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Abstract 
Habituation is a form of learning during which animals stop responding to repetitive stimuli, 
and deficits in habituation are characteristics of several psychiatric disorders. Due to the 
technical challenges of measuring brain activity comprehensively and at cellular resolution, 
the brain-wide networks mediating habituation are poorly understood. Here we report brain-
wide calcium imaging during visual learning in larval zebrafish as they habituate to repeated 
threatening loom stimuli. We show that different functional categories of loom-sensitive 
neurons are located in characteristic locations throughout the brain, and that both the 
functional properties of their networks and the resulting behavior can be modulated by 
stimulus saliency and timing. Using graph theory, we identify a principally visual circuit that 
habituates minimally, a moderately habituating midbrain population proposed to mediate the 
sensorimotor transformation, and downstream circuit elements responsible for higher order 
representations and the delivery of behavior. Zebrafish larvae carrying a mutation in the 
fmr1 gene have a systematic shift towards sustained premotor activity in this network, and 
show slower behavioral habituation. This represents the first description of a visual learning 
network across the brain at cellular resolution, and provides insights into the circuit-level 
changes that may occur in people with Fragile X syndrome and related psychiatric 
conditions. 
 
Habituation is a simple form of non-associative learning, characterized by a decrease in 
response after multiple presentations of a stimulus, that is conserved across much of the 
animal kingdom1. It allows animals to remain attentive to novel and ecologically relevant 
stimuli while minimizing their expenditure of energy on inputs that occur frequently without 
consequence. The strength and speed of habituation, and of recovery during periods without 
the stimulus, depend on the parameters of the stimulus and its repetitions (the intensity, 
frequency, and number of stimuli)2,3. Careful modulations of these stimulus properties have 
proven useful in exploring the relationships between repetitive stimuli and behavior, thereby 
providing clues about the underlying habituation circuitry4-7.  
 
Other work has addressed some of the molecular and cellular dynamics mediating 
habituation, including reductions in motor neurons’ presynaptic vesicle release during short-
term habituation and processes involving protein syntheses for longer-term forms of 
habituation8-13. At the other end of the spectrum, fMRI studies in humans have revealed 
changes in activity for various brain regions during habituation14-16. The intervening scales, of 
regional circuits and brain-wide networks, cannot be addressed using targeted cellular 
techniques or traditional brain-wide approaches. These networks, and the ways in which they 
change during habituation, can only be addressed by observing activity in whole populations 
of neurons (up to and including the whole brain) at single-cell resolution. 
 
In recent years, exactly this approach has become possible in zebrafish larvae through the use 
of genetically encoded calcium indicators and light-sheet or 2-photon microscopy17. Since 
zebrafish larvae undergo behavioral habituation18,19 they have been used for experiments with 
tactile, visual, and acoustic stimuli, exploring the genetic and molecular mechanisms of 
specific circuits20-24. Furthermore, they share important molecular underpinnings of 
habituation with other species25-27. All together, these features make them an appealing 
platform for exploring brain-wide habituation circuitry.  
 
This approach requires a robust innate behavior that is subject to habituation. Looming visual 
stimuli, which simulate approaching predators, reliably elicit startle responses that are 
conserved from insects to humans28, and repeated looms have been shown to produce 
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habituation in various species29-31. When looming stimuli are presented to larval zebrafish, 
visual information converges in the tectum, where local circuits are proposed to calculate the 
imminence of a threat31-33. However, additional structures respond to looms31-35, and others, 
including the hypothalamus, modulate the visual escape behavior in contexts other than 
habituation34,36,37. The result is an intriguing but sketchy outline of the habituation network, 
and in the absence of a whole-brain cellular-resolution analysis, numerous questions about 
this behaviorally important process remain unanswered. 
 
Addressing these questions is especially important because of the role that sensorimotor 
transformations and habituation play in psychiatric disorders including schizophrenia, autism 
spectrum disorder (ASD), and Fragile X syndrome (FXS)38. While these disorders are 
traditionally diagnosed around their social or cognitive symptoms, each has characteristic 
alterations in sensory processing, habituation, and sensorimotor gating that compound, or in 
some cases may drive, social and intellectual impairments39,40. FXS patients, for example, 
show slow habituation41-44, a phenotype also found in fmr1-mutant mice that model FXS45. 
While fMRI and EEG studies have revealed some of the regional changes in neural activity 
that correlate with habituation deficits in various psychiatric disorders46-49, the network-wide 
causes of these symptoms remain largely unexplored. 
 
Habituation of visual escape behavior in larval zebrafish 
To characterize the escape behavior of larval zebrafish exposed to looming stimuli, we 
designed a 12-well apparatus in which each well contained a larva receiving its own loom 
stimulus from below (Figure 1a). We presented looms in blocks of 10, with five minutes 
between blocks and an auditory tone at the end of the second rest period (for dishabituation 
before the 21st loom stimulus). In order to explore the relationships between stimulus 
properties and behavioral habituation, we used looming stimuli of two expansion speeds (a 
fast stimulus that filled the bottom of the well in 2 sec and a slow stimulus taking 4 sec) and 
two inter-stimulus intervals (ISIs) of 20 or 60 sec between looms. This resulted in four 
stimulus trains: f20, f60, s20, and s60 (Figure 1b).  
 
Each led to habituation of loom-elicited startle responses (Figure 1c), and two patterns arose 
across the four stimulus trains. First, the slow-growing stimuli led to stronger habituation 
than the fast stimuli did, especially in the first block of 10 looms. Second, the stimulus trains 
with 20 sec ISIs produced faster habituation within blocks, but the habituation produced by 
trains with 60 sec ISIs showed less recovery after the 5-minute rest periods. A generalized 
linear mixed model (GLMM) of the first block indicated a significant effect of the loom 
presentation number (beta= -0.25365, p= 2.00 x 10-16) on response probability, confirming 
habituation. The loom speed also affected response probability strongly (beta= -1.23839, p= 
2.22 x 10-8) with a weaker but significant impact from the ISI (beta= 0.45089, p= 0.038). 
Together, the speed, ISI, and presentation number explain almost 20% of the variance (R2=	
0.1864) and together with the random variable (fish identity) the model explained more than 
35% of the variance (R2=	0.3647). These effects are consistent with past studies in zebrafish 
and other diverse model systems5,7,26,27, suggesting a relationship between stimuli and 
habituation behavior that is broadly conserved. Explaining this relationship requires an 
exploration of the underlying circuitry and the ways in which it changes during habituation.  
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Figure 1. Modulation of habituation by stimulus features.  
a. Schematic representation of our setup for measuring visual habituation behavior. A 12-well 
chamber with one larva in each well (top right) was filmed on a horizontal screen (left) on 
which the looms were presented. Automated tracking recorded periods of swim bouts (green) 
and burst swim (red) for each larva (bottom right) b. Stimulus train properties across the 4 
experimental groups. c. Probability of response across the 4 groups during three blocks of ten 
loom presentations. d. Smoothed curves of the response probability for each group.  
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Brain-wide characterization of neural activity during habituation 
To address brain-wide patterns of activity during habituation, and the types of individual 
neurons that drive them, we moved to a head-embedded preparation in which loom stimuli 
were presented on an LCD screen. We performed whole-brain imaging of the elavl3:H2B-
GCaMP6s line using selective plane illumination microscopy (SPIM), as previously 
described (See Online Methods). For each larva, this produced 50 dorso-ventral planes, at 
5µm intervals, spanning the rostro-caudal and medio-lateral extents of the brain, with a 
volumetric acquisition rate of 2Hz. We performed morphological segmentation of these 
images to identify regions of interest (ROIs) generally corresponding to individual neurons, 
and extracted fluorescent traces from these ROIs, as described before (See Online Methods). 
 
