

1 **Anterior cingulate cortex differently modulates fronto-parietal functional connectivity between**
2 **resting-state and working memory tasks**

3

4 Running title: ACC modulates fronto-parietal connectivity

5

6 Xin Di ^{1,2}, Heming Zhang ¹, Bharat B Biswal ^{1,2*}

7 1, School of Life Sciences and Technology, University of Electronic Science and Technology of China,
8 Chengdu, China

9 2, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, 07029, USA

10

11 * Corresponding author:

12 Bharat B. Biswal, PhD

13 607 Fenster Hall, University Height

14 Newark, NJ, 07102, USA

15 bbiswal@yahoo.com

16

17 **Abstract**

18 The brain fronto-parietal regions and the functional communications between them are critical in
19 supporting working memory and other executive functions. The functional connectivity between fronto-
20 parietal regions are modulated by working memory loads, and are shown to be modulated by a third brain
21 region in resting-state. However, it is largely unknown that whether the third-region modulations remain
22 the same during working memory tasks or were largely modulated by task demands. In the current study,
23 we collected functional MRI (fMRI) data when the subjects were performing n-back tasks and in resting-
24 state. We first used a block-designed localizer to define the fronto-parietal regions that showed higher
25 activations in the 2-back than the 1-back condition. Next, we performed physiophysiological interaction
26 (PPI) analysis using left and right middle frontal gyrus (MFG) and superior parietal lobule (SPL) regions,
27 respectively, in three continuous-designed runs of resting-state, 1-back, and 2-back conditions. No
28 regions showed consistent modulatory interactions with the seed pairs in the three conditions. Instead, the
29 anterior cingulate cortex (ACC) showed different modulatory interactions with the right MFG and SPL
30 among the three conditions. While increased activity of the ACC was associated with decreased
31 functional coupling between the right MFG and SPL in resting-state, it was associated with increased
32 functional coupling in the 2-back condition. The observed task modulations support the functional
33 significance of the modulations of the ACC on fronto-parietal connectivity.

34

35 **Keywords:** anterior cingulate cortex; higher-order brain connectivity; modulatory interaction;
36 physiophysiological interaction; working memory.

37

38 **1. Introduction**

39 Working memory involves distributed brain regions, most prominently the bilateral fronto-parietal
40 network (Barch et al., 2013; Mencarelli et al., 2019; Owen, McMillan, Laird, & Bullmore, 2005).
41 Understanding the functional integrations among the distributed regions is critical to understand the
42 neural implementations of working memory. The bilateral fronto-parietal regions showed high
43 correlations even in resting-state, thus forming lateralized fronto-parietal networks when using data
44 driven methods such as independent component analysis (ICA) (Beckmann, DeLuca, Devlin, & Smith,
45 2005; Biswal et al., 2010; Di & Biswal, 2013). Because of the presence of functional connectivity during
46 resting-state, it would be more critical to investigate the relative changes of functional connectivity during
47 working memory tasks. Electroencephalogram (EEG) studies typically show increased connectivity in
48 the theta band and reduced connectivity in the alpha band between fronto-parietal regions (Babiloni et al.,
49 2004; Dai et al., 2017; Sauseng, Klimesch, Schabus, & Doppelmayr, 2005). As blood-oxygen-level
50 dependent (BOLD) signals measured by functional MRI (fMRI), the signal synchronizations between
51 some of the fronto-parietal regions were found to be reduced during higher working memory load
52 condition compared with control condition, although these regions were more activated in the same
53 contrast (Di & Biswal, 2019).

54 In addition to task modulations, functional connectivity between two regions might also be
55 modulated by a third region (Di & Biswal, 2015a; Friston et al., 1997). In the context of working
56 memory, some executive or distractive signals from other brain region might facilitate or disrupt the
57 functional communications between fronto-parietal regions. This will result in higher order interactions
58 among three brain regions, which can be studied using physiophysiological interaction (PPI) model (Di &
59 Biswal, 2013; Friston et al., 1997) or nonlinear dynamic causal modeling (Stephan et al., 2008). Several
60 studies have been performed to characterize the modulatory interactions in resting-state (Di & Biswal,
61 2013, 2014, 2015a, 2015b). Particularly, we defined the fronto-parietal regions of interest (ROIs) by
62 using ICA and performed PPI analysis on the left and right fronto-parietal ROIs, respectively (Di &
63 Biswal, 2013). We identified several medial frontal and parietal regions that showed negative modulatory

64 interaction with the fronto-parietal ROIs, indicating that the increases of activity of these regions are
65 accompanied by reduced fronto-parietal functional connectivity. However, this analysis was only
66 performed in resting-state. It remains unclear whether similar effects would be shown in task conditions,
67 or it could alter significantly upon task demands.

68 The goal of the current study is to examine whether modulatory interactions of the fronto-parietal
69 regions are modulated by task demands. We adopted a n-back paradigm with varying working memory
70 loads where the bilateral fronto-parietal regions are consistently activated (Barch et al., 2013; Owen et al.,
71 2005). We first used a block-designed localizer to identify the fronto-parietal regions that showed higher
72 activations during the 2-back than the 1-back condition. We then performed PPI analysis by using the
73 frontal and parietal ROIs in three separate continuous task conditions, i.e. resting-state, 1-back, and 2-
74 back conditions. We examined two competing hypotheses. First, there are modulatory interactions of a
75 third region with the two ROIs, and the effects are consistent across the conditions. In contrast, there may
76 be modulatory interactions of a third region with the two ROIs, but the effects highly depend on the task
77 conditions. We performed conjunction analysis to identify brain regions that may fulfill the first
78 hypothesis, and performed repeated measure one-way ANOVA to find regions that may fulfill the second
79 hypothesis.

80

81 **2. Methods**

82 **2.1. Subjects**

83 Fifty participants (26 females) were recruited for the current study. The mean age was 22.34 years (19 –
84 24 years, SD = 1.303). One subject was removed because of large head motion during MRI scan. All
85 participants reported normal auditory and normal or corrected-to-normal visual acuity, and were free of
86 neurological or psychiatric problems. All study procedures were carried out with written informed
87 consent of each subject. Each subject received honorarium of 200 RMB for the participation. The study
88 was approved by institutional review board.

89 **2.2. Study procedure**

90 At the beginning of the MRI scan session, the participants underwent a resting-state fMRI scan (8 min 30
91 sec). The participants were instructed to lay still with eyes open and staring at a white cross fixation on a
92 dark background. Four working memory task runs were then performed with the following order: two
93 block-designed runs with both 1-back and 2-back condition in each run (3 min 46 sec each), one
94 continuous run of 1-back condition (5 min 10 sec), and one continuous run of 2-back condition (5 min 10
95 sec). A high resolution anatomical T1-weighted MRI was scanned at the end of the MRI session.

96 **2.2.1. N-back task**

97 The n-back task tests the participants' working memory on the spatial locations of letters presented on the
98 screen. A white cross fixation was presented at the center of the dark screen throughout the experiment.
99 A random letter would be presented in 1 of the 4 visual field quadrants around the fixation. In a n-back
100 task condition (n = 1 or 2), participants were asked to press the left button with the left thumb when the
101 location of the current letter matched with the one presented "n" item(s) back, and pressed the right button
102 with the right thumb when it didn't match with the one presented "n" item(s) back. The letter stimulus
103 was presented for 500 ms, followed by an interstimulus interval of 2500 ms. One third of the total trials
104 were "matches". Participants were instructed to focus only on the location of the letter, but not on the
105 letter itself, and to classify the stimuli as accurately and quickly as possible. Visual stimuli were
106 presented and responses were collected using E-Prime (Psychology Software Tools).

