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Abstract

Background. Computational models of ionic channels represent the building blocks of
conductance-based, biologically inspired models of neurons and neural networks. Ionic
channels are still widely modelled by means of the formalism developed by the seminal
work of Hodgkin and Huxley, although the electrophysiological features of the channels

are currently known to be better fitted by means of kinetic (Markov-type) models.

Objective. The present study is aimed at showing why kinetic, simplified models are
better suited to model ionic channels compared to Hodgkin and Huxley models, and

how the manual optimization process is rationally carried out in practice for these two

kinds of models.

Methods. Previously published experimental data on macroscopic currents of an
illustrative ionic channel (Nav1.5) are exploited to develop a step by step optimization of
the two models in close comparison. The proposed kinetic model is a simplified one,

consisting of five states and ten transitions.

Results. A conflicting practical limitation is recognized for the Hodgkin and Huxley
model, which only supplies one parameter to model two distinct electrophysiological
behaviours (namely the steady-state availability and the recovery from inactivation). In

addition, a step by step procedure is provided to correctly optimize the kinetic model.

Conclusion. Simplified kinetic models are at the moment the best option to closely
approximate the known complexity of the ionic channel macroscopic currents. Their
optimization is achievable by means of a rationally guided procedure, and it results in
models with computational burdens comparable with those from Hodgkin and Huxley

models.
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Introduction

Nowadays biologically inspired neural simulations, sustained by both escalating
computational power and more detailed comprehension of the nervous system
physiology (Churchland and Sejnowski 2016), are becoming increasingly popular and
appreciated, despite their concurrent boosting complexity (Hartveit et al. 2018; Arkhipov
et al. 2018; Cavarretta et al. 2018; Markram et al. 2015; Kozlov et al. 2014; Traub et al.
2005).

At the core of those simulations, multi-compartmental, conductance-based models of
single neural cells with variable degree of morphological and biophysical details can be
retrieved. The modelled single cells in turn mainly and directly derive their

electrophysiological properties (that is, the fundamentals of the entire modelled neural
networks) from the kinetics of the macroscopic currents of different kinds of voltage-

gated ionic channels (Hille 1992).

Phenomenological models of ionic channels, therefore, constitute the building blocks of

biologically inspired neuronal cells and neural networks.

Current electrophysiological techniques are able to provide huge amount of data with
unprecedented details on voltage-gated ionic channels. Developed as patch-clamp
methods (Neher and Sakmann 1976), when used in whole-cell configuration, these
techniques are most suitable for recording the macroscopic currents of ionic channels,

greatly improving our comprehension of the kinetic features of the channels.

Yet, a gap in integrating the improved access to functional properties of ionic channels
into whole-cell models has been for long recognized (Cannon and D’Alessandro 2000;

Patlak 1991).

Until recently the phenomenological behaviour of the voltage-gated ionic channels has
been mainly modelled according to the seminal work of Hodgkin and Huxley (Hodgkin
and Huxley 1952a). The availability of analytical solutions for Hodgkin and Huxley (HH)
equations, which can be directly fitted to the experimental results, makes the HH
formalism a gold standard for ionic channels modelling. In addition, the light
computational load of HH models makes them particularly well suited to be
implemented in biologically inspired neural networks of increasing complexity. However,
the HH formalism turned out to carry theoretical and practical limitations in accurately

reproducing the increasing complexity of the electrophysiological behaviour of ionic
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channels (Bezanilla 2008; Maurice et al. 2004; Meunier and Segev 2002; Strassberg and
DeFelice 1993; Patlak 1991).

On the other hand, Markov-type kinetic models, characterized by a set of not
independent states with transitions between states governed by barrier-style equations,
proved capable to approximate with higher accuracy the known complexity of the
voltage-gated ionic channels (Destexhe and Huguenard 2010; Borg-Graham 1999;
Destexhe et al. 1994; Kuo and Bean 1994). Markov-type kinetic models can also be
designed to reproduce the behavior of a single channel protein, with each state
corresponding to a specific physical conformation of the protein. These extremely
detailed models, however, needs a huge number of states (e.g., Botjesson and Elinder
2008), resulting in a heavy computational load, which makes them unsuitable for

implementation in neural networks.

Thus, simplified kinetic models have been proposed (Destexhe and Huguenard 2010;
Destexhe et al. 1994) to provide efficient modelling of ion-channels behaviour, by
overcoming the limitations of the HH formalism, while keeping the computational
burden sufficiently low to make them suitable for implementation in biologically inspired

neural networks.

They are built with a reduced number of states and addressed to deterministically
reproduce the macroscopic current kinetics of ionic channels, rather than their

conformational changes.

In this work, a point-by-point comparison between HH and kinetic models of an
illustrative human sodium channel (Nav1.5) is performed, with the aim of clarifying the
process of optimization of a simplified kinetic model in close relationship with a
correspondent HH model. The study unveils the limits of HH models and suggests
simplified kinetic models as an essential tool to 7 silico approximate the known
complexity of the ion channels kinetics. A critical limitation of HH formalism resulted
from the simultaneous optimization of the steady-state availability and the recovery from
fast inactivation, which led to a flawed modelling of the electrophysiological features of

the channel.
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Methods

Experimental data of Navl.5 (Zhang et al. 2013)

We chose to simulate the electrophysiological behaviour of Nay1.5 because quite
comprehensive experimental data for this channel have been already published and made

available to be shared and reused under a Creative Common license (Zhang et al. 2013).

Experimental data on Nay1.5 macroscopic currents were obtained by heterologously
expressing the a-subunit of the ionic channel in a mammalian cell line (Human

Embrionic Kidney 293 cells). No B-subunits were co-expressed in the study and the
electrophysiological experiments were conducted by means of the whole-cell patch-

clamp method at room temperature (Zhang et al. 2013).

Nay1.5 is the isoform of the sodium channel a-subunit typically expressed in the heart,
where it is mainly involved in the cardiac rythmogenesis, as revealed by the rare channel
mutations responsible of severe genetic arrythmiae (Southan et al. 2016; Zhang et al.
2013). But Nav1.5 were also detected in different structures of the brain (Wu et al. 2002),

where they clustered at a high density in the neuronal processes, mainly axons.

The HH model

According to the original formulation of Hodgkin and Huxley (Hodgkin and Huxley
1952a), the HH model is based on a membrane equation describing three ionic currents

in an isopotential compartment:

av

C -
m ae

=—-g.(V—E) — gnaWV)V = Eng) — g (V)(V — Ex) (1a)

where C, is the membrane capacitance, " is the membrane potential, g, gv, and gk are
the membrane conductances for leak currents, Na" and K* currents respectively, Er, En,

and Ekx are their respective reversal potentials.

Hodgkin and Huxley hypothesized that ionic currents result from the assembly of several
independent gating (or carrier) particles which must occupy a given position in the
membrane to allow the ions to flow (Hodgkin and Huxley 1952a). Each gating particle
can be on either side of the membrane and bears a net electronic charge such that the

membrane potential can switch its position from the inside to the outside or vice-versa.
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The transition from these two positions is therefore voltage-dependent, according to the

diagram:

0 (V)
(outside) =—= (inside) ,

Br(V)

where o and B are respectively the forward and backward rate constants for the
transition from the outside to the inside position in the membrane. If 7 is defined as the
fraction of particle in the inside position, and (1-7) as the fraction outside the membrane,

the first-order kinetic equation can be obtained:

dm

== a, (V)1 = m) = B (V)m (15)

Assuming that particles must occupy the inside position to conduct ions, then the
conductance must be proportional to some function of 7. In the case of Na" current in
the squid giant axon, Hodgkin and Huxley (1952a) found that its nonlinear behavior, its
delayed activation and the sigmoidal rising phase were best fit by assuming the

conductance proportional to the product of two variables (Hodgkin and Huxley 1952a):

INa = gNamgh (19

where gyq is the maximal value of the conductance, and 7 and / represent the fraction
of two different types of gating particles. The interpretation is that the assembly of three
gating particles of type 7 and one of type /4 is required for Na" ions to flow through the

membrane. These particles operate independently of each other, leading to the 7’5 form.

