

1 **Structural variation of the malaria-associated human glycophorin A-B-E region**

2
3 Sandra Louzada (1,6,7), Walid Algady (2), Eleanor Weyell (2), Luciana W. Zuccherato (3),
4 Paulina Brajer (2), Faisal Almalki (2), Marilia O Sclar (4), Michel S Naslavsky (4), Guilherme L
5 Yamamoto (4), Yeda A O Duarte (5), Maria Rita Passos-Bueno (4), Mayana Zatz (4), Fengtang
6 Yang (1), Edward J Hollox (2) *

7
8 1. Wellcome Sanger Institute, Hinxton, Cambridge, UK
9 2. Department of Genetics and Genome Biology, University of Leicester, UK
10 3. Department of Parasitology, Universidade Federal de Minas Gerais, Belo Horizonte,
11 Brazil
12 4. Human Genome and Stem Cell Research Center, Department of Genetics and
13 Evolutionary Biology, Instituto de Biociências, Universidade de São Paulo, São Paulo,
14 Brazil.
15 5. School of Nursing, Universidade de São Paulo, São Paulo, Brazil
16 6. Present address: Laboratory of Cytogenomics and Animal Genomics (CAG),
17 Department of Genetics and Biotechnology, University of Trás-os-Montes and Alto
18 Douro (UTAD), Vila Real, Portugal
19 7. Present address: BioISI – Biosystems & Integrative Sciences Institute, Faculty of Sciences,
20 University of Lisboa, Lisbon, Portugal

21 * Corresponding author

22 **Abstract**

23 Approximately 5% of the human genome consists of structural variants, which are enriched for
24 genes involved in the immune response and cell-cell interactions. A well-established region of
25 extensive structural variation is the glycophorin gene cluster, comprising three tandemly-
26 repeated regions about 120kb in length, carrying the highly homologous genes *GYPA*, *GYPB*
27 and *GYPE*. Glycophorin A and glycophorin B are glycoproteins present at high levels on the
28 surface of erythrocytes, and they have been suggested to act as decoy receptors for viral
29 pathogens. They act as receptors for invasion of a causative agent of malaria, *Plasmodium*
30 *falciparum*. A particular complex structural variant (DUP4) that creates a *GYPB/GYPA* fusion
31 gene is known to confer resistance to malaria. Many other structural variants exist, and remain
32 poorly characterised. Here, we analyse sequences from 6466 genomes from across the world for
33 structural variation at the glycophorin locus, confirming 15 variants in the 1000 Genomes
34 project cohort, discovering 9 new variants, and characterising a selection using fibre-FISH and
35 breakpoint mapping. We identify variants predicted to create novel fusion genes and a common
36 inversion duplication variant at appreciable frequencies in West Africans. We show that almost
37 all variants can be explained by unequal cross over events (non-allelic homologous
38 recombination, NAHR) and, by comparing the structural variant breakpoints with

39 recombination hotspot maps, show the importance of a particular meiotic recombination
40 hotspot on structural variant formation in this region.

41

42 **Keywords**

43 Structural variation, copy number variation, inversion, immune response, glycophorin, *GYPA*,
44 *GYPB*, *GYPE*, erythrocytes, malaria

45 **Introduction**

46

47 Human genetic variation encompasses single nucleotide variation, short insertion-deletions and
48 structural variation. Structural variation includes copy number variation, tandem repeat
49 variation, inversion and polymorphic retrotransposons. Structural variation is responsible for
50 much of the differences in DNA sequence between individual human genomes (Sudmant et al.
51 2015; Zarrei et al. 2015; Hehir-Kwa et al. 2016), yet analysis of the phenotypic importance of
52 structural variation has lagged behind the rapid progress made in studies of single nucleotide
53 variation (Hollox and Hoh 2014; Usher and McCarroll 2015; Huddleston and Eichler 2016). This
54 is mainly because of technical limitations in detecting, characterising, and genotyping structural
55 variants both directly (Cantsilieris et al. 2014) and indirectly by imputation (Handsaker et al.
56 2015). However, a combination of new technical approaches using genome sequencing data to
57 detect structural variation and larger datasets allowing more robust imputation of structural
58 variation have begun to show that some structural variants at an appreciable frequency in
59 populations do indeed contribute to clinically-important phenotypes (Sekar et al. 2016; Raffield
60 et al. 2018).

61

62 One such example is the identification of a structural variant called DUP4 at the human
63 glycophorin gene locus, which confers a reduced risk of severe malaria and protection against
64 malarial anemia (Leffler et al. 2017; Algady et al. 2018; Ndila et al. 2018). The glycophorin gene
65 locus consists of three ~120 kb tandem repeats sharing ~97% identity, each repeat carrying a
66 closely-related glycophorin gene, starting from the centromeric end: glycophorin E (GYPE),
67 glycophorin B (GYPB) and glycophorin A (GYPA) (Vignal et al. 1990; Onda et al. 1994). Large
68 tandem repeats, like the glycophorin locus, are prone to genomic rearrangements, and indeed
69 the DUP4 variant is a complex variant that generates a GYPB-GYPA fusion gene, with potential
70 somatic variation in fusion gene copy number (Leffler et al. 2017; Algady et al. 2018). The
71 mechanism of resistance to malaria of this gene is not fully understood, but although both
72 glycophorin A and glycophorin B interact with receptors on *Plasmodium falciparum*, recent data
73 suggest that alteration of receptor-ligand interactions is not important. Instead, it seems likely
74 that DUP4 is associated with more complex alterations in the protein levels at the red blood cell
75 surface resulting in increased red blood cell tension, mediating its protective effect against *P.*
76 *falciparum* invasion (Kariuki et al. 2018). Given the size of effect of DUP4 in protection against
77 malaria (odds ratio ~0.6) and the frequency of the allele (up to 13% in Tanzania), it is clinically
78 very significant, although it appears to be geographically restricted to East Africa (Leffler et al.
79 2017; Algady et al. 2018).

80

81 Other structural variants in the glycophorin region have been identified in the 1000 Genomes
82 project samples by using sequence read depth analysis of 1.6kb bins combined with a Hidden

83 Markov Model approach to identify regions of copy number gain and loss (Leffler et al. 2017).
84 This builds upon identification of extensive CNV in this area by array CGH (Conrad et al. 2009)
85 and indeed by previous analysis of rare MNS (Miltenberger) blood groups, such as M^K, caused
86 by homozygous deletion of both *GYPA* and *GYPB* (Vignal et al. 1990). The variants were
87 classified as DUP and DEL representing gain and loss of sequence read depth respectively.
88 Although only DUP4 has been found to be robustly associated with clinical malaria phenotypes,
89 it is possible that some of the other structural variants are also protective, but are either rare,
90 recurrent, or both rare and recurrent, making imputation from flanking SNP haplotypes and
91 genetic association with clinical phenotypes challenging.

92

93 It is important, therefore, to extend the catalogue of structural variants at this locus and robustly
94 characterise their nature and likely effect on the number of full-length and fusion glycophorin
95 genes. In this study we use sequence read depth analysis of 6466 genomes from across the
96 world, followed by direct analysis of structural variants using fibre-FISH and breakpoint
97 mapping using parologue-specific PCR and Sanger sequencing. This will allow future
98 development of robust yet simple PCR-based assays for each structural variant and detailed
99 analysis of the phenotypic consequences of particular structural variants on malaria infection
100 and other traits. We also examine the pattern of structural variation breakpoints in relation to
101 their mechanism of generation and known meiotic recombination hotspots within the region,
102 and the relative allele frequencies across the world. Together, this allows us to gain some
103 insight into the evolutionary context of the extensive structural variation at the glycophorin
104 locus.

105

106

107 **Methods**

108

109 *Sequencing data*

110 Sequence alignment files (.bam format7) from four cohorts (1000 Genomes Project ENA
111 accession number PRJNA262923) with a mean coverage of 7.4x (Auton et al. 2015), Simons
112 Diversity Project ENA accession number PRJEB9586 with a mean coverage of 43x (Mallick et al.
113 2016), and the Gambian Genome Diversity project mean coverage 4x, ENA study IDs
114 ERP001420, ERP001781, ERP002150, ERP002385 (Band et al. 2019) were downloaded from the
115 European Nucleotide Archive or from the International Genome Sample Resource site
116 <http://www.internationalgenome.org/data-portal/> (Clarke et al. 2017). Brazilian sequence
117 alignment files from the SABE (Health, Wellbeing and Aging) study (Barbosa et al. 2005) and a
118 sample of cognitively healthy octogenarians enrolled at the Human Genome and Stem Cell
119 Research Center (80+), with a mean coverage of 30x for 1324 individuals generated at Human
120 Longevity Inc. (HLI, San Diego, California) (Telenti et al. 2016).

121

122 DNA sequences from the 1000 Genomes project and the Simons diversity project had been
123 previously aligned to reference GRCh37 (hg19) to generate the alignment bam files. The
124 exception is sample NA18605, which was previously sequenced at high coverage (Lan et al.
125 2017) downloaded as paired-end Illumina sequences in fastq format (ENA sample accession
126 number SAMN00001619), and aligned to GRCh37 using standard approaches: FastQC v0.11.5
127 and Cutadapt v01.11 to trim reads and adapters, mapping using BWA-MEM v0.7.15,
128 processing of the BAM files using SAMtools v1.8, local realignment was done using GATK v3.6
129 and duplicate reads marked using Picard v.1 and removed using SAMtools. Samples from the
130 Brazilian genomes and the Gambian genome diversity project had been aligned to GRCh38.

