

# 1 Translocational unfolding in clostridial binary iota toxin

## 2 complex

3 Tomohiro Yamada<sup>1,7</sup>, Toru Yoshida<sup>1,2,7</sup>, Akihiro Kawamoto<sup>3,7</sup>, Kaoru Mitsuoka<sup>4</sup>, Kenji  
4 Iwasaki<sup>3,5</sup>, and Hideaki Tsuge<sup>1,2,6,\*</sup>

5

6 1 Faculty of Life Sciences, Kyoto Sangyo University, Kamigamo-motoyama, Kita-ku,  
7 Kyoto, Japan.

8 2 Institute for Protein Dynamics, Kyoto Sangyo University, Kamigamo-motoyama,  
9 Kita-ku, Kyoto, Japan.

10 3 Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan.

11 4 Research Center for Ultra-High Voltage Electron Microscopy, Osaka University,  
12 Osaka, Japan

13 5 Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance  
14 (TARA), University of Tsukuba, Tsukuba, Japan

15 6 Center for Molecular Research in Infectious Diseases, Kyoto Sangyo University,  
16 Kamigamo-motoyama, Kita-ku, Kyoto, Japan.

17 7 These authors contributed equally: Tomohiro Yamada, Toru Yoshida, Akihiro  
18 Kawamoto

19

20 \*Correspondence: tsuge@cc.kyoto-su.ac.jp

21

22 **Abstract**

23 **Protein translocation across the membrane is critical for microbial**  
24 **pathogenesis and various cellular functions. Bacterial binary toxins such as**  
25 **anthrax toxin are composed of enzyme components and a translocation channel,**  
26 **which catalyses substrate unfolding and translocation. Here we report the**  
27 **structures of the clostridial binary toxin (iota toxin) translocation channel Ib-pore**  
28 **and its complex with ADP-ribosyltransferase Ia. The Ib-pore structure at atomic**  
29 **resolution provides a similar structural framework as observed for the catalytic**  
30  **$\phi$ -clamp of the anthrax protective antigen pore. However, the Ia-bound Ib-pore**  
31 **structure showed a unique binding mode of Ia: one Ia binds to the Ib-pore, and the**  
32 **Ia N-terminal domain interacts with Ib via two other Ib-pore bottlenecks with**  
33 **multiple weak interactions. Furthermore, Ib-binding induces Ia N-terminal  $\alpha$ -helix**  
34 **tilting and partial unfolding, whereupon the unfolded N-terminus continues to the**  
35  **$\phi$ -clamp gate. This study reveals the novel mechanism of N-terminal unfolding,**  
36 **which is crucial for protein translocation.**

37

38

39 **Introduction**

40 *Clostridium perfringens* iota toxin (iota), *C. difficile* toxin (CDT), *C. spiroforme* toxin  
41 (CST), and *C. botulinum* C2 toxin belong to the family of binary toxins. It consists of  
42 the enzymatic 'A' component with actin-specific ADP-ribosyltransferase and the 'B'  
43 component which binds to the host cell and functions as the translocation channel of  
44 each enzymatic component (Ia,Ib; CDTa,CDTb; CSTa,CSTb; and C2I,C2II,  
45 respectively). The 'B' component precursor is first cleaved off by a cellular protease,  
46 then binds to the target cell via a receptor, forms a soluble oligomer termed the  
47 'prepore', and finally converts to a membrane-spanning pore in an acidified endosome.  
48 The oligomer-receptor complex acts as a substrate docking platform that subsequently  
49 translocates an enzymatic component into the cytosol from the acidified endosome.  
50 Therein, the enzymatic component mono-ADP-ribosylates G-actin, inducing  
51 cytoskeletal disarray and cell death. The enzymatic component consists of two domains:  
52 the C-terminal domain with an actin-specific ADP-ribosyltransferase activity, and the  
53 N-terminal domain, considered as a binding domain to the membrane-spanning  
54 translocation component. The clostridial binary (iota) toxin consists of Ia and Ib<sup>1-3</sup>.  
55 However, although extensive structural and functional studies of Ia have been  
56 conducted<sup>4,5</sup>, little is known regarding the Ib translocation channel.

57 A similar binary toxin, anthrax toxin, constitutes a major virulence factor of *Bacillus*  
58 *anthracis*, consisting of an enzymatic component (two enzymatic proteins, edema (EF)  
59 and lethal (LF) factors) and a protein translocation channel (protective antigen (PA))<sup>6</sup>.  
60 LF is a zinc-dependent protease that cleaves mitogen-activated protein kinase kinase;  
61 the combination of PA and LF leads to the death of humans and animals. Cleavage of a

62 PA precursor triggers heptamerization or octamerization (prepore), and the low pH  
63 endosomal environment causes the oligomer to insert into the membrane by forming a  
64 transmembrane  $\beta$ -barrel (pore)<sup>7</sup>. PA heptameric prepore structure was revealed with and  
65 without anthrax toxin receptor<sup>8,9</sup>. Furthermore, the LF-bound PA prepore complex  
66 structure (PA dimer with one LF N-terminal domain (LF<sub>N</sub>) ) was revealed by  
67 crystallography at 3.1 Å resolution. The biological unit structure (PA<sub>8</sub>(LF<sub>N</sub>)<sub>4</sub>) was also  
68 deduced from the complex, revealing that the first N-terminal helix of LF binds on the  
69 PA dimer interface surface<sup>10</sup>.

70 Although PA pore instability has hampered its structural analysis, Jiang et al.  
71 clarified the PA heptameric pore structure by cryo-electron microscopy (cryo-EM) at  
72 2.9 Å resolution<sup>11</sup>, revealing the catalytic  $\phi$ -clamp and a long membrane-spanning  
73 channel<sup>12</sup>. The  $\phi$ -clamp is the narrowest passageway of the PA translocation channel, in  
74 which the seven phenylalanine-427 residues converge within the lumen, generating a  
75 radially symmetric solvent-exposed aromatic ring. Krantz et al. proposed that the  
76  $\phi$ -clamp serves a chaperone-like function, interacting with hydrophobic sequences  
77 presented by the protein substrate as it unfolds during translocation<sup>12</sup>. Because  
78 translocation is driven by a transmembrane proton gradient, a Brownian ratchet model  
79 has been proposed, which depends on protonation and deprotonation of the  
80 translocating polypeptide acidic residues<sup>12-15</sup>. Furthermore, an allosteric  
81 helix-compression model regulated by the  $\alpha$ -clamp in PA was recently proposed<sup>16</sup>,  
82 although it remains controversial whether this model is adequate.

83 To our knowledge, no high-resolution structure of the enzyme-bound translocation  
84 channel including the LF-bound PA-pore is available (although the PA heptamer pore

85 structure with three LF<sub>N</sub> was reported at 17 Å resolution<sup>17</sup>), and pore structural  
86 information remains limited in PA<sup>11</sup> and other type Tc toxins<sup>18,19</sup>. In clostridial binary  
87 toxin, membrane prepore and pore structures have not been described. To understand  
88 the protein translocation mechanism via the bacterial translocation channel, here we  
89 determined the structures of the Ib heptameric translocation channel without and with  
90 the enzymatic component Ia (Ib-pore and Ia-bound Ib-pore, respectively) by cryo-EM at  
91 atomic resolution, providing the novel structural pose of Ia just prior to translocation in  
92 the transmembrane spanning Ib-pore.

