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Abstract

Ecosystem patterning can frequently arise from either environmental heterogeneity or
biological feedbacks that produce multiple persistent ecological states. One such possible
feedback is density dependent changes in behavior that regulates species interactions, which
raises the question of whether behavior can also affect large-scale community patterns. On
temperate rocky reefs, kelp and urchin barrens can form mosaics if urchins locally avoid
predators and physical abrasion in kelp stands or large-scale patches when starvation in-
tensifies grazing across entire reefs at low kelp density. By fitting dynamical models to
large-scale surveys, we find that these behavioral feedbacks best explain observed spatial
patterning. In our best-supported models reef-scale feedbacks create reef-scale, alternatively
stable kelp- and urchin-dominated states at 37% of reefs in California. In New Zealand, local
feedbacks limit this phenomenon to 3-8m depths with moderate wave stress on kelp, with
distinct single stable states in exposed shallows and sheltered, deeper areas. Our results
highlight that differences in grazer behavior can explain ecosystem patterning.

Introduction

Spatial patterning in community types characterizes many ecosystems. For example, in
arid ecosystems patches of shrubs and barren, dry soil 25 m in diameter form mosaic patterns
(Rietkerk & Van de Koppel 2008). On mountain ranges, stripes of ribbon forests 200-500m
wide intersperse with wider bands of grassy meadows. In lakes, turbid-water states with
high algal densities dominate fertilized lake basins 5-10km long while less polluted basins
remain in a clear-water state characterized by aquatic vegetation (van den Berg et al. 1998).
A longstanding focus of empirical and theoretical work has aimed to resolve the processes
generating ecosystem patterns and their spatial scale.

Spatial patterning may occur due to underlying environmental heterogeneity or, in homo-
geneous abiotic environments, arise from local biotic feedbacks. Examples of environment-
driven patterns include gradients in wave stress that zone seaweed communities from wave-
tolerant to more sensitive species with increasing water depth (Shears & Babcock 2004) and
localized disturbances such as lightning-induced fires that create meadow patches within
forests. In homogeneous environments self-organized patterns arise when biological feed-
backs reinforce distinct ecological states. If interactions change from positive to negative
with distance, mosaics of populated and empty areas occur. For example, in arid ecosys-
tems mosaics arise because shrubs collect water from the surrounding soil and alpine ribbon
forests form as trees displace growth-inhibiting snow into adjacent grassy areas (Rietkerk
& Van de Koppel 2008). If feedbacks are independent of distance, they can interact with
environmental heterogeneity to drive patterns over large scales. For instance, grasses pre-
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dominate in areas of low-moderate herbivory by dissipating grazing across many individuals
but collapse to a low-density state from overgrazing in areas with high livestock densities
(Noy-Meir 1975). In either case, feedback-induced patterning requires strong and often non-
linear species interactions.

One driver of interaction strength are density-dependent changes in behavior. In predator-
prey systems, abundant prey can reduce predation by sharing social information within
and across prey species (Gil et al. 2018). Likewise, predator presence can discourage her-
bivory in dense plant aggregations, for instance in Yellowstone National Park where wolf
re-introduction allowed aspen recovery near forest edges (Laundré et al. 2001). Behav-
ioral avoidance of predators can reduce herbivory by 90% (trout and mayflies, McPeek and
Pekarsky 1998), whereas herbivore activity as part of large groups that reduce predation risk
can account for a majority of total consumption (68%, fish on coral reefs, Gil and Hein 2017).
Increased foraging rates can also arise as resource declines cause starvation (Harrold & Reed
1985). This potential for density to feed back and affect biotic interactions through behavior
raises the question of whether behavior can also affect large-scale community patterns.

Temperate rocky reefs exemplify each of patterned communities, behavior-mediated her-
bivory, and environmental variation. Patterning of two distinct ecological states, kelp forests
and urchin-dominated barrens (Fig. 1a, b), can occur in these ecosystems at drastically
different scales in different regions. Large-scale (> 1km) barrens and forests spanning all
depths characterize California reefs while in New Zealand kelp occupy deeper water and
urchins shallower areas in smaller-scale (< 100 m) bands. This difference might arise from a
greater sensitivity of the dominant kelp species in New Zealand to wave stress, which peaks
at shallower depths, compared to the canopy-forming dominant kelp species in California.
Alternatively, these regions may differ in the roles of behavioral feedbacks controlling urchin
grazing activity, which might intensify in local patches where kelp densities are insufficient
to physically deter urchins (Konar 2000) in New Zealand. In California, grazing can instead
increase synchronously across the reef when low kelp densities lead to insufficient subsidies
of kelp fronds drifting to urchins sheltering on the seafloor (Ebeling et al. 1985; Harrold &
Reed 1985). Resolving whether biotic feedbacks and distinct states can explain temperate
reef spatial patterning can also provide insight into the scientific debate on whether or not
urchin barrens and kelp forests occur as alternative stable states (Petraitis & Dudgeon 2004).