131

132 Throughout this paper, all loci are given using GRCh37 reference genome coordinates. For
133 analyses on GRCh38 alignments, genome coordinates were translated from the GRCh37
134 coordinates using the Liftover tool within the UCSC Genome Browser (Kent et al. 2002).

135

136 *Structural variant detection*

137 For each sample, we used SAMtools (SAMtools view -c -F 4) (Li et al. 2009) on indexed
138 bam files to count mapped reads to the glycophorin region (chr4:144745739-145069133) and a
139 reference region chr4:145516270-145842585. The reference region has no segmental duplications,
140 and is absent from copy number variation according to the gold standard track of the database
141 of Genomic Variants (DGV) (MacDonald et al. 2014). A ratio of the number of reads mapping to
142 the glycophorin region to the number of reads mapping to the reference region allows an
143 estimate of the total increase or decrease of sequence depth spanning the glycophorin region
144 (reflecting copy number gain or copy number loss, respectively). Following plotting these data
145 for each cohort on a histogram and observation of distinct clusters (supplementary figure 1),
146 samples with a ratio below 0.9 were classified as potential deletions and those above 1.1
147 potential duplications.

148 For the samples with potential deletions and duplications, number of mapped reads was
149 calculated across the glycophorin region in 5kb non-overlapping windows, and values,
150 normalised to average read count and diploid copy number, were plotted. Presence and nature
151 of structural variants were assessed by examination of the plots, and particular variants called
152 by plotting together with a reference sample for that variant. For the Simons Diversity Project
153 samples, 114 potential deletions were identified, much more than in other cohorts
154 (Supplementary figure 1). Inspection of these plots showed that 101 of these samples showed a
155 small apparent ~15kb deletion at the *GYPE* gene. This deletion was not found previously by
156 others (Leffler et al. 2017) or by us in any other cohort, and coincides with a region of low
157 mappability, suggesting that this may be an artefact caused either by particular filtering

158 conditions or the particular genome assembly (GRCh37d5) that includes decoy sequences.
159 These 101 samples were treated as being homozygous for the reference structure.
160

161 *Fiber-FISH*

162 The probes used in this study included four WIBR-2 fosmid clones selected from the
163 UCSC Genome Browser GRCh37/hg19 assembly and a 3632-bp PCR product that is specific for
164 the glycophorin E repeat (Algady et al. 2018). Probes were made by amplification with
165 GenomePlex Whole Genome Amplification Kits (Sigma-Aldrich) as described previously
166 (Gribble et al. 2013). Briefly, the purified fosmid DNA and the PCR product were amplified and
167 then labeled as follow: G248P86579F1, G248P89366H1 and glycophorin E repeat-specific PCR
168 product were labeled with digoxigenin-11-dUTP, G248P8211G10 was labeled with biotin-16-
169 dUTP, G248P85804F12 was labeled with DNP-11-dUTP and G248P80757F7 was labeled with
170 Cy5-dUTP. All labeled dUTPs were purchased from Jena Bioscience.

171 The preparation of single-molecule DNA fibers by molecular combing and fiber-FISH
172 was as previously published (Louzada et al. 2017), with the exception of post-hybridization
173 washes, which consisted of three 5-min washes in 2× SSC at 42°C, instead of two 20-min washes
174 in 50% formamide/50% 2× SSC at room temperature.
175

176 *Breakpoint analysis using PCR and Sanger sequencing*

177 Using the 5kb window sequence read count data, PCR primers were designed so that a
178 PCR product spanned the predicted breakpoints for each deletion and duplication. The 3'
179 nucleotide for each PCR primer was designed to match uniquely to a particular glycophorin
180 repeat, and to mismatch the other two glycophorin repeats. Annealing specificity of the PCR
181 primer was enhanced by incorporating a locked nucleic acid at that particular 3' position of the
182 PCR primer (Latorra et al. 2003). Long-range PCR amplification used 10 ng genomic DNA in a
183 final volume of 25.5 µl, including 0.5 µl of each 10µM primer, 0.075U *Pfu* DNA polymerase,
184 0.625U *Taq* DNA polymerase, and 2.25 µl of PCR buffer (45 mM Tris-HCl (pH 8.8), 11 mM
185 ammonium sulphate, 4.5 mM magnesium chloride, 6.7 mM 2-mercaptoethanol, 4.4 mM EDTA
186 (pH 8.0), 113 µg/mL non-acetylated Bovine Serum Albumin (BSA) (Ambion®) and 1 mM of
187 each dNTP (Promega) (Jeffreys et al. 1990)). The reaction was thermal cycled as follows: 94°C 1
188 minute, followed by 20 cycles of 94°C for 15s, x°C for 10 minutes, followed by 15 cycles of 94°C
189 for 15s, x°C for 10 minutes+15s for each successive cycle, followed by a final extension at 72°C
190 for 10 minutes, where x is the annealing temperature for a particular primer pair shown in
191 supplementary table 1. PCR products were purified using agarose gel electrophoresis (Ma and
192 Difazio 2008) and Sanger sequenced using standard approaches. PCR primers are shown in
193 supplementary table 1. Multiple alignments with paralogous reference sequences used MAFFT
194 v7 (Katoh and Standley 2013) available at the EMBL-EBI Job Dispatcher framework (Li et al.
195 2015). A breakpoint was called in the transition region between three paralogous sequence

196 variants corresponding to one glycophorin repeat and three paralogous sequence variants
197 corresponding to the alternative glycophorin repeat.

198

199 *Breakpoint analysis using high depth sequences*

200 For particular variants, copy number breakpoints were refined by inspecting sequence
201 read depth in 1kb windows spanning the likely breakpoints identified by the 5kb window
202 analysis. Changes in read depth were then confirmed directly using the Integrative Genome
203 Viewer (Thorvaldsdóttir et al. 2012).

204

205 *Nomenclature of variants*

206 We used the same nomenclature as Leffler et al. 2017 when our variant could be
207 identified as the same variant in the same sample from the 1000 Genomes project. In some
208 instances, we could not distinguish particular singleton variants called from more common
209 called variants. For example, DUP27 carried by sample NA12249 could not easily be
210 distinguished from the more frequent DUP2, and DUP24 carried by HG04038 could not be
211 distinguished from DUP8. Other variants, which either had not been unambiguously identified
212 in the 1000 Genomes previously or were identified in other sample cohorts, were given DEL or
213 DUP numbers following on from variants catalogued previously.

214

215 *Analysis of recombination hotspots*

216 Previously published data on hotspot location and type (Pratto et al. 2014) was
217 converted to BED format and intersected with the breakpoint locations in BED format using
218 BEDTools v 2.28.0 (Quinlan and Hall 2010). The statistical significance of the overlap was
219 calculated using the fisher command in BEDTools, which uses a Fisher's exact test on the
220 number of overlaps observed between two BED files.

221

222

223 **Results**

224

225 *Structural variation using sequence read depth analysis*

226

227 Previous work by us and others has shown that unbalanced structural variation - that is,
228 variation that causes a copy number change - can be effectively discovered by measuring the
229 relative depth of sequence reads across the glycophorin region (Leffler et al. 2017; Algady et al.
230 2018). We analysed a total of 6466 genomes from four datasets spanning the globe - the 1000
231 Genomes phase 3 project set, the Gambian variation project, the Simons diversity project, and
232 the Brazilian genomes project. We took a different sequence read depth approach to that
233 previously used, counting the reads that map to the glycophorin repeat region and dividing by

234 the number of reads mapping to a nearby non-structurally variable region to normalise for read
235 depth. By analysing each cohort of diploid genomes as a group, we could identify outliers
236 where a higher value indicated a potential duplication or more complex gain of sequence, and
237 lower values indicated a potential deletion (Supplementary figure 1). Sequence read depth was
238 analysed in 5kb windows across each of the outlying diploid genomes to identify and classify
239 the structural variant.

240

241 Since structural variant calling had been previously done on the 1000 Genomes project cohort,
242 this provided a useful comparison to assess our approach. We analysed 2490 samples from this
243 cohort and identified five distinct deletions carried by 88 individuals that were previously
244 identified, and 16 distinct duplications carried by 34 individuals (table 1) that were also
245 previously identified. We also identified a new duplication variants, termed DUP29 (a
246 duplication of GYPB), that had not been robustly identified previously in that cohort. However,
247 as expected, smaller duplications, most notably DUP1, were not detected by our approach. We
248 extended our analysis to 390 Gambian diploid genomes and identified 51 samples with DEL1 or
249 DEL2 variants, and DEL16, subsequently characterized in the Brazilian cohort below. Two
250 samples were heterozygous for the duplication DUP5.

