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Abstract

Habituation is a form of learning during which animals stop responding to repetitive stimuli,
and deficits in habituation are characteristics of several psychiatric disorders. Due to the
technical challenges of measuring brain activity comprehensively and at cellular resolution,
the brain-wide networks mediating habituation are poorly understood. Here we report brain-
wide calcium imaging during visual learning in larval zebrafish as they habituate to repeated
threatening loom stimuli. We show that different functional categories of loom-sensitive
neurons are located in characteristic locations throughout the brain, and that both the
functional properties of their networks and the resulting behavior can be modulated by
stimulus saliency and timing. Using graph theory, we identify a principally visual circuit that
habituates minimally, a moderately habituating midbrain population proposed to mediate the
sensorimotor transformation, and downstream circuit elements responsible for higher order
representations and the delivery of behavior. Zebrafish larvae carrying a mutation in the
fmrl gene have a systematic shift towards sustained premotor activity in this network, and
show slower behavioral habituation. This represents the first description of a visual learning
network across the brain at cellular resolution, and provides insights into the circuit-level
changes that may occur in people with Fragile X syndrome and related psychiatric
conditions.

Habituation is a simple form of non-associative learning, characterized by a decrease in
response after multiple presentations of a stimulus, that is conserved across much of the
animal kingdom'. It allows animals to remain attentive to novel and ecologically relevant
stimuli while minimizing their expenditure of energy on inputs that occur frequently without
consequence. The strength and speed of habituation, and of recovery during periods without
the stimulus, depend on the parameters of the stimulus and its repetitions (the intensity,
frequency, and number of stimuli)*”. Careful modulations of these stimulus properties have
proven useful in exploring the relationships between repetitive stimuli and behavior, thereby
providing clues about the underlying habituation circuitry™”.

Other work has addressed some of the molecular and cellular dynamics mediating
habituation, including reductions in motor neurons’ presynaptic vesicle release during short-
term habituation and processes involving protein syntheses for longer-term forms of
habituation® . At the other end of the spectrum, fMRI studies in humans have revealed
changes in activity for various brain regions during habituation'*'°. The intervening scales, of
regional circuits and brain-wide networks, cannot be addressed using targeted cellular
techniques or traditional brain-wide approaches. These networks, and the ways in which they
change during habituation, can only be addressed by observing activity in whole populations
of neurons (up to and including the whole brain) at single-cell resolution.

In recent years, exactly this approach has become possible in zebrafish larvae through the use
of genetically encoded calcium indicators and light-sheet or 2-photon microscopy'’. Since
zebrafish larvae undergo behavioral habituation'®'? they have been used for experiments with
tactile, visual, and acoustic stimuli, exploring the genetic and molecular mechanisms of
specific circuits®***. Furthermore, they share important molecular underpinnings of
habituation with other species™’. All together, these features make them an appealing
platform for exploring brain-wide habituation circuitry.

This approach requires a robust innate behavior that is subject to habituation. Looming visual
stimuli, which simulate approaching predators, reliably elicit startle responses that are
conserved from insects to humans®™, and repeated looms have been shown to produce
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habituation in various species>>'. When looming stimuli are presented to larval zebrafish,
Y g p

visual information converges in the tectum, where local circuits are proposed to calculate the
imminence of a threat®'*. However, additional structures respond to looms®' ™ and others,
including the hypothalamus, modulate the visual escape behavior in contexts other than
habituation®****”. The result is an intriguing but sketchy outline of the habituation network,
and in the absence of a whole-brain cellular-resolution analysis, numerous questions about
this behaviorally important process remain unanswered.

Addressing these questions is especially important because of the role that sensorimotor
transformations and habituation play in psychiatric disorders including schizophrenia, autism
spectrum disorder (ASD), and Fragile X syndrome (FXS)*®. While these disorders are
traditionally diagnosed around their social or cognitive symptoms, each has characteristic
alterations in sensory processing, habituation, and sensorimotor gating that compound, or in
some cases may drive, social and intellectual impairments®”*’. FXS patients, for example,
show slow habituation*'"**, a phenotype also found in finr/-mutant mice that model FXS®.
While fMRI and EEG studies have revealed some of the regional changes in neural activity
that correlate with habituation deficits in various psychiatric disorders**, the network-wide
causes of these symptoms remain largely unexplored.

Habituation of visual escape behavior in larval zebrafish

To characterize the escape behavior of larval zebrafish exposed to looming stimuli, we
designed a 12-well apparatus in which each well contained a larva receiving its own loom
stimulus from below (Figure 1a). We presented looms in blocks of 10, with five minutes
between blocks and an auditory tone at the end of the second rest period (for dishabituation
before the 21* loom stimulus). In order to explore the relationships between stimulus
properties and behavioral habituation, we used looming stimuli of two expansion speeds (a
fast stimulus that filled the bottom of the well in 2 sec and a slow stimulus taking 4 sec) and
two inter-stimulus intervals (ISIs) of 20 or 60 sec between looms. This resulted in four
stimulus trains: £20, 60, s20, and s60 (Figure 1b).

Each led to habituation of loom-elicited startle responses (Figure 1c), and two patterns arose
across the four stimulus trains. First, the slow-growing stimuli led to stronger habituation
than the fast stimuli did, especially in the first block of 10 looms. Second, the stimulus trains
with 20 sec ISIs produced faster habituation within blocks, but the habituation produced by
trains with 60 sec ISIs showed less recovery after the 5S-minute rest periods. A generalized
linear mixed model (GLMM) of the first block indicated a significant effect of the loom
presentation number (beta= -0.25365, p=2.00 x 10'°) on response probability, confirming
habituation. The loom speed also affected response probability strongly (beta=-1.23839, p=
2.22 x 10®) with a weaker but significant impact from the ISI (beta= 0.45089, p= 0.038).
Together, the speed, ISI, and presentation number explain almost 20% of the variance (R*=
0.1864) and together with the random variable (fish identity) the model explained more than
35% of the variance (R*= 0.3647). These effects are consistent with past studies in zebrafish
and other diverse model systems™ %', suggesting a relationship between stimuli and
habituation behavior that is broadly conserved. Explaining this relationship requires an
exploration of the underlying circuitry and the ways in which it changes during habituation.
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Figure 1. Modulation of habituation by stimulus features.