93

## 94 **Results**

### 95 **Ib oligomerization**

96 Ib oligomerization is rapidly induced at 37°C in Vero cells in a temperature but not pH  
97 dependent-manner<sup>20,21</sup>. Conversely, *in vitro*, Ib oligomerizes poorly at 37°C and/or  
98 under acidic conditions following cleavage of the 20 kDa N-terminal propeptide. PA  
99 can oligomerize and form the PA-prepore upon propeptide cleavage, with the  
100 conformational change from prepore to pore being induced at low pH *in vitro*<sup>22</sup>;  
101 however, this leads to rapid and irreversible aggregation<sup>11,23</sup>. During cryo-EM sample  
102 preparation *in vitro*, we found that 10% ethanol could efficiently induce oligomerization  
103 upon N-terminal propeptide cleavage ([Extended Data Fig. 1](#)). Therefore, the sample was  
104 prepared by adding 10% ethanol and 0.03% lauryl maltose neopentyl glycol (LMNG)  
105 (Anatrace) following propeptide cleavage. Consequently, EM imaging showed that it  
106 led to the direct conversion of monomeric Ib to the pore, not the prepore. The obtained

107 Ib-pore was stable at neutral pH, allowing cryo-EM structural analysis of the Ib-pore  
108 along with the Ia-bound Ib-pore.

109

### 110 **Ib-pore and Ia-bound Ib-pore cryo-EM data**

111 Two data sets were collected using Titan Krios (FEI). With the first, we revealed the  
112 Ib-pore structure using 38,433 particles after classification of 299,491 extracted  
113 particles; local resolution analysis by Resmap<sup>24</sup> showed the inner pore region at  
114 approximately 2.5 Å resolution (Fig. 1a, [Extended Table 1](#), [Extended Data Fig. 2](#)). As  
115 described in Online Methods, the first data also included small amounts of Ia-bound  
116 Ib-pore particles, which provided a 5.2 Å resolution map of the Ia-bound Ib-pore  
117 ([Extended Data Fig. 2](#)).

118 Therefore, we generated another data set, raising the ratio of Ia. Two classes clearly  
119 showed Ia density on the Ib-pore with long β-barrel stem and short β-barrel stem,  
120 respectively. Therefore, using 135,359 particles for short stem class and 62,940 particles  
121 for long stem class following classification of 871,264 extracted Ia-bound Ib-pore  
122 particles, 3D refinement was performed after several additional classifications  
123 ([Extended Data Fig. 3](#)). Finally, 2.8 Å map (Ia-bound Ib-pore with short stem) and 2.9  
124 Å map (Ia-bound Ib-pore with long stem) were yielded.

125

### 126 **Structure of the Ib-pore**

127 The obtained cryo-EM map shows the Ib-pore having a funnel-like structure, lacking  
128 the lower stem region (328–365), suggesting that the bottom half of the stem had not yet  
129 formed. Thus, the Ib-pore structure contains a stem of 40 Å length (90 Å at full length,  
130 as noted for the Ia-bound Ib-pore), with the stem diameter the same as that of PA (>15

131 Å) (Fig. 2a-c; Extended Data Fig. 4a, 5a). The Ib-pore consists of four domains, 1'  
132 (domain 1 without the propeptide), 2, 3, and 4, as with PA. The main pore body  
133 comprises domain 2, which consists of two parts designated as 2c (residues 296–311  
134 and 381–512) and 2s (residues 312–380) (Fig. 2a, c). Domain 2s is an extended  $\beta$   
135 -hairpin, seven copies of which assemble to form a membrane-spanning 14-stranded  
136  $\beta$ -barrel. Domain 3 is located at an intermediate position between domains 1' and 2c.  
137 The cryo-EM density of domain 4, the receptor-binding domain, is weak and has the  
138 lowest resolution among all four domains (Extended Data Fig. 2), likely owing to its  
139 flexibility resulting from minimal contact with the other domains. The overall structure  
140 of the Ib-pore is similar to that of the PA-pore (Extended Data Fig. 5a). Specifically, the  
141 funnel structure consisting of domains 1', 2, and 3 shows high similarity with that of the  
142 PA-pore. Domains 1 and 2 of PA share 41 and 40% sequence identity with the  
143 corresponding regions of Ib (Extended Data Fig. 6). The weak map density of domain 4  
144 is also reported for the PA-pore<sup>11</sup>. In Ib, the relative position of this density differs from  
145 that of PA-pore domain 4 (Extended Data Fig. 5a). As domain 4 is a receptor binding  
146 domain, the sequence identity shows < 10% identity with PA, with the size also  
147 differing (Ib domain 4 is twice as large as that of PA).

148 The cryo-EM density of the inner side of the funnel was analysed at high resolution;  
149 thus, the side chain is clearly visible (Extended Data Fig. 4b). The narrowest clamp is  
150 formed by seven F454s from seven protomers with a diameter of 6 Å, termed the  
151  $\phi$ -clamp in PA (Fig. 2e). Two additional bottlenecks exist in the cis-side: Ca-edge  
152 (216–224), an N-terminal Ca binding site, and NSQ-loop (490–492), with 45 Å and 23  
153 Å diameters, respectively (Fig. 2d). Ca-edge, which is a unique di-calcium binding site

154 (Extended Data Fig. 5b), and NSQ-loop are the most important regions for Ia-binding as  
155 described later. We then divided the inner pore surface as layer I, II, III, IV, and V from  
156 the cis- to trans-side (Fig. 2c). Layer I represents the broadest area of the funnel from  
157 the Ca-edge to NSQ-loop. Layer II is from the NSQ-loop to E498-loop. Layer III is  
158 from the E498-loop to  $\phi$ -clamp. Layer IV is from the  $\phi$ -clamp to H313 in the trans-side.  
159 We designated the stem region as layer V. The long stem with a  $\beta$ -barrel is created by  
160 an amphipathic flexible loop (E312–I380) of the prepore.

161 The enzymatic component Ia (ADP-ribosyltransferase) is translocated from the cis  
162 (layer I, II, and III) to the trans-side (layer IV and V). Although the sequence is not  
163 well-conserved on the inner surface between the Ib-pore and PA-pore, structural  
164 similarities exist and the negative (pH 7) and positive (pH 5.5) surface potential in the  
165 cis side (Layer II and III) are maintained in both channels (Extended Data Fig. 5c). In  
166 PA, N422 and D425 (422–NAQDDFSST–430) were noted as constituting an essential  
167 pH sensor to lead the conversion from prepore to pore; in Ib, these two residues are  
168 conserved. Notably, H313 locates on the inner surface of the upper stem, which appears  
169 to have an important function for translocation (Fig. 2c). Moreover, numerous Ser and  
170 Thr residues exist in the inner surface stem region, which may have vital functions as  
171 with PA although the residue positions are not conserved between Ib and PA (stem  
172 region Ser/Thr content of 56% each in Ib and Pa) (Extended Data Fig. 5c).

173

#### 174 **Structure of the Ia-bound Ib-pore**

175 Two separated classes, Ia-bound Ib-pore with short and long stem, were obtained from  
176 the second data set by C1 data analysis (Extended Data Fig. 3). In both structures, Ia sits

177 on the cis-side of the Ib-pore with the same binding mode ([Fig. 1b-c and 3a-c; Extended](#)  
178 [Data Fig. 4a](#)). Notably, the Ia stoichiometry and binding mode differed from those of  
179 the LF-bound PA-pore (PA:LF = 8:4 or 7:3). Clearly, one Ia binds to the Ib-pore  
180 heptamer. Half of the Ia N-terminal domain is buried in the Ib-pore through several  
181 interactions with interface  $1650 \text{ \AA}^2$ . They primarily interact asymmetrically with  
182 Ca-edges and NSQ-loops. Specifically, five Ca-edges in subunit C-G contribute to Ia  
183 binding, with seven NSQ-loops in subunit A-G supporting the Ia N-terminal domain  
184 ([Fig. 3d-g; Extended Data Fig. 7](#)).