Snapshots of responses across the brain during this repetitive stimulation (shown for f20 in 
Figure 2a-c) show a sharp decrease in responsive ROIs between the first and second stimuli, 
and a further drop in responses by the 10th stimulus. Figure 2d and 2e show the response of 
each ROI in the second and 10th trial as a proportion of its response in the first. Habituation is 
conspicuous across all loom-responsive brain regions, including the tectum, thalamus, medial 
hindbrain, tegmentum, and telencephalon, suggesting that these regions are affected by or 
involved in the habituation process.  
 
To address these possible mechanisms, we used k-means clustering to identify seven 
categories (clusters) of loom-responsive neurons with distinct functional properties (and one 
auditory cluster, not shown as there was no significant dishabituation). Based on their highly 
similar response properties, we merged three clusters of ROIs showing strong and rapid 
habituation (Supplemental Figure 1) into a single strongly habituating cluster (Figure 2f, g). 
We characterized the remaining three clusters as moderately habituating, weakly habituating, 
inhibited, and we also located a motor-associated group of ROIs using regressors customized 
to each animal’s movements (Figure 2f, g). A t-SNE analysis (Supplemental Figure 2) shows 
functional segregation among these clusters, suggesting that they are distinct categories of 
loom-responsive neurons.   
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Figure 2. Activity of individual ROIs and their functional clusters during habituation.  
a. Responses of ROIs across the brain to a loom stimulus, color coded for the intensity of 
their response. b, c. The same ROIs’ responses to the second and tenth looms. d, e. The 
degree of habituation in each of these ROIs in the second and 10th trials, calculated as the 
ratio of response to the first loom. This analysis was restricted to ROIs showing clear 
responses (with a coefficient of determination (r2 value) >0.5 for the linear regression 
between their response and a regressor simulating a calcium signal) for the first loom 
stimulus. Raster plots (f) and mean responses (g) of the ROIs composing each of five 
functional clusters, with a clear correspondence to the three blocks of ten stimuli. h. 
Anatomical locations for the ROIs belonging to each functional cluster. Since different 
animals startled in different trials, we identified the motor cluster using a different regressor 
for each animal. The mean responses are shown for a single animal in this cluster in g, with 
yellow lines indicating the relevant neurons from that animal in f. A rotation of h can be 
found in Supplementary Movie 1, and the distributions of these clusters is detailed in virtual 
sections in Supplemental Figure 3. Data show the pooled responses of 11 larvae to the f20 
stimulus train. Relevant anatomical brain regions are indicated in the bottom right corner of 
(h), each shown for only one side of the brain. Pallium, Pal; subpallium, Sp; thalamus, Th; 
habenula, Hb; pretectum, Pt; tectum, Tec; tegmentum, Tg; cerebellum, Cb; and hindbrain, 
HB.  R, rostral; C, caudal.   
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Strongly habituating ROIs are spread across several brain regions (Figure 2h and 
Supplemental Figure 3), most prominently in the tectum, thalamus, medial hindbrain, 
pallium, and tegmentum. In the hindbrain, these ROIs are concentrated in a longitudinal 
rostro-caudal strip along the pathway of the tectobulbar projections, meaning that they likely 
include reticulospinal premotor neurons50,51.  
 
Moderately habituating ROIs are tightly concentrated in the central region of the tectal 
periventricular layer (PVL) of the left tectum (Figure 2h and Supplemental Figure 3). This 
laterality is unsurprising, since the stimulus was presented to the right eye, and since all 
retinal projections are contralateral in zebrafish larvae. This position is consistent with a role 
for the associated neurons in the spatially registered processing of visual information, and 
their decreased responses may represent an important element of the overall circuit’s reduced 
responsiveness during habituation.  
 
Weakly habituating ROIs are prominent in the tectum, habenulae, pretectum, and pallium 
(Figure 2h and Supplemental Figure 3). There is moderate laterality toward the contralateral 
side to the stimulus in most of these regions. In the pallium, responses are concentrated 
around the dorsal edge of the pallium in what will likely become the lateral division of the 
dorsal pallium (Dl), although they also extend into the medial division (Dm, Supplemental 
Figure 3).  
 
Inhibited ROIs are rare and mostly localized to the contralateral tectum and rostral thalamus 
(Figure 2h and Supplemental Figure 3). Motor-associated ROIs are concentrated in the 
cerebellum. However, some can be found in the anterior and lateral hindbrain and small 
numbers occur in the thalamus and pallium (Figure 2h and Supplemental Figure 3). These 
ROIs are presumably involved in the coordination and delivery of the escape responses.  
 
Temporal stimulus properties modulate brain-wide responses. 
By looking at the changes in these distributions across our four stimulus trains (Figure 1), we 
next aimed to characterize brain-wide activity under conditions that lead to different rates and 
persistence of habituation in free-swimming larvae. The fundamental brain-wide habituation 
network was conserved across these treatments, but specific functional differences emerged 
(Supplemental Figure 4a). One was a greater number of strongly habituating ROIs in the 
hindbrain strip for the s20 and s60 experiments, with possible relevance to the faster 
habituation that slow stimuli drive (Figure 1). Another came in experiments with 60 sec ISIs, 
where we observed a greater number of weakly habituating ROIs in the dorsal hindbrain on 
the side contralateral to the stimulus (Supplemental Figure 4). This may play a role in the 
stronger preservation of habituation across breaks in the 60 sec ISI experiments.  
 