a. Schematic representation of our setup for measuring visual habituation behavior. A 12-well
chamber with one larva in each well (top right) was filmed on a horizontal screen (left) on
which the looms were presented. Automated tracking recorded periods of swim bouts (green)
and burst swim (red) for each larva (bottom right) b. Stimulus train properties across the 4
experimental groups. c. Probability of response across the 4 groups during three blocks of ten
loom presentations. d. Smoothed curves of the response probability for each group.
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Brain-wide characterization of neural activity during habituation
To address brain-wide patterns of activity during habituation, and the types of individual
neurons that drive them, we moved to a head-embedded preparation in which loom stimuli

were presented on an LCD screen. We performed whole-brain imaging of the elavi3:H2B-
GCaMPé6s line using selective plane illumination microscopy (SPIM), as previously
described (See Online Methods). For each larva, this produced 50 dorso-ventral planes, at
Sum intervals, spanning the rostro-caudal and medio-lateral extents of the brain, with a
volumetric acquisition rate of 2Hz. We performed morphological segmentation of these
images to identify regions of interest (ROIs) generally corresponding to individual neurons,
and extracted fluorescent traces from these ROIs, as described before (See Online Methods).

Snapshots of responses across the brain during this repetitive stimulation (shown for 20 in
Figure 2a-c) show a sharp decrease in responsive ROIs between the first and second stimuli,
and a further drop in responses by the 10" stimulus. Figure 2d and 2e show the response of
each ROI in the second and 10" trial as a proportion of its response in the first. Habituation is
conspicuous across all loom-responsive brain regions, including the tectum, thalamus, medial
hindbrain, tegmentum, and telencephalon, suggesting that these regions are affected by or
involved in the habituation process.

To address these possible mechanisms, we used k-means clustering to identify seven
categories (clusters) of loom-responsive neurons with distinct functional properties (and one
auditory cluster, not shown as there was no significant dishabituation). Based on their highly
similar response properties, we merged three clusters of ROIs showing strong and rapid
habituation (Supplemental Figure 1) into a single strongly habituating cluster (Figure 2f, g).
We characterized the remaining three clusters as moderately habituating, weakly habituating,
inhibited, and we also located a motor-associated group of ROIs using regressors customized
to each animal’s movements (Figure 2f, g). A t-SNE analysis (Supplemental Figure 2) shows
functional segregation among these clusters, suggesting that they are distinct categories of
loom-responsive neurons.
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Figure 2. Activity of individual ROIs and their functional clusters during habituation.
a. Responses of ROIs across the brain to a loom stimulus, color coded for the intensity of
their response. b, ¢. The same ROIs’ responses to the second and tenth looms. d, e. The
degree of habituation in each of these ROIs in the second and 10™ trials, calculated as the
ratio of response to the first loom. This analysis was restricted to ROIs showing clear
responses (with a coefficient of determination (r* value) >0.5 for the linear regression
between their response and a regressor simulating a calcium signal) for the first loom
stimulus. Raster plots (f) and mean responses (g) of the ROIs composing each of five
functional clusters, with a clear correspondence to the three blocks of ten stimuli. h.
Anatomical locations for the ROIs belonging to each functional cluster. Since different
animals startled in different trials, we identified the motor cluster using a different regressor
for each animal. The mean responses are shown for a single animal in this cluster in g, with
yellow lines indicating the relevant neurons from that animal in f. A rotation of h can be
found in Supplementary Movie 1, and the distributions of these clusters is detailed in virtual
sections in Supplemental Figure 3. Data show the pooled responses of 11 larvae to the {20
stimulus train. Relevant anatomical brain regions are indicated in the bottom right corner of
(h), each shown for only one side of the brain. Pallium, Pal; subpallium, Sp; thalamus, Th;
habenula, Hb; pretectum, Pt; tectum, Tec; tegmentum, Tg; cerebellum, Cb; and hindbrain,
HB. R, rostral; C, caudal.
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Strongly habituating ROIs are spread across several brain regions (Figure 2h and
Supplemental Figure 3), most prominently in the tectum, thalamus, medial hindbrain,
pallium, and tegmentum. In the hindbrain, these ROIs are concentrated in a longitudinal
rostro-caudal strip along the pathway of the tectobulbar projections, meaning that they likely
include reticulospinal premotor neurons””",

Moderately habituating ROIs are tightly concentrated in the central region of the tectal
periventricular layer (PVL) of the left tectum (Figure 2h and Supplemental Figure 3). This
laterality is unsurprising, since the stimulus was presented to the right eye, and since all
retinal projections are contralateral in zebrafish larvae. This position is consistent with a role
for the associated neurons in the spatially registered processing of visual information, and
their decreased responses may represent an important element of the overall circuit’s reduced
responsiveness during habituation.

Weakly habituating ROIs are prominent in the tectum, habenulae, pretectum, and pallium
(Figure 2h and Supplemental Figure 3). There is moderate laterality toward the contralateral
side to the stimulus in most of these regions. In the pallium, responses are concentrated
around the dorsal edge of the pallium in what will likely become the lateral division of the
dorsal pallium (Dl), although they also extend into the medial division (Dm, Supplemental
Figure 3).

Inhibited ROIs are rare and mostly localized to the contralateral tectum and rostral thalamus
(Figure 2h and Supplemental Figure 3). Motor-associated ROIs are concentrated in the
cerebellum. However, some can be found in the anterior and lateral hindbrain and small
numbers occur in the thalamus and pallium (Figure 2h and Supplemental Figure 3). These
ROIs are presumably involved in the coordination and delivery of the escape responses.

Temporal stimulus properties modulate brain-wide responses.

By looking at the changes in these distributions across our four stimulus trains (Figure 1), we
next aimed to characterize brain-wide activity under conditions that lead to different rates and
persistence of habituation in free-swimming larvae. The fundamental brain-wide habituation
network was conserved across these treatments, but specific functional differences emerged
(Supplemental Figure 4a). One was a greater number of strongly habituating ROIs in the
hindbrain strip for the s20 and s60 experiments, with possible relevance to the faster
habituation that slow stimuli drive (Figure 1). Another came in experiments with 60 sec ISIs,
where we observed a greater number of weakly habituating ROIs in the dorsal hindbrain on
the side contralateral to the stimulus (Supplemental Figure 4). This may play a role in the
stronger preservation of habituation across breaks in the 60 sec ISI experiments.