185 No large Ia-induced structural change occurs in the Ib-pore between the apo-Ib-pore  
186 and Ia-bound Ib-pore; only two NSQ-loops (E and F subunits) exhibit asymmetric  
187 positional change ([Fig. 3f](#)). Moreover, no large structural change occurs in almost the  
188 entire Ia molecule except the N-terminal (1–44) region between apo-Ia and the Ia-bound  
189 Ib-pore ([Fig. 3h](#)). Within the seven NSQ-loop interaction, one (F subunit) pushes  
190 residues 29–32 in the N-terminal  $\alpha$ -helices (Ia), causing the apparent tilt and partial  
191 unfolding of the N-terminal  $\alpha$ -helix ([Fig. 3h; Extended Data Fig. 7](#)). Thus, the  
192 N-terminal region (1–17) in Ia unfolds in the Ib-pore because it is too large to fit in the  
193 NSQ-loop bottleneck, then continues to the Ib-pore  $\phi$ -clamp gate ([Fig. 3h, i](#)). It appears  
194 that the Ia molecule floats from the Ib protomers via NSQ-loops, thus providing free  
195 inner space to accommodate the Ia N-terminal region. In summary, the main  
196 interactions are caused by several asymmetrical Ca-edges and NSQ-loops. No specific  
197 strong interaction exists between Ia and the Ib-pore, suggesting that this may constitute  
198 an essential feature for the translocation channel and substrate protein, with the weak  
199 interactions affording efficient translocation.

200        Although detailed reports regarding Ia–Ib binding are lacking, an earlier study  
201        showed that the N-terminal domain (residue 216–321 in domain 1') of Ib is essential for  
202        Ia docking<sup>25</sup>. This cryo-EM study of the Ia-bound Ib-pore provides precise information  
203        regarding Ia and Ib-pore interactions, showing the Ca-edge of domain 1' along with the  
204        NSQ-loop of domain 2 as essential for binding. It was also reported that Ib lacking just  
205        the first N-terminal 27 residues did not facilitate Ia entry<sup>25</sup>. This is because the  
206        N-terminal 27 residues form the Ib-pore  $\text{Ca}^{2+}$  binding site (Ca-edge) ([Extended Data Fig.](#)  
207        [5b](#)). Moreover, residues 129–257 were proposed as the minimal Ia fragment for  
208        translocation<sup>26</sup>. The present Ia-bound Ib-structure showed that a native ordered structure  
209        of the Ia N-terminal domain (45–210) is necessary for the stacking via NSQ-loops.

210        We next compared previous mutational results of Ib with the present Ib-pore  
211        structure. F454A led to loss of cytotoxicity and markedly increased single-channel  
212        conductance, suggesting that the  $\phi$ -clamp is highly conserved and crucial for binary  
213        toxin activity<sup>27</sup>. Several mutations within the amphipathic  $\beta$ -strand forming the stem  
214        affected pore formation, single-channel conductance, and ion selectivity (S339E–S341E,  
215        Q345H, and N346E)<sup>27</sup>. Based on the structure, S339, S341, and N346 are located on the  
216        inner stem surface, whereas Q345 is found on the stem tip. Ser and Thr residues on the  
217        inner surface are likely essential for translocation.

218

## 219        **Discussion**

220        The available cryo-EM structure of  $\text{LF}_N$ -bound PA-pore ( $\text{PA}_7(\text{LF}_N)_3$ ) is at low  
221        resolution; nevertheless, the same binding mode as in the  $\text{LF}_N$ -bound PA-prepore is  
222        assumed<sup>10,17</sup>. The first  $\alpha$ -helix and  $\beta$ -strand of  $\text{LF}_N$  unfold and dock into the deep

223 amphipathic cleft on the octamer surface, termed the ‘ $\alpha$ -clamp’ (Fig. 3j). Thus, the main  
224 interactions are formed by the N-terminal helix binding to the PA-prepore  $\alpha$ -clamp.  
225 Altough similar structural feature and electrostatic potential exist for Ib-pore  
226 translocation channel, significant differences exist between Ia and LF binding. For LF,  
227 the N-terminal  $\alpha$ -helix binds to the PA-pore  $\alpha$ -clamp, with the following 26 N-terminal  
228 residues being invisible owing to their flexibility. This flexibility is also observed in the  
229 apo-structure, suggesting that the N-terminal region is intrinsically flexible (Fig. 3k).  
230 Conversely, for Ia, binding to the channel causes Ia N-terminal unfolding. This indicates  
231 that the Ib-pore serves as an unfolding chaperone for substrate translocation even at  
232 neutral pH. As the Ib  $\alpha$ -clamp site does not function as an  $\alpha$ -clamp, the Ib-pore rather  
233 uses a novel mechanism for Ia N-terminal region unfolding: (1) a large portion of the  
234 N-terminal domain of the Ia structure lies in the Ib-pore, and (2) the interaction induces  
235 Ia N-terminal helix tilting and partial unfolding (Fig. 3h). Thus, the Ib-induced  
236 disordered region (1–AFIERPEDFLKD–12) followed by unfolded N-terminal helix  
237 (13–KENAI–17) directly continues to the  $\phi$ -clamp (Fig. 3i).

238 The Ia N-terminal region contains numerous hydrophobic along with both positive  
239 and negative residues. Ia and LF share no sequence similarity, suggesting that the  
240 characteristic residue assortment (positive, negative, and hydrophobic) is essential for  
241 translocation. Constructs lacking both negative and positive charges in the unstructured  
242 region of LF<sub>N</sub>, composed of only Gly, Ser, and Thr, translocate more slowly and  
243 independently of the  $\Delta$ pH, indicating that a balance of acidic- and basic-charged  
244 residues is required for efficient translocation with  $\Delta$ pH<sup>28</sup>. Furthermore, in endosomes,  
245 as the phenylalanine clamp could be considered as a barrier of pH difference, the

246     cis-side (Layer II and III) electrostatic potential is positive (pH 5.5), whereas the  
247     trans-side (IV) electrostatic potential is negative (pH 7.0) ([Extended Data Fig. 5c](#)). The  
248     electrostatic potential difference represents a common aspect in Ib-pore and PA-pore  
249     and is likely important for translocation. It is also noted that electrostatic repulsion  
250     between pore (NSQ-loop in subunit E) and substrate protein (Arg26) seems to be  
251     important for efficient translocation ([Extended Data Fig. 7b](#)). Furthermore we consider  
252     that the destabilization of Ca-edge at endosomal acidic pH is also key to reduce the  
253     interaction, leading to more efficient translocation.

254         Despite the differences of binding stoichiometry and binding mode of Ia/Ib and  
255         LF/PA, the unfolded Ia and LF N-terminals are accommodated in electrostatically  
256         charged cis-side pore, then led to the  $\phi$ -clamp. Therefore, we consider that the first entry  
257         event, in which the tip of the unfolded N-terminus enters into the gate of the  
258         hydrophobic  $\phi$ -clamp, is significant for translocation, similar to threading through a  
259         needle. For Ia, the unfolded N-terminal region becomes freely accessible to the  $\phi$ -clamp  
260         in the space of Layer III under the NSQ-loop. Thus, Ia N-terminal movement in the  
261         limited space is beneficial compared with LF-bound PA with large open space, allowing  
262         the hydrophobic tip to readily reach the hydrophobic  $\phi$ -clamp gate. This first event  
263         appears necessary for an extended-chain Brownian ratchet model.

264         Two  $\phi$ -clamp configuration states (clamped and unclamped dilated states) have been  
265         proposed that are allosterically regulated by the  $\alpha$ -clamp<sup>16,29</sup>. The allosteric  
266         helix-compression model was proposed as more favourable than the extended-chain  
267         Brownian ratchet model. This model explains that the successive  $\alpha$ -helix formation  
268         induced by the  $\alpha$ -clamp is essential for substrate translocation and that newly formed

269  $\alpha$ -helices pass through the dilated  $\phi$ -clamp, leading to produce more power stroke.

270 However, structures of both the PA-pore at acidic pH and Ib-pore at neutral pH show

271 that the  $\phi$ -clamp forms the same configuration as in the closed (clamped empty) state.