251

252 Both 1000 Genomes and Gambian Genome Diversity samples have been sequenced to low
253 depth. High depth sequencing will allow more robust identification of structural variation by
254 improving the signal/noise ratio of sequence read depth analysis. We analysed the publically
255 available high-depth data from the Simons Diversity Project for glycophorin variation. From the
256 273 individuals, 4 different deletion types were carried by 13 individuals, and 3 different
257 duplication types were carried by 5 individuals. A novel deletion, DEL15 was identified which
258 deleted part of GYPB and part of GYPE in an individual from Bergamo in Italy, and a novel
259 duplication was observed in three individuals from Papua New Guinea, termed DUP30 and
260 duplicating the GYPB gene. Another duplication variant (DUP8), which is the largest variant
261 found so far, duplicated 240kb, creating an extra full length GYPB gene and a GYPE-GYPA
262 fusion gene (Table 1).

263

264 A further 1324 samples sequenced to high coverage diploid genomes from Brazil were
265 analysed, which, given the extensive admixture from Africa in the Brazilian population, are
266 likely to be enriched for glycophorin variants from Africa. Four new duplication variants
267 (DUP33-DUP35) and three new deletion variants were found (DEL16, DEL17, DEL18), two of
268 which of which delete the GYPB gene (Table 1).

269

270 *Fibre-FISH analysis of structural variants*

271

272 Sequence read depth analysis shows copy number gain and loss with respect to the reference
273 genome to which the sequence reads are mapped, but it does not determine the physical
274 structure of the structural variant. For the more common glycophorin structural variants, we
275 used fibre-FISH in order to determine the physical structure. In all cases, a set of multiplex FISH
276 probes, with each probe being visualised with a unique fluorochrome, was used so that the
277 orientation and placement of the repeats could be identified (Figure 1). The repeated nature of
278 the glycophorin region means that the green and red probes from the *GYPB* repeat cross-
279 hybridise with the other repeats, with the *GYPA* repeat distinguishable from the *GYPB* and
280 *GYPE* repeats by a 16kb insertion resulting in a small gap of signal in the green probe (Figure 1).
281

282 For most variants the fibre-FISH results confirmed the structure previously predicted (Leffler et
283 al. 2017) and expected if the variants had been generated by non-allelic homologous
284 recombination between the glycophorin repeats (Figures 2 and 3). However, three variants
285 showed a complex structure that could not be easily predicted from the sequence read depth
286 analysis. The DUP4 variant shows a complex structure and has been described previously
287 (Algady et al. 2018). Two other structural variants (DUP5 and DUP26) also showed complex
288 patterns of gains or losses, and fibre-FISH clearly shows the physical structure of the variant,
289 including inversions.
290

291 The more frequent of these two complex structural variants, DUP5, seems to be restricted to
292 Gambia, as it is found once in the GWD population from the 1000 Genomes project and twice in
293 the Jola population from the Gambian Genome diversity project (Table 1). Sequence read depth
294 analysis suggests that DUP5 has two extra copies of *GYPE* and an extra copy of *GYPB*, with an
295 additional duplication distal of *GYPA* outside the glycophorin repeated region (Figure 4a).
296 Fibre-FISH analysis on cells from an individual carrying the DUP5 variant (HG02585)
297 confirmed heterozygosity of the variant, with one allele being the reference allele, and revealed,
298 for the first time, that the variant allele presents a complex pattern of duplication and
299 rearrangement, with part of the fosmid (pseudocoloured in white) mapping distal to *GYPA*
300 being translocated into the glycophorin repeated region, adjacent to the green-coloured fosmid
301 (Figure 4b). Alternative fibre-FISH analysis using an additional fosmid probe mapping distally,
302 and labelled in red, confirmed this (Figure 4c). The pattern of FISH signals occurring distally to
303 the translocation suggests that the immediately adjacent glycophorin repeat is inverted. To
304 distinguish the distal end of the *GYPB* repeat from the distal end of the *GYPE* repeat, a pink-
305 coloured probe from a short *GYPE*-repeat-specific PCR product was also used for fibre-FISH,
306 and clearly shows only a single copy of the distal end of the *GYPB* repeat in the DUP5 variant,
307 at the same position as the reference. The predicted breakpoint between the non-duplicated
308 sequence distal to *GYPA* and duplicated sequence within the duplicated region was amplified
309 by PCR and Sanger sequenced, confirming that the non-duplicated sequence was fused to an

310 inverted *GYPB* repeat sequence (Figure 4d). The model suggested by the fibre-FISH and
311 breakpoint analysis is consistent with the overall pattern of sequence depth changes observed
312 (Figure 4a). The sequence outside the glycophorin repeat corresponds to an ERV-MaLR long
313 terminal retroviral element, but the sequence inside the glycophorin repeat sequence is not,
314 suggesting that non-allelic homologous recombination was not the mechanism for formation of
315 this breakpoint. However, there is a 4bp microhomology (GTGT) between the two sequences,
316 suggesting that microhomology-mediated end joining could be a mechanism for formation of
317 this variant.

318

319 The DUP26 variant was observed once, in sample HG03729, an Indian Telugu individual from
320 the United Kingdom, sequenced as part of the 1000 Genomes project. Sequence read depth
321 analysis predicts an extra copy of the glycophorin repeat, partly derived from the *GYPB* repeat
322 and partly from the *GYPA* repeat (Figure 4e). The fibre-FISH shows an extra repeat element that
323 is *GYPB*-like at the proximal end and *GYPA*-like at the distal end, and carries the *GYPA* gene.
324 This structure is unlikely to have been generated by a straightforward single NAHR event, and
325 we were unable to resolve the breakpoint at high resolution.

326

327

328 *Breakpoint analysis of structural variants*

329

330 Defining the precise breakpoint of the variants can allow a more accurate prediction of potential
331 phenotypic effects of each variant by assessing, for example, whether a glycophorin fusion gene
332 is formed or whether key regulatory sequences are deleted. We used two approaches to define
333 breakpoints. The first approach identified the two 5kb windows that spanned the change in
334 sequence read depth at both ends of the deletion or duplication, and by designing PCR primers
335 to specifically amplify across the junction fragment (Figure 5a,b), variant-specific PCR
336 amplification produces an amplicon that can be sequenced (Figure 5c). After Sanger sequencing
337 the amplicons, the breakpoint can be shown to be where a switch occurs between paralogous
338 sequence variants (PSVs) that map to different glycophorin repeats (Figure 5d), supporting the
339 model that a NAHR mechanism is responsible for generating these structural variants (Figure
340 5e). The second approach makes use of high depth sequencing. The two 5kb windows spanning
341 the change in sequence read depth are again identified and sequence read depth calculated in
342 1kb windows to further refine the breakpoint. The sequence alignment spanning the two 1kb
343 windows is examined manually for paired sequence reads where the gap between the aligned
344 pairs is consistent with the size of the variant, or where both sequence pairs align but one aligns
345 with multiple sequence mismatches.

346

347 With the exception of DEL4, DUP7 and DUP26, where only low-coverage sequence was
348 available, all other breakpoints could be localised to between 10 kb and 1 bp. For most variants,
349 the breakpoints occur between genes resulting in loss or gain of whole genes, and therefore
350 likely to show gene dosage effect. It is known that DUP4 results in a *GYPB-GYPA* fusion gene
351 that codes for the Dantu blood group, and a fusion gene is also predicted for DUP2, DUP8 and
352 DEL15. The DUP2 variant generates a *GYPB-GYPA* fusion gene comprising exons 1-2 of *GYPB*
353 and exons 4-7 of *GYPA* corresponding to the St^a (GP.Sch) blood group (Anstee et al. 1982;
354 Daniels 2008). Breakpoint analysis of NA12249, the sample carrying the DUP27 variant, showed
355 that DUP27 breakpoint is in the same intron as DUP2, although the exact breakpoint is complex
356 and it is unclear whether DUP27 is exactly the same variant as DUP2.

357

358 The DUP8 variant is predicted to generate a fusion gene consisting of exon 1 of *GYPE* and exons
359 2-7 of *GYPA*, and the DEL15 variant is predicted to combine the first two exons of *GYPB* with
360 the final three exons of *GYPE*. It is unlikely that DUP8 has a phenotype, given the involvement
361 of the 5' end of *GYPE*, which is not expressed. However, the DEL15 variant is predicted to
362 generate a *GYPB-GYPE* peptide, similar to the rare U- blood group phenotype which has a
363 breakpoint between exon 1 of *GYPB* and exon 2 of *GYPE*, resulting in a lack of expression of
364 glycophorin B in homozygotes (Rahuel et al. 1991). Other variants involve breakpoints within
365 1kb of a gene coding region and could potentially affect expression levels of the neighbouring
366 gene.

367

368 *Mechanism of formation of structural variants*

369

370 The pattern of deletions and duplications observed is consistent with a simple NAHR
371 mechanism of formation for the variants (Figure 5e), with the exception of DUP5 and DUP26.
372 We investigated whether the breakpoints we had found co-localised with known meiotic
373 recombination hotspots previously determined by anti-DMC1 ChIP-Seq of the testes of five
374 males (Pratto et al. 2014). Importantly, the recombination hotspot dataset mapped hotspots in
375 individuals carrying different alleles of the highly-variable PRDM9 protein, a key determinant
376 of recombination hotspot activity, with different alleles activating different recombination
377 hotspots. The glycophorin region contains one hotspot regulated by the PRDM9 A allele,
378 common in Europeans (allele frequency 0.84), and the PRDM9 C allele, common in sub-Saharan
379 Africans (allele frequency 0.13). In our data we found no breakpoints coincident with the
380 PRDM9 A allele hotspot but 4 breakpoints coincident with the PRDM9 C allele hotspot (Figure
381 6). The overlap between the PRDM9 C allele hotspot and the structural variant breakpoints is
382 statistically significant (two-tailed Fisher's exact test, p=0.012) and reflects the observation that
383 there are more different rare structural variants in sub-Saharan African populations, with high

384 frequencies of the C allele, than in European populations where the C allele is almost absent
385 (allele frequency 0.01) (Berg et al. 2011).