Since a large proportion of loom-responsive ROIs are in the tectum, especially for the 
moderately habituating cluster (Supplemental Figure 4b), we next looked at the relationship 
between the stimulus train’s properties and the responses of each functional cluster in the 
tectum (Supplemental Figure 4c). This revealed only subtle difference across the stimulus 
trains for the response profiles of fast habituating neurons. For moderately habituating 
neurons, differences arose with intriguing parallels to the behavioral outputs. In experiments 
with 60sec ISIs, habitation is slower, and recovery is less dramatic than for 20sec ISI 
experiments. In experiments that used slow stimuli, habituation occurs faster than in the 
corresponding experiments with fast loom stimuli. For weakly habituating neurons, 
experiments with 60sec ISIs lead to less habituation throughout the experiment, while other 
correlates of behavior are less clear. Overall, moderately habituating ROIs repeatedly had the 
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strongest correlation to free-swimming escape probability (Pearson correlation values: f20= 
0.6896; f60= 0.6896; s20=	0.6368; s60= 0.7724), suggesting that among our functional 
clusters, it is the moderately habituating ROIs in the tectum whose dynamics most closely 
reflect behavior.  
 
Network Modelling of Visual Loom Habituation 
As an approach to modelling visual loom processing and the network changes that produce 
habituation, we applied graph theory to our brain-wide activity data. To generate a tractable 
dataset, we downsampled our 144,709 responsive ROIs into 99 nodes that represent the 
ROIs’ functional clusters and anatomical locations, and then produced matrices representing 
the correlations in activity across each of these nodes at different times during the 
experiments (Figure 3a, see Online Methods). We then compared these matrices in larvae 
exposed to the f20 and f60 habituation paradigms to identify the network-level correlates of 
behavioral habituation. As expected, both paradigms produced high correlation values in 
response to the first loom, and the matrices for the two paradigms were highly similar. As 
habituation proceeded, network correlations remained somewhat higher in the f60 paradigm, 
reflecting differences in the behavioral responses during the f20 and f60 experiments (Figure 
1 c, d). By the 10th loom, most of these correlations had dropped dramatically for both 
paradigms, with high values mostly restricted to correlations between weakly habituating 
(red) nodes. The f20 paradigm shows a stronger recovery across the network in the 11th trial, 
reflecting the stronger behavioral recovery that takes place in this paradigm.  
 
As an approach to judge both the rate at which these correlations were lost during the first 
block of stimuli and the degree to which they recovered in the 11th trial, we used a Pearson 
correlation to match the matrix of the 11th trial to the most closely related matrix from the 
first block of stimuli. The highest Pearson correlation coefficients were for the 4th trial for f20 
and the 6th trial for f60, indicating both that the correlations are lost more quickly in f20 (the 
paradigm in which habituation occurs more quickly), and that the recovery is weaker in f60 
(the paradigm that produces more indelible behavioral habituation). Notably, the patterns of 
correlations across the matrices during mid-habituation trials (4th for f20, Figure 3a, and 6th 
for f60, now shown) strikingly resemble those in the 11th trials, suggesting that the network is 
returning to a partially habituated state.  
 
These results show that the loss of correlations across nodes in the network reflects 
behavioral outputs. To describe the networks containing these nodes, we represented them 
spatially and mapped the relative correlation strengths between nodes in the f20 and f60 
paradigms (Figure 3b). Each edge (node-to-node relationship) in the graph is represented by 
its correlation value in the f20 paradigm minus its value in f60 paradigm. As expected, 
because the first trial is identical, both paradigms show robust correlations across numerous 
edges in the first trial, with most edges near a zero value and no net weighting of the graph 
toward positive or negative. By the 10th trial, the graph has lost most edges, and the 
remaining activity is biased toward stronger correlations in f60 (shown in red), reflecting the 
slower habituation. The f20 paradigm shows stronger recovery, however, and this is captured 
in a shift toward positive values (blue) in the 11th trial.  
 
We then quantified the participation of each node in the graph, where participation is defined 
as the proportion of a node’s highly correlated edges that are shared with nodes from a 
different functional cluster (as defined in Figure 2). Participation dropped over the course of 
10 stimuli (Figure 3c), but this drop was slower in f60, suggesting that habituation is driven 
not only by a drop in correlation across nodes, but specifically by a loss of communication 
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between different functional clusters. This is reinforced by the higher participation in the 11th 
trial of the f20 paradigm, where strong behavioral recovery is echoed by a recovery in 
participation. Raster plots of participation by each node across the first 11 trials (Figure 3d) 
show this trend, further suggesting that it is weakly habituating (red nodes) that maintain 
much of their participation as habituation proceeds, and that recovery is accompanied by a 
resumption of participation by various strongly (green) and moderately (blue) habituating 
nodes.  
 
To address which brain regions are involved in this process, we mapped the correlation 
strengths of edges between nodes across five regions containing a majority of the nodes (the 
pallium, thalamus, tectum, tegmentum, and hindbrain, Figure 3e). The values for each edge, 
represented by a dot, show the correlation in the 10th trial minus the correlation in the 11th 
trial, thus giving negative values to edges that became stronger during recovery. Violin plots 
show the total distributions of edges between different functional clusters. The results 
confirm that certain types of edges, especially those between two weakly habituating (red) 
nodes, play a relatively small role in recovery, owing to their strong unhabituated responses 
in the 10th trial. Other types of edges, especially those not including a weakly habituating 
node, tend to have highly negative values, indicating that they contribute to the part of the 
network that is lost during habituation and regained during recovery.  
 
