

1 **LTR_FINDER_parallel: parallelization of LTR_FINDER enabling rapid identification of long**
2 **terminal repeat retrotransposons**

3 Shujun Ou, Ning Jiang*

4 Department of Horticulture, Michigan State University, East Lansing, MI 48824, USA

5 ORCIDs: 0000-0001-5938-7180 (S.O.); 0000-0002-2776-6669 (N.J.)

6 *To whom correspondence should be addressed.

7

8 **Abstract**

9 **Summary:** Annotation of plant genomes is still a challenging task due to the abundance of
10 repetitive sequences, especially long terminal repeat (LTR) retrotransposons. LTR_FINDER is a
11 widely used program for identification of LTR retrotransposons but its application on large
12 genomes is hindered by its single threaded processes. Here we report an accessory program
13 that allows parallel operation of LTR_FINDER, resulting up to 8,500X faster identification of LTR
14 elements. It takes only 72 minutes to process the 14.5 Gb bread wheat (*Triticum aestivum*)
15 genome in comparison to 1.16 years required by the original sequential version.

16 **Availability:** LTR_FINDER_parallel is freely available at

17 https://github.com/oushujun/LTR_FINDER_parallel.

18 **Contact:** jiangn@msu.edu

19

20 1. Introduction

21 Transposable elements (TEs) are the most prevalent components in eukaryotic
22 genomes. Among different TE classes, long terminal repeat (LTR) retrotransposons, including
23 endogenous retroviruses (ERVs), is one of the most repetitive TEs due to their high copy
24 numbers and large element sizes (Ou and Jiang, 2018). LTR retrotransposons are found in
25 almost all eukaryotes including plants, fungi, and animals, but are most abundant in plant
26 genomes (Bennetzen and Wang, 2014). For example, LTR retrotransposons contribute more

27 than 65% and 70% to the genomes of bread wheat (*Triticum aestivum*) and maize (*Zea mays*),
28 respectively (Ou and Jiang, 2018).

29 Annotation of LTR retrotransposons relies primarily on *de novo* approaches due to their
30 highly diverse terminal repeats. For this purpose, many computational programs have been
31 developed in the past two decades. LTR_FINDER is one of the most popular LTR search
32 engines and the prediction quality out-performs counterpart programs (Ou and Jiang, 2018).
33 However, LTR_FINDER runs on a single thread and is prohibitively slow for large genomes with
34 long contigs, preventing its application in those species. In this study, we applied the “divide and
35 conquer” approach to simplify and parallel the annotation task for the original LTR_FINDER and
36 observed an up to 8,500 times speedup for analysis of known genomes.

37 2. Methods

38 We hypothesized that complete sequences of highly complex genomes may contain a
39 large number of complicated nested structures that exponentially increase the search space. To
40 break down these complicated sequence structures, we split chromosomal sequences into
41 relatively short segments (1 Mb) and executes LTR_FINDER in parallel. We expect the time
42 complexity of LTR_FINDER_parallel is $O(n)$. For highly complicated regions (i.e., centromeres),
43 one segment could take a rather long time (i.e., hours). To avoid extended operation time in
44 such regions, we used a timeout scheme (300 seconds) to control for the longest time a child
45 process can run. If timeout, the 1 Mb segment is further split into 50 Kb segments to salvage
46 LTR candidates. After processing all segments, the regional coordinates of LTR candidates is
47 converted back to the genome-level coordinates for the convenience of downstream analyses.

48 LTR_FINDER_parallel is a Perl program that is ready on the go and does not require
49 any form of installation. We used the original LTR_FINDER as the search engine which is binary
50 and also installation free. Based on our previous study (Ou and Jiang, 2018), we applied the
51 optimized parameter for LTR_FINDER (-w 2 -C -D 15000 -d 1000 -L 7000 -l 100 -p 20 -M 0.85),
52 which identifies long terminal repeats ranging from 100 - 7,000 bp with identity \geq 85% and

53 interval regions from 1 - 15 Kb. The output of LTR_FINDER_parallel is convertible to the
54 popular LTRharvest (Ellinghaus, et al., 2008) format, which is compatible to the high-accuracy
55 post-processing filter LTR_retriever (Ou and Jiang, 2018).