Long after the work of Hodgkin and Huxley, it was established that ionic currents are
brought about by the opening and closing of ion channels, and the carrier particles were
reinterpreted as gates inside the pore of the channel. Thus, the reinterpretation of
Hodgkin and Huxley’s hypothesis was that the pore of the channel is controlled by four
internal gates, opening independently of each other, and that all four gates must be open

in order for the channel to conduct ions.

The rate constant ¢(1”) and (1) of m are such that depolatization promotes opening the
gate, a process called activation. On the other hand, the rate constants of / are such that
depolarization promotes closing the gate (and therefore closing of the entire channel
because all gates must be open for the channel to conduct ions), a process called

inactivation.
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Thus, the set of differential equations (HH equations) able to explain the Na* cutrent

characteristics is made by the (1b) and the following one:

& — @, (V)(1 = h) = By(Vh (1d)

dat

The rate constants o, £, o and [, were estimated by fitting empirical functions of

voltage to the experimental data (Hodgkin and Huxley, 1952a):

0.1-(V+25)
Am = ~Wiz5) (19)
e 10 -1
w
B =4-er (19
w
ap = 0.07 -ez20 (1g)
_ 1
.Bh - (V+30) (1h>
1+e 10

These functions were estimated at a temperature of 6°C and the voltage axis was

reversed in polarity (voltage values were given with respect to the resting membrane

potential).

By adopting the modern convention on voltage axis orientation and a resting voltage of

-65 mV, the HH equations can be redrawn:

-(v-(v1/2)) ,
=4 - — 2
U (V_ (V1/z)) (11
e k -1
(V‘(Vl/Z))
Bmn=Ae K (1)
(V‘(Vl/Z))
ap=A4-e «k (1k)
_ A
.Bh - (V_(V1/2)) (1D
1+e k

with the following parameters of the forward and backward rate constants able to

replicate the original Hodgkin and Huxley (1952a) experimental values (Fig 1A-B):
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O Bm 243 Bn

A 0.1 4 0.07 1
Vi -40 -65 -65 -35
k 10 -18 -20 -10

The HH model is often written in an equivalent form, more convenient to fit the

experimental data:

= e Mme () —m) (1m)
= he) =) (1n)
where
e = e 1o
Tm = m (Ip)
™ = e &

Here, M, is the steady-state activation and T,y is the activation time constant of Na*

current (Fig 1C and Fig 1E). In the case of A, hy, and Tj, are steady-state inactivation and

inactivation time constant, respectively (Fig 1D and Fig 1F).

The kinetic model

The kinetic model, derived by a previously developed one (Balbi et al. 2017), has a five-

state diagram, with one open, two closed and two inactivated states (Fig 2).

The second inactivated state (I12) is considered as a deeper inactivated state than 11, only

connected to I1.

All transitions between two consecutive states are considered reversible, with one
exception (see below), and the paired forward and backward transitions were computed

by equations carrying numerical values (coefficients) of the same order of magnitude.
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The only exception was the O1 to 11 transition, which could be considered irreversible
since its backward transition (I1 to O1) was characterized by an extremely small rate as

compared to the other transitions’ ones.

The dynamics of the fractions of channels being in the five different states (later referred
to as the “states”, for the sake of simplicity) are described by the following set of coupled

ordinary differential equations:

% = [1C1 *I1 + C2C1 * C2 — (C1C2 + C1I1) * C1 (2a)

% = C1C2 +C1+ 01C2 = 01 — (C2C1 + C201) * C2 (2b)

% = (201 +C2 + 1101 =11 — (01C2 + 01I1) * 01 (20)

% =[2[11 %12+ C1I1+C1+ 011101 — (I1C1 + 1112 + [101) = [1 (24
‘%2 =112 %1 — 1211 % 2 (2¢)

Moreover, the states obey the law of mass conservation:

O1+I11+12+Cl+C2=1 @9

The ionic channel current is governed by Ohm's law, wherein channel conductance is
proportional to the fraction of channels in the open states with the sodium maximal

conductance being the proportionality coefficient, according to the following equation:

INa(t) = 09Na " o1(t) - (V(¢) — ENa) (22

whete gy, is the sodium maximal conductance, O1 is the fraction of channels in the
open states (bounded between 0 and 1) and En, is the reversal potential of the sodium

ion.

Since the studies by Hodgkin and Huxley (Hodgkin and Huxley 1952a), the voltage
dependence of the rate transitions has been mathematically modelled as an exponential
function, or as a sigmoid, or as a combined linear and exponential function (Figg 1A-B).
In other cases, according to the theoretical approach of the thermodynamic theory
(Destexhe et al. 1994; Borg-Graham 1999), a sigmoid curve with minimum and

maximum asymptotes has been adopted. It was described by the following equation

V-v{, -1
Ay = Thin + Tnax * [1 + exp <—kw )] (2h)
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where @ is the transition between two states, Ty, and Trgyare the two asymptotes, Vi,

the hemiactivation voltage, and k® the slope which describes the voltage sensitivity of
the transition rate.
In a previous work (Balbi et al. 2017) we found that the most suitable general equation to
be adopted in all the transitions was a sigmoidal one. For most of the transitions, the
minimum asymptote was conveniently set to zero, while in few cases, notably for the O1
to I1 transition, it needed a non-zero value. Furthermore, to accurately accommodate the
time course of the current-voltage curves, it was found appropriate to slightly modify the
sigmoid, adding a bending at the beginning of the rising slope of the curve (Figg 3A-I).
In this way, the modified sigmoid could be mathematically described as the combination
of two sigmoids with opposite slope: the first one describing the transition rate for more
polarized voltages and carrying a positive slope factor, the second one providing the
transition rate values for more depolarized voltages and carrying a negative slope factor.
As a result, the general equation adopted to describe this double sigmoid was set as

w w
V-V V—Vdep>

-1
follows:A4,, = B,‘l‘)yp 11+ e< *hyp ) + Bé"ep 1+ e< kep

-1

(20)

where By, Vi), and kp),, are, respectively, the magnitude, the hemiactivation and the
slope factor, of the voltage dependence of the transition rate @ in the hyperpolarized
region, and Bg,y,, Vie, and kg, are the corresponding values in the depolarized region.
With this formalism, the slope factor (£) assumes a positive value in the hyperpolarized
region and a negative value in the depolarized one. In addition, when the transition rate is

better described by a simple sigmoid, which is the case in most of the transitions, one of

the two terms of the general equation can be conveniently dropped.

The electrophysiological protocols

Activation curves and normalized conductance-voltage dependence. Voltage-
clamp intensity-voltage (activation) curves are obtained by sequentially voltage clamping

the channel in steps of 5 or 10 mV from a resting value (Fig 4A).

Normalized conductance-voltage relationship is obtained by converting the current peak

values into the respective conductance values, according to the equation (3a),
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G=1/(V-Exy) (33)
where G is the conductance, I is the peak current, I is the membrane voltage, En, is the
sodium equilibrium potential, and "-E, is referred to as the driving force. The so
evaluated conductance is plotted against voltage clamp values, and the conductance-
voltage curves (Fig 6A) are usually fitted to a Boltzmann equation (3b):

v-vi\ —1

G/Gpax =1+ e T (3b)

where G, is the maximum conductance, 17,2 is the half maximal voltage and £ is the

slope factor.

