OTU. ‘NR’ within taxa names represents New Reference OTUs defined as those with 

sequences that failed to match the reference and are clustered de novo. Random subsamples 

were used to create a new reference OTU collection and ‘NCR’ represents New Clean-up 

Reference OTUs that failed to match the new reference OTU collection [Rideout et al. 2014]. 

For the non-rarefied data, read count was used as an additional covariate during QTL 

mapping to reduce the effect of sequencing depth. A rarefied dataset was also used for 

heritability estimates and QTL mapping, as explained in Supplemental Material. Two extreme 

outliers were omitted from further analysis, yielding a total of 247 samples. To differentiate the 

non-rarefied taxa from the rarefied taxa, we use ‘NonR’ to represent the non-rarefied dataset 

and ‘R’ to represent the rarefied dataset.  

For heritability estimates and QTL mapping, a filter was applied across all 247 samples 

that removed any taxon that was not present in more than 50% of the samples. Relative 
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abundance of reads (number of reads clustered to each taxa divided by the total number of 

reads in a given sample) was used as the tested phenotype. 

Stacked bar plots of the most abundant taxa within each taxonomic level were plotted with 

R-package ggplot2. A box-plot was first generated for each taxonomic level depicting the 

abundances of the taxa within that taxonomic level across the 247 samples (Figure S1). The 

top ten taxa with the highest average abundances are selected to be plotted in the stacked bar 

plot, ordered by the most abundant taxon. A heatmap that correlates similarities between taxa 

from the non-rarefied and rarefied datasets based on the Pearson correlation coefficient was 

plotted using the R-package corrplot (Figure S2). 

5.4. SNP genotyping 

SNP genotyping was done at the Jackson Laboratories on each of the 247 mice using The 

Mega Mouse Universal Genotyping Array (MegaMUGA). A total of 57,973 SNPs passed QC 

metrics and were used in the heritability and mapping analysis reported here. 

5.5 Heritability calculations 

Heritabilities of the various bacterial taxa were quantified and calculated on autosomes 

using a linear mixed model as implemented in R-package lme4qtl via the relmatLmer() function 

[Ziyatdinov et al. 2018] (https://github.com/variani/lme4qtl). This linear mixed model enables us 

to decompose variability into genetic and environmental components. The variance of the 

genetic component is expected to be 𝜎 𝑔
2 𝐾, where 𝐾 is a kinship matrix normalized as 

proposed in Kang et al. 2010. The kinship matrix in specified via the “relmat” argument in 

relmatLmer(). To account for the potentially confounding effects of shared cages during 

acclimation (as noted above in Section 5.1), we also included cage as a random effect in our 

model. Thus, the model included estimates of variance of the genetic component (𝜎 𝑔
2 ) and 

the cage component (𝜎 𝑐𝑎𝑔𝑒
2 ), and the residual variance due to unspecified environmental 

factors ( 𝜎 𝑟𝑠
2 ). 

The narrow sense heritability was then estimated as: 

 ℎ2 =
𝜎 𝑔

2

𝜎 𝑔
2 + 𝜎 𝑐𝑎𝑔𝑒

2 + 𝜎 𝑟𝑠
2

 

Sequencing lane was included as a covariate in both non-rarefied and rarefied datasets. 

For our non-rarefied dataset, narrow sense heritabilities were calculated using the number of 

read counts as an additional covariate. Significance of heritability estimates was assessed by 

conducting a restricted likelihood ratio test using the exactRLRT() function in the R-package 

RLRsim [Scheipl et al. 2008], as applied in Supplementary Note 3 in Ziyatdinov et al. 2018.  

5.6. QTL Mapping 

For QTL mapping, the relative abundances were rank Z-transformed using R-package 

DOQTL [Gatti et al. 2014] and then mapped using a linear mixed model in R-package 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 2, 2019. ; https://doi.org/10.1101/722744doi: bioRxiv preprint 

https://github.com/variani/lme4qtl
https://doi.org/10.1101/722744
http://creativecommons.org/licenses/by-nc-nd/4.0/


20 

lme4qtl::relmatLmer() [Ziyatdinov et al. 2018] on autosomes with kinship included as random 

effect to account for genetic relatedness among animals. For the bacterial taxa from the five 

taxonomic levels, we generated QTL mappings for all taxa that passed the 50% zero cut-off (i.e. 

those present in at least 50% of the mice), with the taxa designated as the phenotype. 

Sequencing lane (fixed effect) and cage (random effect) were included in both non-rarefied and 

rarefied datasets. We included read count as an additional covariate (fixed effect) for our non-

rarefied dataset. Significant and suggestive associations were identified in a two-step 

procedure. First, we applied likelihood ratio tests comparing models with and without genotype. 

P-values derived from these tests were adjusted for multiple testing across SNPs (within a given 

taxon) using R function p.adjust() with method “BH” [Benjamini and Hochberg 1995]. In the 

second step, we conducted permutation tests (1000 permutations) for taxa that had 

associations with adjusted p-value < 0.1 in the first step.  

For every bacterial taxon from the five taxonomic levels with a statistically significant QTL 

association, we mapped the OTUs belonging to that taxon. We applied a 50% zero cut-off filter 

to only retain common OTUs. With the OTUs obtained, we generated QTL mappings and 

assessed significance just as we had done for the five taxonomic levels.  

