

1 **LRP5-deficiency in OsxCreERT2 mice models intervertebral disc degeneration by aging**
2 **and compression**

3 *Matthew J. Silva, Ph.D.^A*

4 *Nilsson Holguin, Ph.D.^B*

5
6 **KEYWORDS:** Aging, Biomechanics, Chondrocyte Biology, Genetic Animal Models, WNT/β-
7 catenin/LRPs

8
9
10 ^A Department of Biomedical Engineering, Orthopaedic Surgery, Musculoskeletal Research
11 Center, Washington University, St. Louis, MO, USA

12
13 ^B Department of Mechanical and Energy Engineering and Department of Anatomy and Cell
14 Biology, Indiana Center for Musculoskeletal Health, IUPUI, Indianapolis, IN, USA

15
16
17
18 **Submitted to:** Development

19
20 Correspondence to:

21
22 Nilsson Holguin, Ph.D.
23 Assistant Professor
24 Department of Mechanical and Energy Engineering, IUPUI 723 W. Michigan St,
25 Indiana Center for Musculoskeletal Health, IUPUI 635 Barnhill Drive,
26 Indianapolis, IN 46202, USA

27
28 Voice: 317-278-2642

29
30 Email: nholguin@iupui.edu

31
32 **Matthew J. Silva:** silvam@wustl.edu

33
34 **Disclosure:** All authors state that they have no conflicts of interest.

35
36 **Competing interests.** No competing interests declared.

37
38 **Summary Statement.** Osteoblastic/chondrogenic transcription factor Sp7/Osterix is expressed
39 in healthy adult intervertebral discs, plays a role in age-related disc degeneration and targeting
40 osterix-expressing cells in the spine will have consequences beyond bone.

41 **ABSTRACT**

42 Osterix is a critical transcription factor of mesenchymal stem cell fate, where its loss or loss of
43 WNT signaling diverts differentiation to a chondrocytic lineage. Intervertebral disc (IVD)
44 degeneration activates differentiation of prehypertrophic chondrocyte-like cells and inactivates
45 WNT signaling, but its interacting role with osterix is unclear. First, compared to young-adult
46 (5mo), mechanical compression of old (18mo) IVD induced greater IVD degeneration. Aging (5
47 vs 12mo) and/or compression reduced the transcription of osterix and notochordal marker T by
48 40-75%. Compression elevated transcription of hypertrophic chondrocyte marker MMP13 and
49 pre-osterix transcription factor RUNX2, but less so in 12mo IVD. Next, using an Ai9/td reporter
50 and immunohistochemistry, annulus fibrosus and nucleus pulposus cells of 5mo IVD expressed
51 osterix, but aging and compression reduced its expression. Lastly, in vivo LRP5-deficiency in
52 osterix-expressing cells degenerated the IVD, inactivated WNT signaling, reduced the
53 biomechanical properties by 45-70%, and reduced transcription of osterix, notochordal markers
54 and chondrocytic markers by 60-80%. Overall, these data indicate that age-related inactivation of
55 WNT signaling in osterix-expressing cells may limit regeneration by depleting progenitors and
56 attenuating the expansion of chondrocyte-like cells.

57 **INTRODUCTION**

58 Intervertebral disc (IVD) degeneration is a multi-faceted disease physically characterized by
59 dehydration, height loss and, in the later stages, calcification (Boos et al., 1997; Rutges et al.,
60 2010) and annulus fibrosus (AF) rupture. Aging and IVD degeneration lead to degradation of the
61 extracellular matrix (Antoniou et al., 1996), potentially from a shift in the population of resident
62 cells in the IVD (Hunter et al., 2004), cell loss (Hunter et al., 2004; Urban and Roberts, 2003),
63 altered cell metabolism, among other changes. Chondrocyte-like cells of the IVD resemble
64 articular chondrocytes in their appearance and transcriptional expression and cohabitata with
65 notochordal cells in the nucleus pulposus (NP) (Clouet et al., 2009; Minogue et al., 2010), but
66 are smaller and phenotypically distinct from notochordal cells (Chen et al., 2006; Minogue et al.,
67 2010). Aging and IVD degeneration induce the disappearance of notochordal cells (Richardson
68 et al., 2017), which are replaced by chondrocyte-like cells (Boos et al., 2002; Yurube et al.,
69 2014), ostensibly via differentiation of prehypertrophic chondrocyte-like cells (Rutges et al.,
70 2010). RUNX2 (Cbfa1), Sp7 (Osterix) and Ctnnb1 (β -Catenin) progressively drive skeletal
71 progenitors to become osteoblasts and later osteocytes, but loss of osterix or WNT signaling
72 diverts cell fate towards chondrogenesis (Long, 2011). Previously, we showed that mediating
73 WNT signaling impacts notochordal expression in the IVD (Holguin and Silva, 2018), but it is
74 unknown if WNT signaling directly impacts transcription factor osterix.

75 Transcription factor β -Catenin is regulated by the canonical WNT pathway (Milat and Ng, 2009)
76 and is putatively involved in the regeneration of IVDs. Patients with IVD degeneration have up-
77 regulated levels of β -Catenin (Wang et al., 2012). In vivo, β -Catenin is promoted in canine
78 intervertebral discs with age-related propensity for degeneration (Smolders et al., 2012). Aging
79 inactivates WNT signaling and disrupting WNT/ β -Catenin signaling during development

80 deteriorates the entire IVD (Kondo et al., 2011; Mundy et al., 2011). Re-activating WNT
81 signaling in IVDs of aged mice leads to greater aggrecan (Winkler et al., 2014), but greater β -
82 Catenin in rodent IVD cells also triggers cellular senescence, apoptosis and biomarkers of matrix
83 breakdown (Hiyama et al., 2010).