We resolve how environment, urchin densities, and urchin behavior drive kelp densities
by comparing how well dynamical models incorporating each feature can explain field data.
For this we develop a general, model of kelp population dynamics on temperate reefs and
synthesize data across large-scale surveys in California and New Zealand. We then analyze
our best-fitting models to resolve the spatial patterns and potential for community-wide
alternative stable states in each system.
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Methods

2.1 Study systems

We focus our analysis on temperate rocky reefs in Northeast New Zealand (NZ) and the
California Northern Channel Islands (CA) dominated by kelp (Macrocystis pyrifera, CA,
and Eklonia radiata, NZ) or urchins (Evechinus chloroticus in NZ and Strongylocentrotus
purpuratus, S. franciscanus in CA). Like many temperate reefs, high rates of kelp growth
and urchin grazing characterize these systems: abundant urchins can denude kelp forests
in weeks, while under low urchin densities kelp can recolonize barrens within a few months
(Ebeling et al. 1985). By contrast, the abundance of comparatively longer-lived urchins (5-50
years) changes more slowly in response to urchin predator abundance and multi-year changes
in ocean climate (Shears et al. 2013; Okamoto 2014). This difference in time scales means
that kelp reach steady state abundance under a given urchin density, whereas urchin density
is largely independent of kelp abundance because urchin populations are demographically
open (Okamoto 2014) and can maintain high densities in the absence of kelp (Filbee-Dexter
& Scheibling 2014; Ling et al. 2015).

Urchin grazing activity can strongly decline with either local- or reef-scale kelp density.
Urchins typically remain in rock crevices that offer refuge from storms and predators, con-
suming only kelp fronds detached from plants by waves and carried to the bottom by currents
over 100-1000m (‘drift kelp’ hereafter; Ebeling et al. 1985; Harrold & Reed 1985). When
this long-distance subsidy becomes insufficient at low kelp and high urchin densities, urchins
across the reef synchronously emerge from refugia to actively graze on kelp. More locally,
dense stands of kelp can physically abrase urchins as plants move with waves (Konar 2000)
and can shelter urchin predators that lead to cryptic behavior (Cowen 1983); both mecha-
nisms reduce urchin grazing activity. Density-dependent consumption present in both reef-
and local-scale feedbacks can theoretically create alternative stable states with either high
or low resource abundance (Bate & Hilker 2014).

2.2 Data

We use survey data sampling 200-300km coastlines in each region, with 71 reefs sampled in
2001 in Northeast New Zealand (Shears & Babcock 2004) and 93 reefs sampled over 5-30 years
in the California Channel Islands (Kushner et al. 2013; PISCO et al. 2011). This geographic
extent spans a wide range of environmental conditions and urchin densities, allowing us to
independently estimate the effects of each model process. This spatial scale also makes our
findings robust to inter-annual variation in the primary environmental drivers (e.g., storms,
temperature, upwelling) because these factors are autocorrelated at smaller spatial scales
in both systems (10-50km; Cavanaugh et al. 2013). Additionally, availability of long-term
data at California reefs (10 years at each reef on average) allows us to verify our assumption
that kelp reach steady states within a single year (see “Role of behavioral feedbacks” below).
Samples in both systems were collected at the end of the growing season, when kelp reach
peak abundance levels (July-August in CA, March-June in NZ).