272 The dilated (unclamped empty) state structure has not yet known; moreover, whether

273 the dilated state exists and the allosteric helix-compression model is generalizable

274 remain controversial<sup>30,31</sup>. In Ib and C2II, the dilated state has not been observed by

275 electrophysiological study<sup>32,33</sup> or in the present cryo-EM studies. With regard to its

276 structure, as seven phenylalanines are stacked in the  $\phi$ -clamp structure, change to a

277 more dilated conformation is unlikely. In addition to these, Ib does't use the  $\alpha$ -clamp for

278  $\alpha$ -helices binding. Together, these observations indicate that the Ib translocation likely

279 occurs via a static  $\phi$ -clamp pore, suggesting the extended-chain translocation of the

280 unfolded N-terminal substrate (Fig. 4). The presented binary toxin complex structure

281 and the mechanism of unfolded N-terminal substrate translocation should be conserved

282 in other *C. difficile*, *C. spiroforme*, and *C. botulinum* binary toxins. Notably, our study

283 provides structural clues to develop inhibitors of these binary toxins, especially CDT

284 from human opportunistic pathogen *C. difficile*<sup>34-36</sup> or iota-like toxin (CPILE/BEC) in

285 human food poisoning outbreaks<sup>37-39</sup>.

286 At neutral pH, only a minor conductance decrease was observed upon Ia addition to

287 the membrane cis-side<sup>32</sup>. However, at pH 5.6, cis-side conductance decreased to

288 30–40% of the open configuration conductance<sup>32</sup>. Ia-mediated Ib blockage occurred

289 only at pH 5.6, suggesting the translocation occurs only at acidic pH. In our study, we

290 revealed the Ia-bound Ib-pore structure at neutral pH. The disordered Ia N-terminal

291 region tip reaches the  $\phi$ -clamp (Fig. 3i); however, it may not be entirely blocked but still  
292 fluctuate in the pore.

293 In summary, the present structure captured the Ia-bound Ib-pore just before  
294 translocation: The Ia N-terminal region exhibited Ib-induced unfolding. In future studies,  
295 using the stable Ib-pore, we expect to capture the translocation state of Ia in the Ib-pore  
296 under acidic conditions.

297

298 **References**

299 1 Aktories, K. *et al.* Botulinum C2 toxin ADP-ribosylates actin. *Nature* **322**,  
300 390-392 (1986).

301 2 Vandekerckhove, J., Schering, B., Barmann, M. & Aktories, K. Clostridium  
302 perfringens iota toxin ADP-ribosylates skeletal muscle actin in Arg-177. *FEBS*  
303 *Lett* **225**, 48-52 (1987).

304 3 Blocker, D., Behlke, J., Aktories, K. & Barth, H. Cellular uptake of the  
305 Clostridium perfringens binary iota-toxin. *Infect Immun* **69**, 2980-2987 (2001).

306 4 Tsuge, H. *et al.* Crystal structure and site-directed mutagenesis of enzymatic  
307 components from Clostridium perfringens iota-toxin. *J Mol Biol* **325**, 471-483  
308 (2003).

309 5 Tsuge, H. *et al.* Structural basis of actin recognition and arginine  
310 ADP-ribosylation by Clostridium perfringens iota-toxin. *Proc Natl Acad Sci U S*  
311 *A* **105**, 7399-7404 (2008).

312 6 Collier, R. J. & Young, J. A. Anthrax toxin. *Annu Rev Cell Dev Biol* **19**, 45-70  
313 (2003).

314 7 Miller, C. J., Elliott, J. L. & Collier, R. J. Anthrax protective antigen:  
315 prepore-to-pore conversion. *Biochemistry* **38**, 10432-10441 (1999).

316 8 Petosa, C., Collier, R. J., Klimpel, K. R., Leppla, S. H. & Liddington, R. C.  
317 Crystal structure of the anthrax toxin protective antigen. *Nature* **385**, 833-838  
318 (1997).

319 9 Lacy, D. B., Wigelsworth, D. J., Melnyk, R. A., Harrison, S. C. & Collier, R. J.  
320 Structure of heptameric protective antigen bound to an anthrax toxin receptor: a  
321 role for receptor in pH-dependent pore formation. *Proc Natl Acad Sci U S A* **101**,  
322 13147-13151 (2004).

323 10 Feld, G. K. *et al.* Structural basis for the unfolding of anthrax lethal factor by  
324 protective antigen oligomers. *Nat Struct Mol Biol* **17**, 1383-1390 (2010).

325 11 Jiang, J., Pentelute, B. L., Collier, R. J. & Zhou, Z. H. Atomic structure of  
326 anthrax protective antigen pore elucidates toxin translocation. *Nature* **521**,  
327 545-549 (2015).

328 12 Krantz, B. A. *et al.* A phenylalanine clamp catalyzes protein translocation  
329 through the anthrax toxin pore. *Science* **309**, 777-781 (2005).

330 13 Krantz, B. A., Finkelstein, A. & Collier, R. J. Protein translocation through the  
331 anthrax toxin transmembrane pore is driven by a proton gradient. *J Mol Biol* **355**,  
332 968-979 (2006).

333 14 Sun, J., Lang, A. E., Aktories, K. & Collier, R. J. Phenylalanine-427 of anthrax  
334 protective antigen functions in both pore formation and protein translocation.  
335 *Proc Natl Acad Sci U S A* **105**, 4346-4351 (2008).

336 15 Basilio, D., Juris, S. J., Collier, R. J. & Finkelstein, A. Evidence for a  
337 proton-protein symport mechanism in the anthrax toxin channel. *J Gen Physiol*  
338 **133** (2009).

339 16 Das, D. & Krantz, B. A. Peptide- and proton-driven allosteric clamps catalyze  
340 anthrax toxin translocation across membranes. *Proc Natl Acad Sci U S A* **113**,  
341 9611-9616 (2016).

342 17 Machen, A. J. *et al.* Asymmetric Cryo-EM Structure of Anthrax Toxin  
343 Protective Antigen Pore with Lethal Factor N-Terminal Domain. *Toxins (Basel)*  
344 **9** (2017).

345 18 Gatsogiannis, C. *et al.* A syringe-like injection mechanism in *Photobacterium*  
346 luminescens toxins. *Nature* **495**, 520-523 (2013).

347 19 Meusch, D. *et al.* Mechanism of Tc toxin action revealed in molecular detail.  
348 *Nature* **508**, 61-65 (2014).

349 20 Nagahama, M., Nagayasu, K., Kobayashi, K. & Sakurai, J. Binding component  
350 of *Clostridium perfringens* iota-toxin induces endocytosis in Vero cells. *Infect*  
351 *Immun* **70**, 1909-1914 (2002).

352 21 Stiles, B. G., Hale, M. L., Marvaud, J. C. & Popoff, M. R. *Clostridium*  
353 *perfringens* iota toxin: characterization of the cell-associated iota b complex.  
354 *Biochem J* **367**, 801-808 (2002).

355 22 Koehler, T. M. & Collier, R. J. Anthrax toxin protective antigen:  
356 low-pH-induced hydrophobicity and channel formation in liposomes. *Mol*  
357 *Microbiol* **5**, 1501-1506 (1991).

358 23 Vernier, G. *et al.* Solubilization and characterization of the anthrax toxin pore in  
359 detergent micelles. *Protein Sci* **18**, 1882-1895 (2009).

360 24 Kucukelbir, A., Sigworth, F. J. & Tagare, H. D. Quantifying the local resolution  
361 of cryo-EM density maps. *Nat Methods* **11**, 63-65 (2014).

362 25 Marvaud, J. C. *et al.* *Clostridium perfringens* iota-toxin: mapping of receptor  
363 binding and Ia docking domains on Ib. *Infect Immun* **69** (2001).

364 26 Marvaud, J. C. *et al.* *Clostridium perfringens* iota toxin. Mapping of the Ia  
365 domain involved in docking with Ib and cellular internalization. *J Biol Chem*  
366 **277** (2002).

367 27 Knapp, O. *et al.* Residues involved in the pore-forming activity of the  
368 *Clostridium perfringens* iota toxin. *Cell Microbiol* **17**, 288-302 (2015).

369 28 Brown, M. J., Thoren, K. L. & Krantz, B. A. Charge requirements for proton  
370 gradient-driven translocation of anthrax toxin. *J Biol Chem* **286**, 23189-23199  
371 (2011).