84 Here, we apply in vivo chronic loads to a range of adult IVD to demonstrate transcriptional
85 downregulation of osterix in IVD degeneration by aging and mechanical compression. Further,
86 we show that aging and compression reduce the protein expression of osterix in the annulus
87 fibrosus and nucleus pulposus of the IVD. Lastly, targeted suppression of WNT signaling in the
88 cells of the IVD that express osterix (using an OsxCreERT2 driver) induces IVD degeneration to
89 a degree similar to aging and compression, as demonstrated by histology, qPCR and
90 biomechanics. Together, these data suggest that limited WNT signaling in older IVD may
91 potentiate IVD degeneration by attenuating the expansion of chondrocyte-like cells.

92 METHODS

93 **Mice.** Female TOPGAL (TCF/LEF Optimal Promoter/Galactosidase reporter) transgenic
94 mice that were aged to 5 (n=7) or 12 months (n=6) from a previous experiment were used to
95 determine mRNA expression changes with tail compression (Holguin and Silva, 2018).
96 Female C57Bl/6J mice were purchased from the National Institute of Aging (NIA,
97 Bethesda, MD, USA) (5 mo: n=8, 18 mo: n=5 and 22 mo: n=1). A separate set of female
98 C57Bl/6J mice (n=3) were tail compressed to stain by IHC for osterix protein. To generate
99 Osx-CreERT2/LRP5^{f/f}/TOPGAL/tdT mice (LRP5 cKO, n=6), OsxCreERT2 mice were
100 crossed with LRP5^{f/f} mice (receptor of WNT signaling), TOPGAL mice (reporter of WNT
101 signaling) and Ai9(RCL-tdT) (fluorescent reporter of location of osterix) mice. Wildtype
102 mice were LRP5^{f/f}/TOPGAL/tdT (WT, n=6). To suppress WNT signaling, LRP5 cKO mice

103 were provided tamoxifen in their chow (Envigo, Indianapolis, IN) for 5 days per week for 1
104 month; WT mice also received tamoxifen chow. To report osterix location, mice were
105 injected with tamoxifen for two days and the intervertebral discs harvested on the third day.
106 WT mice (No Cre) served as controls. All mice were housed 4-5 per cage under standard
107 conditions with ad libitum access to water and either Tamoxifen chow as noted above, or
108 regular chow (Purina 5053 & 5058, Purina, St. Louis, MO). The study was approved by the
109 Washington University Animal Studies Committee.

110 **Tail Compression.** Once the CC7 (Caudal Coccygeal 7) and CC9 vertebra were identified
111 with preoperative radiographs, 23-G needles were implanted transcutaneously during
112 anesthesia by isoflurane (2.5% vol) and postoperative radiographs confirmed proper
113 placement. Compression rings were attached to the pins to apply mechanical load via
114 tightening of four screws with compressive springs (Cat # 9001T24, McMaster, Elmhurst,
115 IL). Following injection with Buprenorphine (1 mg/kg s.c.) for pain relief, 2.25 N of load
116 was applied for 1 week to induce degeneration. As a positive control for severe IVD
117 degeneration, 5 mo tail IVD were punctured (n=3).

118 **MicroCT.** CC6-CC7 motion segments were imaged by micro-computed tomography (VivaCT
119 40, Scanco Brüttisellen, Switzerland) at a resolution of 21 μm (70 kV, 114 μA , and 100 ms
120 integration time) to determine the IVD morphology and normalize the mechanical properties.
121 Semi-automatic contouring was used to segment the IVD from bone with a lower/upper
122 threshold of 205/1,000 (406 mg HA/cm³).

123 **Mechanical Testing.** Controlled mechanical tests were performed on CC6-CC7 motion
124 segments as previously described (Holguin et al., 2013). Prior to mechanical testing, the bone-
125 disc-bone segments were excised, zygapophysial joints and superficial tissue were removed, and

126 spinal units were hydrated in 1X PBS for 18 h at 4 °C. Superior and inferior vertebrae were
127 gripped by microvises and, once secured, the sample was immersed in 1X PBS. A materials
128 testing system (Electropulse 1000, Instron, Norwood, MA, USA) applied twenty compression-
129 tension cycles at a frequency of 0.5 Hz and the limit under displacement-control was determined
130 by noting linear stiffnesses.

131 **Mechanical Data Analysis of IVDs.** A trilinear fit model determined the compressive, tensile
132 and neutral zone stiffness of the motion segment. Briefly, the compressive and tensile loading
133 curves were isolated and a 6th order polynomial was fit to the 20th loading and unloading
134 tension- compression cycle. The minimum derivative of the curve represented the neutral
135 zone stiffness and the derivative measured at 80% of the maximum load magnitude in the
136 compressive and tensile portion of the curve constituted the compressive and tensile stiffness,
137 respectively. The material properties (moduli) were determined by multiplying stiffness by the
138 height of the IVD and dividing by the area.