Samples in each system span c.a. 500m2 of each reef. The environmental drivers we
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account for are total urchin predator density (2 species in NZ, 3 species in CA), wave stress
based on wind fetch (NZ) or year-specific maximum wave height (CA), light penetration in
the water (i.e., visibility), and nitrate concentrations derived from water temperature (CA
only; Bell et al. 2018). Each reef was sampled using transects with 15-50 1-5m2 quadrat
samples that span a 2-20m water depth gradient, translating to 1,273 samples in NZ and
14,955 samples in CA. Data collected in each quadrat include densities of adult kelp and
urchins of sufficient size to consume kelp (>25mm test diameter), sample location along
transect, and depth. Given that water depth attenuates both wave stress and light, we
adjust these estimates to the depth of each sample. For this we use the standard relations
of light extinction and dissipation of wave energy (Bekkby et al. 2008), adjusted for regional
differences in wave dissipation using a fitted parameter (see ‘Model description’ below).

To compare the spatial extent of kelp- and urchin-dominated regimes in New Zealand
and California, we categorize the community state in each sample (Fig. 1a, b). Given that
low urchin densities can maintain barren regimes, we classify samples containing urchins and
few kelp (< 0.05 ind m−2 in CA, < 0.5 ind m−2 in NZ) as urchin-dominated; we classified
all other samples as kelp-dominated. We then calculate the scale of patterning (Fig. 1c, d)
as the distance at which Pearson correlation in community state κ, calculated over a 5km
window moving by 0.5km, declines to zero (with standard error

√
(1 − κ2)/(n− 2)−1 given

n comparisons).

2.3 Model description

Our model follows dynamics of local (1-5m2) adult kelp abundance Nq (Fig. 2), with
dynamics across locations on each reef potentially coupled by kelp dispersal and urchin
behavioral feedbacks. Kelp Nq reproduce continuously during the year with a baseline per
capita fecundity r. In California, fecundity can decline due to limitation of nitrate G that
arises at high water temperatures; we model this dependence using a function that saturates
to 1 at high nitrate levels, g(G) = G(1 + vG)−1. Newly produced spores can disperse over
short distances (< 500m for Macrocystis, Anderson and North 1966, Reed et al. 1992).
Therefore, we model the density of spores arriving in a location q as a combination of (1) the
fraction γ of all spores dispersing across the reef s given kelp density averaged over the reef,
Ns = k−1

∑k
q=1Nq, and (2) the fraction 1 − γ of locally produced spores dispersing < 5m.

Survival of settled juvenile kelp to adult stages depends on both local and reef-scale
factors. To model light limitation of juveniles by competitively dominant adults, we assume
that light availability declines proportionally with adult density Nq from the baseline light
availability on the reef Ls. Due to their greater palatability compared with adults, juveniles
also experience high rates of grazing δJ , which may depend on urchin behavior (described
below). On the reef scale, we account for environmentally-driven stochasticity in survival
(e.g., as might be due to thermal stress or interspecific competition) using a log-normally
distributed random variable SR with a mean of one and standard deviation σ, with SR

realizations identical across all locations in each reef. Finally, given fast maturation (1-2
mo.) and high sensitivity of juveniles to competition and grazing, we model recruitment as
a process happening continuously throughout the year.
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Adult kelp experience mortality due to wave stress E and grazing by urchins δA, which
may additionally depend on urchin behavioral feedbacks. Following Bekkby et al. 2008
we model reduced wave stress dissipation at more exposed sites. This relation depends
on region-specific oceanographic features, here approximated by the parameter fw. For
both juvenile and adult kelp mortality from grazing, we assume that urchin density U is
constant on the time scale of annual kelp dynamics but grazing rate can dynamically depend
on adult kelp density. To model high grazing at moderate kelp densities and low grazing
at high kelp densities, we use an inverse-quadratic decline in grazing with kelp density
and a per-kelp grazing inhibition factor ξA. This ‘Type IV’ functional response represents
emergent prey or resource defense (Koen-Alonso 2007; Bate & Hilker 2014), and in our model
depends on either Nq for the local-scale feedback or average kelp density across the reef (Ns)
in reef-scale feedbacks. To account for the possibility that high kelp densities might not
completely prevent grazing, we let a fraction of grazing activity depend on behavior, with
1− fb independent of behavior. Altogether, the behavior-mediated decline in urchin grazing
is

b(N) = 1 − fb +
fb

1 − (ξAN)2
. (1)

The overall dynamics of local kelp abundance are then

dNq

dt
= rg(G)(γNs + (1 − γ)Nq)

σR(L− dNq)

1 + δRUb(Nx)
− µE exp(fwE

−1)Nq − δAUb(Nx)Nq, (2)

where Nx = Nq for the local-scale behavior feedback and Nx = Ns for the reef-scale feedback.