Since a large proportion of loom-responsive ROIs are in the tectum, especially for the
moderately habituating cluster (Supplemental Figure 4b), we next looked at the relationship
between the stimulus train’s properties and the responses of each functional cluster in the
tectum (Supplemental Figure 4c). This revealed only subtle difference across the stimulus
trains for the response profiles of fast habituating neurons. For moderately habituating
neurons, differences arose with intriguing parallels to the behavioral outputs. In experiments
with 60sec ISIs, habitation is slower, and recovery is less dramatic than for 20sec ISI
experiments. In experiments that used slow stimuli, habituation occurs faster than in the
corresponding experiments with fast loom stimuli. For weakly habituating neurons,
experiments with 60sec ISIs lead to less habituation throughout the experiment, while other
correlates of behavior are less clear. Overall, moderately habituating ROIs repeatedly had the
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strongest correlation to free-swimming escape probability (Pearson correlation values: f20=
0.6896; f60=0.6896; s20=0.6368; s60= 0.7724), suggesting that among our functional
clusters, it is the moderately habituating ROIs in the tectum whose dynamics most closely
reflect behavior.

Network Modelling of Visual Loom Habituation

As an approach to modelling visual loom processing and the network changes that produce
habituation, we applied graph theory to our brain-wide activity data. To generate a tractable
dataset, we downsampled our 144,709 responsive ROIs into 99 nodes that represent the
ROIs’ functional clusters and anatomical locations, and then produced matrices representing
the correlations in activity across each of these nodes at different times during the
experiments (Figure 3a, see Online Methods). We then compared these matrices in larvae
exposed to the 20 and f60 habituation paradigms to identify the network-level correlates of
behavioral habituation. As expected, both paradigms produced high correlation values in
response to the first loom, and the matrices for the two paradigms were highly similar. As
habituation proceeded, network correlations remained somewhat higher in the f60 paradigm,
reflecting differences in the behavioral responses during the 20 and f60 experiments (Figure
1 ¢, d). By the 10™ loom, most of these correlations had dropped dramatically for both
paradigms, with high values mostly restricted to correlations between weakly habituating
(red) nodes. The f20 paradigm shows a stronger recovery across the network in the 11" trial,
reflecting the stronger behavioral recovery that takes place in this paradigm.

As an approach to judge both the rate at which these correlations were lost during the first
block of stimuli and the degree to which they recovered in the 11" trial, we used a Pearson
correlation to match the matrix of the 11" trial to the most closely related matrix from the
first block of stimuli. The highest Pearson correlation coefficients were for the 4™ trial for £20
and the 6™ trial for £60, indicating both that the correlations are lost more quickly in 20 (the
paradigm in which habituation occurs more quickly), and that the recovery is weaker in f60
(the paradigm that produces more indelible behavioral habituation). Notably, the patterns of
correlations across the matrices during mid-habituation trials (4th for 20, Figure 3a, and 61
for f60, now shown) strikingly resemble those in the 11" trials, suggesting that the network is
returning to a partially habituated state.

These results show that the loss of correlations across nodes in the network reflects
behavioral outputs. To describe the networks containing these nodes, we represented them
spatially and mapped the relative correlation strengths between nodes in the 20 and f60
paradigms (Figure 3b). Each edge (node-to-node relationship) in the graph is represented by
its correlation value in the f20 paradigm minus its value in f60 paradigm. As expected,
because the first trial is identical, both paradigms show robust correlations across numerous
edges in the first trial, with most edges near a zero value and no net weighting of the graph
toward positive or negative. By the 10™ trial, the graph has lost most edges, and the
remaining activity is biased toward stronger correlations in f60 (shown in red), reflecting the
slower habituation. The f20 paradigm shows stronger recovery, however, and this is captured
in a shift toward positive values (blue) in the 11" trial.

We then quantified the participation of each node in the graph, where participation is defined
as the proportion of a node’s highly correlated edges that are shared with nodes from a
different functional cluster (as defined in Figure 2). Participation dropped over the course of
10 stimuli (Figure 3c), but this drop was slower in 60, suggesting that habituation is driven
not only by a drop in correlation across nodes, but specifically by a loss of communication
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between different functional clusters. This is reinforced by the higher participation in the 11"
trial of the 20 paradigm, where strong behavioral recovery is echoed by a recovery in
participation. Raster plots of participation by each node across the first 11 trials (Figure 3d)
show this trend, further suggesting that it is weakly habituating (red nodes) that maintain
much of their participation as habituation proceeds, and that recovery is accompanied by a
resumption of participation by various strongly (green) and moderately (blue) habituating
nodes.

To address which brain regions are involved in this process, we mapped the correlation
strengths of edges between nodes across five regions containing a majority of the nodes (the
pallium, thalamus, tectum, tegmentum, and hindbrain, Figure 3e). The values for each edge,
represented by a dot, show the correlation in the 10™ trial minus the correlation in the 11"
trial, thus giving negative values to edges that became stronger during recovery. Violin plots
show the total distributions of edges between different functional clusters. The results
confirm that certain types of edges, especially those between two weakly habituating (red)
nodes, play a relatively small role in recovery, owing to their strong unhabituated responses
in the 10" trial. Other types of edges, especially those not including a weakly habituating
node, tend to have highly negative values, indicating that they contribute to the part of the
network that is lost during habituation and regained during recovery.

Collectively, these results converge to produce a model of the brain-wide network that
produces visual escape and the mechanisms by which these responses are suppressed during
learning. The initial process of habituation appears to rest on the loss of correlation (and
presumed communication) among neurons of different functional clusters. This is manifested
as a dramatic drop in correlation values for edges between different clusters (Figure 3a), the
restriction of the active network principally to edges between nodes of the same type
(especially weakly habituating nodes, Figure 3b, ), and the loss of participation during the
course of habituation (Figure 3c). The striking similarity between mid-habituation matrices
and those of partially recovered networks (Figure 3a) indicates that the matrix changes that
underlie habituation are the same as those that are reversed during recovery, suggesting that
the onset of habituation works through the same circuit-level changes that recovery does, and
that there are not separable network-level mechanisms for the acquisition and retention of
behavioral habituation.
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Figure 3. The visual loom network, and the changes that occur during habituation.