107 The n-back task procedures were designed in two ways. First, in the two localizer runs, the n-
108 back stimuli were presented as separate blocks of 1-back or 2-back conditions. Each run started with a 10
109 s fixation. Then, each of the block consisted of 8 trials (24 sec), with a 24-s fixation period intercepted
110 between the task blocks. The orders of task blocks of the two runs were "ABBA" and "BAAB",
111 respectively. As a result, each run lasted for 3 min and 46 sec. Second, in the two continuous runs, the n-
112 back trials were presented continuously without long fixation period between them. The 1-back and 2-
113 back conditions were allocated in two separate runs. Each run started with a 10 s fixation period,
114 followed by 100 trials. Each run lasted for 5 min and 10 sec.

115 **2.2.2. MRI scanning parameters**

116 MRI data were acquired on a 3T GE Signa Scanner (General Electric Company, Milwaukee, WI) in
117 functional MRI center at University of Electronic Science and Technology of China. An 8-channel head
118 coil was used. The scanning parameters for the fMRI were: TR (repetition time) = 2000 ms; TE (echo
119 time) = 30 ms; flip angle = 90°; FOV (field of view) = 240×240 mm²; matrix size = 64×64; axial slice
120 number = 42 with slice thickness = 3 mm and gap = 0). As a result, each resting-state run was consisted
121 of 255 images, each block-designed run was consisted of 113 images, and each continuous task run was
122 consisted of 155 images. Structural T1-weighted images were acquired using the following parameters:
123 TR = 6 ms; TE = Minimum; TI = 450 ms; flip angle = 12°; FOV = 256×256 mm²; matrix size = 256×256;
124 sagittal slice number = 156 with slice thickness = 1 mm.

125 **2.3. FMRI data analysis**

126 **2.3.1. Preprocessing**

127 FMRI images were processed using SPM12 (SPM, RRID: SCR_007037;
128 <https://www.fil.ion.ucl.ac.uk/spm/>) under MATLAB environment (R2017b). The anatomical image of
129 each subject was segmented into gray matter (GM), white matter (WM), cerebrospinal fluid (CSF), and
130 other brain tissue types, and normalized into standard Montreal Neurological Institute (MNI) space. The
131 first five functional images of each run were discarded from analysis. The remaining images were
132 realigned to the first image of each run, and coregistered to the anatomical image. The deformation field
133 images obtained from the segmentation step were used to normalize all the functional images into MNI
134 space, with a resampled voxel size of 3 x 3 x 3 mm³. All the images were spatially smoothed using an 8 x
135 8 x 8 mm³ Gaussian kernel.

136 We calculated frame-wise displacement for the translation and rotation directions to reflect the
137 amount of head motions (Di & Biswal, 2015a). We adopted the threshold of maximum frame-wise
138 displacement of 1.5 mm or 1.5 degree (half voxel size), or mean frame-wise displacement of 0.2 mm or
139 0.2 degree. The subjects with any of the five runs exceeding the threshold would be removed from the
140 analysis. As a result, one subject's data were discarded.

141 **2.3.2. Activation analysis of the block-designed runs**

142 We first defined general linear model (GLM) to perform voxel-wise analysis on the block-designed runs
143 to identify task activations between the 2-back and 1-back conditions. The two runs were modeled
144 together with their own task regressors, covariates, and constant terms. The 2-back and 1-back conditions
145 were defined as two box-car functions convolved with canonical hemodynamic response function (HRF).
146 The first eigenvector of the signals in the WM and CSF, respectively, and 24 head motion regressors
147 (Friston, Williams, Howard, Frackowiak, & Turner, 1996) were added as covariates. There was also a
148 high-pass filter (1/128 Hz) implicitly implemented in the GLM. After model estimation, a contrast of 2-
149 back – 1-back was defined to reflect the differences of activations between the two conditions.

150 Group level analysis was performed using one sample t test GLM with the contrast images of 2-
151 back vs. 1-back as dependent variables. Activated clusters were first identified using a threshold of $p <$
152 0.001 of two-tailed t test (Chen et al., 2019), and the cluster extent was thresholded at cluster level false
153 discovery rate (FDR) of $p < 0.05$. Because we were interested in fronto-parietal regions, we searched the
154 peak coordinates of the resulting clusters as well as local maxima within large clusters that covered these
155 regions. As a result, we defined bilateral middle frontal gyrus regions (MNI coordinates: RMFG, 24, 11,
156 56; LMFG, -24, 8, 50) and superior parietal lobule (MNI coordinates: LSPL, -18, -70, 50; RSPL, 21, -67,
157 53) as ROIs.

158 **2.3.3. Physiophysiological interaction analysis of the continuous-designed runs**

159 We first defined GLMs for each continuous run and subject to define ROIs. The GLMs only included the
160 WM/CSF, head motion, and constant regressors, but did not include any task regressors. A high-pass
161 filter (1/128 Hz) was also implicitly implemented in the GLM. After model estimation, the time series of
162 the LMFG, LSPL, RMFG, and RSPL were extracted within spherical ROIs of 6 mm radius centered at
163 the above mentioned MNI coordinates. All the effects of no-interests, i.e. WM/CSF signals, head motion,
164 constant, and low-frequency drifts were adjusted during the time series extraction. PPI terms were
165 calculated for LMFG and LSPL, and RMFG and RSPL, respectively. The time series of the two ROIs
166 were deconvolved with canonical HRF, multiplied together, and convolved back with HRF to form a PPI
167 term (Di & Biswal, 2013; Gitelman, Penny, Ashburner, & Friston, 2003). Here we only focused on

168 within hemisphere fronto-parietal connectivity, e.g. LMFG and LSPL, but excluded inter-hemisphere
169 connectivity, e.g. LMFG and RSPL. This is because usually there is no direct anatomical connection
170 between two different regions across hemispheres. The observed functional interactions between them,
171 e.g. LMFG and RSPL, are usually mediated by one of their corresponding region in the opposite
172 hemisphere, e.g. RMFG or LSPL.

173 Next, new GLMs were built with the time series of the two ROIs and the PPI term between them
174 for each of the ROI pairs and task conditions. Other regressors of no-interests as well as the implicit
175 high-pass filter were also included in the GLMs. The beta estimates corresponding to the interaction term
176 was the effect of interest, which were used for the group level analysis. We note that the beta estimates
177 are not a function of sample size (the number of time points in this case). Therefore, the comparisons of
178 betas between resting-state and n-back runs are not biased by the differences in time points.

179 The first goal of the group analysis is to identify regions that show modulatory interaction effects
180 consistently present in the three conditions. We performed conjunction analysis of the three conditions.
181 First, second-level GLMs were built for the LMFG-LSPL and RMFG-RSPL analyses, respectively, using
182 a one-way analysis of variance (ANOVA) model implemented in SPM. The GLM included three
183 columns representing the three conditions. Second, a t contrast was defined for each condition for the
184 positive and negative directions, respectively. Finally, we examined the conjunction effects of the three
185 conditions for the positive and negative effects, respectively, using a threshold of one-tailed $p < 0.0005$
186 (corresponding to two-tailed $p < 0.001$). Cluster level FDR of $p < 0.05$ was used for the cluster extent
187 threshold. Because there were no clusters survived at the two-tailed $p < 0.001$ threshold, we also
188 explored lower threshold of two-tailed $p < 0.01$ for potential effects.