139 **Histology, Immunohistochemistry and Frozen Sectioning.** Beta-galactosidase staining for
140 WNT activity, Safranin-O, and IHC was performed as previously described (Holguin et al.,
141 2016) on lumbar (L1-L3) and coccygeal (CC8-CC10) motion segments. Motion segments were
142 freshly harvested, fixed in 4% paraformaldehyde for 1 h, incubated in Xgal (Invitrogen,
143 Grand Island, NY) for 48 h, fixed overnight, decalcified with Immunocal for two days and
144 embedded in paraffin using routine methods. These, coronal sections (10 μ m) were used to
145 visualize galactosidase cells and serial sections were counter stained with eosin or Safranin-
146 O. All other intervertebral discs from other mice were not incubated with Xgal or fixed
147 overnight. Sections (5 μ m) for immunohistochemistry were deparaffinized and stained with
148 osterix antibody (#22552, Abcam) and counter stained with Alcian blue. Cytomorphology

149 will be used to distinguish notochordal and chondrocyte-like cells (Hunter et al., 2004; Smolders
150 et al., 2012). For frozen section tissues were fixed in 4% paraformaldehyde, decalcified in
151 14% EDTA for 3 days, infiltrated with 30% sucrose overnight, embedded in OCT, sectioned
152 coronally (10 μ m), and stained with DAPI.

153 **Analysis of Histology and qPCR.** Histological scoring (Tam et al., 2019) was accomplished
154 using Safranin-O/Fast green images of IVDs and was on a 14-point scale. In brief, the nucleus
155 pulposus, annulus fibrosus and boundary between the nucleus pulposus and annulus fibrosus of the
156 IVD were scored and added together for a total IVD score. WNT activity (LacZ expression)
157 quantification within the nucleus pulposus and annulus fibrosus were carried out as previously
158 described (Holguin et al., 2014). For instrumented animals, tail IVDs between CC7-9 and CC10-
159 12 and, for genetic mouse models, tail IVDs CC10-12 and lumbar discs L3-5 were separated
160 from all other tissues and snap frozen in liquid nitrogen. Then samples were pulverized in a
161 Mikro Dismembrator (B. Braun Biotech International Mikro-Dismembrator S, Germany) and
162 suspended in TRIZOL (Ambion) until further processing. Total RNA extraction was performed
163 using a standard kit (RNeasy mini kit, Qiagen). RNA concentration was quantified (ND-1000,
164 Nanodrop). First strand cDNA was synthesized (iScript, Biorad) from 500 ng of total RNA for
165 Taqman (Life Technologies) probes. The relative gene expression in loaded and control IVDs
166 was determined by normalizing to housekeeping gene *IPO8* (Mm01255158_m1) and then
167 normalized to the control IVD ($2^{-\Delta\Delta CT}$) or, in KOs, to the average WT value.

168 **Statistics.** An ANOVA with Bonferroni post hoc test was used to compare histological scoring
169 of 5 mo and 18 mo IVD subjected to mechanical injury. A two way ANOVA was used to
170 compare qPCR and osterix protein expression (dark vs light vs no stain) with loading (Control vs
171 Loaded). Unpaired Student's t-tests compared intervertebral discs of WT to genetic KO animals.

172 Linear regression correlated the relative expression (cKO/WT) of WNT signaling genes to b-
173 Catenin, tensile stiffness, RUNX2 and aggrecan. Statistical computations were completed using
174 SPSS (IBM SPSS Statistics 25) and significance was set at p<0.05.

175 **RESULTS**

176 **Aging and mechanical compression induce IVD degeneration.** In order to determine the
177 regulation of osterix by IVD degeneration, a gradation of IVD degeneration was created by
178 subjecting mice of different adult ages to mechanical loading (compression). Aging increased the
179 IVD degeneration of lumbar (**Fig. 1A**) and tail IVD (**Fig. 1B, C**). Notable changes in 15-18 mo
180 IVD included loss of proteoglycan (red staining), cell death, disruption of the NP cell band and
181 large rounded chondrocytes in the inner AF. Further, aging in the lumbar IVD (22 mo), included
182 calcification of the NP, cell cloning (cell clusters) and loss of the demarcation between the NP
183 and AF. Mechanical compression of the young-adult IVD induced scalloping and reversal of the
184 inner AF. Further, mechanical loading of aged IVD induced severe proteoglycan loss,
185 calcification of the IVD and loss of the demarcation between the NP and AF. Puncture of the
186 IVD induced most of the above-mentioned features of IVD degeneration and fissures in the AF.
187 Taken together, aging and mechanical injury each induced IVD degeneration and together had an
188 additive effect, but the underlying mechanism was unclear.

189 **Osterix (OSX) expression and WNT signaling are suppressed by mechanical loading and**
190 **aging.** qPCR confirmed that aging and loading enhanced expression of catabolic and
191 inflammatory markers and suppressed the expression of transcription factors and WNT signaling.
192 Mechanical loading increased catabolic markers MMP3 and MMP13 by ≥ 7 fold in 5 mo IVD
193 (**Fig. 2**). MMP3 and MMP13 were also upregulated by compression in aged mice, but MMP13
194 upregulation in middle-aged 12 mo IVD was less than in 5 mo IVD. MMP13 and ALPL are also

195 markers of hypertrophic chondrocytes (D'Angelo et al., 2000) and aging reduced their expression
196 by $\geq 50\%$. Secondly, IVD compression reduced the expression of key transcription factors OSX
197 (Sp7) and Brachyury (T) by 50% and increased the gene expression of LAMIN-A, a marker of
198 maturing differentiation (Constantinescu et al., 2006), by 1.5-fold. Aging reduced the gene
199 expression of OSX and RUNX2, where RUNX2 was undetectable. However, the suppression of
200 OSX by loading in 12 mo IVD trended to be less than the suppression in 5 mo IVD (interaction
201 p=0.06). Lastly, loading trended to upregulate markers of WNT signaling in 5 mo IVD, but no
202 response was noted in middle-age IVDs, other than the upregulation of β -Catenin in 12 mo IVD.
203 Aging reduced the expression of LRP5 and LRP6 (Fig. 1S), and loading increased LRP5 and
204 AXIN2 expression in 5 mo IVD. In addition, aging and compressive loading increased IL1b and
205 TNF-a gene expression between 3- and 64-fold (Fig. 1S). These data suggest that, compared to
206 young-adult IVD, the degenerative-response of older IVD to compression is associated with less
207 chondrocyte-like expression and a disruption of the genes mediating chondrocyte accrual.