2.4 Model analyses

To compare the role of each potential driver (environmental, urchin density, behavioral),
we compare the fit of both the full model (Eqn. 2) and simpler models with one or two of these
processes. This allows us to resolve the independent and interactive effects of drivers; we also
include a model with density dependence only as a baseline reference of model performance.
Given that fast-growing kelp populations can quickly adjust to changes in abiotic conditions
and urchin densities (see “Study system” above), we assume that observed annual kelp
densities are at that year’s steady-state and compare them with equilibria of fitted models.
We tested this assumption by checking that the best-fitting parameter estimates in all models
converge to steady state within one year. Additionally, this approach assumes independence
of kelp densities among years, which may be less likely when extreme disturbances severely
deplete kelp populations across large spatial scales.

We fit models to data using a maximum likelihood approach that accounts for model mis-
specification and observation errors. To account for mis-specification that occurs through
juvenile survival stochasticity SR, we run each model under 30 values of SR. We solve each
model using a Runge-Kutta method in R 3.4.3 (R Core Team 2017), with kelp density ini-
tialized at the 5th and 80th percentiles of observed densities in order to resolve the potential
presence of alternative stable states. We then compare predicted local kelp densities with
observed kelp counts in quadrats using a Poisson likelihood that accounts for observational
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Table 1: Model parameters and covariates. Covariates are given by environmental data
and parameters are estimated in model fitting. Covariates without units are proportions of
region-specific maximum values.

Parameter Units Description

r yr−1 Adult kelp fecundity
v Half-saturation constant of nitrate in fecundity
σR Lognormal model mis-specification in recruit survival
γ Fraction of kelp spores dispersing across reef
d N−1 Kelp competition for light inhibiting recruitment
µ yr−1 Kelp mortality from wave stress
fw m−1 Per-meter wave energy dissipation
δA U−1yr−1 Max grazing intensity on adult kelp
δR U−1 Max grazing intensity on kelp recruits
fb Fraction of grazing activity affected by behavior
ξA N−1 Inhibition of grazing by kelp

Covariate Units Description

Z m Sample depth
L Local (depth-dependent) light availability
U Local urchin density
E Reef-scale wave stress
G Reef-scale nitrate availability (CA only)
P ind m−2 Reef-scale urchin predator density

errors. Averaging likelihood across the 60 simulations in each sample and summing the like-
lihood across all samples in each region, we arrive at the total likelihood of each model under
a given parameter set. Note that in California we evaluate model fit to data collected across
all years, although in preliminary analyses we found analogous results limiting the analysis
to only a single sampling year from each reef.

For each model, we find the set of best-fitting parameters using the DIRECT global
optimization algorithm (Jones et al. 1993) in the package nloptr (Johnson 2019). We then
compare model performance using the Akaike Information Criterion (AIC), where AIC dif-
ference of > 4 suggests improved model fit (Bolker 2008), and also calculate the correlation
between predicted and observed kelp presence for a more intuitive reference of model fit.

Using the best-fitting models from each region, we project predicted community patterns
across levels of grazing and wave stress. To resolve the effect of grazing we simulate 40
reefs with reef-scale urchin densities spanning the range of values observed in each system.
Given that wave stress predominantly depends on water depth rather than reef-scale char-
acteristics, at each reef we additionally simulate 30 locations spanning the range of depths
in data. Throughout, we set urchin distribution across depths and reef-scale exposure, light
availability, and predator density to the average values observed in data. We compare model
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projections with observed kelp patterns smoothed using 2-d splines in the mgcv package.

For each region we also use the best-fitting models with behavior to evaluate the role of
alternative stable states in explaining observed patterns. For this we quantify how model
performance corresponds to the predicted frequency of alternative stable states across all
samples. To control the frequency of alternative stable states, we fix grazing inhibition by
kelp ξA, the parameter controlling feedback strength, at levels increasing from 0 (i.e., no
alternative stable states possible in model) to 25% above the best-fit estimate of ξA. For
each ξA level, we then optimize all other parameters to determine the best possible model
performance and the corresponding frequency of alternative stable states. To evaluate the
potential for alternative stable states that span entire reefs specifically, we examine how
steady-state kelp presence, averaged across all depths, depends on initial kelp abundance.
We examine this dependence across levels of reef-wide urchin density, which can depend on
reef-scale management efforts that regulate fishing intensity on urchin predators or urchin
harvest (Hamilton and Caselle 2015; House 2017). For reference, we compare predictions
from our best-fitting models both with and without the behavioral feedbacks, and also with
the reef-scale average frequency of kelp- and urchin-dominated regimes as determined in
Figure 1a, b.