189 The second goal is to identify regions that showed variable modulatory interactions in the three
190 conditions. Repeated measure one-way ANOVA model was used for this purpose, with the three
191 conditions as three levels of a factor. The significant results of the repeated measure ANOVA indicate
192 differences in the PPI effects between any two of the three conditions. The resulting statistical maps were
193 thresholded at $p < 0.001$ with cluster level FDR at $p < 0.05$.

194

195 **3. Results**

196 **3.1. Task activations in the localizer runs**

197 We observed typical bilateral fronto-parietal regions that showed higher activations during the 2-back
198 condition compared with 1-back condition (Figure 1 and Table 1). The frontal clusters mainly covered
199 the bilateral middle frontal gyrus and precentral gyrus. The parietal clusters mainly covered the bilateral
200 superior parietal lobule and precuneus. The right cerebellum and left basal ganglia were also activated.
201 There were also reduced activations in the 2-back compared with 1-back condition, mainly in the default
202 model network and bilateral temporo-opercular regions.

203 [Insert Figure 1 and Table 1 about here]

204 **3.2. Modulatory interactions during different task conditions**

205 We first performed conjunction analysis to identify regions that showed consistent PPI effects across the
206 three conditions. No statistical significant clusters were found of any sizes at $p < 0.001$ for both the
207 LMFG-LSPL and RMFG-RSPL analyses. We further checked the threshold of $p < 0.01$, and still there
208 were no clusters of any sizes survived.

209 Repeated measure one-way ANOVA showed only significant effects on the modulatory
210 interactions of RMFG and RSPL. As shown in Figure 2 and Table 2, the only cluster mainly covered the
211 anterior cingulate cortex (ACC). The cluster-level FDR corrected p value (0.005) also survived
212 Bonferroni correction for the two analyses (RMFG/RSPL and LMFG/LSPL). Post-hoc analysis showed
213 that the PPI effect in the ACC was positive in the 2-back condition but negative during resting-state
214 (Figure 2B). And the differences among the three conditions were mainly driven by the differences
215 between the 2-back condition and the other two conditions. Repeated measure one-way ANOVA of the
216 modulatory interactions of LMFG and LSPL showed a similar cluster in the ACC. However, the cluster
217 size could not pass the cluster-level threshold.

218 [Insert Figure 2 and Table 2 about here]

219 In order to better interpret the PPI effects in the ACC, we correlated the mean PPI effects in the
220 ACC cluster with RMFC and RSPL with behavioral measures of mean reaction time and accuracy (Figure
221 3). The PPI effect showed a very small correlation with reaction time ($r = -0.16$), and a moderate
222 negative correlation with the accuracy ($r = -0.39$). But it can be seen in Figure 3C that there were
223 potential outliers near the x axis that might introduce spurious correlations. We therefore performed
224 bootstrapping for 10,000 times to obtain a 95% confidence interval of the correlation (-0.6352, 0.0046)
225 (Figure 3D).

226 [Insert Figure 3 about here]

227

228 **3.3. Post hoc task activation analysis**

229 Lastly, we also extracted the mean task activations of the ACC in the block-designed runs (Figure 4). The
230 ACC showed reduced activations in both the 1-back and 2-back conditions with reference to the fixation
231 baseline. But the activations were more negative in the 2-back condition than in the 1-back condition
232 (paired t test: $t(48) = 4.49, p < 0.001$).

233 [Insert Figure 4 about here]

234

235

236 **4. Discussion**

237 By comparing modulatory interactions of two key regions in working memory across three continuously
238 designed task conditions, the current analysis identified the ACC that showed different modulatory
239 interactions with the RMFG and RSPL in the resting-state, 1-back, and 2-back conditions. On the other
240 hand, no regions showed consistent modulatory interactions with the fronto-parietal regions across the
241 three conditions. The activity in the ACC was positively correlated with the connectivity of RMFG and
242 RSPL during the 2-back condition, but was negatively correlated with the connectivity of RMFG and
243 RSPL in resting-state. Due to the nature of regression model, this is impossible to infer the directions of
244 the modulations (Di & Biswal, 2013). However, the RMFG and RSPL were co-activated by the working

245 memory task and are also considered part of the same functional network (Biswal et al., 2010; Yeo et al.,
246 2011), while the ACC was more deactivated in the 2-back condition. We therefore prefer to interpret the
247 results as that the ACC increase the functional connectivity between RMFG and RSPL during the 2-back
248 condition, and reduce the functional connectivity between the RMFG and RSPL.

249 Due to the fact that the ACC was negatively activated in the task conditions compared with the
250 fixation condition (Figure 4), it is likely that the ACC is part of the default mode network (Raichle et al.,
251 2001). The current PPI results are consistent with our previous study in resting-state, which also showed
252 some midline regions from the default mode network having negative modulatory interactions with
253 RMFG and RSPL (Di & Biswal, 2013). The task positive network including the fronto-parietal regions
254 and the default mode network are anti-correlated both in resting-state (Fox et al., 2005) and during task
255 executions (Shulman et al., 1997). The current results together with our previous work (Di & Biswal,
256 2013) further confirm that the competing nature of the task positive and default mode networks not only
257 exist in first order relationships but also in higher order interactions.

258 More interestingly, current analysis found that the modulatory interactions among ACC, RMFG,
259 and RSPL were largely modulated by task conditions. In contrast to the resting-state, the ACC showed no
260 significant modulatory interactions in the 1-back condition, and positive modulatory interactions in the 2-
261 back condition. The task dependent effect is in line with some studies that have demonstrated task
262 modulated modulatory interactions in other brain systems by using higher order psycho-physio-
263 physiological interaction models (Gorka, Knodt, & Hariri, 2015; Stamatakis, Marslen-Wilson, Tyler, &
264 Fletcher, 2005). In neuronal level models, it has also been shown that higher order interactions present
265 only in certain task conditions (Ganmor, Segev, & Schneidman, 2011; Macke, Opper, & Bethge, 2011).
266 Taken together, all the evidence conversely suggests that high order interactions may be sensitive to task
267 demands.

268 During the 2-back condition with higher working memory loads, the signals from the ACC were
269 associated with increased functional communications between the fronto-parietal regions. One of the
270 functions of the ACC is error detection and conflict monitoring (Bush, Luu, & Posner, 2000). Then, the

271 ACC activity may represent error related signals that would enhance the communications between the
272 fronto-parietal regions to maintain task performances. The brain-behavioral correlation analysis
273 supported this interpretation. The modulatory interactions in the 2-back condition were not correlated
274 with reaction time, but were negatively correlated with accuracy. In other words, the more errors one
275 made, the larger the modulatory interactions were among ACC, RMFG, and RSPL.

276 The current study adopted functionally defined ROIs of the MFG and SPL from a localizer for the
277 PPI analysis. The bilateral MFGs are a little anterior to the premotor regions and posterior to the
278 dorsolateral prefrontal cortex reported in a meta-analysis of n-back tasks (Owen et al., 2005). And the
279 bilateral SPLs are superior and posterior to the inferior parietal lobule region reported in (Owen et al.,
280 2005). The differences may represent discrepancies in task designs and control conditions. But the fact
281 that these regions showed the highest contrast between the 2-back and 1-back condition in the current
282 localizer task support the usage of these regions to represent regions that are involved in working memory
283 process. The fronto-parietal ROIs also do not exactly match with those used in the resting-state study (Di
284 & Biswal, 2013). But similar to this paper, the current analysis showed negative modulatory interactions
285 in the middle line region of ACC with RMFG and RSPL (Di & Biswal, 2013).