208 **Protein expression of osterix delineated a cell phenotype shift by mechanical overloading in**
209 **the nucleus pulposus.** In order to determine the location of the cells in the IVD expressing
210 osterix and to corroborate the reduction of osterix with IVD degeneration, we stained for osterix
211 protein in tail compressed IVD. First, osterix was expressed in osteoblasts of the cortical bone,
212 trabecular bone, and endplate of the tail and lumbar vertebrae (Fig. 3A). In the tail and lumbar
213 IVD, nucleus pulposus and outer annulus fibrosus cells expressed osterix. Because the
214 suppression of osterix by mechanical compression was greatest in 5 mo IVD (Fig. 2), we
215 determined the percentage of cells in the nucleus pulposus expressing high (small and dark), low
216 (large and light) and no amount (no stain) of osterix protein in control and loaded IVDs (Fig.
217 3C). Mechanical loading reduced the percentage of cells in the nucleus pulposus with a small,

218 darkly stained cell nucleus by 50% (**Fig. 3D**). The percentage of cells in the nucleus pulposus
219 with a large, lightly stained nucleus did not change significantly, but was twice as many in
220 loaded group. The net percentage of cells without osterix expression was unchanged and about
221 75% of the nucleus pulposus cells were positive for osterix. Osterix protein-intensity expression
222 coincided with cytomorphology differences between notochordal and chondrocyte-like cells
223 (Hunter et al., 2004; Smolders et al., 2012).

224 **Osterix-expressing cells of the nucleus pulposus and outer annulus fibrosus decline with**
225 **aging.** Young-adult OsxCreERT2/Ai9-tdT tomato reporter mice corroborate the expression of
226 osterix in the cells of the nucleus pulposus (45%) and the outer annulus fibrosus of tail IVD (**Fig.**
227 **4A, B**). Similarly to tail compression, aging reduced the expression of osterix in the cells of
228 nucleus pulposus and outer annulus fibrosus. As expected, osteoblasts in the cartilage endplate,
229 trabecular bone and cortical bones expressed osterix and the expression was not lost with aging.
230 Little to no osterix expression was noted in the growth plate. Similarly, Ai9/tdT (without Cre)
231 show little to no expression of the reporter (**Fig. 4C**).

232 **Osterix-specific deletion of LRP5 reduces WNT/β-Catenin signaling and mechanical**
233 **properties and induces IVD degeneration.** In order to mimic the inactivation of WNT
234 signaling by aging and IVD degeneration, we targeted osterix-expressing cells to suppress LRP5.
235 Therefore, we bred LRP5 cKO (LRP5 cKO: OsxCreER^{T2} mice/LRP5^{fl/fl}/TOPGAL) and WT
236 mice (LRP5^{fl/fl}/TOPGAL). LRP5 deletion inactivated WNT signaling in lumbar and tail IVD
237 (**Fig. 5A, E**). In lumbar IVD, the KO reduced WNT signaling in the nucleus pulposus by 95%
238 and in the annulus fibrosus by 40%; retaining expression in the inner annulus fibrosus (**Fig. 5B**).
239 In the tail IVD, the KO reduced WNT signaling in the nucleus pulposus by 60%, but did not
240 change WNT signaling in the annulus fibrosus as none was detectable (**Fig. 5F**). Deficiency of

241 LRP5 induced lumbar IVD degeneration originating from changes in the nucleus pulposus (**Fig.**
242 **5C, D**), whereas histological changes were not noted in tail IVD (**Fig. 5G, H**). Cell clusters,
243 unclear demarcations between the nucleus pulposus and the annulus fibrosus, and large inner
244 annulus fibrosus cells were the common degenerative features in the LRP5 cKO lumbar IVD.

245 Deficiency of LRP5 in osterix-expressing cells reduced the mechanical properties of the IVD.
246 Over the same range of motion (**Fig. 6A**), the structural stiffness of LRP5 cKO IVD was less
247 than the control IVD by $\geq 45\%$ (**Fig. 6B**). The morphology was not different between LRP5 cKO
248 and WT IVD and, therefore, the material stiffness (modulus) was reduced in cKO similar to the
249 structural property results (**Table 1**).

250 **LRP5-deficiency induces differential gene expression between lumbar and tail IVD.** The
251 gene expression of the lumbar IVD indicated a pattern consistent with IVD degeneration, where
252 osterix, notochordal markers (KRT8 and KRT19) and chondrocyte marker MMP13 (D'Angelo et
253 al., 2000) were downregulated by $\geq 50\%$, and aggrecan protease Adamts5 was upregulated by
254 60% (Fig. 7A). Contrarily, despite reduced mRNA osterix and β -Catenin expression (**Fig. 7B**),
255 tail IVD had 2-fold more expression of notochordal markers, suggesting regeneration. We
256 already confirmed that LRP5 cKO IVD had less WNT signaling than WT IVD, therefore we
257 wanted to determine whether the remaining WNT signaling in the nucleus pulposus of KOs was
258 due to inefficient targeting of osterix. Osterix (brown) and WNT signaling (blue) prominently
259 co-stained in the WT (**Fig. 7C**). In contrast, in LRP5 cKO IVD, a majority of the osterix-positive
260 cells appeared without WNT signaling and the cells that retained WNT signaling did not stain for
261 osterix. Lastly, gene expression of WNT signaling-related genes was highly correlated to
262 expression of the extracellular matrix and transcription factors. For instance (**Fig. 2S**), β -Catenin
263 was associated with tensile stiffness ($R^2=0.60$, $p<0.05$) and the mRNA expression of LRP5

264 (R²=0.78, p<0.05), and LRP6 was associated with aggrecan (R²=0.74, p<0.05) and RUNX2
265 (R²=0.85, p<0.01).