Results

3.1 Role of urchin behavior

Behavior-mediated grazing in California and an interactive effect of behavior-mediated
grazing and environmental variation in New Zealand predominantly explain patterns in field
data (Table 2). Best-fitting models in both regions include environment, grazing, and be-
havior, and explain a substantial fraction of variation in kelp occurrence across all samples
(R2 = 0.30 in NZ and 0.54 in CA). In California, models with grazing and behavioral feed-
backs alone outperform models with only grazing and environment (2577 AIC difference).
This contrasts New Zealand, where models with environment alone better explain the data
than models with only grazing and behavior (∆ AIC=12); however, a model incorporating
all three processes greatly outperforms all other models (∆ AIC ≥ 176). In both regions,
models with behavior outperform models without behavior because they can explain the
co-occurrence of high and low kelp densities at intermediate urchin densities (Fig. 4). Iden-
tical model ranking and comparable parameter estimates also arise in temporally explicit
model fits in California, despite the stronger temporal variation in abiotic conditions and
urchin densities in this region. In models with behavior, local-scale grazing feedbacks in New
Zealand and reef-scale grazing feedbacks in California best explain the data (Table 2).

3.2 Drivers of community patterning

The local scale of behavioral feedbacks and a decline in wave stress with depth together
explain the much smaller scale of community patterning in New Zealand than in California.
In New Zealand, our best-fitting model predicts barrens as the only stable state in shallow
areas (< 3m) due to a combination of grazing and high wave stress (Fig. 3). At greater water
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depths that largely attenuate waves (> 8m), we predict forests are the only stable state
because kelp quickly form dense stands that inhibit grazing. At intermediate wave stress
between these zones, we predict that alternative stable states spanning 1-5m2 patches arise
as urchins largely avoid grazing in dense kelp stands and graze intensively elsewhere. This
interface occurs at greater depths and urchin barrens cover a larger fraction of the system on
reefs with greater overall urchin densities. In California, we predict that community regimes
simultaneously span all reef depths due to the weaker role of wave stress and the larger scale
of grazing feedbacks (Table 2).

3.3 Presence of alternative stable states

Our best-fitting models predict that alternative stable states occur locally in both regions
(40% of CA samples, 18% of NZ samples, Fig. 3, 4), but alternative stable states at the scale
of entire reefs only in California (Fig. 5). In New Zealand, our best-fitting model predicts
that final reef state depends little on initial kelp abundance because alternative stable states
occur over only a narrow range of depth-dependent wave stress intensities.

Discussion

4.1 Behavioral feedbacks as drivers of patterning

Our results show that behavior can determine the presence and scale of community pat-
terning by mediating consumer-resource interactions in rocky temperate reefs. This potential
occurs through feedbacks where density-dependent changes in behavior amplify consumption
when resources decline. In heterogeneous environments, the scale of this feedback determines
the spatial extent of the resulting resource- or consumer-dominated community regimes.
Specifically, we find that forests and barrens spanning entire reefs in California are most
consistent with large-scale feedbacks, where drift kelp are transported over large distances
and starvation-induced active grazing occurs when kelp densities decline across entire reefs
(Table 2; Harrold & Reed 1985). By contrast, in New Zealand localized feedbacks involving
short-distance grazing deterrence by kelp (Konar 2000) can explain fine-scale patterning of
community regimes organized into distinct depth zonation by a gradient in wave stress.

In many systems, analogous behavior-induced community patterning may be more likely
to arise from resource group defense than consumer starvation. Starvation-induced active
urchin grazing can create persistent patterns because, after overgrazing kelp, urchins can
survive for decades with little food due to low metabolic costs (Filbee-Dexter & Scheibling
2014; Ling et al. 2015). In homeothermic taxa or in warmer systems, prolonged starvation can
cause mortality or emigration, allowing eventual resource recovery. High starvation mortality
or movement potential at low resource density can therefore lead to long-term consumer-
resource cycles, which may additionally propagate across space as grazing fronts in systems
where consumers can move freely (Silliman et al. 2013). Conversely, persistent patterns of
sparse and abundant prey or plants can arise when dense resources exhibit group defense
or modify local environments (e.g., by attracting predators), thereby shifting predation or
herbivory to less defended species or to locations where resources are sparse (Schneider and
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Kefi 2016).