286 The current analysis adopted a ROI-based approach, with ROIs identified directly from the
287 working memory task studied. This helped us to focus on specific brain regions that are related to the
288 task. The whole brain PPI analysis identified a region that are not a part of the fronto-parietal network
289 nor activated during the working memory tasks. It is reasonable because our previous study has shown
290 that modulatory interactions are more likely to take place among regions from different brain networks
291 (Di & Biswal, 2015a). There may be other brain regions that involve higher order interactions with one
292 of the fronto-parietal regions. But the potential interactions will increase exponentially when considering
293 the combinations of two brain regions outside the fronto-parietal network, making it difficult to do an
294 exhaustive search based on the current sample size. Further studies may adopt the whole brain approach
295 (Di & Biswal, 2015a) to examine the whole brain characterizations of modulatory interactions effects.
296 Another limitation of the current study is that the resting-state run was always acquired at the beginning

297 of the scan session. We designed the tasks in this way to prevent contaminations of other tasks on the
298 resting-state, given ample evidences that task executions can alter brain signals in resting-state (Sarabi et
299 al., 2018; Tung et al., 2013). The order effect may contribute to the observed differences in the three
300 conditions. Further studies may add a post task resting-state run to rule out the order effects.

301 In conclusion, the current analysis extended our previous analysis in resting-state and showed that
302 the modulatory interaction among ACC and right fronto-parietal regions were highly modulated by task
303 demands. The results may provide a new model on how error related signals affecting working memory
304 process through higher order interactions among brain regions.

305

306 **Acknowledgements:**

307 This study was supported by grants from National Natural Science Foundation of China (NSFC61871420)
308 and (US) National Institute of Health (R01 AT009829; R01 DA038895).

309

310 **Author contributions:**

311 X.D. conceived the idea. H.Z. designed the experiment and collected the fMRI data. X.D. performed the
312 data analysis and wrote the draft. All authors discussed the results, and contributed to the final manuscript.

313

314 **Conflict of interest statement:**

315 The authors declare that there is no conflict of interest regarding the publication of this article.

316

317 **Data Availability:**

318 The data that support the findings of this study are available on request from the corresponding author.

319 The data are not publicly available due to privacy or ethical restrictions.

320

321 **Reference:**

322 Babiloni, C., Babiloni, F., Carducci, F., Cincotti, F., Vecchio, F., Cola, B., ... Rossini, P. M. (2004). Functional
323 Frontoparietal Connectivity During Short-Term Memory as Revealed by High-Resolution EEG
324 Coherence Analysis. *Behavioral Neuroscience*, 118(4), 687–697. <https://doi.org/10.1037/0735-7044.118.4.687>

325

326 Barch, D. M., Burgess, G. C., Harms, M. P., Petersen, S. E., Schlaggar, B. L., Corbetta, M., ... Van Essen, D.
327 C. (2013). Function in the human connectome: Task-fMRI and individual differences in behavior.
328 *NeuroImage*, 80, 169–89. <https://doi.org/10.1016/j.neuroimage.2013.05.033>

329 Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state
330 connectivity using independent component analysis. *Philosophical Transactions of the Royal
331 Society of London. Series B, Biological Sciences*, 360(1457), 1001–13.
332 <https://doi.org/10.1098/rstb.2005.1634>

333 Biswal, B. B., Mennes, M., Zuo, X.-N., Gohel, S., Kelly, C., Smith, S. M., ... Milham, M. P. (2010). Toward
334 discovery science of human brain function. *Proceedings of the National Academy of Sciences of
335 the United States of America*, 107(10), 4734–9. <https://doi.org/10.1073/pnas.0911855107>

336 Bush, G., Luu, P., & Posner, M. I. (2000). Cognitive and emotional influences in anterior cingulate cortex.
337 *Trends in Cognitive Sciences*, 4(6), 215–222. [https://doi.org/10.1016/S1364-6613\(00\)01483-2](https://doi.org/10.1016/S1364-6613(00)01483-2)

338 Chen, G., Cox, R. W., Glen, D. R., Rajendra, J. K., Reynolds, R. C., & Taylor, P. A. (2019). A tail of two sides:
339 Artificially doubled false positive rates in neuroimaging due to the sidedness choice with t-tests.
340 *Human Brain Mapping*, 40(3), 1037–1043. <https://doi.org/10.1002/hbm.24399>

341 Dai, Z., de Souza, J., Lim, J., Ho, P. M., Chen, Y., Li, J., ... Sun, Y. (2017). EEG Cortical Connectivity Analysis
342 of Working Memory Reveals Topological Reorganization in Theta and Alpha Bands. *Frontiers in
343 Human Neuroscience*, 11. <https://doi.org/10.3389/fnhum.2017.00237>

344 Di, X., & Biswal, B. B. (2013). Modulatory interactions of resting-state brain functional connectivity. *PloS
345 One*, 8(8), e71163. <https://doi.org/10.1371/journal.pone.0071163>

346 Di, X., & Biswal, B. B. (2014). Modulatory interactions between the default mode network and task
347 positive networks in resting-state. *PeerJ*, 2, e367. <https://doi.org/10.7717/peerj.367>

348 Di, X., & Biswal, B. B. (2015a). Characterizations of resting-state modulatory interactions in the human
349 brain. *Journal of Neurophysiology*, 114(5), 2785–96. <https://doi.org/10.1152/jn.00893.2014>

350 Di, X., & Biswal, B. B. (2015b). Dynamic brain functional connectivity modulated by resting-state
351 networks. *Brain Structure and Function*, 220(1), 37–46. <https://doi.org/10.1007/s00429-013-0634-3>

352

353 Di, X., & Biswal, B. B. (2019). Toward Task Connectomics: Examining Whole-Brain Task Modulated
354 Connectivity in Different Task Domains. *Cerebral Cortex*, 29(4), 1572–1583.
355 <https://doi.org/10.1093/cercor/bhy055>

356 Fox, M. D., Snyder, A. Z., Vincent, J. L., Corbetta, M., Van Essen, D. C., & Raichle, M. E. (2005). The human
357 brain is intrinsically organized into dynamic, anticorrelated functional networks. *Proceedings of
358 the National Academy of Sciences of the United States of America*, 102(27), 9673–8.

359 Friston, K. J., Buechel, C., Fink, G. R., Morris, J., Rolls, E., & Dolan, R. J. (1997). Psychophysiological and
360 modulatory interactions in neuroimaging. *NeuroImage*, 6(3), 218–29.

361 Friston, K. J., Williams, S., Howard, R., Frackowiak, R. S., & Turner, R. (1996). Movement-related effects
362 in fMRI time-series. *Magnetic Resonance in Medicine: Official Journal of the Society of
363 Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine*, 35(3), 346–55.
364 <https://doi.org/DOI 10.1002/mrm.1910350312>

365 Ganmor, E., Segev, R., & Schneidman, E. (2011). Sparse low-order interaction network underlies a highly
366 correlated and learnable neural population code. *Proceedings of the National Academy of
367 Sciences*, 108(23), 9679–9684. <https://doi.org/10.1073/pnas.1019641108>

368 Gitelman, D. R., Penny, W. D., Ashburner, J., & Friston, K. J. (2003). Modeling regional and
369 psychophysiological interactions in fMRI: the importance of hemodynamic deconvolution.
370 *NeuroImage*, 19(1), 200–7.