Collectively, these results converge to produce a model of the brain-wide network that 
produces visual escape and the mechanisms by which these responses are suppressed during 
learning. The initial process of habituation appears to rest on the loss of correlation (and 
presumed communication) among neurons of different functional clusters. This is manifested 
as a dramatic drop in correlation values for edges between different clusters (Figure 3a), the 
restriction of the active network principally to edges between nodes of the same type 
(especially weakly habituating nodes, Figure 3b, e), and the loss of participation during the 
course of habituation (Figure 3c). The striking similarity between mid-habituation matrices 
and those of partially recovered networks (Figure 3a) indicates that the matrix changes that 
underlie habituation are the same as those that are reversed during recovery, suggesting that 
the onset of habituation works through the same circuit-level changes that recovery does, and 
that there are not separable network-level mechanisms for the acquisition and retention of 
behavioral habituation.  
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Figure 3. The visual loom network, and the changes that occur during habituation. 
a. Correlation matrices for activity across 99 nodes representing ROIs across the whole brain. 
The functional clusters to which each node belongs are indicated on the axes, using the color 
code from Figure 2. Darker blue shades represent stronger positive correlations for any given 
pairing, and red indicates negative correlations (see color scale, a). b. A graphic 
representation of correlations across the 99 nodes, whose functional clusters are indicated by 
their colors and anatomical positions represented spatially. The colors and width of the lines 
indicate the relative correlation across the f20 and f60 experiments (f20 correlation minus f60 
correlation), where red indicates stronger correlations in f60 and blue indicates stronger 
correlations in f20 (see color scale). Only edges with correlations above 0.75 in either the f20 
or the f60 matrices are displayed. c. A heat map of the participation for each of the 99 nodes 
during the 1st, 2nd, 3rd, 10th, and 11th loom stimuli of the f20 and f60 experiments. d. Raster 
plots showing the participation of each node across the first 11 stimuli for f20 and f60, and 
the relative participation (f20 value minus f60 value) where blue indicates stronger f20 
participation and red indicates stronger f60 participation. The functional clusters for each 
node are indicated, using the color code from Figure 2.  e. Changes in correlation strength for 
all inter-node edges from the 10th to the 11th looms of f20, indicating the impacts of the 
recovery from habituation. Values shown are calculated for each edge as its correlation in the 
10th loom minus its value in the 11th loom, with more negative values indicating edges that 
showed more pronounced recovery between the 10th and 11th looms (top). The functional 
clusters for each edge’s two nodes are color coded and the brain regions that the edges span 
are indicated on the left. Violin plots (bottom) show the cumulative distributions of edges 
connecting different types of functional clusters, as indicated on the left.  
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fmr1-/- mutant larvae show behavioral and network-level habituation deficits  
To test the validity and explore the utility of this proposed network, we next looked for 
phenotypes across the habituation network in a zebrafish model of FXS, an inherited disorder 
characterized by intellectual disability, social deficits, and sensory phenotypes. We used a 
nonsense mutation in the highly conserved fmr1 gene, the perturbation of which causes FXS 
in humans. Given the learning deficits, including slow habituation42-44, in humans with FXS, 
we explored whether and how behavior and brain-wide habituation networks are altered in 
fmr1-mutant zebrafish.  
 
Using the s20 habituation paradigm in our free-swimming preparation, we found that fmr1-/-, 
fmr1-/+ heterozygotes (hets), and wild type (WT) siblings share a similarly high probability of 
startling to the first loom stimulus (Figure 4a). Habituation is slower, however, and recovery 
after a break is more dramatic, in fmr1-/- animals. Heterozygotes show an intermediate 
phenotype.  
 
We next looked for correlates of this behavior using brain-wide calcium imaging, first 
looking at the distributions of ROIs belonging to functional clusters (Figure 4b). While all 
genotypes had fundamentally similar distributions, there was a trend toward more numerous 
weakly habituating ROIs in the cerebellum in fmr1-/- larvae, as well as a reduction in strongly 
habituating ROIs in the hindbrain. Notably, this resembles the distribution of ROIs in the 
paradigms that drive slower habituation in WT animals (f60 and s60, Supplemental Figure 4), 
and provides hints that similar network changes may underlie slower habituation in both 
cases.  
 
We then applied graph theory to these results (Figure 4c), looking first at correlations among 
90 nodes (having eliminated nine of the original 99 nodes with a requirement that all nodes 
be represented in at least three larvae). Generally, correlations across the network were 
stronger in WT than in fmr1-/- in the first trial (resulting in positive values shown in blue). 
This is reversed in the 2nd and 3rd trials, where the WT network habituates more quickly, 
leaving negative (red) values that indicate persistent fmr1-/- network activity. Consistent with 
behavioral data, the overall correlations across the WT and fmr1-/- networks are equivalent by 
the 10th trial, but WT networks are stronger across the core perceptual pathway (tectum, 
thalamus, and pallium) described above, while fmr1-/- correlations are stronger across edges 
that habituate quickly in WT. Again echoing free-swimming behavior, the fmr1-/- animals 
show dramatically broader and stronger network correlation in the 11th trial, following a 
break in the stimulus. All of these correlation-based observations carry through to 
participation across the networks (Figure 4d, e), including in the same nodes whose edges 
showed differences in correlation (Figure 4c).   
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Figure 4. Behavioral and network-wide changes in fmr1-/- larvae. 
a. Over the course of two blocks of 10 stimuli, fmr1-/- larvae show slower habituation and 
stronger recovery than WT siblings, and heterozygotes show an intermediate phenotype. 
Binomial test: fmr1-/- versus WT: 2nd Loom (p=3.056e-5); 3rd Loom (p=0.034); 11th Loom 
(p=0.055) and 16th Loom (p=0.039). Hets versus WT: 2nd Loom (p=0.001) and 9th Loom 
(p=0.039). All other comparisons (p>0.1). b. Brain-wide distributions of ROIs for the three 
genotypes, color coded for functional cluster as in Figure 2 and Supplemental Figure 4. c. 
Node-based graphs showing relative correlations (WT correlation minus fmr1-/- correlation), 
where blue indicates correlations that are stronger in WT and red indicates correlations that 
are stronger in fmr1-/-.  d. Heat maps of participation for all nodes across habituation and 
recovery. e. A raster plot of relative participation (WT participation minus fmr1-/- 
participation) for each node through the first 11 trials.  
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By assessing correlation strengths across the network in a way that represents nodes’ 
functional and anatomical properties, we then outlined the overall functional architecture of 
the habituating fmr1-/- brain versus WT. First, we organized our brain-wide node-to-node 
relationships by functional cluster (Figure 5a, Supplemental Figure 5), allowing the level of 
correlation within and across clusters to be assessed. This shows that by the 2nd stimulus, 
there are still strong functional connections among red-red edges and along blue-blue edges 
in WT, and that this is largely restricted to red-red edges by the 3rd trial. By the 10th trial, 
strong correlations only exist in red-red edges (and a few to inhibited (purple) nodes). A 
subset of red-blue, blue-blue, and blue-green nodes reconnect in the 11th trial, reflecting 
recovery. In all regards, these effects resemble the habituating network dynamics shown for 
the f20 paradigm in Figure 3, where behavioral habituation tracks with a loss of 
communication between weakly habituating (red) nodes and strongly habituating (green) 
nodes, connected through moderately habituating (blue) nodes. By comparison, fmr1-/- 
animals show strong correlations between more numerous nodes in the 2nd and 3rd trials, as 
well as following recovery in the 11th trial (Figure 5a, Supplemental Figure 5). Correlated 
edges are similar between the genotypes in the first (Supplemental Figure 5) and 10th trials 
(Figure 5A), showing that the networks are closer to equivalent in the naïve state and 
following habituation. Consistent with the analyses in Figure 4, this suggests that uncoupling 
across functional clusters occurs more slowly and recovers more completely in fmr1-/- 
animals, providing a mechanism by which the sensorimotor transformation is slanted towards 
downstream network activity and behavioral responsiveness in these animals.   
 