386

387

388 **Discussion**

389

390 We have characterised a number of structural variants at the human glycophorin locus. These
391 are almost always large deletions or duplications involving the loss or gain of one or
392 occasionally two glycophorin repeat regions of about 120kb. These losses and gains have been
393 generated by non-allelic homologous recombination (NAHR) mutational events, with particular
394 involvement of the PRDM9 C allele, which is at appreciable frequencies in African populations
395 and directs high recombination rates at its cognate recombination hotspots. A more complex
396 variant, termed DUP5, was also characterised, and was shown to be an inversion-duplication
397 generated by at least 1 microhomology-mediated end-joining event involving DNA sequence
398 outside the glycophorin repeat region. Similarly, DUP26 is a complex variant that is unlikely to
399 have been generated by a single NAHR event.

400

401 Only DEL1, DEL2 and DUP2 are frequent variants. Both DEL1 and DEL2 delete the GYPB gene
402 and it is tempting to speculate that their high frequency in African populations and populations
403 with African admixture is due to selection. However, the absence of evidence for any protective
404 effect against malaria argues against malaria being the cause of this selection, so this remains
405 speculation. DUP2 is at notable frequencies particularly in East Asia, and is predicted to
406 generate a GYPB-GYPA fusion gene corresponding to the St^a blood group, which is known to be
407 at appreciable frequencies in East Asia (Madden et al. 1964). In this region, malaria infections
408 are caused by *Plasmodium falciparum* as well as *Plasmodium vivax*; alternatively, this fusion gene
409 may facilitate glycophorins acting as a decoy receptor for other pathogens, such as hepatitis A
410 virus (Sanchez et al. 2004). Previous work suggests that DUP2 has arisen on multiple haplotype
411 backgrounds (Leffler et al. 2017), which suggests a large East Asian population panel is need for
412 future accurate imputation.

413

414 Other variants seem either to be geographically localised (for example DUP5) or very rare and
415 detected as singletons in our dataset. This suggests that analysis of other large genomic datasets
416 will discover further unique glycophorin structural variants, and that much glycophorin
417 structural variation is individually rare but collectively more frequent, leading to challenges in
418 imputing glycophorin SV from SNP GWAS data.

419

420 In contrast to other studies, we used a three-step approach to determine copy number. We used
421 read counts over the whole glycophorin region to detect samples with duplications (more than

422 expected number of reads) and deletions (fewer than expected number of reads). We then used
423 window-based analysis of sequence read depth and parologue-specific allele-specific PCR and
424 Sanger sequencing to refine copy number breakpoints. Finally, we validated the structure of
425 selected variants using fibre-FISH. Our approach has the advantage that it does not rely on a
426 sudden change in sequence read depth for CNV detection by a HMM, which may be
427 compromised by poor mappability of some sequence reads in the breakpoint region and
428 assumptions about the absence of somatic variation, with the consequence that the expected
429 copy number reflecting an integer value. However, our approach cannot detect small copy
430 number changes because the increase or decrease in mapped reads is very small as a proportion
431 of the total number of mapped reads at the glycophorin region.

432

433 Previous work has shown that the DUP4 variant carried by the sample HG02554 shows somatic
434 mosaicism, leading to the suggestion that somatic mosaicism may be a feature of glycophorin
435 structural variants (Algady et al. 2018). In this study, our fiber-FISH analyses identified no other
436 potential somatic variants at the glycophorin locus, showing that it is not a common feature of
437 1000 Genomes lymphoblastoid cell lines nor of non-DUP4 variants. This suggests that somatic
438 mosaicism is either restricted to DUP4 variants in general or restricted to the particular DUP4
439 sample HG02554, although a more thorough investigation of high coverage genome sequences
440 will be needed to address this issue.

441

442 In conclusion, we identify 9 new structural variants at the glycophorin locus, characterise
443 breakpoints and mutational mechanisms for known and novel structural variants, and show
444 that recombination hotspot activity has influenced the nature of the structural variants
445 observed. For some of the variants, targeted high coverage sequence using very long reads
446 analysis will help refine some of the breakpoints. Further efforts are needed to characterise the
447 phenotypic effects of particular variants involving gain, loss and fusion of genes

448

449

450 **Acknowledgements**

451 This work was funded by SACB PhD studentships to WA and FA and Wellcome Trust grant
452 WT098051 (F.Y. and S.L.). This research used the ALICE High Performance Computing Facility
453 at the University of Leicester.

454

455

456 **Figure Legends**

457

458

459

460

461

462

463

464

465

466

467

468

469 **Table 1 Glycophorin structural variants identified in this study**

Variant	Proximal breakpoint hg19	Distal breakpoint hg19	Variant size (kb)	Breakpoint maximum region (kb)	Index Sample	Genes Involved	Method	In Lefler
DEL1	chr4:144835143 -144835279	chr4:144945375- 144945517	110	0.143	NA19223	GYPB	PCR- Sanger	Yes
DEL2	chr4:144912872 -144913001	chr4:145016127- 145016256	103	0.130	NA19144	GYPB	PCR- Sanger	Yes
DEL4	chr4:144750739 -144760739	chr4:144950739- 144960739	200	10	HG01986	GYPB, GYPE	1000G Seq	Yes
DEL6	chr4:144780045 -144780137	chr4:145004120- 145004212	224	0.093	HG04039	GYPE and GYPB	PCR- Sanger	Yes
DEL7	chr4:144780111 -144780497	chr4:144900945- 144901334	121	0.390	HG02716	GYPE	PCR- Sanger	Yes
DEL13	chr4:144925739 -144935739	chr4:145035739- 145045739	110	10	NA20867	GYPA-B fusion	1000G Seq	Yes
DEL15	chr4:144800739 144802739	chr4:144920739- 144922739	119	2	HGDP0117 2	GYPB/E fusion gene	Deep seq	No
DEL16	chr4:144752739 -144754739	chr4:144952739- 144954739	200	2	BR1296010 301	GYPE and GYPB	Deep seq	No
DEL17	chr4:144882739 -144987739	chr4:144984739-- 144987739	103	3	BR1183605 501	GYPB	Deep seq	No
DEL18	chr4:144755739 -144757739	chr4:144875739- 144878739	123	2	BR1099223 302	GYPE	Deep seq	No

DUP2	chr4: 145039739-	chr4: 144919739- 144921739	120	2	NA18593	GYPB/A fusion	PCR- Sanger	Yes
DUP3	chr4:145004465 -145004526	chr4:144780388- 144780449	224	0.062	NA19360	GYPB, GYPE	PCR- Sanger	Yes
DUP4	Multiple	Multiple	n/a	n/a	HG02554	GYPB/A fusion gene,	Leffler et al.	Yes
DUP5	Multiple, including chr4:145113700	Multiple, including chr4:144936865	n/a	0.001	HG02585	GYPB, GYPE	PCR- Sanger	Yes
DUP7	chr4:144895000 -144905000	chr4:144775000- 144785000	120	10	HG02679	GYPB	1000G Seq	Yes
DUP8	chr4:14504573 9-145048739	chr4:144808739- 144810739	240	3	I1_S_Irula1, HG03837	GYPB, GYPE/A fusion	Deep Seq	Yes
DUP14	chr4:144853613 -144853688	chr4:144723019- 144723094	131	0.076	NA18646	GYPE	PCR- Sanger	Yes
DUP22	chr4:144926739 -144929739	chr4:144881739- 144884739	45	3	BR2108001 38,	GYPB (partial)	DeepSeq	Yes
DUP26	chr4:145065739 -145075739	chr4:144830739- 144840739	155	10	HG03729	GYPB	1000G Seq	Yes
DUP27	chr4: 145039739-	chr4: 144919739- 144921739	120	2	NA12249	GYPB/A fusion	PCR- Sanger	Yes
DUP29	chr4:144939393 -144939452	chr4:144825584- 144825643	114	0.060	HG03686	GYPE and GYPB	PCR- Sanger	No
DUP30	chr4 144989739-	chr4 144885739- 144887739	102	2	HGDP00543	GYPB	Deep seq	No
DUP33	chr4:144959739 -144962739	chr4:144849739- 144851739	111	3	BR5440905 1	GYPB	DeepSeq	No
DUP34	chr4:145002739 -145004739	chr4:144900739- 144902739	102	2	BR1086675 791	GYPB	DeepSeq	No
DUP35	chr4:144878739 -144880739	chr4:144758739- 144760739	120	2	BR9814040 21	GYPE	DeepSeq	No

470

471 Notes: DUP19 (NA19223), DUP25 (HG02031), DUP28 (NA19084) no clear 5kb window pattern,
472 DEL4 and DEL16, and DUP2 and DUP27 share overlapping breakpoint regions and may be the
473 same variants. DUP23 (HG02491) and DUP24 (hg03837), identified by Leffler et al, share
474 population and breakpoint regions with DUP8 and are classified as DUP8.