56 3. Results

57 To benchmark the performance of LTR_FINDER_parallel, we selected four plant
58 genomes with sizes varying from 120 Mb to 14.5 Gb, which are *Arabidopsis thaliana* (version
59 TAIR10) (Arabidopsis Genome Initiative, 2000), *Oryza sativa* (rice, version MSU7) (International
60 Rice Genome Sequencing, 2005; Kawahara, et al., 2013), *Zea mays* (maize, version AGPv4)
61 (Jiao, et al., 2017), and *Triticum aestivum* (wheat, version CS1.0) (International Wheat Genome
62 Sequencing, et al., 2018), respectively. Each of the genomes was analyzed both sequentially (1
63 thread) and in parallel (36 threads) with wall clock time and maximum memory recorded.

64

65 Table 1. Benchmarking the performance of LTR_FINDER_parallel.

Genome	Arabidopsis	Rice	Maize	Wheat
Version	TAIR10	MSU7	AGPv4	CS1.0
Size	119.7 Mb	374.5 Mb	2134.4 Mb	14547.3 Mb
Original memory (1 thread*)	0.37 Gbyte	0.55 Gbyte	5.00 Gbyte	11.88 Gbyte**
Parallel memory (36 threads*)	0.10 Gbyte	0.12 Gbyte	0.82 Gbyte	17.67 Gbyte
Original time (1 thread)	0.58 h	2.1 h	448.5 h	10169.3 h**
Parallel time (36 threads)	6.4 min	2.6 min	10.3 min	71.8 min
Speed up	5.4 x	48.5 x	2,613 x	8,498 x
# of LTR candidates (1 thread)	226	2,851	60,165	231,043
# of LTR candidates (36 threads)	226	2,834	59,658	237,352
% difference in candidate #	0.00%	0.60%	0.84%	-2.73%

66 * Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00GHz

67 ** LTR_FINDER was run on each chromosome; the maximum memory and the total time are
68 shown.

69

70 Using our method, we observe 5X - 8,500X increase in speed for plant genomes with
71 varying sizes (Table 1). For the 14.5 Gb bread wheat genome, the original LTR_FINDER took
72 10,169 hours, or 1.16 years, to complete, while the multithreading version completed in 72
73 minutes on a modern server with 36 threads, demonstrating an 8,500X increase in speed (Table
74 1). Even we analyzed each wheat chromosome separately, the original LTR_FINDER still take
75 20 days in average to complete. Among the genomes we tested, the parallel version of
76 LTR_FINDER produced slightly different numbers of LTR candidates when compared to those
77 generated using the original version (0% - 2.73%; Table 1), which is likely due to the use of the
78 dynamic task control approach for processing of heavily nested regions. Given the substantial
79 speed improvement (Table 1), we consider the parallel version to be a promising solution for
80 large genomes.

81

82 **Funding**

83 This study was supported by National Science Foundation (IOS-1740874 to N.J.); United States
84 Department of Agriculture National Institute of Food and Agriculture and AgBioResearch at
85 Michigan State University (Hatch grant MICL02408 to N.J.).

86 *Conflict of Interest: none declared.*

87

88 **References**

89 Arabidopsis Genome Initiative. Analysis of the genome sequence of the flowering plant
90 *Arabidopsis thaliana*. *Nature* 2000;408(6814):796-815.

91 Bennetzen, J.L. and Wang, H. The Contributions of Transposable Elements to the Structure,
92 Function, and Evolution of Plant Genomes. *Annu. Rev. Plant Biol.* 2014;65(1):505-530.

93 Ellinghaus, D., Kurtz, S. and Willhoeft, U. LTRharvest, an efficient and flexible software for *de*
94 *novo* detection of LTR retrotransposons. *BMC Bioinformatics* 2008;9(1):18.

95 International Rice Genome Sequencing, P. The map-based sequence of the rice genome.

96 *Nature* 2005;436(7052):793-800.

97 International Wheat Genome Sequencing, C., *et al.* Shifting the limits in wheat research and

98 breeding using a fully annotated reference genome. *Science* 2018;361(6403).

99 Jiao, Y., *et al.* Improved maize reference genome with single-molecule technologies. *Nature*

100 2017;546:524-527.

101 Kawahara, Y., *et al.* Improvement of the *Oryza sativa* Nipponbare reference genome using next

102 generation sequence and optical map data. *Rice* 2013;6(1):1-10.

103 Ou, S. and Jiang, N. LTR_retriever: A Highly Accurate and Sensitive Program for Identification

104 of Long Terminal Repeat Retrotransposons. *Plant Physiol.* 2018;176(2):1410-1422.

105