a. Correlation matrices for activity across 99 nodes representing ROIs across the whole brain.
The functional clusters to which each node belongs are indicated on the axes, using the color
code from Figure 2. Darker blue shades represent stronger positive correlations for any given
pairing, and red indicates negative correlations (see color scale, a). b. A graphic
representation of correlations across the 99 nodes, whose functional clusters are indicated by
their colors and anatomical positions represented spatially. The colors and width of the lines
indicate the relative correlation across the 20 and f60 experiments (f20 correlation minus f60
correlation), where red indicates stronger correlations in f60 and blue indicates stronger
correlations in f20 (see color scale). Only edges with correlations above 0.75 in either the 20
or the f60 matrices are displayed. ¢. A heat map of the participation for each of the 99 nodes
during the 1%, 2™, 3™ 10", and 11" loom stimuli of the f20 and f60 experiments. d. Raster
plots showing the participation of each node across the first 11 stimuli for 20 and f60, and
the relative participation (f20 value minus f60 value) where blue indicates stronger 20
participation and red indicates stronger f60 participation. The functional clusters for each
node are indicated, using the color code from Figure 2. e. Changes in correlation strength for
all inter-node edges from the 10" to the 11™ looms of £20, indicating the impacts of the
recovery from habituation. Values shown are calculated for each edge as its correlation in the
10™ loom minus its value in the 11™ loom, with more negative values indicating edges that
showed more pronounced recovery between the 10™ and 11™ looms (top). The functional
clusters for each edge’s two nodes are color coded and the brain regions that the edges span
are indicated on the left. Violin plots (bottom) show the cumulative distributions of edges
connecting different types of functional clusters, as indicated on the left.
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fmrI”™ mutant larvae show behavioral and network-level habituation deficits

To test the validity and explore the utility of this proposed network, we next looked for
phenotypes across the habituation network in a zebrafish model of FXS, an inherited disorder
characterized by intellectual disability, social deficits, and sensory phenotypes. We used a
nonsense mutation in the highly conserved fmrl gene, the perturbation of which causes FXS
in humans. Given the learning deficits, including slow habituation***, in humans with FXS,
we explored whether and how behavior and brain-wide habituation networks are altered in

fmrl-mutant zebrafish.

Using the s20 habituation paradigm in our free-swimming preparation, we found that finrl”",
fmrI”" heterozygotes (hets), and wild type (WT) siblings share a similarly high probability of
startling to the first loom stimulus (Figure 4a). Habituation is slower, however, and recovery
after a break is more dramatic, in finrI”" animals. Heterozygotes show an intermediate
phenotype.

We next looked for correlates of this behavior using brain-wide calcium imaging, first
looking at the distributions of ROIs belonging to functional clusters (Figure 4b). While all
genotypes had fundamentally similar distributions, there was a trend toward more numerous
weakly habituating ROIs in the cerebellum in finr1” larvae, as well as a reduction in strongly
habituating ROIs in the hindbrain. Notably, this resembles the distribution of ROIs in the
paradigms that drive slower habituation in WT animals (f60 and s60, Supplemental Figure 4),
and provides hints that similar network changes may underlie slower habituation in both
cases.

We then applied graph theory to these results (Figure 4c), looking first at correlations among
90 nodes (having eliminated nine of the original 99 nodes with a requirement that all nodes
be represented in at least three larvae). Generally, correlations across the network were
stronger in WT than in finr1”" in the first trial (resulting in positive values shown in blue).
This is reversed in the 2™ and 3" trials, where the WT network habituates more quickly,
leaving negative (red) values that indicate persistent finr1”" network activity. Consistent with
behavioral data, the overall correlations across the WT and fmr/ " networks are equivalent by
the 10" trial, but WT networks are stronger across the core perceptual pathway (tectum,
thalamus, and pallium) described above, while finrI” correlations are stronger across edges
that habituate quickly in WT. Again echoing free-swimming behavior, the finrI”" animals
show dramatically broader and stronger network correlation in the 11" trial, following a
break in the stimulus. All of these correlation-based observations carry through to
participation across the networks (Figure 4d, e), including in the same nodes whose edges
showed differences in correlation (Figure 4c).
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Figure 4. Behavioral and network-wide changes in fmr1™ larvae.

a. Over the course of two blocks of 10 stimuli, finrI”" larvae show slower habituation and
stronger recovery than WT siblings, and heterozygotes show an intermediate phenotype.
Binomial test: finr1” versus WT: 2™ Loom (p=3.056¢"); 3" Loom (p=0.034); 11" Loom
(p=0.055) and 16™ Loom (p=0.039). Hets versus WT: 2™ Loom (p=0.001) and 9" Loom
(p=0.039). All other comparisons (p>0.1). b. Brain-wide distributions of ROIs for the three
genotypes, color coded for functional cluster as in Figure 2 and Supplemental Figure 4. c.
Node-based graphs showing relative correlations (WT correlation minus finrI”" correlation),
where blue indicates correlations that are stronger in WT and red indicates correlations that
are stronger in finrl”". d. Heat maps of participation for all nodes across habituation and
recovery. e. A raster plot of relative participation (WT participation minus finrl ™
participation) for each node through the first 11 trials.
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By assessing correlation strengths across the network in a way that represents nodes’
functional and anatomical properties, we then outlined the overall functional architecture of
the habituating finr1” brain versus WT. First, we organized our brain-wide node-to-node
relationships by functional cluster (Figure 5a, Supplemental Figure 5), allowing the level of
correlation within and across clusters to be assessed. This shows that by the 2nd stimulus,
there are still strong functional connections among red-red edges and along blue-blue edges
in WT, and that this is largely restricted to red-red edges by the 3rd trial. By the 10" trial,
strong correlations only exist in red-red edges (and a few to inhibited (purple) nodes). A
subset of red-blue, blue-blue, and blue-green nodes reconnect in the 1 1t trial, reflecting
recovery. In all regards, these effects resemble the habituating network dynamics shown for
the f20 paradigm in Figure 3, where behavioral habituation tracks with a loss of
communication between weakly habituating (red) nodes and strongly habituating (green)
nodes, connected through moderately habituating (blue) nodes. By comparison, finrl”
animals show strong correlations between more numerous nodes in the 2nd and 3rd trials, as
well as following recovery in the 11" trial (Figure 5a, Supplemental Figure 5). Correlated
edges are similar between the genotypes in the first (Supplemental Figure 5) and 10™ trials
(Figure 5A), showing that the networks are closer to equivalent in the naive state and
following habituation. Consistent with the analyses in Figure 4, this suggests that uncoupling
across functional clusters occurs more slowly and recovers more completely in finrl”
animals, providing a mechanism by which the sensorimotor transformation is slanted towards
downstream network activity and behavioral responsiveness in these animals.