475

476

477 **Table 2** Frequency of structural variants observed more than once across the
478 cohorts analysed

479

	1000 Genomes					Gambian	Simons	Brazilian
Population	EUR	AFR	SAS	EAS	AMR	AFR	ALL	AMR
Total chromosomes	600	640	386	606	258	782	546	2648
DEL1	0	53	0	1	1	55	7	19
DEL2	0	26	0	0	2	2	4	12
DEL4/16	0	1	0	0	0	1	0	3
DEL6	0	0	1	0	1	0	0	0
DEL7	0	2	0	0	0	0	1	0
DUP2/27	0	1	1	11	1	0	0	7
DUP3	0	4	0	0	0	0	0	0
DUP5	0	1	0	0	0	2	0	0
DUP7	0	1	0	0	1	0	0	2
DUP8	0	0	4	0	0	0	1	2
DUP29	0	0	1	0	0	0	1	0
DUP22	0	0	0	1	0	0	1	1
DUP30	0	0	0	0	0	0	3	0
DUP35	0	0	0	0	0	0	0	2

480

481

482

483

484

485 **Supplementary table 1**

486

Variant	Primer name	Primer Sequences 5' - 3'	Annealing temperature °C
DEL1	GYP_DEL1_F	CCAGTTGCCTCTAAGTCCAT[C]	65
	GYP_DEL1_R	GCAGTGCACACCCCTGG[A]	
DEL2	GYP_DEL2_F	AGGCAAAAGCTGAGGTCTT[C]	65
	GYP_DEL2_R	CAGCCTCTGGTAACCACTGTTA[C]	
DEL6	GYP_DEL6_F	GAAGAAAGAGCTAATTCCAT[G]	63
	GYP_DEL6_R	AGTTGGAACTTGCAAACCTTA[G]	
DEL7	GYP_DEL7_F	ATCCTGCACTAGAAATTCCCTCCCA[C]	65
	GYP_DEL7_R	GATCAGAAAAGCAAATGGGGC[A]	
DEL13	GYP_DEL13_F	CCCTCACCCACAGAAAGAAC[C]	62
	GYP_DEL13_R	GGAAGGTTTTAGAAGTCTTCAGTTG[G]	
DUP2	GYP_DUP2_F	CAGAGAAATGATGGGCAAGTTGT[A]	62
	GYP_DUP2_R	ACTGCGTGGACATAGAGCGTAT[T]	
DUP3	GYP_DUP3_F	CAAATGAAGTCAAACATCTTC[A]	63.5
	GYP_DUP3_R	CTTGAGACACTCCTTATATGCTA[C]	
DUP5	GYP_DUP5_F	AGCTTGGATGAGATAAATGTCC[T]	65
	GYP_DUP5_R	ATTGGATTCTGATGTGCGG[C]	
DUP14	GYP_DUP14_F	GTCTTAAAGTATTGTTCGTGC[A]	65
	GYP_DUP14_R	AGGTTAACCTAAACCTTAGAGCAA[C]	
DUP29	GYP_DUP29_F	GCTGCCAGATCAATAGC[G]	64
	GYP_DUP29_R	TAGTAGTATAAACCAACAGTGCCTC[A]	

487

488 Nucleotides that are linked nucleic acids are shown in square brackets.

489

490 **References**

491

492 Algady W, Louzada S, Carpenter D, Brajer P, Farnert A, Rooth I, Ngasala B, Yang F, Shaw MA,
493 Hollox EJ. 2018. The Malaria-Protective Human Glycophorin Structural Variant DUP4
494 Shows Somatic Mosaicism and Association with Hemoglobin Levels. *Am J Hum Genet*
495 **103**: 769-776.

496 Anstee DJ, Mawby WJ, Parsons SF, Tanner MJ, Giles CM. 1982. A novel hybrid
497 sialoglycoprotein in Sta positive human erythrocytes. *J Immunogenet* **9**: 51-55.

498 Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini JL, McCarthy S,
499 McVean GA, Abecasis GR. 2015. A global reference for human genetic variation. *Nature*
500 **526**: 68-74.

501 Band G, Le QS, Clarke GM, Kivinen K, Hubbart C, Jeffreys AE, Rowlands K, Leffler EM, Jallow
502 M, Conway DJ et al. 2019. New insights into malaria susceptibility from the genomes of
503 17,000 individuals from Africa, Asia, and Oceania. *bioRxiv* doi:10.1101/535898: 535898.

504 Barbosa AR, Souza JM, Lebrao ML, Laurenti R, Marucci Mde F. 2005. Functional limitations of
505 Brazilian elderly by age and gender differences: data from SABE Survey. *Cad Saude
506 Publica* **21**: 1177-1185.

507 Berg IL, Neumann R, Sarbajna S, Odenthal-Hesse L, Butler NJ, Jeffreys AJ. 2011. Variants of
508 the protein PRDM9 differentially regulate a set of human meiotic recombination hotspots
509 highly active in African populations. *Proc Natl Acad Sci U S A* **108**: 12378-12383.

510 Cantsilieris S, Western PS, Baird PN, White SJ. 2014. Technical considerations for genotyping
511 multi-allelic copy number variation (CNV), in regions of segmental duplication. *BMC
512 genomics* **15**: 329.

513 Clarke L, Fairley S, Zheng-Bradley X, Streeter I, Perry E, Lowy E, Tasse AM, Flicek P. 2017.
514 The international Genome sample resource (IGSR): A worldwide collection of genome
515 variation incorporating the 1000 Genomes Project data. *Nucleic Acids Res* **45**: D854-
516 D859.

517 Conrad DF, Pinto D, Redon R, Feuk L, Gokcumen O, Zhang Y, Aerts J, Andrews TD, Barnes C,
518 Campbell P et al. 2009. Origins and functional impact of copy number variation in the
519 human genome. *Nature* **464**: 704-712.

520 Daniels G. 2008. *Human blood groups*. John Wiley & Sons.

521 Gribble SM, Wiseman FK, Clayton S, Prigmore E, Langley E, Yang F, Maguire S, Fu B, Rajan
522 D, Sheppard O. 2013. Massively parallel sequencing reveals the complex structure of an
523 irradiated human chromosome on a mouse background in the Tc1 model of Down
524 syndrome. *PLOS one* **8**: e60482.

525 Handsaker RE, Van Doren V, Berman JR, Genovese G, Kashin S, Boettger LM, McCarroll SA.
526 2015. Large multiallelic copy number variations in humans. *Nat Genet* **47**: 296-303.

527 Hehir-Kwa JY, Marschall T, Kloosterman WP, Francioli LC, Baaijens JA, Dijkstra LJ, Abdellaoui
528 A, Koval V, Thung DT, Wardenaar R et al. 2016. A high-quality human reference panel
529 reveals the complexity and distribution of genomic structural variants. *Nat Commun* **7**:
530 12989.

531 Hollox EJ, Hoh B-P. 2014. Human gene copy number variation and infectious disease. *Human
532 Genetics*: 1-17.

533 Huddleston J, Eichler EE. 2016. An Incomplete Understanding of Human Genetic Variation.
534 *Genetics* **202**: 1251-1254.

535 Jeffreys AJ, Neumann R, Wilson V. 1990. Repeat unit sequence variation in minisatellites: a
536 novel source of DNA polymorphism for studying variation and mutation by single
537 molecule analysis. *Cell* **60**: 473-485.

538 Kariuki SN, Marin-Menendez A, Introini V, Ravenhill BJ, Lin Y-C, Macharia A, Makale J, Tendwa
539 M, Nyamu W, Kotar J et al. 2018. Red blood cell tension controls Plasmodium

540 falciparum invasion and protects against severe malaria in the Dantu blood group.
541 *bioRxiv* doi:10.1101/475442: 475442.

542 Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7:
543 improvements in performance and usability. *Mol Biol Evol* **30**: 772-780.

544 Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, Haussler, David. 2002.
545 The Human Genome Browser at UCSC. *Genome Research* **12**: 996-1006.

546 Lan T, Lin H, Zhu W, Laurent T, Yang M, Liu X, Wang J, Wang J, Yang H, Xu X et al. 2017.
547 Deep whole-genome sequencing of 90 Han Chinese genomes. *Gigascience* **6**: 1-7.

548 Latorra D, Campbell K, Wolter A, Hurley JM. 2003. Enhanced allele-specific PCR discrimination
549 in SNP genotyping using 3' locked nucleic acid (LNA) primers. *Hum Mutat* **22**: 79-85.

550 Leffler EM, Band G, Busby GBJ, Kivinen K, Le QS, Clarke GM, Bojang KA, Conway DJ, Jallow
551 M, Sisay-Joof F et al. 2017. Resistance to malaria through structural variation of red
552 blood cell invasion receptors. *Science* **356**.

553 Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R.
554 2009. The Sequence Alignment/Map format and SAMtools. *Bioinformatics* **25**: 2078-
555 2079.