372 29 Brown, M. J., Thoren, K. L. & Krantz, B. A. Role of the alpha Clamp in the  
373 Protein Translocation Mechanism of Anthrax Toxin. *J Mol Biol* **427**, 3340-3349  
374 (2015).

375 30 Yamini, G. & Nestorovich, E. M. Relevance of the alternate conductance states  
376 of anthrax toxin channel. *Proc Natl Acad Sci U S A* **114**, E2545-E2546 (2017).

377 31 Krantz, B. A. Reply to Yamini and Nestorovich: Alternate clamped states of the  
378 anthrax toxin protective antigen channel. *Proc Natl Acad Sci U S A* **114**,  
379 E2545-E2546 (2017).

380 32 Knapp, O., Benz, R., Gibert, M., Marvaud, J. C. & Popoff, M. R. Interaction of  
381 Clostridium perfringens iota-toxin with lipid bilayer membranes. Demonstration  
382 of channel formation by the activated binding component Ib and channel block  
383 by the enzyme component Ia. *J Biol Chem* **277**, 6143-6152 (2002).

384 33 Schmid, A., Benz, R., Just, I. & Aktories, K. Interaction of Clostridium  
385 botulinum C2 toxin with lipid bilayer membranes. Formation of cation-selective  
386 channels and inhibition of channel function by chloroquine. *J Biol Chem* **269**,  
387 16706-16711 (1994).

388 34 Stubbs, S. *et al.* Production of actin-specific ADP-ribosyltransferase (binary  
389 toxin) by strains of Clostridium difficile. *FEMS Microbiol Lett* **186**, 307-312  
390 (2000).

391 35 Werny, M. *et al.* Toxin production by an emerging strain of Clostridium difficile  
392 associated with outbreaks of severe disease in North America and Europe.  
393 *Lancet* **366**, 1079-1084 (2005).

394 36 Barbut, F. *et al.* Clinical features of Clostridium difficile-associated diarrhoea  
395 due to binary toxin (actin-specific ADP-ribosyltransferase)-producing strains. *J*  
396 *Med Microbiol* **54**, 181-185 (2005).

397 37 Irikura, D. *et al.* Identification and Characterization of a New Enterotoxin  
398 Produced by Clostridium perfringens Isolated from Food Poisoning Outbreaks.  
399 *PLoS One* **10**, e0138183 (2015).

400 38 Monma, C. *et al.* Four foodborne disease outbreaks caused by a new type of  
401 enterotoxin-producing Clostridium perfringens. *J Clin Microbiol* **53**, 859-867  
402 (2015).

403 39 Yonogi, S. *et al.* BEC, a novel enterotoxin of *Clostridium perfringens* found in  
404 human clinical isolates from acute gastroenteritis outbreaks. *Infect Immun* **82**,  
405 2390-2399 (2014).

406

407 **Acknowledgements**

408 This work was supported by JSPS KAKENHI Grant Numbers 18K06170 and  
409 17K15095. This work was also supported by the Basis for Supporting Innovative Drug  
410 Discovery and Life Science Research (BINDS) from the AMED and the  
411 "Nanotechnology Platform" of the Ministry of Education, Culture, Sports. We thank H.  
412 Murata for the initial purification of Ib and JI. Kishikawa for help in cryo-EM analysis.  
413 HT thanks M. Nagahama and M. Oda for helpful comments on the studies.

414

415 **Author contributions**

416 T.Yamada, T.Yoshida, A.K., and H.T. participated in research design and data analyses;  
417 T.Yamada prepared the Ib-pore and Ia-bound Ib-pore for cryoEM; T.Yamada, A.K.,  
418 K.M., and K.I. performed cryoEM data acquisition and image processing; T.Yoshida  
419 performed the atomic model building, structure refinement and analyses; all author  
420 contributed to writing the manuscript and H.T. supervise the project.

421

422 **Author information**

423 Reprints and permissions information is available at [www.nature.com/reprints](http://www.nature.com/reprints)

424 Competing interests: The authors declare no competing interests.

425

426 Correspondence and requests for materials should be addressed to corresponding H.T.

427 ([tsuge@cc.kyoto-su.ac.jp](mailto:tsuge@cc.kyoto-su.ac.jp))

428 **Methods**

429 **Ib and Ia expression and purification.** The *iota toxin b (Ib)* gene was cloned into  
430 pGEX4T-1 without a signal peptide, and Ib was overexpressed in *Escherichia coli*  
431 Origami. The transformant was cultured in super broth medium containing ampicillin  
432 (50 µg/ml), tetracycline (12.5 µg/ml), and kanamycin (15 µg/ml) at 37°C until OD<sub>600</sub> of  
433 0.6, then isopropyl β-D-1-thiogalactopyranoside (final 1 mM) was added followed by  
434 culturing at 23°C for 16 h. The harvested cells were resuspended in lysis buffer  
435 containing 20 mM Tris pH 8.0, 150 mM NaCl, 2 mM CaCl<sub>2</sub>, and 5 mM dithiothreitol,  
436 and disrupted by sonication. After centrifugation at 180,000 × g for 40 min, the  
437 supernatant was loaded onto a Glutathione Sepharose 4B resin (GE Healthcare) column.  
438 After washing the column with lysis buffer, the bound protein was eluted by a buffer  
439 containing 20 mM Tris pH 8.0, 150 mM NaCl, and 10 mM reduced glutathione. The  
440 eluted fractions were concentrated to 19 mg/ml and the buffer was exchanged to 20 mM  
441 Tris pH 8.0, 50 mM NaCl, 2.5 mM CaCl<sub>2</sub>.

442 The *iota toxin a (Ia)* gene was cloned into pET-15b or pET-21b to produce Ia with  
443 N-terminal or C-terminal His-tag, respectively. Then, Ia was overexpressed in *E. coli*  
444 BL21 Star (DE3). The transformant was cultured in super broth medium containing  
445 ampicillin (50 µg/ml) at 37°C until OD<sub>600</sub> became 1.5 and then isopropyl  
446 β-D-1-thiogalactopyranoside was added (final 0.5 mM) followed by culturing at 37°C  
447 for 16 h. The harvested cells producing each Ia were individually resuspended in lysis  
448 buffer containing 20 mM Tris pH 8.0, 300 mM NaCl, and 20 mM imidazole, and  
449 disrupted by sonication. After centrifugation at 180,000 × g for 40 min, the supernatant  
450 was loaded onto a Ni-NTA agarose column. After washing the column with lysis buffer,

451 the bound protein was eluted by a buffer containing 20 mM Tris pH 8.0, 300 mM NaCl,  
452 and 500 mM imidazole. The eluted fractions were concentrated and the buffer  
453 exchanged to that containing 20 mM Tris pH 8.0, 2 mM CaCl<sub>2</sub> to load onto an HiTrap Q  
454 HP 5 ml column (GE Healthcare). After anion exchange purification, Ia with C-terminal  
455 His tag was concentrated to 2.63 mg/ml, and the buffer was exchanged to 10 mM Tris  
456 pH 8.0 and 100 mM NaCl. Alternatively, Ia with N-terminal His-tag was incubated with  
457 0.001 (unit/μg Ia) thrombin for 16 h at room temperature. Ia, in which the N-terminal  
458 His-tag was cleaved, was loaded onto a Ni-NTA agarose column, then the flow-through  
459 and wash fractions were collected. Collected fractions were concentrated to 22 mg/ml  
460 and buffer was exchanged to 10 mM Tris pH 8.0 and 100 mM NaCl using an Amicon  
461 filter.