To explore the spatial properties of this phenotype, we next represented these data organized
by brain region (Figure 5b, Supplemental Figure 6). In WT animals, this analysis shows
extensive correlation between nodes across all brain regions in the first trial (Supplemental
Figure 6) that is progressively winnowed to the core perceptual circuit described above
(mainly connections among the tectum, thalamus, and pallium on the side contralateral to the
stimulus) as habituation proceeds. In the 2" 3" and 11" trials (and to a lesser degree, the
10™ trial), this network is more extensive in finr/”" animals, showing stronger functional
relationships between the tectum and other regions, and with a greater number of highly
correlated edges from the hindbrain to other regions. This, in turn, echoes observations from
Figure 3, which suggests that an uncoupling of spatially distinct perceptual and downstream
networks drives habituation.
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Figure 5. Functional and spatial habituation networks across WT and finrI”" brains.

a. Edges with absolute correlation values above 0.75 are shown across 90 nodes, sorted by
functional cluster (indicated by colors on the boundary). Network-wide correlations are
shown for WT (top) and fmrl * animals (bottom) in the 2, 3, 10™, and 11™ trials. A larger
version of this graph, including the brain region for each node, is included in Supplemental
Figure 5. b. Relevant regions of the brain are shown relative to a coded boundary (left), and
correlated edges between nodes (sorted by brain region) are shown for the 2™, 10®, and 11"
trials (right). The black/white bands on the left are maintained to indicate brain regions on the
small circles on the right. Correlations are enriched on the left side of each brain, consistent
with stimulus presentation to the right eye. The networks for the first and 3" looms are also
shown in Supplemental Figure 6.
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A brain-wide model of visual habituation

From an anatomical perspective, the core loom perception circuit can be inferred from the
edges that remain active through habituation. These include edges within and among the
tectum, thalamus, and pallium (Figure 3b). The absence of habituation in these edges
suggests that they are involved in perceiving a looming stimulus, and that they are upstream
of the sensorimotor transformation that controls behavioral outputs. The regions most
affected during habituation (especially the hindbrain, but also including a subset of ROIs in
the pallium) are likely downstream of this transformation. This places the tectum at an
intriguing pivot point in the overall network. It has a confirmed role as an important recipient
of loom information®'>****! and communicates in different ways with different brain
regions. This includes nonhabituating correlations with the pallium and likely outputs to the
hindbrain that habituate strongly (Figure 5b). Combined with the high density of moderately
habituating ROIs, whose activity most closely mirrors behavioral habituation (Supplemental
Figure 4c), in the tectum (Figure 2h), this raises the possibility that circuits within the tectum
are responsible for the key changes in the sensorimotor transformation that produce
habituation. This idea is reinforced by the drops in correlation between moderately
habituating ROIs and weakly habituating ROIs (blue-red edges) and between moderately
habituating and strongly habituating ROIs (blue-green edges) during habituation. This
provides a mechanism by which moderately habituating neurons in the tectum could
uncouple the core visual circuit of weakly habituating (red) neurons from downstream
circuits as habituation proceeds. These uncoupled circuits, principally comprising strongly
habituating (green) ROIs, show interesting diversity reflective of distinct impacts that novelty
and saliency play in different brain regions. The hindbrain’s strongly habituating ROIs are
more likely to correlate with the animal’s actual escape responses (Supplemental Figure 7), as
are those in other motor-associated regions including the cerebellum, pretectum, thalamus,
and tegmentum. This suggests an interaction with these regions’ premotor and motor
circuits’®" and an acute role in escape. Other strongly habituating ROIs that uncouple from
the tectum occupy the pallium, including the Dm, a fear processing area’>”*, and these are
less likely to correlate to behavior on a trial-by-trial basis (Supplemental Figure 7),
suggesting reduced higher-order representations of threat during habituation that are
independent of trial-by-trial escape. The overall interpretation is that habituation involves the
uncoupling of various downstream elements from visual perception circuitry, and implicates
the tectum as the likely switch for this sensorimotor transformation. While finr/”" animals
undergo habituation through similar overall mechanisms to those seen in WT animals, their
network loses these correlations more slowly, and recovers them more dramatically after a
rest, consistent with these animals’ behavioral phenotype (Figure 4a).

Overall, we have shown for the first time that neurons with distinct response profiles to
repetitive visual stimuli are present throughout the brain, and that the detailed responses of
these categories of neurons can be modulated by the saliency and temporal details of the
stimuli. These response profiles, viewed brain-wide at cellular resolution, reflect the rates of
behavioral habituation to repeated looms, providing a framework for understanding the brain-
wide network changes that mediate habituation. Using graph theory, we have shown that
behavioral habituation tracks with a functional disconnection of a principally visual circuit in
the fore- and midbrain and a response circuit that includes known premotor regions located in
the hindbrain and higher-order representations of threats in the forebrain. The central location
of the tectum (homologous to the mammalian superior colliculus) in this functional network,
and the prominence of moderately habituating tectal neurons whose activity reflects
behavioral habituation rates, suggest that this region is involved in visual learning. Given
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these properties, it could serve as a pivot point for the sensorimotor transformation, a role that
may be conserved in birds and primates>*. We have shown that this overall network is present
in fimrl”" animals, but that its dynamics are shifted toward higher network correlations,
greater transmission through the tectum, and ultimately slower behavioral habituation. This
reveals a brain-wide mechanism for slower sensorimotor learning that reflects previously
observed behavioral phenomena in animal models and humans with FXS. Importantly, it
provides a departure point for targeted explorations of the circuit-level causes of learning and
sensorimotor deficits in FXS and related psychiatric conditions.
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Methods