To explore the spatial properties of this phenotype, we next represented these data organized 
by brain region (Figure 5b, Supplemental Figure 6). In WT animals, this analysis shows 
extensive correlation between nodes across all brain regions in the first trial (Supplemental 
Figure 6) that is progressively winnowed to the core perceptual circuit described above 
(mainly connections among the tectum, thalamus, and pallium on the side contralateral to the 
stimulus) as habituation proceeds. In the 2nd, 3rd, and 11th trials (and to a lesser degree, the 
10th trial), this network is more extensive in fmr1-/- animals, showing stronger functional 
relationships between the tectum and other regions, and with a greater number of highly 
correlated edges from the hindbrain to other regions.  This, in turn, echoes observations from 
Figure 3, which suggests that an uncoupling of spatially distinct perceptual and downstream 
networks drives habituation.  
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Figure 5. Functional and spatial habituation networks across WT and fmr1-/- brains. 
a. Edges with absolute correlation values above 0.75 are shown across 90 nodes, sorted by 
functional cluster (indicated by colors on the boundary). Network-wide correlations are 
shown for WT (top) and fmr1-/- animals (bottom) in the 2nd, 3rd, 10th, and 11th trials. A larger 
version of this graph, including the brain region for each node, is included in Supplemental 
Figure 5. b. Relevant regions of the brain are shown relative to a coded boundary (left), and 
correlated edges between nodes (sorted by brain region) are shown for the 2nd, 10th, and 11th 
trials (right). The black/white bands on the left are maintained to indicate brain regions on the 
small circles on the right. Correlations are enriched on the left side of each brain, consistent 
with stimulus presentation to the right eye. The networks for the first and 3rd looms are also 
shown in Supplemental Figure 6.    
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A brain-wide model of visual habituation 
From an anatomical perspective, the core loom perception circuit can be inferred from the 
edges that remain active through habituation. These include edges within and among the 
tectum, thalamus, and pallium (Figure 3b). The absence of habituation in these edges 
suggests that they are involved in perceiving a looming stimulus, and that they are upstream 
of the sensorimotor transformation that controls behavioral outputs. The regions most 
affected during habituation (especially the hindbrain, but also including a subset of ROIs in 
the pallium) are likely downstream of this transformation. This places the tectum at an 
intriguing pivot point in the overall network. It has a confirmed role as an important recipient 
of loom information31-34,36,51, and communicates in different ways with different brain 
regions. This includes nonhabituating correlations with the pallium and likely outputs to the 
hindbrain that habituate strongly (Figure 5b). Combined with the high density of moderately 
habituating ROIs, whose activity most closely mirrors behavioral habituation (Supplemental 
Figure 4c), in the tectum (Figure 2h), this raises the possibility that circuits within the tectum 
are responsible for the key changes in the sensorimotor transformation that produce 
habituation. This idea is reinforced by the drops in correlation between moderately 
habituating ROIs and weakly habituating ROIs (blue-red edges) and between moderately 
habituating and strongly habituating ROIs (blue-green edges) during habituation. This 
provides a mechanism by which moderately habituating neurons in the tectum could 
uncouple the core visual circuit of weakly habituating (red) neurons from downstream 
circuits as habituation proceeds. These uncoupled circuits, principally comprising strongly 
habituating (green) ROIs, show interesting diversity reflective of distinct impacts that novelty 
and saliency play in different brain regions. The hindbrain’s strongly habituating ROIs are 
more likely to correlate with the animal’s actual escape responses (Supplemental Figure 7), as 
are those in other motor-associated regions including the cerebellum, pretectum, thalamus, 
and tegmentum. This suggests an interaction with these regions’ premotor and motor 
circuits50,51 and an acute role in escape. Other strongly habituating ROIs that uncouple from 
the tectum occupy the pallium, including the Dm, a fear processing area52,53, and these are 
less likely to correlate to behavior on a trial-by-trial basis (Supplemental Figure 7), 
suggesting reduced higher-order representations of threat during habituation that are 
independent of trial-by-trial escape. The overall interpretation is that habituation involves the 
uncoupling of various downstream elements from visual perception circuitry, and implicates 
the tectum as the likely switch for this sensorimotor transformation. While fmr1-/- animals 
undergo habituation through similar overall mechanisms to those seen in WT animals, their 
network loses these correlations more slowly, and recovers them more dramatically after a 
rest, consistent with these animals’ behavioral phenotype (Figure 4a).  
 
Overall, we have shown for the first time that neurons with distinct response profiles to 
repetitive visual stimuli are present throughout the brain, and that the detailed responses of 
these categories of neurons can be modulated by the saliency and temporal details of the 
stimuli. These response profiles, viewed brain-wide at cellular resolution, reflect the rates of 
behavioral habituation to repeated looms, providing a framework for understanding the brain-
wide network changes that mediate habituation. Using graph theory, we have shown that 
behavioral habituation tracks with a functional disconnection of a principally visual circuit in 
the fore- and midbrain and a response circuit that includes known premotor regions located in 
the hindbrain and higher-order representations of threats in the forebrain. The central location 
of the tectum (homologous to the mammalian superior colliculus) in this functional network, 
and the prominence of moderately habituating tectal neurons whose activity reflects 
behavioral habituation rates, suggest that this region is involved in visual learning. Given 
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these properties, it could serve as a pivot point for the sensorimotor transformation, a role that 
may be conserved in birds and primates54. We have shown that this overall network is present 
in fmr1-/- animals, but that its dynamics are shifted toward higher network correlations, 
greater transmission through the tectum, and ultimately slower behavioral habituation. This 
reveals a brain-wide mechanism for slower sensorimotor learning that reflects previously 
observed behavioral phenomena in animal models and humans with FXS. Importantly, it 
provides a departure point for targeted explorations of the circuit-level causes of learning and 
sensorimotor deficits in FXS and related psychiatric conditions.  	  
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Methods 
Animals. All zebrafish (Danio rerio) work was performed in accordance with The University 
of Queensland Animal Welfare Unit (approval SBMS/378/16). Adults were reared and 
maintained in a Tecniplast zebrafish housing system under standard conditions using the 
rotifer polyculture method for early feeding 5 to 9 days post fertilization. For the visual 
habituation experiments with different stimulus trains we used nacre zebrafish embryos of 
the TL strain expressing the transgene, elavl3:H2B-GCaMP6s55. For the fmr1 experiments, 
zebrafish embryos were bred by incrossing the fourth generation of zebrafish heterozygous 
for fmr1hu2787 56and elavl3:H2B-GCaMP6s, to produce clutches with a 1:2:1 Mendelian ratio 
(wild type: heterozygous: homozygous) for fmr1hu2787. The fmr1hu2787 mutants have a change 
(C to T) in the fmr1 coding region leading to a nonsense-mediated-decay and the loss of the 
protein56. All fish were produced by natural spawning and reared in Petri dishes with embryo 
medium (1.37 mM NaCl, 53.65 µM KCl, 2.54 µM Na2HPO4, 4.41 µM KH2PO4, 0.13 mM 
CaCl2, 0.16 mM MgSO4, and 0.43 mM NaHCO3 at pH 7.2) at 28.5 °C on a 14-hour light: 10-
hour dark cycle. After the fmr1 experiments, larvae were genotyped as previously 
described57. 
 