371 Gorka, A. X., Knodt, A. R., & Hariri, A. R. (2015). Basal forebrain moderates the magnitude of task-
372 dependent amygdala functional connectivity. *Social Cognitive and Affective Neuroscience*, 10(4),
373 501–507. <https://doi.org/10.1093/scan/nsu080>

374 Macke, J. H., Opper, M., & Bethge, M. (2011). Common input explains higher-order correlations and
375 entropy in a simple model of neural population activity. *Physical Review Letters*, 106(20),
376 208102. <https://doi.org/10.1103/PhysRevLett.106.208102>

377 Mencarelli, L., Neri, F., Momi, D., Menardi, A., Rossi, S., Rossi, A., & Santarnecchi, E. (2019). Stimuli,
378 presentation modality, and load-specific brain activity patterns during n-back task. *Human Brain
379 Mapping*, 40(13), 3810–3831. <https://doi.org/10.1002/hbm.24633>

380 Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A
381 meta-analysis of normative functional neuroimaging studies. *Human Brain Mapping*, 25(1), 46–
382 59. <https://doi.org/10.1002/hbm.20131>

383 Raichle, M. E., MacLeod, A. M., Snyder, A. Z., Powers, W. J., Gusnard, D. A., & Shulman, G. L. (2001). A
384 default mode of brain function. *Proceedings of the National Academy of Sciences of the United
385 States of America*, 98(2), 676–82. <https://doi.org/10.1073/pnas.98.2.676>

386 Sarabi, M. T., Aoki, R., Tsumura, K., Keerativittayayut, R., Jimura, K., & Nakahara, K. (2018). Visual
387 perceptual training reconfigures post-task resting-state functional connectivity with a feature-
388 representation region. *PLOS ONE*, 13(5), e0196866.
389 <https://doi.org/10.1371/journal.pone.0196866>

390 Sauseng, P., Klimesch, W., Schabus, M., & Doppelmayr, M. (2005). Fronto-parietal EEG coherence in
391 theta and upper alpha reflect central executive functions of working memory. *International
392 Journal of Psychophysiology*, 57(2), 97–103. <https://doi.org/10.1016/j.ijpsycho.2005.03.018>

393 Shulman, G. L., Fiez, J. A., Corbetta, M., Buckner, R. L., Miezin, F. M., Raichle, M. E., & Petersen, S. E.
394 (1997). Common Blood Flow Changes across Visual Tasks: II. Decreases in Cerebral Cortex.
395 *Journal of Cognitive Neuroscience*, 9(5), 648–663. <https://doi.org/10.1162/jocn.1997.9.5.648>

396 Stamatakis, E. A., Marslen-Wilson, W. D., Tyler, L. K., & Fletcher, P. C. (2005). Cingulate control of fronto-
397 temporal integration reflects linguistic demands: A three-way interaction in functional
398 connectivity. *NeuroImage*, 28(1), 115–21. <https://doi.org/10.1016/j.neuroimage.2005.06.012>

399 Stephan, K. E., Kasper, L., Harrison, L. M., Daunizeau, J., den Ouden, H. E. M., Breakspear, M., & Friston,
400 K. J. (2008). Nonlinear dynamic causal models for fMRI. *NeuroImage*, 42(2), 649–62.
401 <https://doi.org/10.1016/j.neuroimage.2008.04.262>

402 Tung, K.-C., Uh, J., Mao, D., Xu, F., Xiao, G., & Lu, H. (2013). Alterations in resting functional connectivity
403 due to recent motor task. *NeuroImage*, 78, 316–324.
404 <https://doi.org/10.1016/j.neuroimage.2013.04.006>

405 Xia, M., Wang, J., & He, Y. (2013). BrainNet Viewer: A network visualization tool for human brain
406 connectomics. *PLoS One*, 8(7), e68910. <https://doi.org/10.1371/journal.pone.0068910>

407 Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., ... Buckner, R. L.
408 (2011). The organization of the human cerebral cortex estimated by intrinsic functional
409 connectivity. *Journal of Neurophysiology*, 106(3), 1125–65.
410 <https://doi.org/10.1152/jn.00338.2011>

411

412 **Figure legends:**

413 **Figure 1** Increased (warm color) and decreased (cold color) activations in the 2-back condition compared
414 with the 1-back condition. The map was thresholded at $p < 0.001$ (two-tailed) with cluster-level false
415 discovery rate of $p < 0.05$. The purple spheres illustrate the four regions of interest used in the
416 physiophysiological interaction (PPI) analysis. The surface presentation was made by using BrainNet
417 Viewer (RRID: SCR_009446) (Xia, Wang, & He, 2013). LMFG, left middle frontal gyrus; RMFG, right
418 middle frontal gyrus; LSPL, left superior parietal lobule; and RSPL, right superior parietal lobule.

419

420 **Figure 2** A) Region that showed different modulatory interactions with right middle frontal gyrus
421 (RMFG) and right superior parietal lobule (RSPL) among the three task conditions (repeated measure one
422 way analysis of variance, ANOVA). The map was thresholded at $p < 0.001$ with cluster level false
423 discovery rate (FDR) of $p < 0.05$. B) Mean modulatory interactions of the cluster in the in the three
424 conditions. The center red lines represent the mean effects, and the light red bars and light blue bars
425 represent 95% confidence interval and standard deviation, respectively. * indicates statistical significance
426 in post-hoc pair-wise comparisons at $p < 0.05$. Panel B was made by using notBoxPlot
427 (<https://github.com/raacampbell/notBoxPlot>). A.u., arbitrary unit.

428

429 **Figure 3** Behavioral correlates of the mean modulatory interactions in the anterior cingulate cortex (ACC)
430 with right middle frontal gyrus (RMFG) and right superior parietal lobule (RSPL) during the 2-back
431 continuous run. A and B illustrate the relations between the modulatory interactions and reaction times
432 and 10,000 bootstrapping distributions of the correlations. C and D illustrate the relations between the
433 modulatory interactions and accuracy and 10,000 bootstrapping distributions of the correlations.

434

435 **Figure 4** Mean task activations of the anterior cingulate cortex (ACC) cluster in the block-designed runs.
436 The center red lines represent the mean effects, and the light red bars and light blue bars represent 95%

437 confidence interval and standard deviation, respectively. This figure was made by using notBoxPlot
438 (<https://github.com/raacampbell/notBoxPlot>). A.u., arbitrary unit.
439

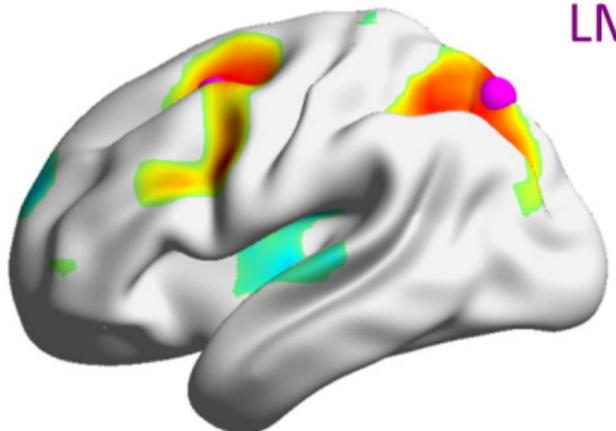
440 **Table 1** Clusters that showed increased or decreased activations in the 2-back condition compared with
441 the 1-back condition in the block designed runs. The cluster was defined as two tailed $p < 0.001$, with
442 cluster level false discovery rate (FDR) of $p < 0.05$.