Animals. All zebrafish (Danio rerio) work was performed in accordance with The University
of Queensland Animal Welfare Unit (approval SBMS/378/16). Adults were reared and
maintained in a Tecniplast zebrafish housing system under standard conditions using the
rotifer polyculture method for early feeding 5 to 9 days post fertilization. For the visual
habituation experiments with different stimulus trains we used nacre zebrafish embryos of
the TL strain expressing the transgene, elavi3:H2B-GCaMP6s™. For the finrl experiments,
zebrafish embryos were bred by incrossing the fourth generation of zebrafish heterozygous
for fmr1™"*" 3%and elavi3:H2B-GCaMP6s, to produce clutches with a 1:2:1 Mendelian ratio
(wild type: heterozygous: homozygous) for fmr1™*"*’. The finr1™*’*” mutants have a change
(C to T) in the finrl coding region leading to a nonsense-mediated-decay and the loss of the
protein®®. All fish were produced by natural spawning and reared in Petri dishes with embryo
medium (1.37 mM NaCl, 53.65 uM KCl, 2.54 uM Na,HPOg, 4.41 uM KH,POy4, 0.13 mM
CaCly, 0.16 mM MgSO;, and 0.43 mM NaHCOs at pH 7.2) at 28.5 °C on a 14-hour light: 10-
hour dark cycle. After the fmrl experiments, larvae were genotyped as previously
described”’.

Stimulus train for behavioural experiments. The stimulus train consisted of three blocks of
10 looms with 5min of rest (with a white screen) between each block. The loom was initiated
with a dot that started expanding after 1s. The minimum angle of the loom was ~11° and the
maximum angle of the loom was ~90°. The fast looms reached their maximum angle in 2s
and the slow looms in 4s. This was followed by 2 seconds of black screen and a 9s slow fade
back to white, designed to avoid any neural OFF responses. The screen remained white until
the next loom initiation for a variable duration depending on the desired inter stimulus
intervals (ISI) of 18, 20, or 22s for the 20 and s20 paradigms and 54 ,60, or 66s for f60 and
$60. A sound stimulus of 300Hz at ~85 dB was played 3 times for 1s with 1s ISI. The first
presentation was 25s before the 21% loom. The video and sound were displayed by a monitor
(10.1 1366x768 Display IPS + Speakers - HDMI/VGA/NTSC/PAL, Little Bird, Australia).
Since the sound stimulus did not produce any marked dishabituation, and was not confirmed
acoustically within the chamber, we did not analyse this aspect of the experiment.

Behavioural experiments. Individual 6dpf larvae were placed in each well of the 12 well
arena (circular plugs of agar were removed to produce the wells). The wells were filled with
embryo medium and were placed at 1cm above a screen inside a dark chamber, and all larvae
received the same stimulus train. The chamber was kept in the dark but was illuminated with
infrared LEDs. A Basler acA1920 camera recorded the movements from above, a lens
(40mm Thorlabs) and a 665nm longpass filter (FGL665 - @25 mm RG665 Colored Glass
Filter, Thorlabs) delivered infrared light to the camera with a weak signal from the screen that
confirmed the timing of the looming stimuli. Movements were tracked in bins of 1s using the
zebrafish tracking Viewpoint software (ZebralLab, ViewPoint Life Sciences, France), tracking
three speed categories: <0.5mm/s, 0.5-30mm/s, and >30mm/s. The output of the tracking was
then analysed using a Matlab script. Escape responses were defined as one or more
movements above 30mm/s during a loom presentation. Further statistical analysis and graphs
were made in GraphPad Prism v7.04 and R 3.5.1 (R core team, 2018). The sound failed to
produce a clear dishabituation so this effect was not further analysed. The fitted curves were
done in GraphPad Prism v7.04 with the exponential one phase decay curve from the 1* to the
10™ loom of each block, using a Least Squares regression and plateau to 0. To produce the
GLMM, we used the Ime4 and MuMIn R packages to generate the GLMM and to calculate
the R®. The model was fitted for a binomial distribution with the formula:

response= loom+speed+ISI+ (1/fishID).
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For the fmrl experiments the procedures were the same, however the stimulus train was a
shorter version of the s20 with 20 looms instead of 30, as we did not observe an effect of the
auditory tone between the 20™ and the 21* loom. When the experiment ended, larvae were
processed for genotyping. The quantification of the data was performed blind to the genotype
for the fmrl experiments. The binomial test was performed one sided with the escape
responses of the finrl or Het larvae in each loom versus the probability of response of the WT
for that same loom.

Sample preparation for calcium imaging. Imaging was performed on 6dpf larvae that were
embedded upright in 2% low melting point agarose (Sigma, A9045) and transferred to a 3D
printed imaging chamber®. Imaging chambers were filled with embryo medium once the
agarose had set and the tail was freed™ so that escape responses could be monitored. The
imaging chamber was composed of a 3D-printed base (24 x 24 mm) with four posts (3 x 3 X
20 mm) raised along the four corners of the platform. The four outward faces of the chamber
were fixed with a glass coverslip (20 X 20 mm, 0.13-0.16 mm thick). A glass window on the
bottom of the chamber allowed filming of tail movements®. For the finr! experiments, larvae
were processed for genotyping when the experiment ended.

Loom stimulus train for calcium imaging. Looms were presented on a 75 x 55 mm LCD
generic PnP monitor (1024 x 768 pixels, 85 Hz, 32-bit true colour) with a NVIDIA GeForce
GTX 970 graphics card. The monitor was positioned 30mm to the right of the larvae, and was
covered by a coloured-glass alternative filter (Newport, 65CGA-550) with a cut-on
wavelength of 550 nm. The minimum angle of the loom was ~10° and the maximum angle
the loom covered was ~82°. The auditory stimulation (a 100Hz sound at 100dB before the
21 loom) was presented with two audio speakers (Logitech Z213) placed at ~20cm from the
fish. The background noise level was 40dB. As for the behavioural experiment, in the finr/
experiments, the procedures were the same but with a shorter version of the s20 stimulus
train.

Microscopy. Zebrafish larvae, individually mounted in the imaging chamber, were imaged
for elavi3:H2B-GCaMP6s on a custom-built SPIM microscope’>®. To avoid stimulating the
eyes with the light sheet, the side laser path of the SPIM was blocked, and the front SPIM
plane was restricted to a space between the eyes using a vertical aperture. Captured images
were binned 4 times to a final resolution of 640 x 540 pixels at 16-bit in tagged image file
(TIFF) format. Fifty transverse sections at Sum increments were captured and imaged at 2
Hz. Recording of the brain activity started 30s before the first stimulus onset and stopped
after the return to white from the last loom of each block, resulting in three separated
acquisitions. To image the larva and record its tail movements, a 4x 0.INA Olympus
microscope objective (PLN 4X) was placed below the sample chamber®', coupled with a tube
lens projecting the image onto a Basler acA1920 camera, recording at 30 fps.