Stimulus train for behavioural experiments. The stimulus train consisted of three blocks of 
10 looms with 5min of rest (with a white screen) between each block. The loom was initiated 
with a dot that started expanding after 1s. The minimum angle of the loom was ~11° and the 
maximum angle of the loom was ~90°. The fast looms reached their maximum angle in 2s 
and the slow looms in 4s. This was followed by 2 seconds of black screen and a 9s slow fade 
back to white, designed to avoid any neural OFF responses. The screen remained white until 
the next loom initiation for a variable duration depending on the desired inter stimulus 
intervals (ISI) of 18, 20, or 22s for the f20 and s20 paradigms and 54 ,60, or 66s for f60 and 
s60. A sound stimulus of 300Hz at ~85 dB was played 3 times for 1s with 1s ISI. The first 
presentation was 25s before the 21st loom. The video and sound were displayed by a monitor 
(10.1 1366x768 Display IPS + Speakers - HDMI/VGA/NTSC/PAL, Little Bird, Australia).  
Since the sound stimulus did not produce any marked dishabituation, and was not confirmed 
acoustically within the chamber, we did not analyse this aspect of the experiment. 
 
Behavioural experiments. Individual 6dpf larvae were placed in each well of the 12 well 
arena (circular plugs of agar were removed to produce the wells). The wells were filled with 
embryo medium and were placed at 1cm above a screen inside a dark chamber, and all larvae 
received the same stimulus train. The chamber was kept in the dark but was illuminated with 
infrared LEDs. A Basler acA1920 camera recorded the movements from above, a lens 
(40mm Thorlabs) and a 665nm longpass filter (FGL665 - Ø25 mm RG665 Colored Glass 
Filter, Thorlabs) delivered infrared light to the camera with a weak signal from the screen that 
confirmed the timing of the looming stimuli. Movements were tracked in bins of 1s using the 
zebrafish tracking Viewpoint software (ZebraLab, ViewPoint Life Sciences, France), tracking 
three speed categories: <0.5mm/s, 0.5-30mm/s, and >30mm/s. The output of the tracking was 
then analysed using a Matlab script. Escape responses were defined as one or more 
movements above 30mm/s during a loom presentation. Further statistical analysis and graphs 
were made in GraphPad Prism v7.04 and R 3.5.1 (R core team, 2018). The sound failed to 
produce a clear dishabituation so this effect was not further analysed. The fitted curves were 
done in GraphPad Prism v7.04 with the exponential one phase decay curve from the 1st to the 
10th loom of each block, using a Least Squares regression and plateau to 0. To produce the 
GLMM, we used the lme4 and MuMIn R packages to generate the GLMM and to calculate 
the R2.  The model was fitted for a binomial distribution with the formula: 
 response= loom+speed+ISI+ (1/fishID). 
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For the fmr1 experiments the procedures were the same, however the stimulus train was a 
shorter version of the s20 with 20 looms instead of 30, as we did not observe an effect of the 
auditory tone between the 20th and the 21st loom. When the experiment ended, larvae were 
processed for genotyping. The quantification of the data was performed blind to the genotype 
for the fmr1 experiments. The binomial test was performed one sided with the escape 
responses of the fmr1 or Het larvae in each loom versus the probability of response of the WT 
for that same loom.  
 
Sample preparation for calcium imaging. Imaging was performed on 6dpf larvae that were 
embedded upright in 2% low melting point agarose (Sigma, A9045) and transferred to a 3D 
printed imaging chamber58. Imaging chambers were filled with embryo medium once the 
agarose had set and the tail was freed59 so that escape responses could be monitored. The 
imaging chamber was composed of a 3D-printed base (24 × 24 mm) with four posts (3 × 3 × 
20 mm) raised along the four corners of the platform. The four outward faces of the chamber 
were fixed with a glass coverslip (20 × 20 mm, 0.13-0.16 mm thick). A glass window on the 
bottom of the chamber allowed filming of tail movements58. For the fmr1 experiments, larvae 
were processed for genotyping when the experiment ended.  
 
Loom stimulus train for calcium imaging. Looms were presented on a 75 × 55 mm LCD 
generic PnP monitor (1024 × 768 pixels, 85 Hz, 32-bit true colour) with a NVIDIA GeForce 
GTX 970 graphics card. The monitor was positioned 30mm to the right of the larvae, and was 
covered by a coloured-glass alternative filter (Newport, 65CGA-550) with a cut-on 
wavelength of 550 nm. The minimum angle of the loom was ~10° and the maximum angle 
the loom covered was ~82°. The auditory stimulation (a 100Hz sound at 100dB before the 
21st loom) was presented with two audio speakers (Logitech Z213) placed at ~20cm from the 
fish. The background noise level was 40dB. As for the behavioural experiment, in the fmr1 
experiments, the procedures were the same but with a shorter version of the s20 stimulus 
train. 
 
Microscopy. Zebrafish larvae, individually mounted in the imaging chamber, were imaged 
for elavl3:H2B-GCaMP6s on a custom-built SPIM microscope58,60. To avoid stimulating the 
eyes with the light sheet, the side laser path of the SPIM was blocked, and the front SPIM 
plane was restricted to a space between the eyes using a vertical aperture. Captured images 
were binned 4 times to a final resolution of 640 × 540 pixels at 16-bit in tagged image file 
(TIFF) format. Fifty transverse sections at 5µm increments were captured and imaged at 2 
Hz. Recording of the brain activity started 30s before the first stimulus onset and stopped 
after the return to white from the last loom of each block, resulting in three separated 
acquisitions. To image the larva and record its tail movements, a 4x 0.1NA Olympus 
microscope objective (PLN 4X) was placed below the sample chamber61, coupled with a tube 
lens projecting the image onto a Basler acA1920 camera, recording at 30 fps.  
At the end of each experiment, a single high-definition scan of non-binned images was 
recorded with 100ms exposure time and 2µm increments to be used for the registration of the 
brain of each fish (see below).  
 