For each single activation curve, the time constants of activation (from the onset of the
current to the peak) and inactivation (decay from activation, from the peak to the steady-
state) are calculated. According to the work by Hodgkin and Huxley (1952a), the time
constants of activation and inactivation are derived by fitting the entire simulated curve

to the following equation:

-ty ot
}’=A*(1—efm> * eh (3¢

where 7, and 7 are the time constant of activation and inactivation, respectively. In this
case, the activation segment of the curve is fitted by a third power exponential, while the

inactivation (decay) one by a simple exponential.

Deactivation curves. The so-called tail currents are evoked by a quick repolarization
after a brief depolarizing pulse (Fig 4B). The preliminary brief depolarizing pulse causes a
(maximal) fraction of channels to open, and the following depolarization is administered
before inactivation is fully deployed. Thus, the protocol is designed to sample the return
of the fraction of  gating particles to low values during repolarization, in terms of HH
formalism, or, in terms of kinetic model, to sample the transition between the open and
closed states, a process named deactivation. It is worth noting that deactivation differs

from inactivation, as the latter defines the transition between open and inactivated states.
By varying the voltage of the repolarizing pulse, a series of curves of tail currents are
obtained which can be fitted to the mono-exponential equation (3d)

-t

y=Axet (3d)
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Voltage dependence of (normalized) current during fast inactivation (steady-state
availability). In steady-state availability protocols (Fig 4C), conditioning pulses of
variable voltage and long duration are administered to reach a steady-state condition,
before applying a depolarizing test stimulus of fixed amplitude. The conditioning
stimulus is able to set a fraction of channels into a steady inactivated state, and the
following depolarizing test stimulus samples the fraction of channels available to open. It
is worth mentioning that the inactivation occurs even before the activation threshold is
reached. In other words, depolarizing stimuli below the activation threshold are able to
move a fraction of channels from closed to inactivated states, without passing through
the open state. The normalized current peaks following the test stimuli are plotted
against the voltage of the conditioning stimuli, and the resulting curve is fitted to the
Boltzmann equation (3e)

v-vqiy 1

e =A+(1—A)-(1+e % (30)

where [ is the peak current, [,.. is the maximal peak current, A4 is the fraction of non-
inactivating channels, 177/, is the voltage at which half of the channels are inactivated, and

# is the slope factor.

Recovery from fast inactivation (repriming). The recovery from inactivation (or
repriming) is sampled by a depolarizing (conditioning) pulse (P1) followed by a variable
time interval (from tenths to hundreds of milliseconds, in the case of Nay1.5; Zhang et
al. 2013) of repolarization, and then by a second depolarizing pulse (P2), which tests the
fraction of channels that recovered from the inactivation (Fig 4D). A normalized
intensity-time curve is obtained by plotting the current peak of the test stimuli (compared
to the pre-conditioning stimulus: P2/P1) against the duration of the repolarization. The

derived curve can be fitted to a single exponential function:

e = A (1= %) 69

Development of slow inactivation. An initial depolarizing conditioning pulse (P1, -20

mV) of increasing duration (At, from 10 ms to 10 s) is followed by a brief (30 ms)
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repolarizing pulse and then by a second depolarizing test impulse (P2), to probe the
fraction of non-inactivated, available channels (Fig 4E).

For short durations, the conditioning pulse initially is able to put a fraction of the
channels into the (fast) inactivation. This inactivation features fast kinetics and, in fact,
the short duration of the repolarizing pulse is long enough for the channels to recover
into non-inactivated states; the second test pulse, then, evokes a full amplitude current.
However, for increasing durations of the conditioning pulse P1, the test pulse P2 evokes
progressively smaller currents. This phenomenon is commonly interpreted by admitting
that progressively longer conditioning tests are able to move a fraction of the channels
into a deeper inactivated state with slower kinetics (both for entry and recovery), thus

making these channels not available to be opened by the probing test pulse.

The obtained curve is fitted to a single exponential equation (14):

-t

L/l =A; +A; xev 3g)

Recovery from slow inactivation. Similarly to the fast inactivation, also the recovery
from slow inactivation is sampled by means of a double pulse protocol (Fig 4D), in
which the first depolarizing conditioning pulse (P1) is followed by a repolarizing time
interval of increasing duration (At, from 0.1 s to 10 s), followed by a short probing
depolarization (P2). The difference with the fast inactivation protocol is that P1 is much

longer (1000 ms, compared to 100 ms).

The obtained curve is fitted to a double exponential function (15):

-t -t
[/ Inax = Ay (1 - eT1> + A, (1 — et ) (3h)

where A4; and A, are proportional coefficients, #is the time, 7; and 7; are the fast and

slow recovery time constants, respectively.

Simulations of the experimental procedure in NEURON

All simulated experiments were performed by means of NEURON version 7.6
simulation environment (Carnevale and Hines 20006). The equations of the channel

models were written and solved directly using the NMODL language of NEURON,


https://doi.org/10.1101/720862
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720862; this version posted July 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has grdzted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

which is a derivative of the MODL description language of the SCoP package (Kohn
1989).

It is worth observing that in NMODL different setups and methods can be used to solve
the models. For example, in the DERIVATIVE block the differential equations are
actually specified while in the KINETIC block they don’t need to be written, but just the
chemical reactions are specified. This is very convenient when the model contains several
reactions, although it slows down the simulations. In the present study we preferred to
use the same block (DERIVATIVE block) for both models, and the same numerical

method to solve them, in order to achieve a reliable comparison.

All virtual experiments were performed on a one-compartmental cylindrical 'soma’ 50
pum long with a diameter of 63.66 um, so that the membrane area was set to 10'000 pm®.

The membrane capacitance was set to 1 pF/cm?” (Gentet et al. 2000). The maximal
conductance density for each voltage-gated sodium channel isomer inserted into the
soma was atbitrarily set to 0.1 S/cm? and the resulting ionic current density was
measured in mA/cm® The capacitive currents were subtracted from the total current in
all the simulations. The time for single integration step (dt) was set to 0.025 ms for all

simulations, but for the running time tests, where the dt was set to 0.001.

The thermal sensitivity of any biological process can be described by its temperature
coefficient (QQ10). Classically, it is defined as the ratio of a reaction rate measured at two
temperatures 10 degrees apart (Bélehradek 1935). In ion channel research, instead of
reaction rates, current amplitudes or time constants are often used to calculate Q10 value.
A single value of Q10 is typically reported to indicate the temperature dependence of a
channel. In the present study, at every step the rate constants of each transition were

multiplied by the temperature coefficient, Q10, calculated as follows:

T°—20°)

Q1o = 3( 10° (3i)

Original NEURON source code was developed to simulate the protocols needed to yield

the electrophysiological features of the channels.

The source code along with the virtual experimental procedures is available as a

ModelDB (McDougal et al. 2017) entry (access number: 257747).
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The simulations were performed on an iMac desktop computer running a MacOS
version 10.14.3 (™ and © 1983-2017, Apple Inc, Cupertino, CA, USA) and on a Tuxedo
laptop with processor Intel® Core™ i7-7700HQ and 16GB of RAM running Ubuntu
18.04.2 LTS.

Fitting the experimental data with the models

For modellers, the process of fitting the experimental data can sensibly differ according
to the availability of raw electrophysiological data (the single electrophysiological curves

of different protocols).

When raw data are available, for the HH models it is possible to apply the procedure
devised by Hodgkin and Huxley (Hodgkin and Huxley 1952a). In this case, the Mg, Ty,
he and Ty, variables can be directly derived from the single cutves of activation, with
some assumptions, and the rate constants o, 3, o and P, can be calculated by
rearranging the equations (10) to (1r). Afterwards, each single rate constant can be
plotted against the voltage and fitted to the original HH expressions (1i) to (11). Finally, a
direct superimposition of real and simulated traces provides the best evidence of the

good fit of the model to the experimental data.