At the end of each experiment, a single high-definition scan of non-binned images was
recorded with 100ms exposure time and 2um increments to be used for the registration of the
brain of each fish (see below).

Analysis of calcium imaging data. Calcium imaging data from the three acquisitions was
concatenated in ImageJ v1.52¢ as a combined time series and then separated into individual
slices (50 planes per fish). Motion correction was performed using Non-Rigid Motion
Correction (NoRMCorre) algorithm®, and fluorescence traces were extracted and demixed
from the time series using the CalmAn package (version 0.9)°%*
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(http://github.com/flatironinstitute/CalmAn). We used 4000 components per slice to ensure
that we would not miss any ROIs during the initialization step of CalmAn. The risk of over-
segmentation was mitigated by a merge step using a threshold of 0.8 to merge overlapping
ROIs. The order of the autoregressive model was set at 1 to account for the decay of the
fluorescence, our acquisition speed being too slow to account for the rise time. The gSig
(half-size of neurons) was set at 2, based on estimates of the sizes of the nuclei in our images.
We did not use any temporal or spatial down-sampling and the initialization method was
‘greedy roi’. The components were updated before and after the merge steps, empty
components were discarded, and the components were ranked for fitness as previously®.

Analysis of whole-brain activity data. For the experiment with four stimulus trains, the
resulting ROIs and fluorescent traces from the CalmAn package were pooled from larvae of
each stimulus train (n of the 4 datasets: f20=11, f60=8, s20=10, s60=10), and then z-scored
per dataset. A K-means clustering by cityblock distance with 50 components and 5 replicates
was done for each dataset. Clusters where manually selected based on their profile responses
to the looms or sound and their presence across datasets and individual fish. This produced 7
clusters selected from the f20 and s20 datasets and were used as regressors for subsequent
analysis of the four datasets: three strongly habituating, a moderately habituating, a weakly
habituating, and inhibited and a sound responsive clusters. All ROIs from each of the 4
datasets were modelled by linear regression to each of these regressors. As the 60 sec ISI
time series were longer, the time series were trimmed around the 30 looms to perform the
linear regression. ROIs with anr” value higher than 0.3 were then selected for further
analysis. The selected ROIs were categorized by correlation to each of the 7 selected
regressors. The auditory cluster was not analysed after this point. We confirmed that the
clusters could be found in most or all larvae, but 3 fish (1 from {20 and 2 from {60) were
discarded because their ROIs contribution to one of the habituating clusters was above 50%
of the total number of ROIs for that cluster, so they were deemed as outliers in terms of
responsiveness. To find the motor evoked calcium responses, we first used ImageJ to detect
the tail movements from the behavioural imaging. We used a polygon ROI covering half of
the fish tail to extract the mean grey values of the time series. Substantial tail movements
produced large peaks and were flagged as movement events. We then build regressors for
individual larvae inserting a stereotypical GCamp6s trace to the movement timing for each
larva. Finally, we used a linear regression with the motor regressor of each larva as for the
habituating clusters, and selected ROIs with an r* value higher than 0.2.

For the t-SNE® (Supplemental Figure 1g and Supplemental Figure 2) we used the Matlab
function with a correlation based distance and the following parameters: Perplexity=100,
Exaggeration=20. For further analysis, we pooled together the three strongly habituating
clusters and we excluded the sound response cluster, resulting in four main clusters.

To calculate the proportions of ROIs for a given cluster that appear in each brain region
(Supplemental Figure 4b), the number of ROIs of each cluster in each brain region was
divided by the total number of ROIs of that cluster in the whole brain. We did this for each
individual larva, created a mean for each dataset, and then averaged these values across all
four datasets. For the analysis of the normalized responses in the tectum (Supplemental
Figure 4c), a mean of the tectal ROIs’ response for each cluster was calculated for each
individual fish, then the maximum response per loom was calculated based on the maximum
z-score value in the window of the loom presentation adjusted by the baseline before each
loom. These values were normalized to the first loom response, and a mean of the normalized
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maximum response was calculated for each dataset. To compare these tectal responses with
the matching behavioral results we used the Pearson correlations coefficients.

To locate the subset of strongly habituating neurons that are involved in motor behaviours
(Supplemental Figure 7), we calculated the Spearman correlation coefficient between each
strongly habituating ROI from the 20 dataset and the motor regressor of its respective fish.
We then selected the ROIs above a correlation coefficient of 0.3066 (the mean-0.1522- plus
one SD -0.1544-). Finally, we calculated their proportion compared to the strongly
habituating ROIs of each of the brain regions previously analysed.

For fmrl experiments, we performed a K-means with 50 components with the traces of all the
fish. We then selected 8 clusters based on their possible loom responses. Then we performed
a linear regression and selected the ROIs with an r* value above 0.3. As their location and
average calcium traces were similar to the functional clusters previously found, we classified
the ROIs into the functional clusters from our original s20 dataset using correlation as
described above. All data were quantified blind to genotype. For Figure 4b, we chose a
random sample (n=11) of Hets to match WT (n=10) and finr! ”(n=11).

The analysis was done using Matlab R2018b and GraphPad Prism v7.04.

Correlation matrices and graphs

For graph theory, we simplified our system from the 144,709 responsive ROIs while
preserving the functional identity and anatomical location of the responses. To do so, we
performed a K-means clustering on the 3-dimensional spatial coordinates of the ROIs® of
each functional cluster, in each brain region, with £ number of clusters. £ was defined based
on the number of ROIs. For regions with fewer than 200 ROIs, no node was placed; between
200-500, 1 node; between 500-1000, 2 nodes, between 1000-3000, 3 nodes; and >3000, 4
nodes. This was intended to strike a balance between including relatively sparse populations
that may, nonetheless, make functional contributions, and weighting our analysis to some
degree toward more abundant response types. This produced 102 nodes, but we discarded
three nodes that had three or fewer fish contributing to them. For the remaining 99 nodes, we
cross correlated the mean loom response of their ROIs and generated individual matrices for
each larva, and each loom presentation. We then averaged the matrices of each dataset across
larvae. To identify the network most similar to the 11" trial of the f20 and f60 datasets, we
performed a correlation between the matrices of the first 10 looms and the 11" loom of the
relevant dataset and identified the loom with the highest Pearson correlation coefficient.