Behavioral feedbacks may also be more likely to pattern communities in conjunction
with co-occurring feedback processes or under stronger environmental heterogeneity. High
resource abundance can reduce per-capita mortality through a dilution effect in many sys-
tems where consumer density predominantly depends on conditions during critical periods
or life stages rather than on resource abundance. Strong dilution feedbacks can produce
alternatively stable consumer- or resource-dominated states that span individual pastures
(Noy-Meir 1975), coral reefs (Mumby et al. 2007), and lakes (Downing et al. 2012). How-
ever, co-occurring behavior and dilution feedbacks can also produce patch-scale alternative
stable states synergistically even when individually each feedback is insufficient to do so
(van de Leemput et al. 2016). Finally, feedbacks too weak to drive alternative stable states
under the same conditions can still produce distinctive shifts in ecological states over a
narrow range of environments (‘phase shifts’, Scheffer et al. 2009). In this case, behavior
can transform gradual spatial variation in long-term environmental conditions into relatively
distinct ecological states.

4.2 Detection of alternative stable states

Behavioral feedbacks drive patchy spatial patterning in our best-supported models by
giving rise to alternative stable states. Therefore, our results support the relevance of this
phenomenon across both regions, especially in California given the greater frequency of
samples with alternative stable states (37% versus 15% in NZ, Table 2). This difference
in predicted prevalence of alternative stable states is partly due to the regional differences
in feedback scale, with more local feedbacks in New Zealand limiting alternative stable
states to reef depths with intermediate wave stress on kelp (Fig. 3). These localized states
average out to produce a gradual reef-wide response to changes in urchin density and little-
no dependence of reef state on initial kelp abundance in New Zealand, while large-scale
feedbacks in California produce alternative stable states spanning entire reefs (Fig. 5). This
result supports existing theory predicting that relevance of alternative stable states requires
either spatially homogeneous environments or a high mobility of matter or organisms involved
in ecological feedbacks (van Nes & Scheffer 2005).

Our analysis also represents a novel approach to quantify empirical support for alterna-
tive stable states. Preceding studies based on mechanistic models detect this phenomenon by
fitting model dynamics to time series (e.g., Ives et al. 2008). However, such analyses remain
rare because long-term monitoring data is available for only a few systems thought to exhibit
alternative stable states. Instead, we fit model steady states to spatial survey data by utiliz-
ing time scale differences between behavior and kelp abundance and the comparatively slow,
longer-term changes in urchin abundance and the environment. Our approach compensates
for limited time series by leveraging spatial replication of data across gradients in ‘slower’
variables and yields model ranking and parameter estimates analogous to conventional time
series model fitting.
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4.3 Community patterning on temperate rocky reefs

Our results suggest that the spatial scale of ecological feedbacks can explain the scale of
spatial patterning across temperate rocky reefs. High levels of drift kelp that likely underlie
reef-scale behavioral feedbacks in California also occur in Chile, where the dominant urchin
relies predominantly on passive grazing (Vásquez et al. 1984). Feedbacks in kelp-urchin in-
teractions might also underlie large-scale forests and barrens when kelp facilitate recruitment
of urchin predators that freely forage across entire reefs (Smith & Herrkind 1992; Karatayev
and Baskett 2019). Our results highlight how behavior might strengthen this feedback by
resolving declines in grazing activity with predator density in both regions, complementing
analogous findings in California (Ebeling et al. 1985; Caselle et al. 2018). Conversely, the
ubiquity of depth gradients in wave stress suggests a limited potential for reef-scale forests
and barrens to arise from feedbacks involving local processes. This may include feedbacks
where kelp physically deter grazing (‘whiplash’), hinder urchin movement, or reduce sur-
vival of urchin larvae compared to barren areas. Our model predictions in New Zealand
indicate that such local feedbacks may however explain the distinctive, mosaic boundaries
between kelp- and urchin-dominated areas frequently observed locally on temperate rocky
reefs (Vásquez & Buschmann 1997).