However, modellers are rarely provided with raw electrophysiological data, so in most
cases it is not possible to directly detive the M, Tpy, Ao and Ty, variables. In these cases,
channels modelling relies on indirect data about the kinetics of the channels, such as the
normalized conductance-voltage relationship, the steady-state availability curve, the
repriming curve, etc. By empirically (manually) tuning the parameters of the expressions
(1i) to (11), the best approximation is searched for, in order to reproduce the parameters
of the equations (3b) to (3h), which carry substantial information on the macroscopic

current kinetics of the channel.

The same procedure is also usually performed for Markov-type kinetic models and has

been performed in the present study as well.

Fitting procedure in NEURON

The developed code automatically supplied the appropriate graphics, which replicated the

macroscopic currents and the electrophysiological relationships found in the
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experimental studies. A both empirical and quantitative curve fitting method was then
adopted to reconcile experimental and modelled data. Firstly, the curves and relationships
obtained by the simulations were compared by visual inspection to the experimental
ones. Then, the modelled curves were fitted to the equations (3b) to (3h), as appropriate,
by using a nonlinear least-squares minimization method available in NEURON (Multiple
Run Fitter subroutine), which, in turn, derives from the PRAXIS (principal axis) method
described by Brent (Brent 1976). Finally, the parameters of the equations (3b) to (3h) of
the modelled curves were compared to the experimental ones (Table 1). The agreement
of the modelled data with the experimental ones was considered acceptable when the

formers were within two standard deviations of the lattet.

Implementation of the channel models in a neuron model

In order to test the suitability of both the kinetic and the HH models to be implemented
in cell models, to compare the features of the spikes they provides, and to detect
differences in running time and computational load, we inserted the developed channel
models in a previously published cell model (Dodge and Cooley 1973) and performed a

series of simulations with voltage-clamp and current stimulation.

The previously published cell model was downloaded from the ModelDB (McDougal et
al. 2017) repository (accessed on February 15" 2019), where it is accessible with the

accession number: 3805.
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Results

Direct comparison of all electrophysiological features of both HH and kinetic model
with the experimental data (by Zhang et al. 2013) is provided in Table 1. The displayed

parameters supply the best fit to the real data for both models.

The sequential procedures adopted to achieve the best fitting parameters are described in

the following paragraphs.

Activation

HH model. At the resting polarized potential, the rate constants of inactivation ¢ and

B, (Fig 1B) make the value of 4 close to 1 (that is, no inactivation: Fig 1D). However, the
channel is not conducting, as the rate constants of activation make the value of 7 equal
to 0 (Fig 1A and Fig 1C). By stepping the potential to more depolarized values, 7 quickly
reaches non-zero values and the channel starts conducting ions. At the same time, due to
the predominance of backward rate constant of inactivation at depolarized values (Fig
1B), 4 begins to decrease till to a value equal to 0 (inactivation sets in, Fig 1D). However,
due to the slower development of inactivation compared to the activation (smaller values
of rate constants of » compared to those of 7), inactivation sets in with a delay, which is

responsible of the peak of sodium current during activation curves.

The HH original equations for sodium channel (Table 2a, Fig 5B), when used in
simulations at 23-24°C (the usual experimental room temperatute) and corrected by a
Q10 temperature coefficient equal to 3 (Hodgkin and Huxley 1952a), brought extremely
fast and unrealistic activation and inactivation time constants for human sodium channels
(Fig 5C). By reducing the amplitude of the rate constants of 7 and 4, as well as by slightly
modifying the voltages and slopes parameters of the inactivation rate constants (Table
2b), it is possible to reach an overall initially acceptable fitting for the intensity-voltage

curves of Nay1.5 (Fig 5D).

In the process of empirical fitting, the reduction of both the time constants of activation
(time to the peak of activation) and inactivation (decay from activation) was mainly
achieved by decreasing the rate constants amplitudes, while the approximately correct
sequence of activation and inactivation across the voltages clamp was achieved by
shifting the 17,2 of the backward rate constant of inactivation and by modifying the

slopes of the rate constants of inactivation (Table 2b).
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The voltage dependence of normalized conductance in Nay1.5 has flat or slightly
decreasing values along its course for the most depolarized values (starting from 0 mV,
approximatively; Fig 6A), while the corresponding values obtained with the just modified

HH equations displayed an increasing course (Fig 6C).

The activation-voltage relationship is mainly sustained by the reciprocal interaction of

voltage dependence of @, and f3,, which gives rise to the voltage dependence of 7., as

depicted on Fig 1C.

However, the voltage dependence of the activation peak can also be modified by acting

on the rate constants of inactivation, and the correct (experimental) course of activation
can be better approximated by modifying the slope and increasing the amplitude of £,
which carry out a smaller value of 4 (that is, greater inactivation) for more depolarized
voltages. In addition, after tuning the parameters of &, and £, (Table 2¢), a modelled

curve much more similar to the experimental one can be obtained (Fig 0E; 177,,=34.7

mV, £=-7.2).

The activation and inactivation time constants (Fig 7A-F) were similarly fitted in the
above passages by tuning the same parameters. Both were derived from the equation
(30): the former was computed at different voltages on segments from the onset to the
activation peak, while the latter on segments from the activation peak to the resting
potential (decay from activation). It is worth mentioning here that the decay from

activation is a first measure of inactivation.

Kinetic model. The transition rates of the kinetic model were set in order to make all
channels to be in the C1 state at polarized resting potential (Fig 3A-B; Table 3). By
increasingly stepping the voltage towards more depolarized values, a progressively
increasing fraction of channels moves to open conducting state (O1) through the second
closed state (C2), due to increasing values of the transition rates between C1, C2 and O1.
The forward and backward transition rates between C1 and C2, and between C2 and O1
determine the fraction of channels in O1 state and the time needed to reach this
condition. However, since the O1 to I1 transition rate always has a non-zero value and
the I1 to O1 transition rate is much smaller than the O1 to I1 transition rate, the fraction
of channels in O1 state moves to I1 (that is, inactivates), with a velocity set by the O1 to
11 transition. The O1 to 11 transition, indeed, can be considered irreversible and the

channel does not rest in O1, but moves to the inactivated state(s). With this kinetic
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model, the inactivated state follows the open state and is not independent from it, which
is a behavior in agreement with real data (Bezanilla 2008).

The proposed kinetic model features a multi-step activation sequence, according to the
experimental data (Patlak 1991), based on two closed states before the open state. Two
closed states, indeed, are the minimum number of states able to replicate the activation
curves and the voltage-dependence of normalized conductance (Fig 5F, Fig 6G, and
Table 3). A too small, indeed, and unrealistic progression of the activation time constant
results by adopting a single closed state (Fig 5E).

The open-to-inactivated transition (O111) contributes to the normalized conductance-

voltage relationship and mainly sets the decay from activation.

Deactivation

HH model. Tail currents (Fig 8A), evoked by a brisk repolarization after a very short
depolarization pulse (before substantial channel inactivation), can be fitted to a
monoexponential function (3d), whose time constant reduces progressively for more
hyperpolarized test stimuli (Fig 7G). They are mainly modelled by the return of » at low
values during repolarization. Following the previous adjustment of HH model
parameters (Table 2c), the simulated curves exhibit too long time constants for more
hyperpolarized test stimuli (Fig 8B). By varying the parameters of 3, (Table 2d), which is
responsible for low values of 7« at hyperpolarized values, the model is able to reach
fairly similar time constants in the hyperpolarized range (Fig 8C). However, due to

changes in the activation-voltage relationship induced by the S, variations, slight

adaptations of @, and f, parameters (Table 2d) are needed to achieve again an acceptable

fitting of the activation relationship (177,,=34.4 mV, £=-7.2).