462 **Sample preparation for the first data set.** Ib oligomerizes poorly at neutral and acidic  
463 pH *in vitro* after cleavage of the pre-sequence with α-chymotrypsin. Ib (30 mg) was  
464 treated with 30 μg α-chymotrypsin for 1 h at room temperature. This reaction was  
465 terminated by adding phenylmethylsulphonyl fluoride (PMSF) (final 1 mM). Then, Ia  
466 with C-terminal His-tag was added to the Ib solution with three-fold molar excess and  
467 incubated 1 h at 37°C. The solution was loaded onto a Ni-NTA agarose column. We  
468 expected that the elution fraction includes Ia-bound Ib oligomer, but it was failed  
469 because they didn't coexist in high concentration of imidazole. From oligomerization  
470 screening, we found that ethanol induced oligomerization of Ib efficiently after cleavage  
471 of pre-sequence incubating with α-chymotrypsin ([Extended Data Fig. 1a](#)). Accordingly,  
472 we changed to use the ethanol oligomerization to apply the flow-through fraction  
473 including Ib. Ethanol (final 10%) and LMNG (final 0.03%) was added to 1 mg Ib in the

474 flow-through fraction and incubated at 37°C for 1 hour. In order to separate Ib oligomer  
475 from other small proteins, the solution was loaded onto 10.5 ml of Glycerol gradient  
476 bed (10–30% Glycerol, 50 mM HEPES pH 7.5, 100 mM NaCl, 1 mM CaCl<sub>2</sub>, 0.03%  
477 LMNG). After ultracentrifuge at 230,139 × g for 16 hours, fractions were collected by  
478 250 µl from bottom. Fractions showing high molecular mass by sodium dodecyl  
479 sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) were collected and buffer  
480 was exchanged to 10 mM HEPES pH 7.5, 1 mM CaCl<sub>2</sub>, and 0.01% LMNG and  
481 concentrated to 1.9 mg/ml. This sample included Ib-pore and a small amount of Ia  
482 ([Extended Data Fig. 1b, c](#)).

483 **Sample preparation for the second data set.** During sample preparation for the first  
484 data set, binding between Ia and the Ib-pore occurred and the LMNG concentration was  
485 too high for cryo-EM data collection. To solve these problems, Ib was purified with a  
486 smaller concentration of LMNG and Ia was added following Ib-pore purification. Ib (21  
487 mg) was cleaved by 1 µg α-chymotrypsin for 1 h at room temperature. This reaction  
488 was terminated by adding PMSF (final 1 mM). The solution was then treated with 10%  
489 ethanol and 0.03% LMNG for 1 h at 37°C. To separate Ib oligomer from other small  
490 proteins, the solution was loaded onto 10.5 ml of Glycerol gradient bed (10–30%  
491 Glycerol, 50 mM HEPES pH 7.5, 100 mM NaCl, 1 mM CaCl<sub>2</sub>, 0.003% LMNG). After  
492 ultracentrifugation at 230,139 × g for 16 h, 250 µl fractions were collected from the  
493 bottom. Fractions showing high molecular mass by SDS-PAGE were collected and the  
494 buffer was exchanged to 10 mM HEPES pH 7.5, 1 mM CaCl<sub>2</sub>, and 0.003% LMNG.  
495 Purified Ib oligomer was concentrated to 2.4 mg/ml, then Ia without His-tag was added  
496 with three-fold molar excess at the final step ([Extended Data Fig. 1d, e](#)).

497 **Cryo-EM imaging of the Ib-pore for the first data set.** Sample vitrification was  
498 performed using a semi-automated vitrification device (Vitrobot Mark IV, Fisher  
499 Scientific, Eindhoven, The Netherlands). A 2.6  $\mu$ l aliquot of sample solution at a  
500 concentration of 0.38 mg/ml (1/5 dilution of the sample) was applied to  
501 glow-discharged Quantifoil R1.2/1.3 in the Vitrobot at 100% humidity. The grid was  
502 then automatically blotted once from both sides with filter paper for 4.5 s blot time. The  
503 grid was then plunged into liquid ethane with no delay time. Cryo-EM imaging was  
504 performed using a Titan Krios (Fisher Scientific) operating at 300 kV acceleration  
505 voltage and equipped with a Cs corrector (CEOS, GmbH) and a direct electron detector  
506 Falcon 3 (counted mode) (Fisher Scientific) in automated data collection mode at a  
507 calibrated magnification of 1.13  $\text{\AA}/\text{pixel}$  (magnification  $\times 59,000$ ) and dose of 50  $\text{e}/\text{\AA}^2$   
508 (or 0.46  $\text{e}/\text{\AA}^2$  per frame) with total 84.09 s exposure time. The data were automatically  
509 collected using EPU software with a defocus range of -0.8 to -2.5  $\mu\text{m}$  and were  
510 fractionated 108 movie frames.

511 **Image processing of the Ib-pore for the first data set.** A total of 2,120 images were  
512 collected in the first data set. The movie frames were subsequently aligned to correct for  
513 beam-induced movement and drift using MOTIONCORR2<sup>40</sup>, and contrast transfer  
514 function (CTF) were estimated using CTFFIND4<sup>41</sup>. A total of 299,491 particle images  
515 were automatically picked using Gautomatch (<http://www.mrc-lmb.cam.ac.uk/kzhang/>)  
516 and several rounds of 2D classification and 3D classification were performed using  
517 RELION-3.0<sup>42</sup>. The best among the 3D classes in which clearly showed 7-fold  
518 rotational symmetry in Ib-pore were subjected to 3D refinement with C7 symmetry. The  
519 3D-refined structure was further CTF refined using the per-particle defocus and

520 Bayesian polishing, which improved the resolution to 2.9 Å and a B-factor of  $-46\text{ \AA}^2$

521 without the substrate Ia ([Extended Data Fig. 2a-e](#)).

522 **Image processing of the Ia-bound Ib-pore for the first data set.** While the 3D class

523 reconstruction proceeded in Ib-pore analysis, we identified another class that showed Ia

524 density on the Ib-pore (1,735 particles). The class was subjected to 3D refinement and

525 used as a template for a second 3D classification with 154,378 particles. Classes that

526 exhibited density on the Ib pore were selected for processing using 3D refinement.

527 Around the Ib pore membrane spanning stem (outside of the stem), some blurred

528 density was observed that appeared irregularly in each class; therefore, it was subtracted

529 to increase the efficiency of classification. Subtracted particles were subjected to a third

530 3D classification, and then classes that contained 15,890 particles with strong density on

531 the Ib pore were subjected to 3D refinement initially without and then with a solvent

532 mask. Finally, an Ia-bound Ib map was generated at 5.2 Å resolution ([Extended Data](#)

533 [Fig. 2f-j](#)). This result prompted us to collect a second data set using the sample while

534 raising the ratio of Ia.

535 **Cryo-EM imaging of the Ia-bound Ib-pore for the second data set.** A 2.6 µl aliquot

536 of sample solution at a concentration of 0.48 mg/ml (1/5 dilution of the sample) was

537 applied to glow-discharged Quantifoil R1.2/1.3. Other procedures including sample

538 vitrification, blotting, freezing, and Cryo-EM imaging were the same as described for

539 the first data set.

540 **Image processing of the Ia-bound Ib-pore for the second data set.** Image processing

541 was performed as described for the first data set unless otherwise stated. A total of

542 2,151 images were collected in the second data set. The movie frames were

543 subsequently aligned to correct for beam-induced movement and drift using

544 MOTIONCORR2<sup>40</sup>, and CTF were estimated using GCTF<sup>41</sup>. A total of 871,264 particle  
545 images were automatically picked using Gautomatch and several rounds of 2D  
546 classification were performed using RELION-3.0<sup>42</sup>. A total of 335,767 particles in the  
547 best class were subjected to 3D refinement, per-particle CTF refinement and Bayesian  
548 polishing. The polished particles were subjected to 3D classification using 3D  
549 refinement structure as the reference and divided into eight classes. The two classes  
550 clearly showed Ia density on the Ib-pore with long stem and short stem, respectively.  
551 These two classes were subjected to 3D refinement, per-particle CTF refinement and  
552 Bayesian polishing. The resulting 3D structure was further subjected to no-align 3D  
553 classification using a mask covering Ia. The final 3D refinement and postprocessing of  
554 two classes yielded maps with global resolution of 2.91 Å and B factor of -29 Å<sup>2</sup>  
555 (Ia-bound Ib-pore with long stem) and 2.80 Å and B factor of -10 Å<sup>2</sup> (Ia-bound Ib-pore  
556 with short stem), according to 0.143 criterion of the FSC ([Extended Data Fig. 3](#)).