Analysis of calcium imaging data. Calcium imaging data from the three acquisitions was 
concatenated in ImageJ v1.52c as a combined time series and then separated into individual 
slices (50 planes per fish). Motion correction was performed using Non-Rigid Motion 
Correction (NoRMCorre) algorithm62, and fluorescence traces were extracted and demixed 
from the time series using the CaImAn package (version 0.9)63,64 
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(http://github.com/flatironinstitute/CaImAn). We used 4000 components per slice to ensure 
that we would not miss any ROIs during the initialization step of CaImAn. The risk of over-
segmentation was mitigated by a merge step using a threshold of 0.8 to merge overlapping 
ROIs. The order of the autoregressive model was set at 1 to account for the decay of the 
fluorescence, our acquisition speed being too slow to account for the rise time. The gSig 
(half-size of neurons) was set at 2, based on estimates of the sizes of the nuclei in our images. 
We did not use any temporal or spatial down-sampling and the initialization method was 
‘greedy_roi’. The components were updated before and after the merge steps, empty 
components were discarded, and the components were ranked for fitness as previously63.  
 
Analysis of whole-brain activity data. For the experiment with four stimulus trains, the 
resulting ROIs and fluorescent traces from the CaImAn package were pooled from larvae of 
each stimulus train (n of the 4 datasets: f20=11, f60=8, s20=10, s60=10), and then z-scored 
per dataset. A K-means clustering by cityblock distance with 50 components and 5 replicates 
was done for each dataset. Clusters where manually selected based on their profile responses 
to the looms or sound and their presence across datasets and individual fish. This produced 7 
clusters selected from the f20 and s20 datasets and were used as regressors for subsequent 
analysis of the four datasets: three strongly habituating, a moderately habituating, a weakly 
habituating, and inhibited and a sound responsive clusters. All ROIs from each of the 4 
datasets were modelled by linear regression to each of these regressors. As the 60 sec ISI 
time series were longer, the time series were trimmed around the 30 looms to perform the 
linear regression. ROIs with an r2 value higher than 0.3 were then selected for further 
analysis. The selected ROIs were categorized by correlation to each of the 7 selected 
regressors. The auditory cluster was not analysed after this point.  We confirmed that the 
clusters could be found in most or all larvae, but 3 fish (1 from f20 and 2 from f60) were 
discarded because their ROIs contribution to one of the habituating clusters was above 50% 
of the total number of ROIs for that cluster, so they were deemed as outliers in terms of 
responsiveness. To find the motor evoked calcium responses, we first used ImageJ to detect 
the tail movements from the behavioural imaging. We used a polygon ROI covering half of 
the fish tail to extract the mean grey values of the time series. Substantial tail movements 
produced large peaks and were flagged as movement events. We then build regressors for 
individual larvae inserting a stereotypical GCamp6s trace to the movement timing for each 
larva. Finally, we used a linear regression with the motor regressor of each larva as for the 
habituating clusters, and selected ROIs with an r2 value higher than 0.2.  
 
For the t-SNE65 (Supplemental Figure 1g and Supplemental Figure 2) we used the Matlab 
function with a correlation based distance and the following parameters: Perplexity=100, 
Exaggeration=20. For further analysis, we pooled together the three strongly habituating 
clusters and we excluded the sound response cluster, resulting in four main clusters.  
 
To calculate the proportions of ROIs for a given cluster that appear in each brain region 
(Supplemental Figure 4b), the number of ROIs of each cluster in each brain region was 
divided by the total number of ROIs of that cluster in the whole brain. We did this for each 
individual larva, created a mean for each dataset, and then averaged these values across all 
four datasets. For the analysis of the normalized responses in the tectum (Supplemental 
Figure 4c), a mean of the tectal ROIs’ response for each cluster was calculated for each 
individual fish, then the maximum response per loom was calculated based on the maximum 
z-score value in the window of the loom presentation adjusted by the baseline before each 
loom. These values were normalized to the first loom response, and a mean of the normalized 
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maximum response was calculated for each dataset. To compare these tectal responses with 
the matching behavioral results we used the Pearson correlations coefficients.   
 
To locate the subset of strongly habituating neurons that are involved in motor behaviours 
(Supplemental Figure 7), we calculated the Spearman correlation coefficient between each 
strongly habituating ROI from the f20 dataset and the motor regressor of its respective fish. 
We then selected the ROIs above a correlation coefficient of 0.3066 (the mean-0.1522- plus 
one SD -0.1544-). Finally, we calculated their proportion compared to the strongly 
habituating ROIs of each of the brain regions previously analysed.  
 
For fmr1 experiments, we performed a K-means with 50 components with the traces of all the 
fish. We then selected 8 clusters based on their possible loom responses. Then we performed 
a linear regression and selected the ROIs with an r2 value above 0.3. As their location and 
average calcium traces were similar to the functional clusters previously found, we classified 
the ROIs into the functional clusters from our original s20 dataset using correlation as 
described above. All data were quantified blind to genotype. For Figure 4b, we chose a 
random sample (n=11) of Hets to match WT (n=10) and fmr1-/- (n=11). 
The analysis was done using Matlab R2018b and GraphPad Prism v7.04. 
 
Correlation matrices and graphs 
For graph theory, we simplified our system from the 144,709 responsive ROIs while 
preserving the functional identity and anatomical location of the responses. To do so, we 
performed a K-means clustering on the 3-dimensional spatial coordinates of the ROIs66 of 
each functional cluster, in each brain region, with k number of clusters. k was defined based 
on the number of ROIs. For regions with fewer than 200 ROIs, no node was placed;  between 
200-500, 1 node; between 500-1000, 2 nodes, between 1000-3000, 3 nodes; and >3000, 4 
nodes. This was intended to strike a balance between including relatively sparse populations 
that may, nonetheless, make functional contributions, and weighting our analysis to some 
degree toward more abundant response types. This produced 102 nodes, but we discarded 
three nodes that had three or fewer fish contributing to them. For the remaining 99 nodes, we 
cross correlated the mean loom response of their ROIs and generated individual matrices for 
each larva, and each loom presentation. We then averaged the matrices of each dataset across 
larvae. To identify the network most similar to the 11th trial of the f20 and f60 datasets, we 
performed a correlation between the matrices of the first 10 looms and the 11th loom of the 
relevant dataset and identified the loom with the highest Pearson correlation coefficient.  
 