Kinetic model. The transition from the open (O1) to the closed (C2) state (Fig 3D) is
mainly responsible for the tail currents in the kinetic model. In particular, a fair
approximation of experimental values (Fig 8D and 7I) can be reached by finely tuning
the more hyperpolarized half of the transition curve. In that range, the prevalent fraction

of closed channels is assured by the lower values of the corresponding C201 transition

(Fig 3C).
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Fast inactivation

HH model. The voltage dependence of normalized current during fast inactivation
(steady-state availability) represents the fraction of ionic channels not inactivated (i.e.,
available to activation), at different steady-state voltages. It is mainly given by the
interplay between o and /3, which carties out /s values close to 1 at hyperpolatized
voltages and close to 0 at depolarized voltages, as depicted in Fig 1B and Fig 1D.
Experimental values of steady-state availability in Nav1.5 are depicted in Fig 6B. The HH
parameters values set until now (Table 2d) reproduce an availability curve with fairly
correct morphology (Fig 6D), although shifted towards too depolarized values
(I1/2=84.1 mV), and too slanted (£=7.1). In order to shift the curve towards more
hyperpolarized value (i.e. inactivation develops earlier, at more hyperpolarized voltages),
it can be useful to reduce the amplitude of @, while maintaining the value of £
unchanged, in order to not modify the reached good approximation of the activation
curve. In addition, we can also try to modify the slope of @; to obtain a quicker
transition to inactivation.

By adjusting the parameters of ¢ (Table 2e) it is possible to obtain a reasonable
approximation (177,,=-88.8 mV, £=5.5) to the HH experimental curve (Fig 6F). The
parameters of the steady-state availability curve (that is, hemi-inactivation and slope)
represent the second measure of the inactivation, distinct from the decay from activation.

It is worth noting that &, mainly governs the steady-state availability (more hyperpolarized

values), and f3; is responsible for the activation relationship (for more depolarized voltages,
as seen above), which also affects the decay from activation.

In addition, as understood by the steady-state availability curve, the value of / at
hyperpolarized voltages (more negative than -100 mV) should be 1 (maximum, or quite
so - that is, no inactivation). On the other hand, a quick inactivation develops at voltages

around -90 mV, well before the start of activation (Fig 6A). As shown, both the

phenomena can be addressed by finely tuning the interplay between o, and £,

Kinetic model. In the electrophysiological protocol for studying the steady-state
availability (Fig 4C), long enough conditioning stimuli of increasing voltage are able to set
an increasing fraction of channels into an inactivated state, and the following test
stimulus samples the fraction of channels available for activation (not inactivated). What

is interesting and crucial here is that even conditioning stimuli below the activation
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threshold are able to promote the transition to an inactivated state. Therefore, at
subthreshold depolatizations a fraction of channels transits from the closed state to the
inactivated state, without passing through the open state. While the HH formalism does
not explicitly model open, closed and inactivated states, the proposed kinetic model can
specifically address this mechanism by tuning the C1 to I1 transition (C111, Fig 3D). The
resulting curve for the kinetic model is displayed in Fig 6H, and the corresponding values

of the C111 parameters are displayed on Table 3.

Recovery from fast inactivation

HH model. The recovery from inactivation (or repriming) is sampled by a highly
depolarizing conditioning pulse followed by a variable time interval of repolarization
(from tenths to hundreds of milliseconds, in the case of Nay1.5), followed by a second
depolarizing pulse, which tests the fraction of channels recovered from the inactivation
(following increasing time intervals of repolarization) (Fig 4D).

During the first pulse of depolarization, 7 quickly increases (up to 0.8, in our simulation)
(Fig 1C), while the /4 value, which starts at a value of 1 (polarized resting voltage, that is
no inactivation), decreases to a value of 0 (Fig 1D) with a slower time constant compared
to . This provides the mechanism for the peak of sodium current. At the steady-state of
activation-depolarization, which in Nay1.5 is reached within about 10 ms after the start
of the conditioning pulse, 4 is equal to 0 (complete inactivation) and 7 is equal to 0.8 in
our simulation, which produces no sodium current at all. The following repolarization,
due to the higher value of f,, quickly sets the 7 value to 0 and, with a slower time
course, the 4 value to 1 (absent inactivation).

By repolarizing the membrane with increasing intervals, the recovery from inactivation

kinetics are sampled, which are mainly carried out by (the voltage dependence of) a,
provided that £ has values close to 0 at -120 mV (the repolarization voltage), and that
the kinetic of 7 is much faster (Fig 1E).

Compared to the experimental recovery curve (Fig 9A, white circles), the one obtained
by using the HH parameters set as above and displayed on Table 2e (Fig 9B) already
shows an unrealistic substantial recovery after 0.1 ms of repolarization, and a much faster
recovery time. By reducing the amplitude of ; (Table 2f), a more correct fitting can be
obtained (Fig 9C). However, since the forward rate constant of inactivation ¢ also

directly affects the fast inactivation curve, as shown above, the modified value does not
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provide a good fitting of the steady-state availability curve anymore (Fig 10C, to be
compared to Fig 10A and Fig 10B).

Thus, the voltage dependence of ¢, in HH models affects both the recovery from
inactivation and the steady-state availability. This results in a conflicting limitation for the
parameter optimization of the model. In other words, the detailed reproduction of one
electrophysiological feature (the steady-state availability) affects the accuracy of the other
(the recovery from inactivation). In Table 1, an example of this conflicting behaviour of
the model is provided: the parameters of o, have been set to preferably reproduce in
detail the repriming (a), or the steady-state availability (b); alternatively, a trade-off can be
made, by choosing parameters which carry out the closest, yet not detailed,
approximation for both the electrophysiological features (c).

In addition, even when the HH model is set to reproduce the time constant of repriming,
it fails when different voltages of repolarization are chosen (Table 1). In order to fix this
incorrect behaviour, one should also modify £, which has relevant effects (i.e., it affects
the time constant of recovery) in the hyperpolarized range (around -100 mV) when the
value of ¢ is small. However, each variation of f3, as mentioned above, also changes the
voltage dependence of activation, which, in this case, results not amendable by further
modifying ,, and B, (data not shown).

Finally, it is worth mentioning that the recovery from inactivation provides a third

measure of the fast inactivation.

Kinetic model. Recovery from inactivation can be easily set in detail by tuning the
transition from the inactivated state I1 to the closed state C1 (I1C1, Fig 3D), a way which
is currently considered much more alike to the real biophysics of the channel (Fig 9D;
Table 3). In addition, no conflict arises with the electrophysiological behavior evoked by
the steady-state availability protocol, which is mainly governed by the C111 transition, as

shown above.

Development of slow inactivation

HH model. In addition to fast inactivation, Sodium channels also exhibit a slower
inactivation, which was unrecognized when the HH model was developed.

The development of the slow inactivation can be sampled by the protocol depicted on
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Fig 4E.

To reproduce the slow inactivation kinetics by means of the HH formalism, an additional
third particle (or gate) has to be considered in the conductance equation (refer to
equation 4), which is usually named s and carries rate constants formally similar to those

of h,
g:gmm.ﬂ;.b.f (4)

In this case, the entry into the slow inactivation is mainly modelled by tuning the voltage-
dependence of the ¢ rate constant (which, similarly to 4, controls the transition from 1
to 0 of ). Also, it should be considered that, for the depolarization voltage (P2) used in
the protocol (that is, -20 mV), even £ must be tuned (that is, not 0 value), in order to
obtain the correct proportion of non-slowly-inactivating channels even at longer
durations of P1.