557 **Model building and refinement.** An Ib-pore model with short stem was built using the  
558 first data set. An initial rigid-body fit of PA structure (PDB ID: 3J9C) was applied into  
559 the cryo-EM density map using UCSF Chimera<sup>43</sup>. The Ib-pore model was then  
560 manually built by iterative rounds of model modification in COOT<sup>44</sup> and refinement  
561 using PHENIX Real Space Refinement with secondary structure restraint<sup>45</sup>. Model  
562 building of Ib Domain 4 was not carried out because of the low resolution and lack of  
563 available crystal structure.

564 An Ia-bound Ib-pore model with short stem was built using the cryo-EM density  
565 map with partial stem from the second data set. Following initial model building and  
566 rigid-body fit using the Ib-pore model from the first data and the crystallographic

567 structure of Ia (PDB ID: 1GIQ), they were manually modified and refined by iterative  
568 rounds of COOT and PHENIX as for model building of the Ib-pore with short stem.

569 Furthermore, an Ia-bound Ib-pore model with long stem was built using the  
570 cryo-EM density map with intact stem from the second data set. Following rigid-body  
571 fit of the Ib-pore model with short stem, the intact long stem was manually built using  
572 COOT and they were modified and refined by iterative rounds of COOT and PHENIX.

573 Although the density of Ia (C-terminal domain) was insufficient for *de novo* model  
574 building, the cryo-EM density maps with short and long stem showed that the Ia and Ib  
575 conformations of the two maps were the same. Therefore, rigid-body fitting of the Ia  
576 model from the Ia-bound Ib-pore with long stem was finally carried out using UCSF  
577 Chimera. Then, the final Ia-bound Ib-pore with long stem model was refined using  
578 PHENIX Real Space Refinement with secondary structure restraint.

579 In the manuscript, we discussed Ia binding using the Ia-bound Ib-pore model with  
580 short stem because the cryo-EM density of Ia with short stem was clearer than that with  
581 long stem. The structures with long and short stem are the same except for stem length.  
582 The difference of cryo-EM density of Ia was likely attributed to the difference of  
583 particle number (short:135,359 and long: 62,940).

584 All figures were prepared using PyMOL (<https://pymol.org/2/>), UCSF Chimera, and  
585 UCSF ChimeraX<sup>46</sup>.

586

## 587 **Data availability**

588 Cryo-EM maps and coordinates were deposited in the Electron Microscopy Data Bank  
589 and Protein Data Bank with the accession codes EMDB-0721 and PDB 6KLX for the

590 Ib-pore, EMDB-0713 and PDB 6KLO for the Ia-bound Ib-pore with short stem, and  
591 EMDB-0720 and PDB 6KLW for the Ia-bound Ib-pore with long stem.

592

593 **References**

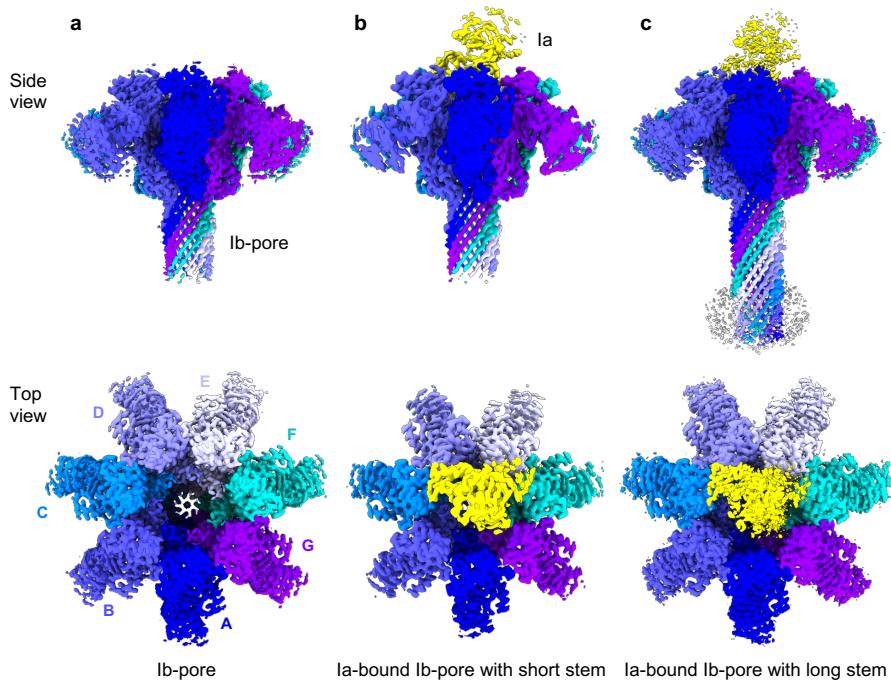
594 40 Zheng, S. Q. *et al.* MotionCor2: anisotropic correction of beam-induced motion  
595 for improved cryo-electron microscopy. *Nat Methods* **14**, 331-332 (2017).

596 41 Zhang, K. Gctf: Real-time CTF determination and correction. *J Struct Biol* **193**,  
597 1-12 (2016).

598 42 Zivanov, J. *et al.* New tools for automated high-resolution cryo-EM structure  
599 determination in RELION-3. *Elife* **7**, e42166 (2018).

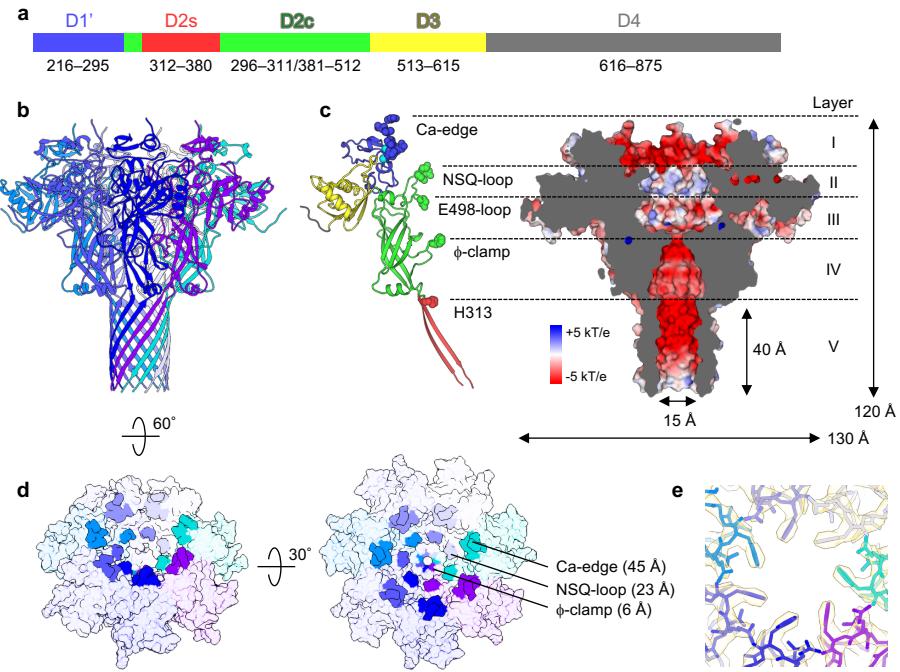
600 43 Pettersen, E. F. *et al.* UCSF Chimera--a visualization system for exploratory  
601 research and analysis. *J Comput Chem* **25**, 1605-1612 (2004).