556 Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R. 2015.
557 The EMBL-EBI bioinformatics web and programmatic tools framework. *Nucleic Acids
558 Res* **43**: W580-584.

559 Louzada S, Komatsu J, Yang F. 2017. Fluorescence in situ hybridization onto DNA fibres
560 generated using molecular combing. In *Fluorescence In Situ Hybridization (FISH)
561 Application Guide*, (ed. T Liehr, B Heidelberg), pp. 275-293. Springer-Verlag.

562 Ma H, Difazio S. 2008. An efficient method for purification of PCR products for sequencing.
563 *Biotechniques* **44**: 921-923.

564 MacDonald JR, Ziman R, Yuen RK, Feuk L, Scherer SW. 2014. The Database of Genomic
565 Variants: a curated collection of structural variation in the human genome. *Nucleic Acids
566 Res* **42**: D986-992.

567 Madden HJ, Cleghorn TE, Allen FH, Jr., Rosenfield RE, Mackeprang M. 1964. A NOTE ON
568 THE RELATIVELY HIGH FREQUENCY OF ST-A ON THE RED BLOOD CELLS OF
569 ORIENTALS, AND REPORT OF A THIRD EXAMPLE OF ANTI-ST-A. *Vox Sang* **9**: 502-
570 504.

571 Mallick S, Li H, Lipson M, Mathieson I, Gymrek M, Racimo F, Zhao M, Chennagiri N, Nordenfelt
572 S, Tandon A et al. 2016. The Simons Genome Diversity Project: 300 genomes from 142
573 diverse populations. *Nature* **538**: 201-206.

574 Ndila CM, Uyoga S, Macharia AW, Nyutu G, Peshu N, Ojal J, Shebe M, Awuondo KO, Mturi N,
575 Tsofa B et al. 2018. Human candidate gene polymorphisms and risk of severe malaria in
576 children in Kilifi, Kenya: a case-control association study. *Lancet Haematol* **5**: e333-
577 e345.

578 Onda M, Kudo S, Fukuda M. 1994. Genomic organization of glycophorin A gene family revealed
579 by yeast artificial chromosomes containing human genomic DNA. *J Biol Chem* **269**:
580 13013-13020.

581 Pratto F, Brick K, Khil P, Smagulova F, Petukhova GV, Camerini-Otero RD. 2014. DNA
582 recombination. Recombination initiation maps of individual human genomes. *Science*
583 **346**: 1256442.

584 Quinlan AR, Hall IM. 2010. BEDTools: a flexible suite of utilities for comparing genomic
585 features. *Bioinformatics* **26**: 841-842.

586 Raffield LM, Ulirsch JC, Naik RP, Lessard S, Handsaker RE, Jain D, Kang HM, Pankratz N,
587 Auer PL, Bao EL et al. 2018. Common alpha-globin variants modify hematologic and
588 other clinical phenotypes in sickle cell trait and disease. *PLoS Genet* **14**: e1007293.

589 Rahuel C, London J, Vignal A, Ballas SK, Cartron JP. 1991. Erythrocyte glycophorin B
590 deficiency may occur by two distinct gene alterations. *Am J Hematol* **37**: 57-58.

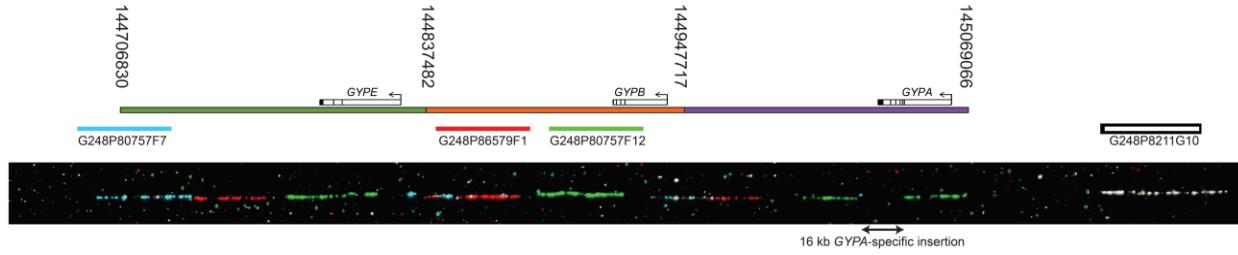
591 Sanchez G, Aragones L, Costafreda MI, Ribes E, Bosch A, Pinto RM. 2004. Capsid region
592 involved in hepatitis A virus binding to glycophorin A of the erythrocyte membrane. *J
593 Virol* **78**: 9807-9813.

594 Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J,
595 Baum M, Van Doren V et al. 2016. Schizophrenia risk from complex variation of
596 complement component 4. *Nature* **530**: 177-183.

597 Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J, Zhang Y, Ye K,
598 Jun G, Hsi-Yang Fritz M et al. 2015. An integrated map of structural variation in 2,504
599 human genomes. *Nature* **526**: 75-81.

600 Telenti A, Pierce LC, Biggs WH, di Iulio J, Wong EH, Fabani MM, Kirkness EF, Moustafa A,
601 Shah N, Xie C et al. 2016. Deep sequencing of 10,000 human genomes. *Proc Natl Acad
602 Sci U S A* **113**: 11901-11906.

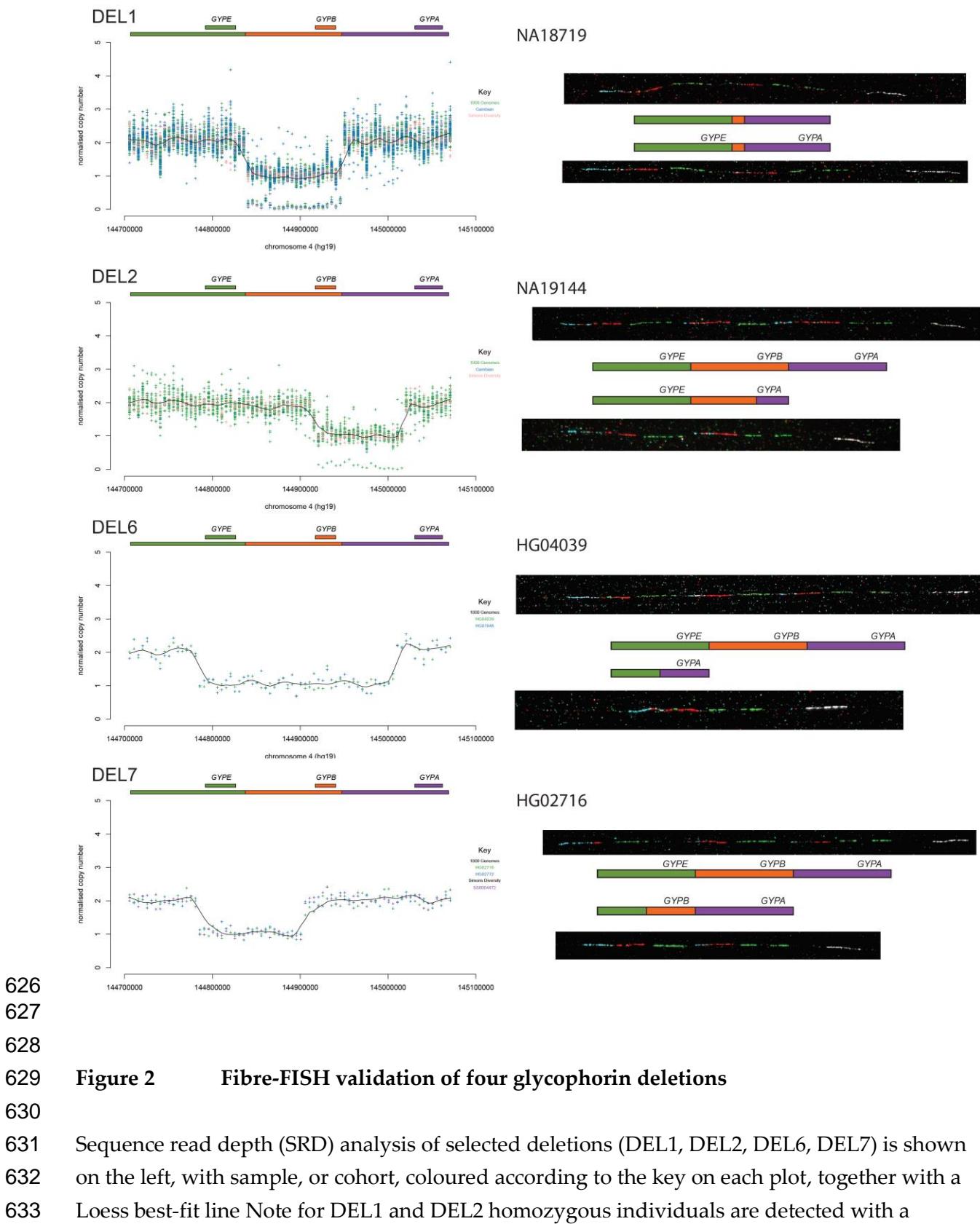
603 Thorvaldsdóttir H, Robinson JT, Mesirov JP. 2012. Integrative Genomics Viewer (IGV): high-
604 performance genomics data visualization and exploration. *Briefings in Bioinformatics* **14**:
605 178-192.