Therefore, after adding the s factor to the HH model and tuning its parameters (Table
29), a fairly good approximation of the development of slow inactivation can be reached
(Fig 11C). Note that, for this simulation, an intermediate setting of o, has been adopted
to provide a trade-off between the best fittings of steady-state availability and recovery

from fast inactivation.

Kinetic model. The development of slow inactivation in the kinetic model is easily
approximated by tuning the parameters of I1 to 12 transition (Table 3, Fig 3E).
Analogously to the HH model, to reach the correct proportion of not-slowly-inactivating
fraction of the channels, even the 12 to I1 transition should be tuned, in a way that at -20
mV (the conditioning voltage) its value is different from 0.

The obtained modelled development of slow inactivation is depicted in Fig 11E.

Recovery from slow inactivation

HH model. Similarly to the fast inactivation, also the recovery from slow inactivation is
sampled by means of a double pulse protocol (Fig 4E), in which the first depolarizing
conditioning pulse (P1) is followed by a repolarizing time interval of increasing duration
(At, from 0.1 s to 10 s), followed by a short probing depolarization (P2). The difference

with the fast inactivation protocol is that P1 is much longer (1000 ms, compared to 100
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ms).

By adopting this protocol, a recovery time course develops with two time constants of
recovery, the first and faster one for the kinetics of fast inactivation, and a slower one for
the slow inactivation repriming. By tuning the slow inactivation () rate constants (Table
2h), a good agreement with the recovery time constant of slow inactivation can be
obtained (Table 1 and Fig 11D). Note that the time constant of recovery from fast

inactivation is not correct because we adopted, for these simulations, an intermediate

setting of ¢ (Table 2h).

Kinetic model. The recovery from slow activation can be easily reproduced in detail by
finely tuning the I2I1 transition (Fig 3E). The low values of the amplitude parameter of
1112 and I2I1 stand for the slow processes of entry into and recovery from this kind of
inactivation. The resulting curve of repriming of the slow inactivation is depicted in Fig

11F).

Channel models implementation in a standard neuron model

This subsection is only intended as a not exhaustive proof of concept of the feasibility
and suitability of the proposed channel model to be implemented in neuron
computational models, mainly performed in order to test their computational load. To
this aim, we exploited a reduced and simple neuron computational model, previously
developed by Dodge and Cooley (Dodge and Cooley 1973). Due to the limited purpose
of this simulation, no in-depth exploration of the implementation has been performed,
and also a series of approximations, yet not realistic, have been adopted (e.g., the
implementation of the heart sodium channel in a spinal motoneuron model, even though
Nay1.5 has been also detected in the central nervous system (Wu et al. 2002)).

The model developed by Dodge and Cooley is a reduced model of spinal motoneuron
equipped with sodium, potassium and leakage conductances and comprises a soma, an
equivalent dendrite, an initial segment, a myelinated segment, a node, and an extra
unmyelinated segment. In order to sample the suitability and versatility of our models, we
simply substituted the original HH sodium conductance mechanism with either the
modified HH model or the kinetic one, tuned with the parameters specified on tables 2h

and 3, respectively.
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Apart from the substitution of the original sodium conductance with our Nay1.5 models,
we only set the resting potential (and in turn the leakage equilibrium potential) to -100
mV, instead of -80 mV, to take into account the different kinetics of Nay1.5 inactivation.
By maintaining unaltered all other biophysical and structural parameters, the neurons
carrying the HH and kinetic channel models, when stimulated by a virtual electrode
located into the soma, were able to fire spikes, although the action potentials showed a
wider duration compared to the Dodge and Cooley model (see Supplemental files, Fig
STA-C), and an increased threshold of the stimulus (~150 nA versus ~65 nA).

In order to compare the computational load between the models, a 3000 ms long
simulation was performed, in which a train of electrical stimuli (2800 ms long, with an
amplitude of 160 nA and a frequency of 25 Hz) was delivered to the soma. In this
simulation, a time step of integration of 0.001 ms was chosen, and ten runs were
performed for each channel model.

Despite our expectations, the neuron model equipped with the HH channel model
completed the simulations only about 2 s before the one equipped with the kinetic
channel model (34.19 £ 0.34 s versus 36.38 + 1.43 s). Because of the minor
computational load of the HH formalism we would have expected a greater difference.
The original Dodge and Cooley model, equipped with channels built according to the
HH formalism, completed the runs in 31.50 £ 0.14 s (Table 4).
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Discussion

Our study recognizes some critical limitations of the HH formalism in modelling the
known complexity of Nay1.5 macroscopic currents, and shows how a simplified kinetic
model is better suited to approximate in detail these currents. It also provides a practical
guide to a procedural optimization of simplified kinetic models, which are shown to

exhibit a computational load comparable to that of the HH model.

The need to develop models of ionic channels able to reproduce in detail more recent
electrophysiological data has been for long recognized (Cannon and D'Alessandro 2006;
Destexhe and Huguenard 2010). On the other hand, both theoretical (Patlak 1991; Kuo
and Bean 1994; Bezanilla 2008) and practical (Strassberg and Defelice 1993; Meunier and
Segev 2002) limitations of HH models have been already reported. Among these, the
HH model hypotheses of independent gating particles, the calculated time constant of
deactivation, the behaviour of the gating current, have been proven inaccurate (Sterrat et

al. 2011).

In addition, here we demonstrate a critical practical limitation of the HH model which, to
the best of our knowledge, has not been previously put explicitly forward. The steady-
state inactivation and the recovery from inactivation have to be set in HH models by
tuning an identical and unique parameter, the voltage dependence of ¢;. Thus, the
detailed reproduction of the two electrophysiological behaviours results in a conflicting

optimization limit.

In one of their seminal papers (Hodgkin and Huxley 1952b), Hodgkin and Huxley
devised three electrophysiological protocols to specifically study the behaviour of the
(fast) inactivation of the voltage-gated sodium channel of Lo/go. The protocols (Fig 4C-
E), with few modifications, would have been later known as steady-state availability,
recovery from inactivation (or repriming) and development of inactivation, and, as for
the entire Hodgkin and Huxley research, they set the framework for all following studies
on the subject. In that paper, poor resolving power of the material (ILo/go sodium
channel has time constants of entry into inactivation - from closed states - close to the
time constants of decay from activation) likely prevented the Authors to recognize that

entry into inactivation can proceed along different mechanisms (namely from closed or
open states). Consequently, they suggested only one time constant (named 7,) to describe

the inactivation processes (Hodgkin and Huxley 1952a, b). Thus, in HH models £, (Fig

1B) usually sets the decay from activation (due to its high value in depolarizing range)
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and o, which propetrly establishes the recovery from inactivation, must be also used for

providing the inactivation in a less depolarized range.

With the proposed kinetic model, on the contrary, each variable can be set
independently: the decay from the activation by the O111 parameters, the recovery from

activation by the I1C1 parameters, the steady-state availability by the C111 parameters.

The phenomenological modelling

We recently described how a single simplified kinetic model is able to reproduce in detail
the macroscopic currents of all human voltage-gated sodium channels, Nay1.1 to Nay1.9
(Balbi et al. 2017). Apart from the adherence to different experimental data, the proposed
phenomenological model was also constrained by the parsimony of states and transitions,
in order to build the simplest framework with minimal computational load and to
provide a kinetic model suitable for the implementation in large conductance-based

neural networks.

The present study only deals with the macroscopic currents, and the proposed kinetic
model is not intended to fit the data from biophysical studies of the channel, where
single channel recordings are exploited to derive the subtle microscopic conformational
changes of the pore-forming protein (e.g., Bérjesson and Elinder 2008), also taking into
account the gating currents. In the present study the single states do not correspond to
physical molecular states of the protein, and they should be rather considered as
aggregates of molecular configurations operationally grouped into a set of distinct states
separated by large energy barriers (Hille 1992). For example, while a series of four (or
more) closed states are commonly hypothesized (usually in adherence with the tetrameric
structure of the proteic channel) before an open state can develop following a
depolarizing step, our model collapses them all in only two. Two closed states, indeed,
are necessary and sufficient to deterministically reproduce the phenomenological

behaviour of the channel.