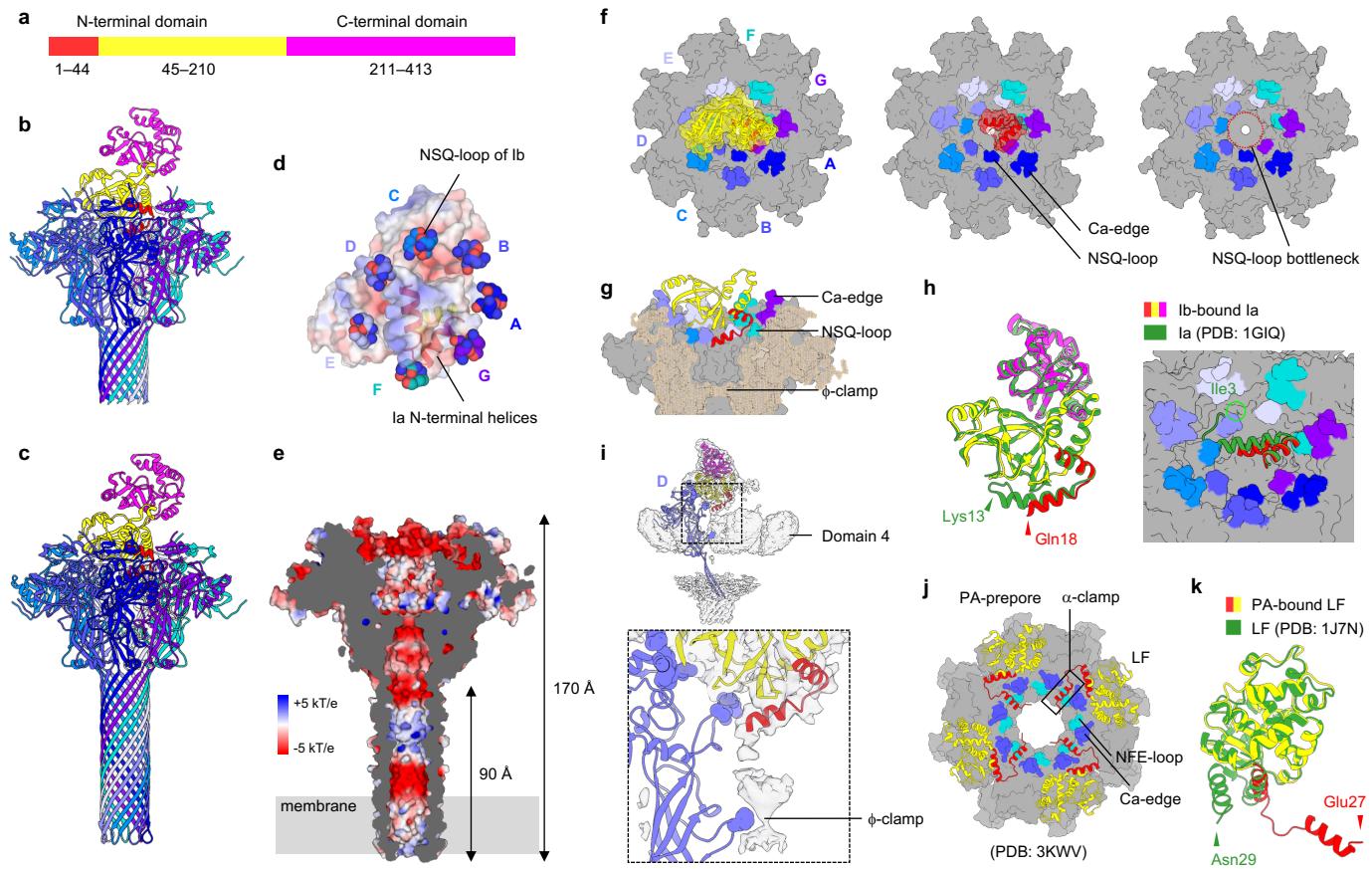
602 44 Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics.  
603 *Acta Crystallogr D Biol Crystallogr* **60**, 2126-2132 (2004).


604 45 Afonine, P. V. *et al.* Real-space refinement in PHENIX for cryo-EM and  
605 crystallography. *Acta Crystallogr D Struct Biol* **74**, 531-544 (2018).

606 46 Goddard, T. D. *et al.* UCSF ChimeraX: Meeting modern challenges in  
607 visualization and analysis. *Protein Sci* **27**, 14-25 (2018).

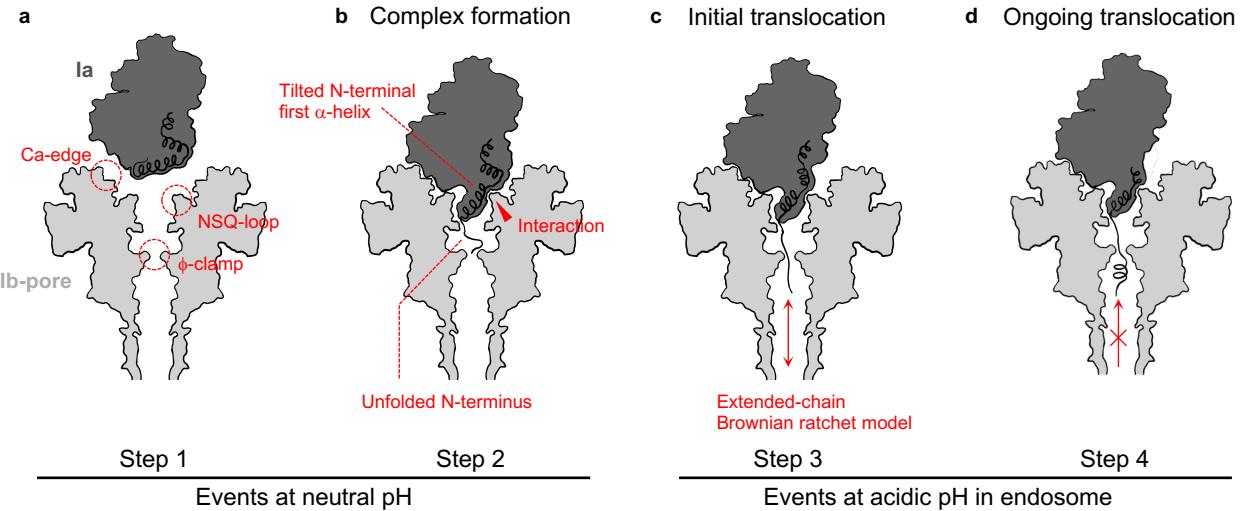
608


609


610



**Figure 1 | Cryo-EM density maps.**


**a**, Ib-pore with short stem. **b**, Ia-bound Ib-pore with short stem. **c**, Ia-bound Ib-pore with long stem. Ib protomers are shown in different colours.





**Figure 3 | Atomic model of the Ia-bound Ib-pore.**

**a**, Ia domain structure. **b,c** Ia-bound Ib-pore overall structures with short and long stems. **d**, Ia, bottom view. **e**, Cut-away surface electrostatic potential at pH 7.0. **f**, Top views. For clarity, 1–210 (left) and 1–44 (center) regions of Ia are shown. Ia is not shown (right). **g**, Cut-away view. **h**, Unfolding of Ia N-terminus. Ib-bound Ia and Ia crystal structure are superimposed. **i**, Extra map leading from the N-terminal helix to  $\phi$ -clamp. Map within 3 Å of the Ib model is subtracted from the original map. **j**, LF-bound PA-prepore structure. **k**, PA-bound LF and LF crystal structure superposition.



**Figure 4 | Translocation model of Ia via Ib-pore.**

Ia (black) and Ib-pore (grey). Arrows indicate possible Ia movement direction. **a**, Ia and Ib-pore before complexation. **b**, Ia-bound Ib-pore complex solved herein by single particle analysis. Ib-pore binding induces tilts and partial unfolding of the first N-terminal Ia  $\alpha$ -helix. **c**, Endosomal acidic conditions facilitate unfolded N-terminal tip entry into the Ib-pore  $\phi$ -clamp followed by extended-chain Brownian ratchet model-mediated translocation. **d**, Expected mechanism to prevent Ia retro-translocation by  $\alpha$ -helix formation in the stem at neutral pH in the trans-side.