266 **DISCUSSION**

267 **Overview.** We aimed to clarify the induction of chondrocyte-like cells with IVD degeneration by
268 determining the changes in a key transcription factor of chondrogenesis (SP7/Osterix) during
269 IVD degeneration and aging, and by mimicking age-related inactivation of WNT using an
270 inducible, conditional KO. Both aging and mechanical compression reduce the expression of
271 osterix, and loss of osterix was associated with cellular expression changes. IVD degeneration
272 was heightened in old IVD following mechanical compression and regulation of transcription
273 factors controlling chondrogenesis (Osterix and RUNX2) were impaired in old IVD. Lastly,
274 WNT signaling in osterix-expressing cells of the IVD was reduced by deleting a WNT ligand
275 receptor. These conditional KO IVD induced a level of IVD degeneration on par with aging and
276 mechanical compression. Overall, these data implicate osterix as an important contributor to IVD
277 regeneration.

278 **Osterix in Healthy IVD.** The OsxCreERT2 mouse is commonly used to target bone cells in the
279 osteoblastic lineage (Nakashima et al., 2002) and, while osterix is not expressed in growing mice
280 (Zheng et al., 2019), we note that this inducible-Cre targets adult IVD cells in the nucleus
281 pulposus and outer annulus fibrosus (Table 2). The OsxCreERT2 did not target cells in the
282 inner annulus fibrosus as demonstrated by lack of expression of osterix by immunofluorescence
283 and immunohistochemistry and by expression of WNT signaling in the inner annulus fibrosus
284 following conditional deletion of LRP5 in osterix expressing cells. The utility of such a Cre has
285 yet to be fully explored, but the only other inducible Cre drivers that target multiple regions of
286 the IVD are the AcanCreERT2 (NP and AF) (Henry et al., 2009) and the Scleraxis-Cre (IAF and

287 OAF) (Torre et al., 2019). The majority of the rest target one of the three regions of the IVD
288 (Bedore et al., 2016; Chen et al., 2014b; Choi and Harfe, 2011; Imuta et al., 2013; McCann et al.,
289 2012). The consequences of mutations in osterix on the IVD are unknown, but are associated
290 with osteogenesis imperfect in global mutations (Lapunzina et al., 2010) and impaired
291 chondrocyte differentiation when chondrocytes are targeted (Nishimura et al., 2012).

292 **WNT Ligand Receptor LRP5 is Critical for WNT Signaling in IVD.** Alongside loss of WNT
293 signaling with aging and compression (Holguin et al., 2014; Holguin and Silva, 2018), cell
294 membrane receptor for WNT ligands LRP5 (Gong et al., 2001) was reduced with aging and
295 compression. Next, we showed that 1 month-deletion of LRP5 in osterix-expressing of young-
296 adult mice impaired WNT signaling and induced IVD degeneration. These data suggest that
297 WNT ligand(s) that bind to LRP5 alter canonical WNT signaling in the IVD. Our previous data
298 show that compression reduces WNT signaling and ligands WNT16, 7b and 10a and, by
299 contrast, stabilization of β -Catenin in the IVD elevates WNT16 among other genes (Holguin and
300 Silva, 2018). WNT16 and WNT 7b alter canonical WNT signaling in other musculoskeletal
301 tissues (Alam et al., 2016; Chen et al., 2014a; Nalesso et al., 2017) and may serve as targets for
302 IVD therapy.

303 **IVD Degeneration Suppresses Osterix and Promotes Chondrocyte-like Cells.** Here, we show
304 that aging, mechanical compression, and inactivation of WNT signaling by an LRP5 cKO
305 reduced the expression of osterix in the IVD and led to IVD degeneration. Immunohistochemical
306 staining for osterix in the NP of compressed IVD noted a cell shift by the intensity of the staining
307 and morphology of the cell. Tail compression is known to induce loss of notochordal cells in the
308 NP prior to cell death (Yurube et al., 2014) and elevate chondrocyte-like cells. Currently, the role
309 of osterix in the IVD is unclear but, in bone, osterix is a critical transcription factor that drives

310 osteoblastic cell differentiation (RUNX2 before osterix and β -Catenin after osterix). Loss of
311 osterix (Nakashima et al., 2002) or β -Catenin (Day et al., 2005) diverts differentiation from
312 osteoblastogenesis to chondrogenesis. First, it is important to note that while chondrocytes are
313 similar to the cells of IVD, the phenotypic expressions have some differences (Clouet et al.,
314 2009). Nevertheless, our data agree with elevation of early chondrogenesis markers RUNX2 and
315 β -Catenin (WNT signaling) during IVD degeneration (Iwata et al., 2015; Sato et al., 2008;
316 Smolders et al., 2012; Wang et al., 2012). As such, in order to potentiate terminal differentiation
317 towards hypertrophic chondrocytes, our data show osterix and WNT signaling declined in the
318 compressed IVD of aged mice, which coincides with their known function in chondrogenesis
319 (Ma et al., 2013) and previous data (Holguin and Silva, 2018). However, loss of osterix is in
320 conflict with work that shows human IVD degeneration from Grade III to V is marked by
321 calcification and elevated gene and protein expression of osterix (Shao et al., 2016). The models
322 we used here represent early IVD degeneration and, therefore, osterix may be regulated
323 differently in late-stage IVD degeneration.