p (cluster FDR)	voxels	Coordinates			peak T	Label
		x	y	z		
< 0.001	2108	24	11	56	11.65	Right middle frontal gyrus
		-24	8	50	10.72	Left middle frontal gyrus
		-48	5	32	9.810	Left precentral gyrus
< 0.001	2897	-6	-61	44	10.73	Precuneus
		-18	-70	50	10.68	Left superior parietal lobule
		21	-67	53	10.44	Right superior parietal lobule
0.004	120	48	5	23	7.00	Right precentral gyrus
0.003	149	27	-61	-37	6.92	Right cerebellum
		9	-73	-31	4.78	Right cerebellum
0.003	136	-18	5	11	5.84	Left caudate
		-30	26	2	5.75	Left anterior insula
0.038	63	-33	50	2	4.20	Left middle frontal gyrus
		-42	50	2	4.02	Left middle frontal gyrus
< 0.001	661	-3	-16	32	-8.73	Middle cingulate gyrus
		0	-37	20	-6.08	Posterior cingulate gyrus
		0	-28	44	-5.42	Posterior cingulate gyrus
< 0.001	660	39	-19	20	-6.54	Right parietal operculum
		36	-16	2	-5.56	Right posterior insula
		39	2	-1	-5.16	Right anterior insula
< 0.001	910	12	59	20	-6.11	Superior frontal gyrus
		-6	62	8	-5.86	Medial superior frontal gyrus
		-9	53	-1	-5.84	Medial superior frontal gyrus
< 0.001	498	-36	-10	-4	-5.39	Left posterior insula
		-63	-25	5	-4.73	Left superior temporal gyrus
		-39	-19	17	-4.64	Left central operculum
0.037	74	21	38	-1	-5.19	Anterior cingulate gyrus

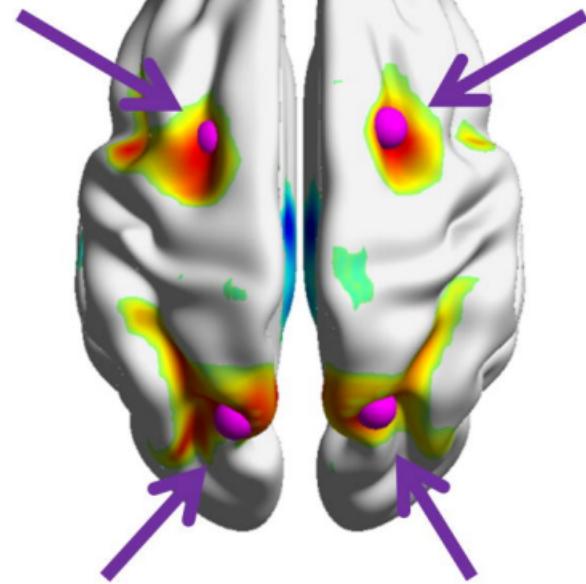
443

444 X, y, and z coordinates are in (Montreal Neurological Institute) MNI space.

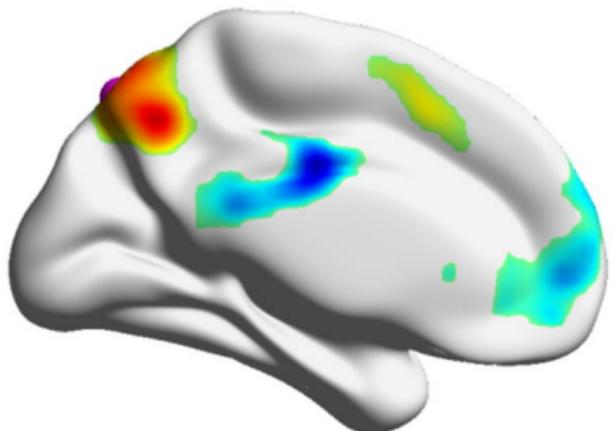
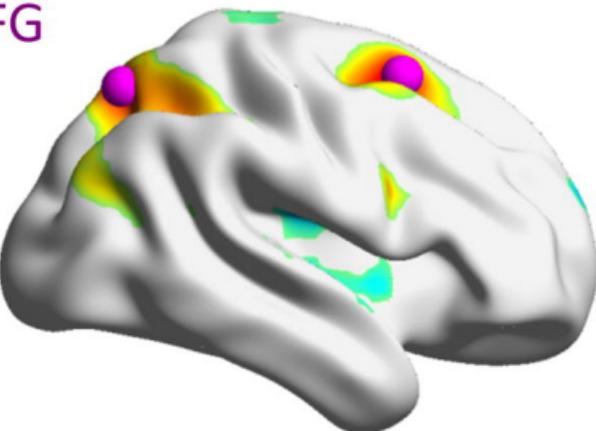
445

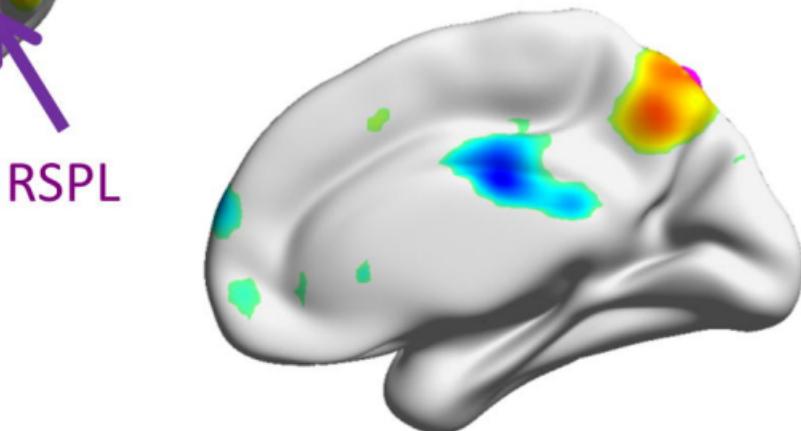

446 **Table 2** Cluster that showed different physiophysiological interaction (PPI) effects with right middle
447 frontal gyrus (RMFG) and right superior parietal lobule (RSPL) among the resting-state, 2-back, and 1-
448 back conditions in the continuous runs (repeated measure one way analysis of variance, ANOVA). The
449 cluster was defined as $p < 0.001$, with cluster level false discovery rate (FDR) of $p < 0.05$.