We used the Brain Connectivity Toolbox®” to perform the graph analysis. We first generated
weighted connectivity matrices and filtered out edges with an absolute correlation value
below 0.75. We then subtracted each of the 20 loom matrices from the f60 matrices. The
width and color of the edges is indicative of the subtraction weight. The participation
coefficient was calculated between the four functional clusters identified previously (strongly
habituating, moderately habituating, weakly habituating, and inhibited).

The finrl dataset was treated similarly using the spatial nodes from the previous dataset.
ROIs were assigned to each node based on the smallest Euclidian distance. By again
discarding nodes with less than 3 larvae, we ended up with 90 nodes for this analysis. As
before, we performed cross correlations and generated individual fish matrices for each loom
presentation. The connectivity matrices were analyzed as above and the graphs were done
with the subtraction of the finr/”" mutants from the WT.
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Registration to a reference brain

We used Advanced Normalization Tools (ANTSs, https://github.com/ANTsX/ANTs) to
register our results on the H2B-RFP reference of Zbrain®°. The high definition stacks were
used to build a common template, before registering this template to the Zbrain atlas>®. The
resulting warps were sequentially applied to the centroids of extracted ROIs to map them all
in the same frame of reference. The Warped ROI coordinates were then placed in each of the
294 brain regions defined in the Zbrain atlas’’,

Data visualization

We used Unity to represent each ROI centroid as a sphere. Their diameter was adjusted based
on the number of ROIs to be able to visualize the different clusters (Strongly habituating=2;
Moderately habituating=3, Weakly habituating=4; Inhibited=6). An isosurface mesh of the
zebrafish brain was generated from the Zbrain masks for the diencephalon, mesencephalon,
rhombencephalon, telencephalon and eyes using ImageVis3D’'. The mesh was imported in
Unity and overlaid to the ROIs.

The colormaps used for Figures 2-5 and Supplemental Figures 5 and 6 were generated using
two Matlab® functions: The cbrewer function,
https://au.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-
for-matlab (Accessed in May 2019) which includes specifications and designs developed by
Cynthia Brewer (http://colorbrewer.org/), and the MatPlotLib 2.0 default colormaps ported to
Matlab, https://au.mathworks.com/matlabcentral/fileexchange/62729-matplotlib-2-0-
colormaps-perceptually-uniform-and-beautiful (Accessed in May 2019).

The circular graphs (Figure 5 and Extended Figures 5 and 6) were made with a modified
version of the code from Matlab®’s circularGraph toolbox.
https://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph/ (Accessed in
May 2019).

Figures were produced using Matlab R2018b and GraphPad Prism v7.04 and assembled in
Adobe Illustrator CS6.

Data and software availability
All data and software will be made available upon request.
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Supplemental Figure 1. Similarities among three types of fast habituating ROI.

a. The average responses of the ROIs composing three of the clusters produced by k-means.
All are powerfully responsive the first loom stimulus, with strongly attenuated responses in
the second and third trials (using the 20 stimulus train). Responses are essentially absent
from trials 4-30 across three blocks of ten stimuli each. b. The response strengths and
temporal dynamics are similar across these three groups during the first three trials, although
fast habituating cluster #1 shows the sharpest response profile. ¢. The anatomical locations of
these ROIs are indicated, showing a high degree of overlap in their distributions (with
clusters shown individually in d-f). Finally, a t-SNE analysis (g) fails to reveal clear
functional distinctions among these groups, with extensive overlap and intermingling across
these three clusters, especially for the Fast Habituating 2 cluster (green). These functional and
anatomical analyses form the basis for our pooling these three groups into a single “fast
habituating” cluster in our subsequent analyses.
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Supplemental Figure 2. T-SNE analysis of five functional clusters.

The calculated distributions of ROIs belonging to five functional clusters are represented
following a t-SNE analysis. The motor associated cluster was not included because the ROIs
in this cluster show different patterns of activity in different fish.
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Supplemental Figure 3. Anatomical distributions of five habituating clusters.
For each functional cluster shown in Figure 2, a dorsal view, lateral view, and four coronal
virtual sections are shown. The ranges included in the coronal sections are indicated in the

Strongly habituating images.
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Supplemental Figure 4: Brain-wide responses during different loom stimulus trains.
a. Brain-wide distributions of the functional clusters from Figure 2 for each of four loom
habituation paradigms. b. The proportions of ROIs from each functional cluster located in
the indicated brain regions. ¢. The average response profiles for fast habituating (left)
moderately habituating (center), and weakly habituating (right) tectal ROIs in each of the
habituation paradigms.
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Supplemental Figure 5. Functionally sorted brain-wide networks for WT and fmrl'/ i

larvae.
Edges with correlations above 0.75 are shown between all combinations of nodes, and nodes

are arranged by their functional clusters (colors of nodes). Networks are shown for trials 1, 2,
3, and 10 (top), and trial 11 (bottom). The brain region to which each node belongs is
indicated. Pallium, Pal; subpallium, Sp; thalamus, Th; habenula, Hb; pretectum, Pt; tectum,

Tec; tegmentum, Tg; cerebellum, Cb; and hindbrain, HB.


https://doi.org/10.1101/722074
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/722074; this version posted August 6, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

1st Loom 4
: R\ \\‘ . 3 " 0.85

3rd Loom

10th Loom

11th Loom

HB =) HB

|
Supplemental Figure 6. Spatially sorted brain-wide networks for WT and fmrl'/ “larvae.
Edges with correlations above 0.75 are shown between all combinations of nodes for trials 1,
2, 3,10, and 11, and nodes are arranged by brain region. The nodes’ functional clusters are
identified by color. Empty nodes (black) are added to match the right side (ipsilateral to the
visual stimulus) to the left side spatially, despite having fewer nodes. Abbreviations are the
same as in Supplemental Figure 5.
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Supplemental Figure 7: Prominence of motor-correlated strongly habituating ROIs in
the hindbrain.

a. The distribution of all strongly habituating neurons across the brain for the 20 stimulus
train. b. The subset of the ROIs from (a) that show >1s.d. correlation with motor responses
during loom stimuli on a trial-by-trial basis. ¢. The proportion of strongly habituating ROIs
that shows this motor correlation, by brain region.
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