324 **Aging Exacerbates Compression-Induced IVD Degeneration.** Aging exacerbated the IVD
325 degeneration induced by mechanical compression and was associated with loss of chondrocytic
326 markers, transcription factors and WNT signaling. The upregulation of chondrocyte markers
327 MMP13 (D'Angelo et al., 2000) and RUNX2 by mechanical compression in young-adult mice
328 was subdued-to-absent in aged mice. Further, despite elevated mRNA and protein expression of
329 β -Catenin by compression in aged mice and in patients with IVD degeneration (Holguin and
330 Silva, 2018; Wang et al., 2012), WNT signaling is inactivated by compression in aged mice
331 because of limited and impaired translocation of β -Catenin to the cell nucleus (Holguin and
332 Silva, 2018; Simcha et al., 1998; Wu et al., 2019). Aging is a common factor of IVD

333 degeneration that includes cell loss (Boos et al., 2002) and an accumulation of proliferation-inept
334 cells that remain metabolically active. This aging-induced loss of NP cells may harm the IVD by
335 reducing the notochordal cells that trigger the chondrocyte-like cells to stimulate
336 glycosaminoglycan and aggrecan core protein synthesis (Aguiar et al., 1999) and by depleting
337 the progenitors capable of cell replenishment (Sakai et al., 2012). Ultimately, cell loss may be
338 the impetus for the recruitment of non-notochordal cells derived from the vasculature (Brisby et
339 al., 2013) or possibly the inner annulus fibrosus (Merceron et al., 2014), which are less equipped
340 to cope with the harsh mechanical, biochemical and oxygen-tension demands of the NP
341 environment.

342 **Proposed Role of WNT signaling/Osterix in IVD Degeneration.** We propose a model of 4
343 levels of NP health and the relationship between WNT signaling and osterix: (1) optimal
344 regeneration, (2-Adult; 3-Aged) suboptimal regeneration and (4) degeneration (**Fig. 8A**). (1)
345 During optimal regeneration, the notochordal cells with a high level of WNT signaling and no
346 expression of osterix contribute to the regeneration of the IVD. We show here and in a previous
347 study (Holguin and Silva, 2018), IVDs with elevated WNT signaling and notochordal expression
348 were protected from IVD degeneration. During suboptimal regeneration, chondrocyte cells may
349 contribute a greater role since notochordal cells without osterix are limited. (2) In this phase,
350 WNT signaling stimulation of progenitors differentiate into notochordal cells with high-
351 osterix/WNT signaling, which then differentiate into chondrocyte-like cells by suppression of
352 WNT signaling and osterix (**Fig. 8B**). (3) Aging limits chondrocyte-like differentiation in two
353 ways: (i) by suppression of progenitor differentiation into notochordal cells by limited WNT
354 signaling and (ii) by suppression of notochordal cell differentiation to chondrocyte-like cells by
355 limited downregulation of osterix. (4) Full IVD degeneration is characterized by loss of both

356 notochordal and chondrocyte-like cells. Similar patterns of transcriptional regulation occur with
357 osteoblastogenesis/chondrogenesis (Long, 2011; Ma et al., 2013).

358 **Limitations.** All of the gene expression in the study was conducted in intact IVD, which does
359 not separate changes between the nucleus pulposus and annulus fibrosus. For instance, gene
360 expression of LRP5 was not significantly downregulated in the tail IVD of LRP5 cKO, but the
361 functional reduction of Wnt signaling that is downstream of LRP5 using the TOPGAL transgene
362 of the mouse corroborates that LRP5 was deleted. Secondly, it is unclear why IVD degeneration
363 did not occur in the tail IVD of LRP5 cKO mice, but this lack of impact also occurs in the tail
364 IVD of β -Catenin conditional KO mice when driven by a ShhCreERT2 (Holguin and Silva,
365 2018). We suspect that tail IVDs are less sensitive to change than lumbar IVDs because tail
366 IVDs are not subjected to the same complexity and magnitude of mechanical stresses as lumbar
367 IVD and therefore tail IVD degenerate more slowly with aging (Holguin et al., 2014).

368 **Conclusions.** Osterix (SP7) is a critical transcription factor in osteogenic/chondrogenic
369 differentiation but little is known of its role in the IVD. Young-adult, healthy IVD express
370 osterix in the annulus fibrosus and nucleus pulposus, but lose osterix with advanced aging, IVD
371 degeneration and targeted inactivation of WNT signaling. Overall, these data indicate that age-
372 related inactivation of WNT signaling in osterix-expressing cells may limit regeneration by
373 depleting progenitors and attenuating the expansion of chondrocyte-like cells.

374 **Acknowledgements.** The authors gratefully acknowledge Keith Condon and Evan Buettmann
375 for assistance with the histology for osterix and Jiannong Dai for assistance completing QPCR.
376 This work was supported by NIH grants R01 AR047867 (MJS) and F32 AR064667 (NH), by the
377 Washington University Musculoskeletal Research Center (P30 AR057235, T32 AR060719).