Coordinates						
p (cluster FDR)	voxels	x	y	z	peak F	Label
0.005	133	-3	32	14	14.94	Anterior cingulate gyrus
		9	35	5	14.82	Anterior cingulate gyrus
		3	44	-4	8.27	Anterior cingulate gyrus

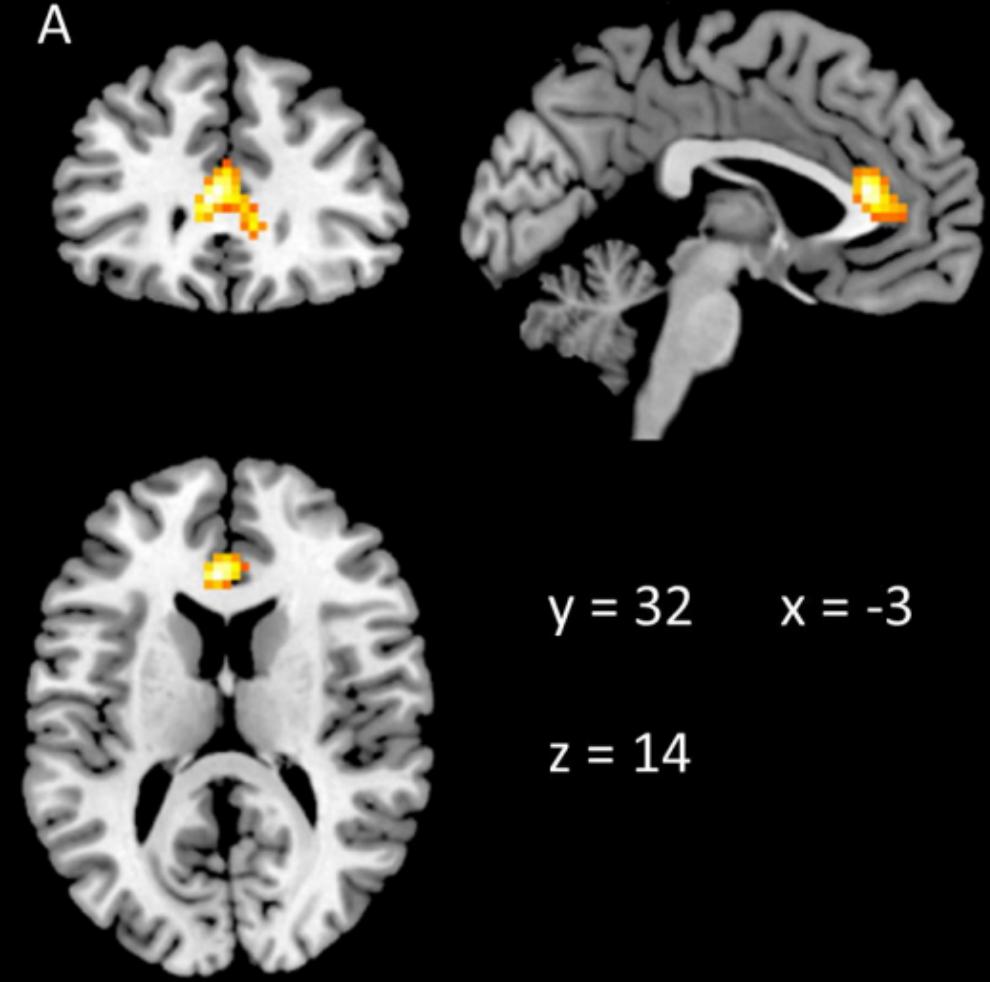

450

451 X, y, and z coordinates are in (Montreal Neurological Institute) MNI space.