The potential for alternative stable states to pattern an ecosystem at region-specific
scales found here can also help explain the debated presence of alternative stable states on
temperate reefs. Empirically resolving the presence of this phenomenon remains difficult
because experimental manipulations and measurements of ecological feedbacks are typically
constrained to small temporal and spatial scales (Petraitis and Dudgeon 2004). To date
alternative stable states are best associated with California and Alaska reefs, where distur-
bances induce persistent and large-scale barrens, but remain debated in other regions despite
the global prevalence of kelp- and urchin-dominated states (Ling et al. 2015; Filbee-Dexter &
Scheibling 2014). Our results suggest that this debate may arise because the spatial scale of
alternative stable states can be highly region-specific. This reflects existing empirical work
resolving how the spatial scale of this phenomenon determines the patchiness scale in arid
systems (Kefi et al. 2007), mudflats (van de Koppel et al. 2008), and the rocky intertidal
(Petraitis 2013). Given these findings, we emphasize that future studies and syntheses es-
timate the potential scale of alternative stable states by quantifying the smallest observed
areas of each state or the spatial scale of underlying ecological feedbacks.

4.4 Results robustness

To avoid model over-fitting, our approach leaves out additional potential dynamics that
might drive alternative stable states and therefore patchy spatial patterning in temper-
ate rocky reefs. First, we do not consider competition among primary producers, which
might displace competitively inferior juvenile stages of Eklonia and Macrocystis. However,
few samples in our data indicate competitive exclusion by lacking both kelp and urchins
(< 10%; Fig. 1); additionally, our approach might implicitly account for competition with
more wave-tolerant species present in shallower areas by over-estimating the direct role of
depth-dependent wave stress. Second, our focus on kelp and behavioral dynamics ignores
longer-term feedbacks affecting urchin and urchin predator abundances that can theoretically
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drive alternative stable states. These include predator recruitment facilitation by kelp (Smith
& Herrkind 1992) and urchin recruitment facilitation by crustose coralline algae present in
barrens (Baskett & Salomon 2010); see Ling et al. 2015 for a full array of potential feed-
backs. Finally, seasonality in kelp wave mortality (predominantly in winter) and recruitment
(predominantly in spring) might weaken our assumption that kelp abundance reaches steady
state within a year. Such transients can obscure the detection of equilibria (Mumby et al.
2013) and cause us to under-estimate the role of alternative stable states.