378 Last, but not least, we would like to thank the Indiana Center for Musculoskeletal Health
379 (ICMH) and Department of Mechanical and Energy Engineering for the start-up.

380 **Author Contributions.** MJS: experimental design, data analysis, wrote manuscript; NH:
381 Experimental design, data collection, data analysis, wrote manuscript.

382
383 **REFERENCES**

384 **Aguiar, D.J., Johnson, S.L., et al.,** 1999. Notochordal cells interact with nucleus pulposus cells: regulation
385 of proteoglycan synthesis. *Exp Cell Res* 246, 129-137.

386 **Alam, I., Alkhouri, M., et al.,** 2016. Osteoblast-Specific Overexpression of Human WNT16 Increases Both
387 Cortical and Trabecular Bone Mass and Structure in Mice. *Endocrinology* 157, 722-736.

388 **Antoniou, J., Steffen, T., et al.,** 1996. The human lumbar intervertebral disc: evidence for changes in the
389 biosynthesis and denaturation of the extracellular matrix with growth, maturation, ageing, and
390 degeneration. *The Journal of clinical investigation* 98, 996-1003.

391 **Bedore, J., Quesnel, K., et al.,** 2016. Targeting the annulus fibrosus of the intervertebral disc: Col1a2-
392 Cre(ER)T mice show specific activity of Cre recombinase in the outer annulus fibrosus. *J Cell Commun
393 Signal* 10, 137-142.

394 **Boos, N., Nerlich, A.G., et al.,** 1997. Immunolocalization of type X collagen in human lumbar
395 intervertebral discs during ageing and degeneration. *Histochem Cell Biol* 108, 471-480.

396 **Boos, N., Weissbach, S., et al.,** 2002. Classification of age-related changes in lumbar intervertebral discs:
397 2002 Volvo Award in basic science. *Spine (Phila Pa 1976)* 27, 2631-2644.

398 **Brisby, H., Papadimitriou, N., et al.,** 2013. The presence of local mesenchymal progenitor cells in human
399 degenerated intervertebral discs and possibilities to influence these in vitro: a descriptive study in
400 humans. *Stem Cells Dev* 22, 804-814.

401 **Chen, J., Tu, X., et al.,** 2014a. WNT7B promotes bone formation in part through mTORC1. *PLoS Genet*
402 10, e1004145.

403 **Chen, J., Yan, W., et al.,** 2006. Molecular phenotypes of notochordal cells purified from immature
404 nucleus pulposus. *Eur Spine J* 15 Suppl 3, S303-311.

405 **Chen, M., Li, S., et al.,** 2014b. Col2CreER(T2), a mouse model for a chondrocyte-specific and inducible
406 gene deletion. *Eur Cell Mater* 28, 236-245.

407 **Choi, K.S., Harfe, B.D.,** 2011. Hedgehog signaling is required for formation of the notochord sheath and
408 patterning of nuclei pulposi within the intervertebral discs. *Proc Natl Acad Sci U S A* 108, 9484-9489.

409 **Clouet, J., Grimandi, G., et al.,** 2009. Identification of phenotypic discriminating markers for
410 intervertebral disc cells and articular chondrocytes. *Rheumatology (Oxford)* 48, 1447-1450.

411 **Constantinescu, D., Gray, H.L., et al.,** 2006. Lamin A/C expression is a marker of mouse and human
412 embryonic stem cell differentiation. *Stem Cells* 24, 177-185.

413 **D'Angelo, M., Yan, Z., et al.,** 2000. MMP-13 is induced during chondrocyte hypertrophy. *Journal of
414 cellular biochemistry* 77, 678-693.

415 **Day, T.F., Guo, X., et al.,** 2005. Wnt/beta-catenin signaling in mesenchymal progenitors controls
416 osteoblast and chondrocyte differentiation during vertebrate skeletogenesis. *Dev Cell* 8, 739-750.

417 **Gong, Y., Slee, R.B., et al.,** 2001. LDL receptor-related protein 5 (LRP5) affects bone accrual and eye
418 development. *Cell* 107, 513-523.

419 **Henry, S.P., Jang, C.W., et al.,** 2009. Generation of aggrecan-CreERT2 knockin mice for inducible Cre
420 activity in adult cartilage. *Genesis* 47, 805-814.

421 **Hiyama, A., Sakai, D., et al.**, 2010. Enhancement of intervertebral disc cell senescence by WNT/beta-
422 catenin signaling-induced matrix metalloproteinase expression. *Arthritis and rheumatism* 62, 3036-3047.

423 **Holguin, N., Aguilar, R., et al.**, 2014. The aging mouse partially models the aging human spine: lumbar
424 and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice.
425 *J Appl Physiol (1985)* 116, 1551-1560.

426 **Holguin, N., Brodt, M.D., et al.**, 2016. Activation of Wnt Signaling by Mechanical Loading Is Impaired in
427 the Bone of Old Mice. *J Bone Miner Res* 31, 2215-2226.

428 **Holguin, N., Martin, J.T., et al.**, 2013. Low-intensity vibrations partially maintain intervertebral disc
429 mechanics and spinal muscle area during deconditioning. *Spine J* 13, 428-436.

430 **Holguin, N., Silva, M.J.,** 2018. In-Vivo Nucleus Puluspos-Specific Regulation of Adult Murine
431 Intervertebral Disc Degeneration via Wnt/Beta-Catenin Signaling. *Sci Rep* 8, 11191.

432 **Hunter, C.J., Matyas, J.R., et al.**, 2004. Cytomorphology of notochordal and chondrocytic cells from the
433 nucleus pulposus: a species comparison. *J Anat* 205, 357-362.