Theoretical and practical advantages of the kinetic model

At variance with HH formalism, kinetic models, yet simplified, try to not contradict what
is known about the biophysics of the channel, as understood by functional and structural

studies. For example, they can account for the direct transition from closed to inactivated
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states (Patlak 1991), for the inactivation passing through the closed states before re-
activation (Kuo and Bean 1994), for the multistep process of activation (Patlak 1991), for

the dependence of inactivation from activation (Bezanilla 2008).

In addition, Markov-type kinetic models appear to be more adaptable and prone to
incorporate novel or further channel features with respect to HH models. Indeed, as a
general computational tool, they have been already exploited to simulate different neural
phenomena, like ligand-gated channels or second messenger-activated channels, and they
have been considered as a more general framework in the larger context of biochemical

signal transduction (Destexhe et al. 1994).

The results from the channels implementation in a neuron model show that the runtime
of the kinetic model is only about 5% higher than that of the HH model, which seems a
completely repayable drawback, considering the advantages that the kinetic model
provides in terms of efficacy, level of approximation to the experimental

electrophysiological data, and adherence to the biophysics of the ionic channels.

Predictions and suggestions from the kinetic model

Modelling studies can suggest slight variations of the canonical electrophysiological
protocols, in order to clarify some less known features of the channels. For example, by
adopting different levels of repolarization voltages during recovery from inactivation
protocols (Zhang et al. 2013), a fractional recovery can be recognized (Table 1).
Analogously, even the steady-state availability protocol could take advantage by adopting

different levels of conditioning steady-state voltages.

As regarding the evaluation of time constants of activation and inactivation, we fitted the
curve obtained by the activation protocol with the equation (3¢), which involves a third
power exponential to fit the activation segment of the curve, and a simple exponential
for the inactivation (decay) segment. In the study carrying the experimental values we
refer to (Zhang et al. 2013), a slightly different fitting procedure was adopted. Two
separate fits for the activation and inactivation segments were performed, and both of
them were fitted to a simple exponential, after (presumably) manually splitting the two

segments of the curve.

Although this different fitting approach brought results slightly divergent (Fig 7) from

those by our experimental reference (Zhang et al. 2013), we chose it because: a) it is the
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original procedure from the work by Hodgkin and Huxley (Hodgkin and Huxley 1952a),
b) it provides the best fitting (minimum fitting error), c) it is free from errors derived by

manually splitting the curves.

In addition, in the present study a measure of the fitting error has been always reported.
This is unfortunately an uncommon practice in ion-channels modelling, which, instead,
could greatly improve the reliability of the comparison among models and their

refinement.

Limitations and future studies

The major limitation of the present modelling study comes from the lack of raw
electrophysiological data. It would have been better to optimize the models based on raw
clamping currents data instead of indirect relationships, such as normalized conductance-
voltage relationship following activation voltage clamping, normalized current-voltage
relationship following fast inactivation protocol, etc. Moreover, the possibility to
compare the simulated data directly to the raw data would provide a more explicit and

reliable model testing.

The availability of raw electrophysiological data in open access web repository with
standard and shared format could overcome this limitation, common to other modelling

studies, and would greatly improve the quality of ionic channels modelling studies.

Modelling represents the challenging, continuous effort to approximate some physical
phenomena, given some established or hypothetical mathematical description of it. In
this sense, it is a matter of progressive approximation and continuous updating,
according to the deepening knowledge of the examined phenomena. The present study
shows how the adoption of kinetic models, along with the effort to limit their complexity
(the ‘Occam’s razot’ principle), could also advantage the biologically inspired modelling

of other ion channels, both voltage- and ligand-gated.

In following studies, further comparisons between HH and kinetic models could be
undertaken by exploiting more detailed cell models and neural networks. Previous studies
(e.g., Maurice et al. 2004) already developed kinetic models of ionic channels in order to
fit experimental data not accounted for by HH models in detailed neuron cell models.
Due to the limitations of HH formalism in modelling the inactivation kinetics, post-spike

refractory times could show the most striking differences with kinetic models.
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Information Sharing Statement

The source code developed in NEURON 7.6 simulation environment, comprehensive of
channel models in NMODL and all virtual experimental procedures, is available as a
ModelDB (McDougal et al. 2017) entry (access number: 257747)
(http://modeldb.yale.edu/257747).
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Table 1. Experimental and simulated values for different protocols performed with HH and kinetic channel models

Parameters Experimental Simulation values Error value Simulation Error value
values* (kinetic) (kinetic) values (HH) (HH)
Temperature 23-25°C 24°C 24°
Sodium reversal potential not available 65 mV 65 mV
i - + - -
TC HMA (normal'lzed conductance) 345+t 1.5mV 34.1 mV 161 x 10° 34.4 139 x 10°
TC Slope (normalized conductance) -7.2 0.6 -60.9 -7.2
T . a) -88.4
TC HMI for fast inactivation (normalized 891 + 1.6 mV 89.5 mV b) -88.8
current) ¢) -89.3
1.47 x 107 ; o 1.14x 10"
TC Slope for fast inactivation (normalized 2) 111
p v 5.5+ 0.4 5.4 b) 5.5
current) Q) 9.1
Time constant of the recovery from fast 3) >.1
J e ot very 51+ 0.9 ms 52 ms 2.30 x 10° b) 0.2 ¢) 3.06 x 10°
inactivation (at -120 mV recovery voltage) Q) 2.6
Time constant of the recovery from fast 12.5 + 2.1 ms 11.0 ms (97%) 1.85x107 2 6.7 (89%)  a) 1.62x10°
inactivation (at -110 mV recovery voltage)
Time constant of the recovery from fast 26.1+ 3.8 ms 25.7 ms (87%) 799x10° )81 (73%)  a)1.76x 107
inactivation (at -100 mV recovery voltage)
Time constant of the recovery from fast 47.9 + 3.4 ms 43.2 ms (51%) 133x10°  2)85(51%) ) 1.84x10°
inactivation (at -90 mV recovery voltage)
First time constant of the recovery from 51409 ms 5.9 ms ¢) 2.6 ms*
slow inactivation
Fractional recovery with first time constant 78 %o 81 % 82%
: 7 7
Secor.ld time constant of the recovery from 506.3 ms 507 3 ms 1.04 x 10 Q) 592.8 ¢) 5.33x 10
slow inactivation
Fractional recovery with second time 22 % 19 % 18%
constant
Time constant of the development of slow 179 + 0.1 s 178 s 717 x 10 ) 1.76 5 o) 7.85 x 101
inactivation

TC: transient current; HMA: half maximal activation; HMI: half maximal inactivation; a) simulation values after setting the HH parameters to mainly

reproduce the recovery from fast inactivation, or b) the steady-state availability, or c) a trade-off between them.