606 Usher CL, McCarroll SA. 2015. Complex and multi-allelic copy number variation in human
607 disease. *Brief Funct Genomics* **14**: 329-338.

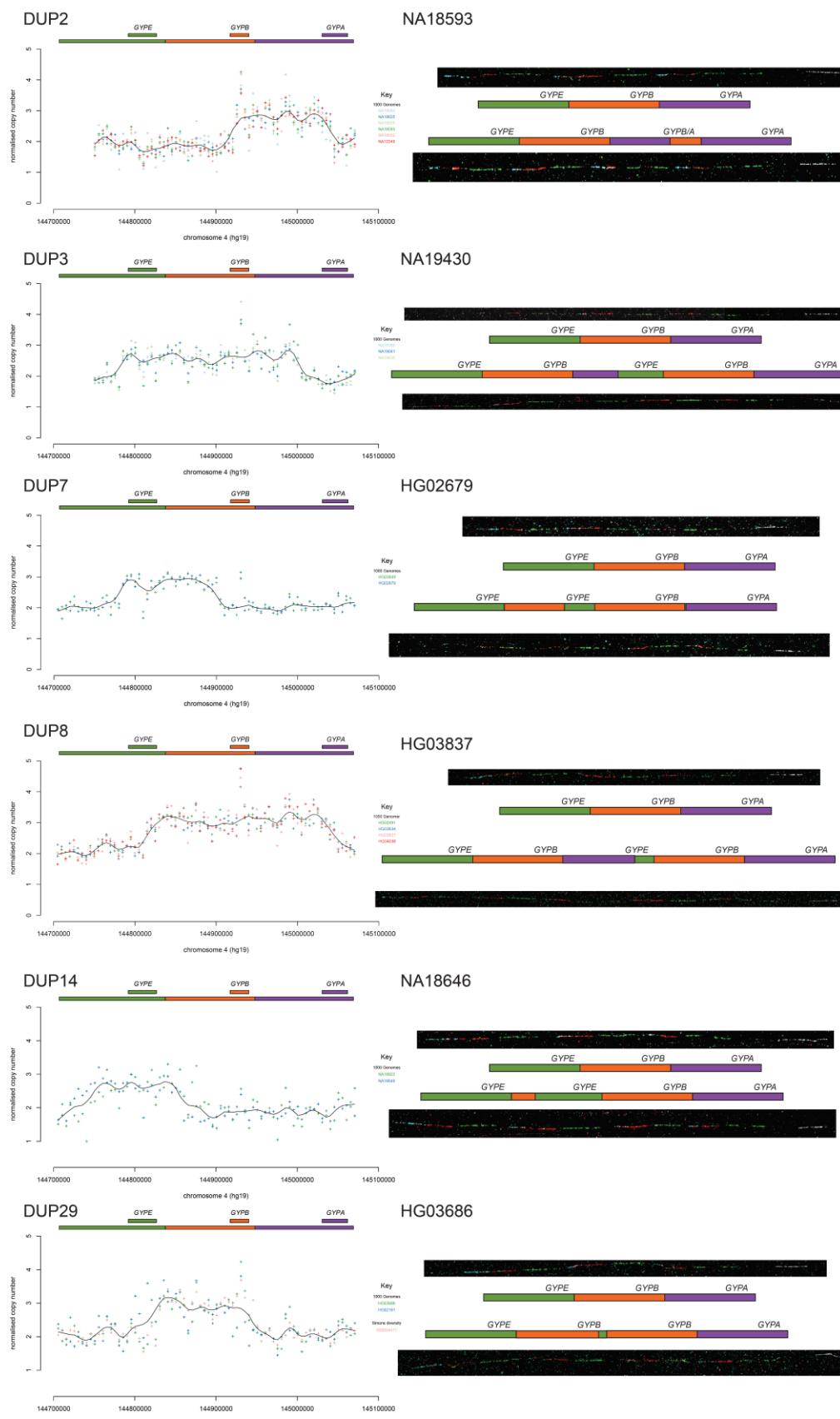
608 Vignal A, Rahuel C, London J, Cherif Zahar B, Schaff S, Hattab C, Okubo Y, Cartron JP. 1990.
609 A novel gene member of the human glycophorin A and B gene family. Molecular cloning
610 and expression. *Eur J Biochem* **191**: 619-625.

611 Zarrei M, MacDonald JR, Merico D, Scherer SW. 2015. A copy number variation map of the
612 human genome. *Nat Rev Genet* **16**: 172-183.

613


614

615
616 **Figure 1 Structure of the glycophorin reference allele**
617

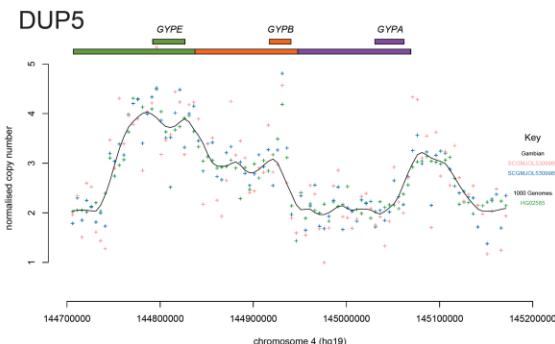

618 A representation of the reference allele assembled in the GRCh37/hg19 assembly is shown, with
619 the three distinct paralogous ~120kb repeats of the glycophorin region coloured green, orange
620 and purple, carrying *GYPE*, *GYPB* and *GYPA* respectively. Numbers over the start and end of
621 each parologue represent coordinates in chromosome 4 GRCh37/hg19 assembly. Coloured bars
622 represent fosmids used as probes in fibre-FISH, with the fosmid identification number
623 underneath. An example fibre FISH image of this reference haplotype (from sample HG02585)
624 is shown below.

625

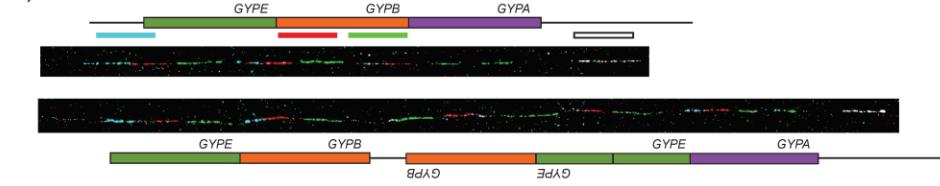
634 normalised copy number of zero across the deletion. Representative fibre-FISH images from the
635 index sample of each variant are shown on the right, with clones and fluorescent labels as
636 shown in figure 1. All index samples apart from NA18719 are heterozygous, with a
637 representative reference (top) and variant (bottom) allele from that sample shown. A schematic
638 diagram next to the corresponding fibre-FISH image shows the structure of each allele inferred
639 from the fibre-FISH and SRD analysis.

640

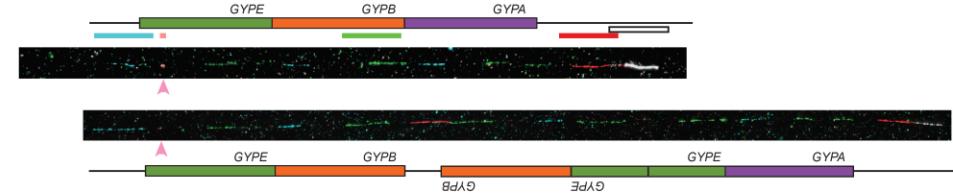
642

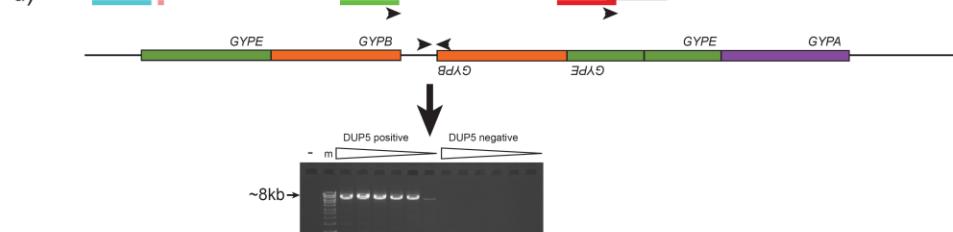

643 **Figure 3 Fibre-FISH validation of six glycophorin duplications**

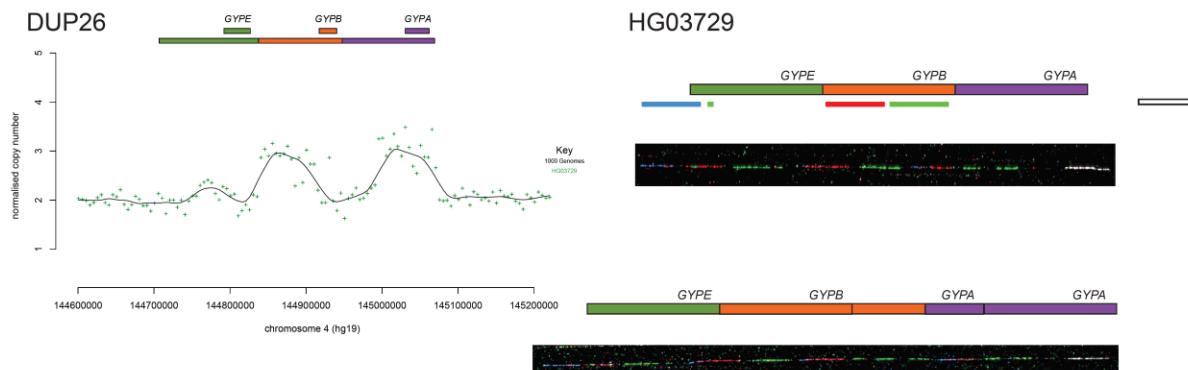
644


645 Sequence read depth (SRD) analysis of selected duplications (DUP2, DUP3, DUP7, DUP8,
646 DUP14 and DUP29) is shown on the left, with sample, or cohort, coloured according to the key
647 on each plot, together with a Loess best-fit line. Representative fibre-FISH images from the
648 index sample of each variant are shown on the right, with clones and fluorescent labels as
649 shown in figure 1, (with an additional green-labelled PCR product specific to the glycophorin E
650 repeat for HG03686). All index samples are heterozygous, with a representative reference and
651 variant allele from that sample shown. A schematic diagram next to the corresponding fibre-
652 FISH image shows the structure of each allele inferred from the fibre-FISH and SRD analysis.