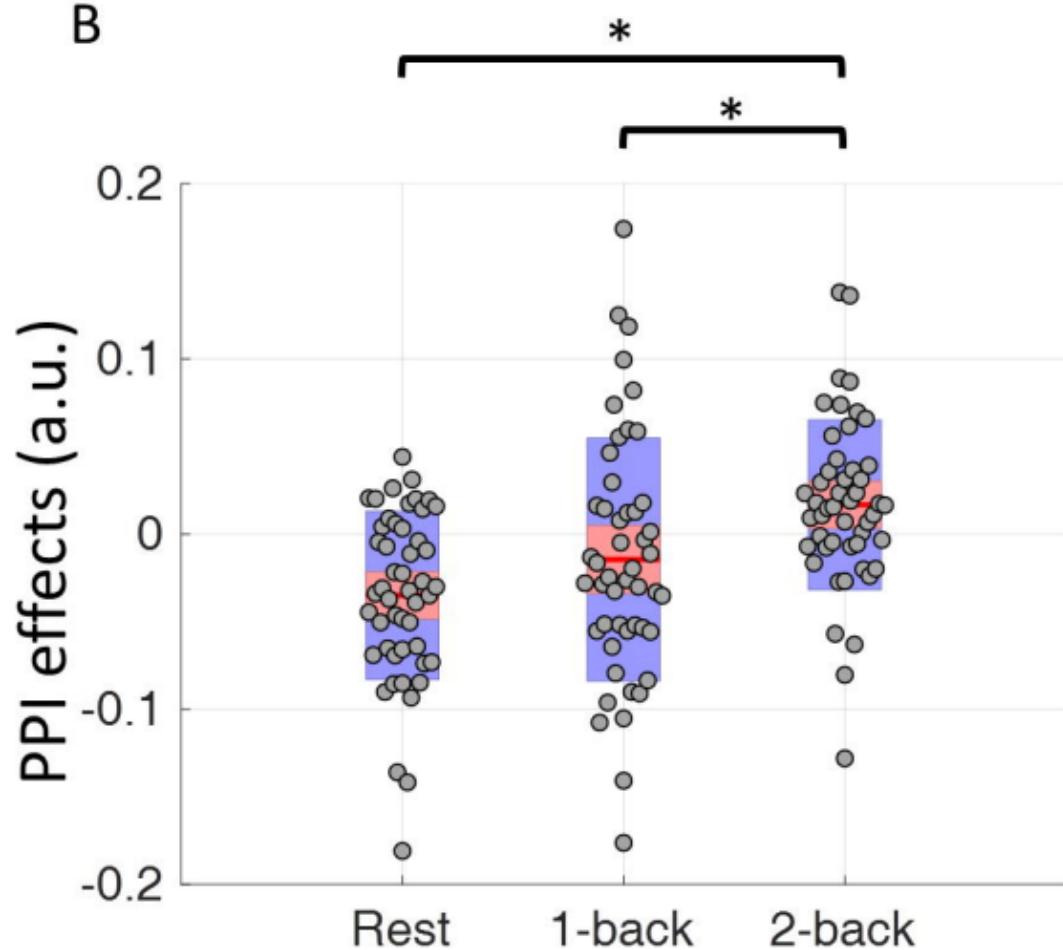


452

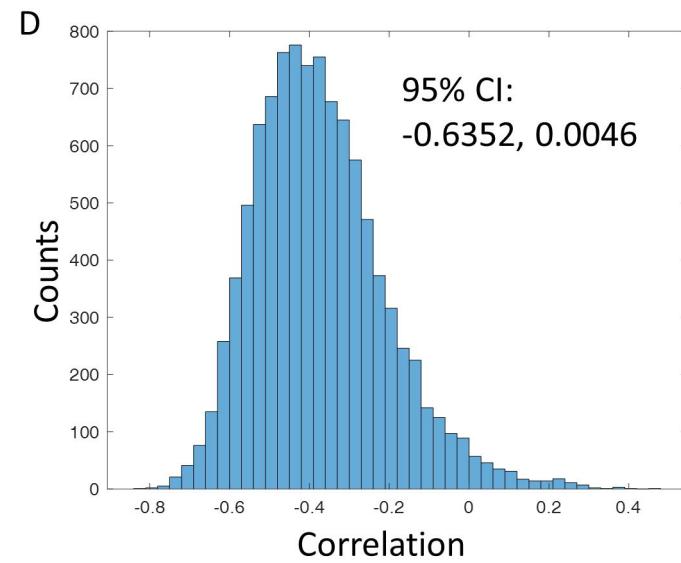
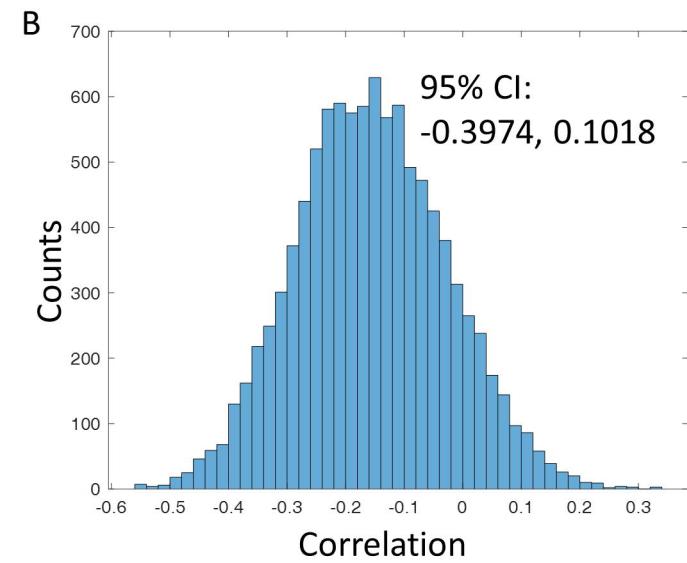
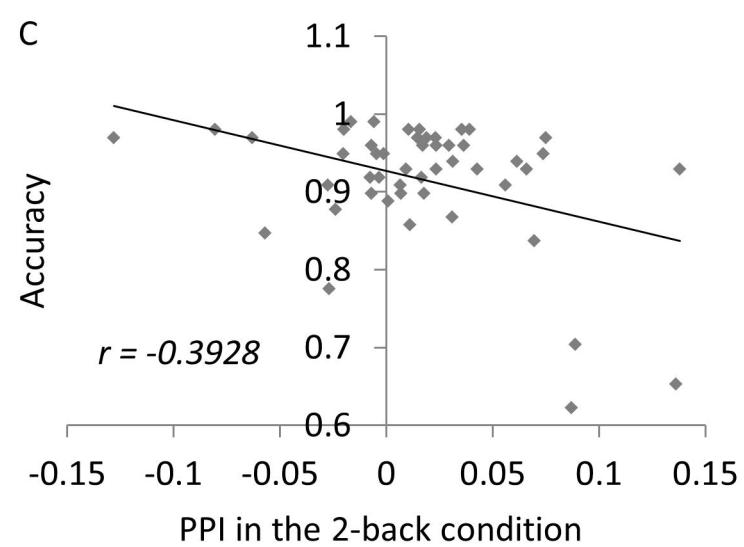
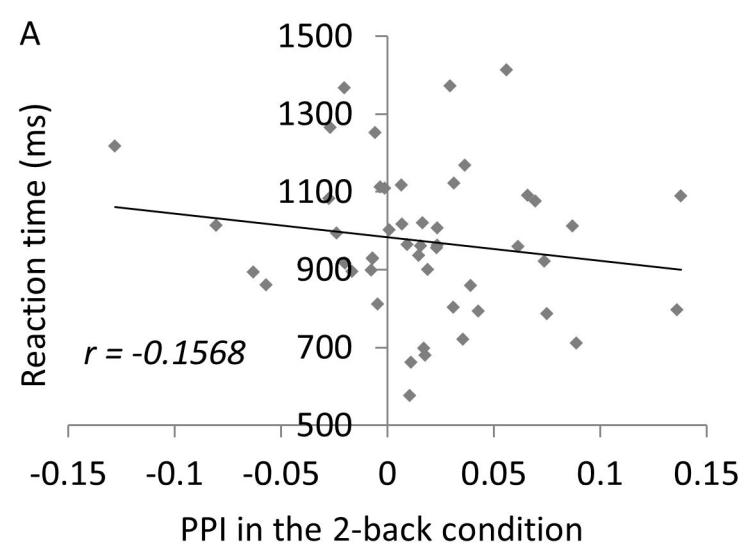

LMFG

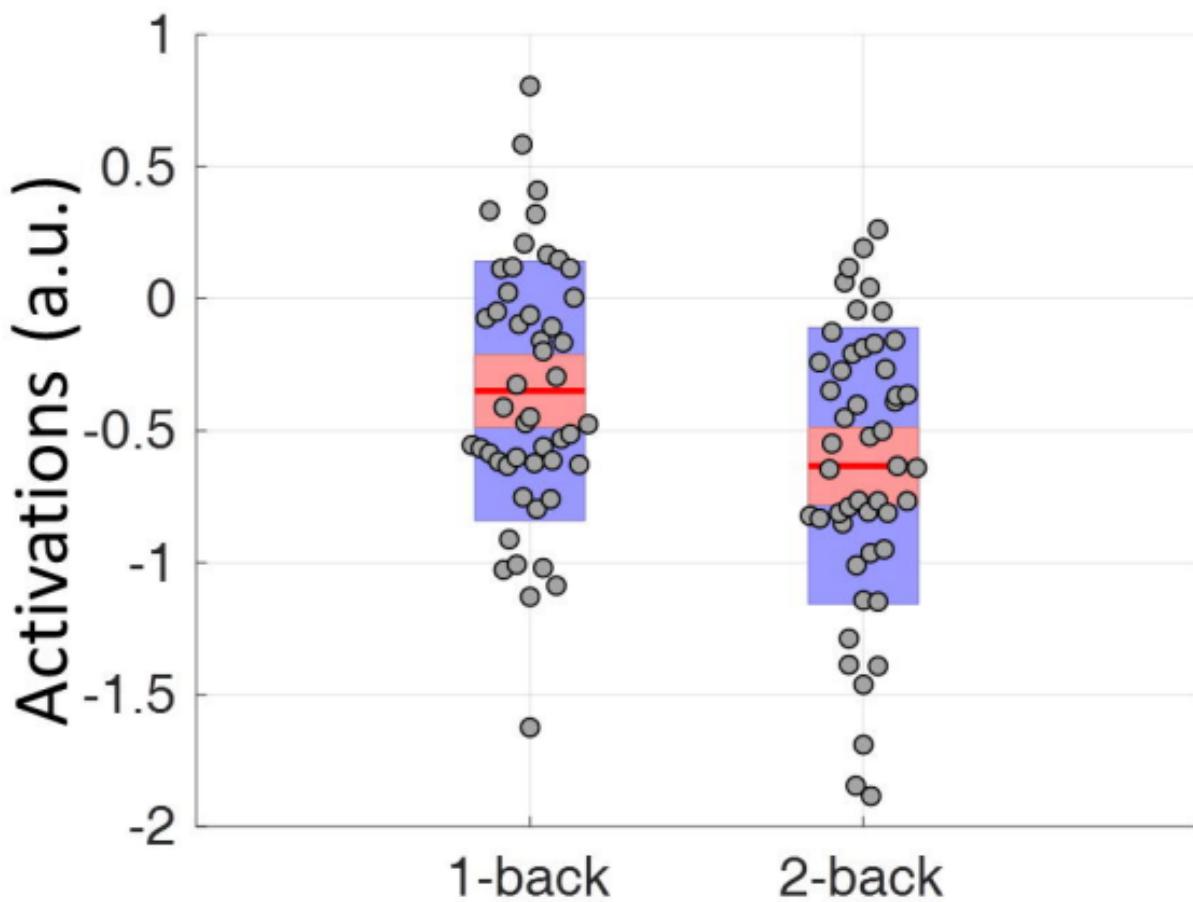
RMFG



LSPL







RSPL


A

B