* Experimental values from Zhang et al (2013).
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Table 2. Parameters of the HH model.

a b c
m h m h m h
a A 0.1 0.07 a A 0.03 0.002 a A 0.02 0.002
Vi2 -40 -65 Vi2 -40 -65 Viz -48 -65
k 10 -20 k 10 -10 k 6 -10
B A 4 B A 0.3 05 B A 0.2 12
Vi -65 -35 Vi -65 -25 Vi -60 20
k -18 -10 k -18 -15 k -100 -23
d e f
m h m h m h
a A 0.015 0.002 a A 0.015 0.0005 a A 0.015 0.0035 [0.004]
Vi -54 -65 Vi -54 -67 Vi -54 -65 [-75]
k 6 -10 k 6 -7 k 6 -25 [-16]
B A 0.4 0.9 B A 04 09 B A 04 09
Vi -70 20 Vi =70 20 Vi =70 20
k -35 -25 k -35 -25 k -35 -25
g h
m h s m h s
a A 0.015 0.004 0.000092 a A 0.015 0.004 0.0001
Vi -54 -75 -65 Vi -54 -75 -65
k 6 -16 -55 k 6 -16 -50
B A 04 09  0.00011 B A 04 09 0.00011
Vi -70 20 -20 Vi -70 20 -20
k -35 -25 -10 k -35 -25 -10

In bold the parameters progressively tuned, following the electrophysiological protocols simulations, in order to fit the experimental data.
In squared parentheses (2f): trade-off parameters, chosen to account for both the steady-state availability and the recovery from fast inactivation.
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Table 3. Parameters of the kinetic model.

36

Apper V(1] 2) e Ripper Ay VA(1/2)ay K
C1C2 . : i 8 16 9
C2C1 2 82 5 8 16 9
C201 - - - 8 -26 -9
01C2 3 92 5 8 26 9
o111 8 50 4 6 10 100
1101 0.00001 20 10 _ _
11Ct 0.35 122 9 ; ] _
C111 - - - 0.04 78 10
2 - - - 0.00018 60 5
1211 0.001825 88 31 ; _ _
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Table 4. Running time values.

HH model, 2 gate
variables (7, )

HH model, 3 gate
variables (#, b, )

Kinetic model

3 gate variables

Time (s £ SD) 31.50 £ 0.14 34.19 £ 0.34 36.38 £ 1.43
Ratio to tbe HH model, ) 1.09 1.15

2 gate variables

Ratio to the HH model, ) } 1.06
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Figure legends

Figure 1

Voltage dependence of particle (gate) variables and rate constants of sodium ionic channel of Lo/go, as found
in the original paper by Hodgkin and Huxley (Hodgkin and Huxley, 1952a), redrawn according to the actual
notation on voltage axis direction and rest potential reference. A) Voltage dependence of forward (a, blue)
and backward (B, red) rate constants of activation. B) Voltage dependence of forward (e, blue) and
backwatd (B, red) rate constants of inactivation. C) Voltage dependence of steady-state activation (M,). D)
Voltage dependence of steady-state inactivation (Ry). E) Voltage dependence of activation time constant

(Tm)- F) Voltage dependence of inactivation time constant (Tp).

Figure 2

Diagram of the five-state kinetic model. The thickness of the transitions is drawn as a schematic cue to the

maximal amplitude of the transition rate.

Figure 3

Voltage dependence of the following ten transition rates of the kinetic model: A) C1C2 (blue) and C2C1 (red);
B) C201 (blue) and O1C2 (red); C) O111 (blue) and 1101 (red); D) I1C1 (blue) and C111 (red); E) 1112 (blue)

and I2I1 (red). Note the different ordinate scales.

Figure 4

Experimental and simulated voltage clamp protocols. A) Activation: A 2-ms pulse at -120 mV is followed by a
series of 14 ms long depolarizations (from -90 to +60 mV), in steps of 5 mV. B) Deactivation: After a 0.5-ms
pulse at -120 mV, a 0.5-ms depolarization at

-10 mV is delivered, followed by a series of 5-ms long repolarization, from -100 to -30 mV, in steps of 10 mV.
C) Steady-state availability: Following a series of 500-ms long conditioning depolarizations from -120 to 0 mV
in steps of 5 mV, a 20-ms long test stimulus at -10 mV is delivered. D) Recovery from fast inactivation: After
a 30-ms long conditioning depolarization at -20 mV (P1), variable time intervals (from 0.1 to 1000 ms) of
repolarization at -120 mV are followed by a 20-ms long probing depolatization at -20 mV (P2). E) Recovery

from slow inactivation: similar to the previous one protocol, with the difference that the conditioning pulse
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(P1) is 1000 ms long, and the repolarization time intervals are from 0.1 ms to 7000 ms. F) Development
(onset) of slow inactivation: A series of depolarizations at -20 mV of increasing duration, from 10 to 10000
ms (P1), is followed by a brief (30 ms) repolarization impulse at -120 mV and then by a 20-ms long test
depolarization at -20 mV (P2).

Figure 5

Real and simulated sodium current curves following the activation voltage clamp. A) Real curves from a
previously published experimental study (Zhang et al, 2013), recorded at 25°C. B) Simulated curves obtained
by the original HH model (Hodgkin and Huxley, 1952a), at 6°C (Table 2a). C) Simulated curves obtained by
the original HH model, at 25°C. D) Simulated curves after modifying the original HH model (Table 2b). E)
Simulated curves obtained by a kinetic model with 4 states: one closed, one open and two inactivated states.

F) Simulated curves obtained by a kinetic model with 5 states.

Figure 6

Voltage/Normalized conductance relationship during activation (left column) and Voltage/Normalized
current relationship during fast inactivation (steady-state availability) (right column). A) and B) Experimental
data (Zhang et al, 2013). C) Simulated values of Voltage/Normalized conductance relationship during
activation obtained by the HH model before parameters tuning (Table 2b). D) Steady-state availability before
parameters tuning (Table 2d) in the HH model. E) Simulated values of Voltage/Normalized conductance
relationship during activation obtained by the HH model after parameters tuning (Table 2¢). F) Steady-state
availability after parameters tuning (Table 2¢) in the HH model. G) and H) Simulated values obtained by the

kinetic model.

Figure 7

Time constants of activation (upper row), inactivation (middle row), and deactivation (bottom row) in
function of voltage. Experimental values (Zhang et al, 2013) (left column), simulated data from a HH model

(central column) and from a kinetic model (right column).

Figure 8


https://doi.org/10.1101/720862
http://creativecommons.org/licenses/by-nc/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/720862; this version posted July 31, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has gr4ifjed bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC 4.0 International license.

Current curves following the deactivation protocol. A) Experimental values (Zhang et al, 2013). B) Simulated
values with the HH model before parameters tuning. C) Simulated values with the HH model after parameters

tuning. D) Simulated values by means of the kinetic model.

Figure 9

Recovery from fast inactivation, ratio P2/P1 in function of time intervals of repolatization (logarithmic axis).
A) Experimental values (empty circle) (Zhang et al, 2013). B) Simulated values with the HH model before
parameters tuning (Table 2e¢). C) Simulated values with the HH model after parameters tuning (Table 2f). D)

Simulated values obtained by the kinetic model.

Figure 10

Effect of optimization of recovery from fast inactivation on steady-state availability in the HH model. A)
Experimental values of Voltage/Normalized current relationship following steady-state availability protocol
(Zhang et al, 2013). B) Simulated values of Voltage/Normalized current relationship following steady-state
availability with the HH model before tuning parameters (namely ;) in order to optimize the recovery from

inactivation (Table 2¢). C) The same relationship after parameters tuning (Table 2f).

Figure 11

Development of slow inactivation (left column) and recovery from slow inactivation (right column). Abscissae
in logarithmic scale of time intervals. A) Development of slow inactivation, and B) recovery from slow
inactivation (solid circle) in the experimental setting (Zhang et al, 2013). C) Development of slow inactivation
(Table 2g), and D) recovery from slow inactivation (Table 2h) in the HH model. E) Development of slow

inactivation, and F) recovery from slow inactivation in the kinetic model.

Figure S1

Action potential in a reduced spinal motoneuron (Dodge and Cooley, 1973) following a depolarizing somatic
stimulus. A) Voltage displacement at the soma of the original cell model. B) Voltage displacement at the same
location after substituting the original model of sodium channel with the Nay1.5 model built according to the

HH formalism, or C) with the Nay1.5 kinetic model.
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