We used the Brain Connectivity Toolbox67 to perform the graph analysis. We first generated 
weighted connectivity matrices and filtered out edges with an absolute correlation value 
below 0.75. We then subtracted each of the f20 loom matrices from the f60 matrices. The 
width and color of the edges is indicative of the subtraction weight. The participation 
coefficient was calculated between the four functional clusters identified previously (strongly 
habituating, moderately habituating, weakly habituating, and inhibited).  
 
The fmr1 dataset was treated similarly using the spatial nodes from the previous dataset.  
ROIs were assigned to each node based on the smallest Euclidian distance. By again 
discarding nodes with less than 3 larvae, we ended up with 90 nodes for this analysis. As 
before, we performed cross correlations and generated individual fish matrices for each loom 
presentation. The connectivity matrices were analyzed as above and the graphs were done 
with the subtraction of the fmr1-/- mutants from the WT.  
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Registration to a reference brain 
We used Advanced Normalization Tools (ANTs, https://github.com/ANTsX/ANTs) to 
register our results on the H2B-RFP reference of Zbrain68-70. The high definition stacks were 
used to build a common template, before registering this template to the Zbrain atlas58. The 
resulting warps were sequentially applied to the centroids of extracted ROIs to map them all 
in the same frame of reference. The Warped ROI coordinates were then placed in each of the 
294 brain regions defined in the Zbrain atlas70. 
 
Data visualization 
We used Unity to represent each ROI centroid as a sphere. Their diameter was adjusted based 
on the number of ROIs to be able to visualize the different clusters (Strongly habituating=2; 
Moderately habituating=3, Weakly habituating=4; Inhibited=6). An isosurface mesh of the 
zebrafish brain was generated from the Zbrain masks for the diencephalon, mesencephalon, 
rhombencephalon, telencephalon and eyes using ImageVis3D71. The mesh was imported in 
Unity and overlaid to the ROIs.  
 
The colormaps used for Figures 2-5 and Supplemental Figures 5 and 6 were generated using 
two Matlab® functions: The cbrewer function, 
https://au.mathworks.com/matlabcentral/fileexchange/34087-cbrewer-colorbrewer-schemes-
for-matlab (Accessed in May 2019) which includes specifications and designs developed by 
Cynthia Brewer (http://colorbrewer.org/), and the MatPlotLib 2.0 default colormaps ported to 
Matlab,  https://au.mathworks.com/matlabcentral/fileexchange/62729-matplotlib-2-0-
colormaps-perceptually-uniform-and-beautiful (Accessed in May 2019).  
 
The circular graphs (Figure 5 and Extended Figures 5 and 6) were made with a modified 
version of the code from Matlab®’s circularGraph toolbox. 
https://www.mathworks.com/matlabcentral/fileexchange/48576-circulargraph/ (Accessed in 
May 2019). 
 
Figures were produced using Matlab R2018b and GraphPad Prism v7.04 and assembled in 
Adobe Illustrator CS6.  
 
Data and software availability 
All data and software will be made available upon request.	  
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Supplemental Figure 1. Similarities among three types of fast habituating ROI. 
a. The average responses of the ROIs composing three of the clusters produced by k-means. 
All are powerfully responsive the first loom stimulus, with strongly attenuated responses in 
the second and third trials (using the f20 stimulus train). Responses are essentially absent 
from trials 4-30 across three blocks of ten stimuli each. b. The response strengths and 
temporal dynamics are similar across these three groups during the first three trials, although 
fast habituating cluster #1 shows the sharpest response profile. c. The anatomical locations of 
these ROIs are indicated, showing a high degree of overlap in their distributions (with 
clusters shown individually in d-f). Finally, a t-SNE analysis (g) fails to reveal clear 
functional distinctions among these groups, with extensive overlap and intermingling across 
these three clusters, especially for the Fast Habituating 2 cluster (green). These functional and 
anatomical analyses form the basis for our pooling these three groups into a single “fast 
habituating” cluster in our subsequent analyses.  
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Supplemental Figure 2. T-SNE analysis of five functional clusters. 
The calculated distributions of ROIs belonging to five functional clusters are represented 
following a t-SNE analysis. The motor associated cluster was not included because the ROIs 
in this cluster show different patterns of activity in different fish.    
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Supplemental Figure 3. Anatomical distributions of five habituating clusters. 
For each functional cluster shown in Figure 2, a dorsal view, lateral view, and four coronal 
virtual sections are shown. The ranges included in the coronal sections are indicated in the 
Strongly habituating images.  

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 6, 2019. ; https://doi.org/10.1101/722074doi: bioRxiv preprint 

https://doi.org/10.1101/722074
http://creativecommons.org/licenses/by-nc-nd/4.0/


 
Supplemental Figure 4: Brain-wide responses during different loom stimulus trains. 
a. Brain-wide distributions of the functional clusters from Figure 2 for each of four loom 
habituation paradigms.  b. The proportions of ROIs from each functional cluster located in 
the indicated brain regions. c. The average response profiles for fast habituating (left) 
moderately habituating (center), and weakly habituating (right) tectal ROIs in each of the 
habituation paradigms.   
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Supplemental Figure 5. Functionally sorted brain-wide networks for WT and fmr1-/- 
larvae. 
Edges with correlations above 0.75 are shown between all combinations of nodes, and nodes 
are arranged by their functional clusters (colors of nodes). Networks are shown for trials 1, 2, 
3, and 10 (top), and trial 11 (bottom). The brain region to which each node belongs is 
indicated. Pallium, Pal; subpallium, Sp; thalamus, Th; habenula, Hb; pretectum, Pt; tectum, 
Tec; tegmentum, Tg; cerebellum, Cb; and hindbrain, HB.   
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Supplemental Figure 6. Spatially sorted brain-wide networks for WT and fmr1-/- larvae. 
Edges with correlations above 0.75 are shown between all combinations of nodes for trials 1, 
2, 3, 10, and 11, and nodes are arranged by brain region. The nodes’ functional clusters are 
identified by color. Empty nodes (black) are added to match the right side (ipsilateral to the 
visual stimulus) to the left side spatially, despite having fewer nodes. Abbreviations are the 
same as in Supplemental Figure 5.   
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Supplemental Figure 7: Prominence of motor-correlated strongly habituating ROIs in 
the hindbrain. 
a. The distribution of all strongly habituating neurons across the brain for the f20 stimulus 
train. b. The subset of the ROIs from (a) that show >1s.d. correlation with motor responses 
during loom stimuli on a trial-by-trial basis. c. The proportion of strongly habituating ROIs 
that shows this motor correlation, by brain region. 
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