5.7. Gene Set Pathway Analysis 

We used the open-source online DAVID annotation tool [Huang et al. 2008] and the 

Ingenuity Pathway Analysis (IPAⓇ, QIAGEN Redwood City, CA) software to conduct gene set 

pathway analysis. We used DAVID v6.8 and their functional annotation tool to reduce large 

gene sets into smaller groups of functionally related genes. A list of gene names was uploaded 

onto the website with the identifier parameter set to ‘official_gene_symbol’ and the species Mus 

musculus selected. DAVID then outputs a list of categories, such as functional, gene ontology, 

tissue expression, and others, which contained subsets of the inputted gene set. Within each 

category, DAVID also lists more specific categories and by displaying the genes for each sub-

category, we were able to view which of the genes from our gene list were found to be 

associated with various different classifications. From the association results, a p-value filter 

allowed us to view only the results above a certain EASE p-value threshold, a modified Fisher-

Exact p-value score. We chose the groupings with shown higher significance and reinforced the 

results outputted by DAVID with KEGG pathway database [Kanehisa et al. 2017] by simply 

confirming the presence of each gene in their organized category, as by DAVID, in KEGG’s 

online database. 

Using IPA, a new “core analysis project” was created and then our list of genes was 

uploaded as a dataset with parameters chosen to fit the formatting of our gene list. Before 

running the analysis, we set the reference set to be Ingenuity® Knowledge Base and then ran 

our analysis. IPA uses multiple categories to classify the inputted gene set and we focused on 

their disease and functions category. Others include expression, regulatory effects, and other 

canonical pathways. Additionally, IPA generates networks of genes proven to be either directly 

or indirectly related to each other. We chose the most significant network outputted and 

identified the intersection of that network with the network relating the genes in our QTL with the 

respective disease. 
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5.8. Data Availability 

All scripts will be on GitHub. 16S data are on the Short Read Archive.   
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8. Supplemental Material 

Figure S1 - Taxa relative abundance frequencies - Stacked bar plots and box plots 

depicting relative abundance frequencies of the top ten most abundant taxa for each of 

five taxonomic levels. Relative abundance frequencies are plotted for taxa levels from 

both the non-rarefied and the rarefied datasets. 

Figure S2 - Correlation plot between non-rarefied and rarefied taxa. Heatmap 

depicting the Pearson correlations between the relative common taxa abundances in 

non-rarefied (NonR) and rarefied (R) data, revealing that the same taxa from both non-

rarefied and rarefied datasets always group closer together than with other taxa, 

followed by taxa belonging to the same clade. 

Figure S3 - Proportion variance estimates for kinship and cage for all OTUs. 

Proportion of variance for each OTU that can be explained by additive effects 

(heritability) using a kinship or Genomic Relationship Matrix (GRM) (green), cage effects 

(orange), and unexplained residual effects (blue). Taxa marked with a red asterisk have 

statistically suggestive QTL (adj. p-value < 0.1). 

Figure S4 - IPA network for Bacillales QTL - Genes circled in purple are all part of the 

lipid metabolism pathway. Genes colored in gray belong to our dataset whereas un-

colored genes are other closely associated genes added by IPA. Refer to Tables S6A 

for a list of these associated genes from our dataset. 

Table S1 - Heritability results at 5 taxonomic levels - Complete heritability 

measurements (h2) as well as their respective p-values for all tested taxonomies at the 5 

taxonomic levels from the non-rarefied (A) and rarefied (B) datasets. 

Table S2 - QTL results at 5 taxonomic levels - QTL regions and their respective p-

values at the 5 taxonomic levels from the non-rarefied (A) and rarefied (B) datasets. 
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Table S3 - Heritability results at OTU level in non-rarefied dataset - Complete 

heritability measurements (h2) as well as their respective p-values for all tested 

taxonomies at the OTU level from the non-rarefied dataset 

Table S4 - QTL results at OTU level in non-rarefied dataset - QTL regions and their 

respective p-values at the OTU level from the non-rarefied dataset 

Table S5 - Comparison of heritabilities and QTL with other studies - Comparison of 

taxa heritabilities and QTL across mouse, human, and pig studies.  

Table S6 - Ruminococcaceae genes used for gene-set analysis - List of 372 genes 

from all significant QTL for taxa and OTUs under family Ruminococcaceae. Some genes 

were found in multiple QTL and all sources for those QTL are listed. 

Table S7 - Genes included in networks from Figure 5 - List of all genes that are part 

of the IPA networks from Figure 5A (A), Figure 5B (B), and Figure 5C (C). All sources 

for each gene are listed as well. 

Table S8 - Genes from gene set analysis using QTL under Bacillales - Using the set of 

genes from all significant QTL from taxa under Bacillales, (A) lists the genes from IPA 

network in Figure S4 and (B) shows results from DAVID functional annotation tool. 

 

Link to Supplemental Figures: 

https://docs.google.com/document/d/1mSQ0rNyCYPdyTOfBuI3Q4dgRDqaVg88M5KmG

LpnExBw/edit 

Link to Supplemental Tables: 

https://docs.google.com/spreadsheets/d/1sgH4jg3rQDC2USu1u_LCHNzC652Nh9QQ_

WT59V5hbbQ/edit 

Link to Supplemental Material: 

https://docs.google.com/document/d/1oQVyICh1MaH282ipYWRtWDQuY6C0yn1P6AQlx

fJXzvc/edit 
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