We also omit several secondary urchin behaviors that can increase the role of behavioral
feedbacks in both regions. First, our model tracks urchin grazing activity but ignores local-
scale urchin movement in response to kelp density, which in New Zealand might explain
higher urchin densities in shallower areas. On some temperate rocky reefs, urchin aggre-
gations in mobile grazing fronts can produce shifts to large barren areas (Silliman et al.
2013; Filbee-Dexter & Scheibling 2014). However, the role of kelp in spatial urchin distribu-
tions in New Zealand is unclear because barrens do not appear to expand following regular,
synchronous kelp declines induced by senescence. Second, we limited model comparison to
select a single behavioral feedback that best explains patterns in each region, whereas in
reality both deterrence and drift subsidies might influence grazing activity (e.g., AUS drift
kelp paper). However, we point out that physical deterrence through whiplash is unlikely
among tall, adult giant kelp plants dominant in California; similarly, a much smaller total
kelp biomass in New Zealand (0.05 kg m−2, Shears & Babcock 2004) compared to California
(2 kg m−2, Cavanaugh et al. 2011) might limit the magnitude of drift subsidies. Finally,
available data likely underestimates urchin densities at low grazing activity in California
because urchins sheltering in rock crevices are harder to detect; in turn, our model fits might
underestimate the role of behavioral feedbacks in limiting urchin grazing in kelp forests.
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Figure 1: (a, b) Region-specific distribution of kelp- and urchin-dominated states, delineated
by dashed blue lines, with N indicating total numbers of samples. (c, d) Spatial scales of
correlation in community state (defined as kelp presence). Red points in (c) indicate mean
correlation; lines in (d) denote mean correlation ±99% confidence intervals.
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Figure 2: Model layout. (a) Local samples (red rectangles) on each reef span a depth gradient
controlling wave intensity. Across reefs, forested and barren community types follow depth
zonation in New Zealand but span entire reefs in California. (b) Dynamics of local kelp
abundance Nq depend on factors affecting adult survival (red lines), recruitment (black
lines), and urchin behavior (blue lines). Circular endpoints on lines denote negative effects
and arrows denote positive effects. (c) Functional form of behavioral feedbacks (left), wherein
urchins graze less at high kelp density due to either high levels of passive drift kelp subsidies
(reef-scale feedbacks, right) or deterrence by predators and physical abrasion in kelp stands
(local feedbacks, bottom right).
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Figure 3: Best-fitting models with behavioral feedbacks reproduce patterns of kelp abundance
(colors) in both regions. (a, c) Patterns in observed kelp density across depths on each reef (y-
axes) and across reefs with increasing average urchin density. (b, d) Kelp densities predicted
by best-fitting models in each region, with secondary y-axes denoting the best-fit, depth-
dependent estimates of mortality induced by wave stress. Gray dots in (a, c) denote the
sample coverage across these conditions. Hashed boxes in (b, d) denote conditions for which
best-fitting models predict alternative stable states with kelp present or absent.
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Figure 4: Behavioral feedbacks best explain observed patterns by predicting alternatively
stable kelp- and urchin-dominated states. (a, b) Kelp density predicted by best-fitting models
without behavior (gray lines) and models with behavior (black lines) for simulations with
initially high (solid lines) and initially low kelp densities (dashed lines; without behavior,
identical to the solid line). Blue lines in (a, b) denote the average difference in log likelihood
between models with and without behavior, with positive differences denoting better fit. (c,
d) Performance of models with behavior in each region (black lines) and the fraction of all
samples for which models predict alternative stable states (blue lines). Note the comparison
of local kelp densities in (a) and reef-scale kelp densities in (b), reflecting the region-specific
scale of feedbacks in our best-fitting models (Table 2).
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Figure 5: Best-fitting models with behavioral feedbacks predict a relevance of reef-wide
alternative stable states with increasing reef-scale urchin densities in California (b) but not
in New Zealand (a). (a, b) Frequency of kelp presence across reef predicted by best-fitting
models without behavior (red lines) and models with behavior (black lines) for simulations
with initially high (solid lines) and initially low kelp densities (dashed lines, not visible
without behavior). Blue dots show frequencies of kelp presence across all samples on each
reef, with different dots representing different reefs and (in d) reefs in different years.
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Table 2: Results of model fitting and model comparison in New Zealand (top half) and
California (bottom half). Capital letters denote models including environment (E), urchin
grazing (U), urchin behavior (B), or density dependence only (DD, present in all models).
Subscripts further denote whether behavior includes predator avoidance (P), local-scale feed-
backs (Local), or reef-scale feedbacks (Reef). pA.S.S. denotes the proportion of observations
for which each model predicts alternative stable states.

Model r σR γ d µ δA δR fb ξA ξP AIC ∆AIC pA.S.S.

E,U,BLocal,P 18.0 0.34 0 0.4 2.65 1.53 4.79 0.97 1.94 9.65 2899 0 0.24
E,U,BReef,P 16.0 0.34 0 0.5 2.66 2.45 4.18 0.84 48.9 11.0 3075 176 0.00
E,U 19.1 0.34 0 0.5 0.88 0.75 1.78 3394 496 0
E 14.0 0.14 0 0.3 2.66 3423 525 0
U,BLocal 16.9 0.34 0 0.3 1.40 4.51 0.85 52.7 3435 536 0.12
U 19.5 0.34 0 0.3 0.48 2.35 3508 609 0
U,BP 19.5 0.34 0 0.3 0.51 2.29 10.8 3511 613 0
U,BReef 18.0 0.34 0 0.3 1.55 2.66 0.77 85.1 3526 627 0.00
DD 18.0 0.06 0 0.4 3936 1038 0

E,U,BReef,P 11.0 0.34 1 3.3 1.52 1.11 3.33 0.97 4160 8.66 33501 0 0.24
E,U,BLocal,P 11.0 0.34 1 3.9 1.52 1.11 3.33 0.97 4160 11.7 34290 789 0.20
U,BLocal 18.3 0.34 1 4.5 1.48 2.54 0.98 2109 36386 2885 0.35
U,BReef 10.8 0.34 1 5.2 1.45 2.59 0.98 2538 36952 3451 0.27
E,U 12.1 0.34 1 3.9 0.78 0.37 0.37 39529 6028 0
U,BP 19.3 0.34 1 4.1 0.48 0.75 11.1 41168 7667 0
U 19.3 0.34 1 4.1 0.47 0.50 41186 7685 0
DD 2.00 0.34 1 8.3 49484 15983 0
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