653


a)


b) HG02585


c) HG02585

d)

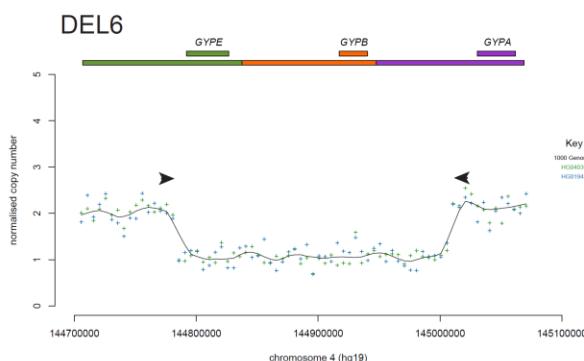
e)

655 **Figure 4 Analysis of DUP5 and DUP26 complex structures**

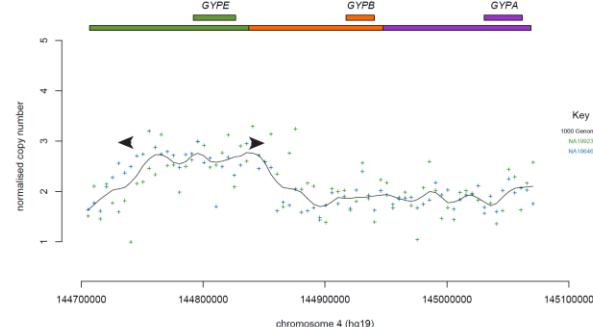
656

657 a) Sequence read depth (SRD) analysis of three individuals heterozygous for the DUP5
658 variant.

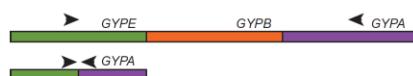
659 b) Representative fibre-FISH images from the DUP5 index sample HG02585. Clones and
660 fluorescent labels as shown in figure 1.

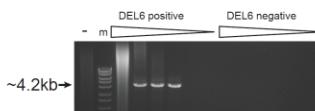

661 c) Representative fibre-FISH images from the DUP5 index sample HG02585. Clones and
662 fluorescent labels as shown in figure 1, except the red probe is fosmid G248P89366H1
663 and the pink probe is the glycophorin E repeat-specific PCR product.

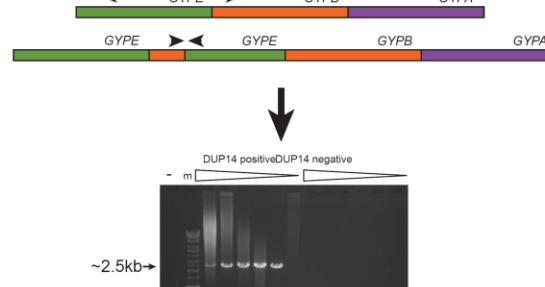
664 d) Schematic showing design of PCR primers for specific amplification (black arrows) on
665 reference and DUP5 structures. The ethidium bromide stained agarose gel shows a ~8kb
666 PCR product generated by these DUP5 specific primers. HG02554 is the DUP5 sample,
667 “-” indicates a negative control with no genomic DNA and the marker, indicated by
668 “m”, is Bioline Hyperladder 1kb+. The triangles indicate increasing PCR annealing
669 temperature from 65°C to 67°C.


670 e) Sequence read depth (SRD) analysis (left) and fibre-FISH analysis (right) of the index
671 sample HG03729 heterozygous for DUP26 variant. Fosmid clones for fibre-FISH are as
672 figure 1, except with the addition of the glycophorin E repeat-specific PCR product
673 labelled in green.

674


a)


DUP14


b) DEL6

c)

DUP14

DUP14

d) DEL6

Del6:
GYPE:
GYPA:

Del6:
GYPA:
GYPE:

Del6:
GYPA:
GYPE:

Del6:
GYPE:
GYPA:

Del6:
GYPA:
GYPE:

Del6:
GYPE:
GYPA:

Del6:
GYPA:
GYPE:

Del6:
GYPA:
GYPE:

e)

675

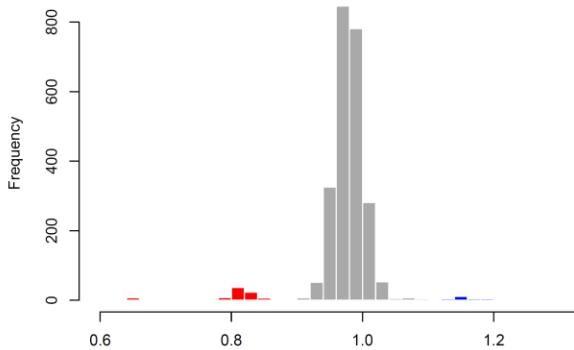
676

677

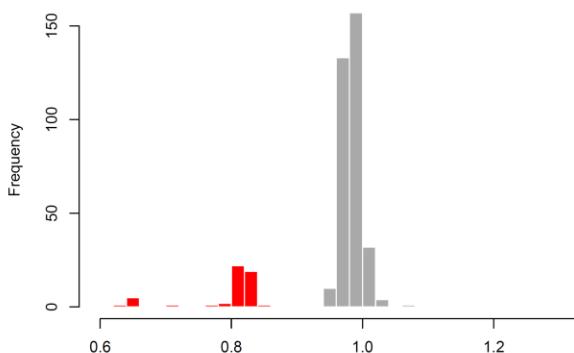
DEL6

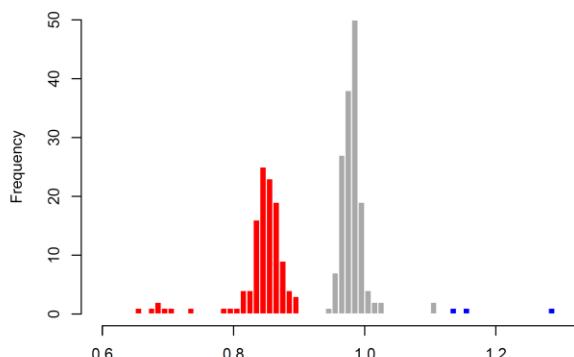
DUP14

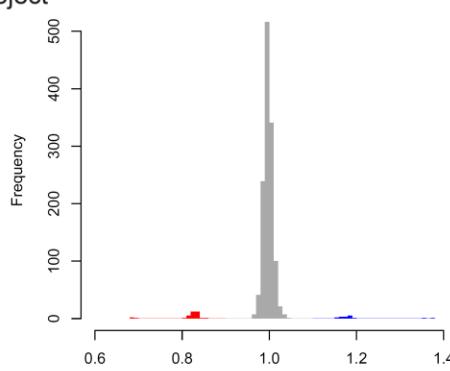
678 **Figure 5 Examples of refining breakpoints of a deletion (DEL6) and a duplication**
679 **(DUP14)**


680

- 681 a) Sequence read depth analysis, indicating position of PCR primers (not to scale)
- 682 b) Variant model, showing position of primers on reference and variant
- 683 c) Agarose electrophoresis of long PCR products using variant-specific primers indicated
684 in b). “-” indicates a negative control with no genomic DNA and the marker, indicated
685 by “m”, is Bioline Hyperladder 1kb+. The triangles indicate increasing PCR annealing
686 temperature from 58°C to 67°C.
- 687 d) Multiple sequence alignment of the variant-specific PCR product, with homologous
688 sequence on the *GYPA* repeat and the *GYPE* repeat. *GYPE*-specific variants are in green,
689 *GYPA*-repeat-specific variants are in purple.
- 690 e) A model of the generation of the variants by NAHR.


691


a) 1000 Genomes Project


b) Gambian Genomes Project

c) Simons Diversity Project

d) Brazilian Genomes Project

703 **Supplementary figure 1** **Histograms of sequence read depths of the glycophorin**
704 **region**

705

706 Histograms of normalised sequence read depths of the four cohorts used for this study, with
707 red indicating putative deletions and blue putative duplications.

708 a) 1000 Genomes Project
709 b) Gambian Genomes Project
710 c) Simons Diversity Project
711 d) Brazilian Genomes Project

712