434 **Imuta, Y., Kiyonari, H., et al.**, 2013. Generation of knock-in mice that express nuclear enhanced green
435 fluorescent protein and tamoxifen-inducible Cre recombinase in the notochord from Foxa2 and T loci.
436 *Genesis* 51, 210-218.

437 **Iwata, M., Aikawa, T., et al.**, 2015. Enhancement of Runx2 expression is potentially linked to beta-
438 catenin accumulation in canine intervertebral disc degeneration. *Journal of cellular physiology* 230, 180-
439 190.

440 **Kondo, N., Yuasa, T., et al.**, 2011. Intervertebral disc development is regulated by Wnt/beta-catenin
441 signaling. *Spine (Phila Pa 1976)* 36, E513-518.

442 **Lapunzina, P., Aglan, M., et al.**, 2010. Identification of a frameshift mutation in Osterix in a patient with
443 recessive osteogenesis imperfecta. *American journal of human genetics* 87, 110-114.

444 **Long, F.**, 2011. Building strong bones: molecular regulation of the osteoblast lineage. *Nat Rev Mol Cell
445 Biol* 13, 27-38.

446 **Ma, B., Landman, E.B., et al.**, 2013. WNT signaling and cartilage: of mice and men. *Calcif Tissue Int* 92,
447 399-411.

448 **McCann, M.R., Tamplin, O.J., et al.**, 2012. Tracing notochord-derived cells using a Noto-cre mouse:
449 implications for intervertebral disc development. *Dis Model Mech* 5, 73-82.

450 **Merceron, C., Mangiavini, L., et al.**, 2014. Loss of HIF-1alpha in the notochord results in cell death and
451 complete disappearance of the nucleus pulposus. *PLoS One* 9, e110768.

452 **Milat, F., Ng, K.W.,** 2009. Is Wnt signalling the final common pathway leading to bone formation? *Mol
453 Cell Endocrinol* 310, 52-62.

454 **Minogue, B.M., Richardson, S.M., et al.**, 2010. Transcriptional profiling of bovine intervertebral disc
455 cells: implications for identification of normal and degenerate human intervertebral disc cell
456 phenotypes. *Arthritis Res Ther* 12, R22.

457 **Mundy, C., Yasuda, T., et al.**, 2011. Synovial joint formation requires local Ext1 expression and heparan
458 sulfate production in developing mouse embryo limbs and spine. *Developmental biology* 351, 70-81.

459 **Nakashima, K., Zhou, X., et al.**, 2002. The novel zinc finger-containing transcription factor osterix is
460 required for osteoblast differentiation and bone formation. *Cell* 108, 17-29.

461 **Nalessos, G., Thomas, B.L., et al.**, 2017. WNT16 antagonises excessive canonical WNT activation and
462 protects cartilage in osteoarthritis. *Ann Rheum Dis* 76, 218-226.

463 **Nishimura, R., Wakabayashi, M., et al.**, 2012. Osterix regulates calcification and degradation of
464 chondrogenic matrices through matrix metalloproteinase 13 (MMP13) expression in association with
465 transcription factor Runx2 during endochondral ossification. *J Biol Chem* 287, 33179-33190.

466 **Richardson, S.M., Ludwinski, F.E., et al.**, 2017. Notochordal and nucleus pulposus marker expression is
467 maintained by sub-populations of adult human nucleus pulposus cells through aging and degeneration.
468 *Sci Rep* 7, 1501.

469 **Rutges, J.P., Duit, R.A., et al.**, 2010. Hypertrophic differentiation and calcification during intervertebral
470 disc degeneration. *Osteoarthritis Cartilage* 18, 1487-1495.

471 **Sakai, D., Nakamura, Y., et al.**, 2012. Exhaustion of nucleus pulposus progenitor cells with ageing and
472 degeneration of the intervertebral disc. *Nature Communications* 3, 1264.

473 **Sato, S., Kimura, A., et al.**, 2008. The distinct role of the Runx proteins in chondrocyte differentiation
474 and intervertebral disc degeneration: findings in murine models and in human disease. *Arthritis and*
475 *rheumatism* 58, 2764-2775.

476 **Shao, J., Yu, M., et al.**, 2016. Differences in calcification and osteogenic potential of herniated discs
477 according to the severity of degeneration based on Pfirrmann grade: a cross-sectional study. *BMC*
478 *Musculoskelet Disord* 17, 191.

479 **Simcha, I., Shtutman, M., et al.**, 1998. Differential nuclear translocation and transactivation potential of
480 beta-catenin and plakoglobin. *J Cell Biol* 141, 1433-1448.

481 **Smolders, L.A., Meij, B.P., et al.**, 2012. Canonical Wnt signaling in the notochordal cell is upregulated in
482 early intervertebral disk degeneration. *J Orthop Res* 30, 950-957.

483 **Tam, V., Chan, W.C.W., et al.**, 2018. Histological and reference system for the analysis of mouse
484 intervertebral disc. *J Orthop Res* 36, 233-43.

485 **Torre, O.M., Mroz, V., et al.**, 2019. Genetic lineage tracing of intervertebral disc cells following
486 herniation injury in neonatal mice. *Orthop Res Society (Conference Abstract)*.

487 **Urban, J.P., Roberts, S.**, 2003. Degeneration of the intervertebral disc. *Arthritis Res Ther* 5, 120-130.

488 **Wang, M., Tang, D., et al.**, 2012. Conditional activation of beta-catenin signaling in mice leads to severe
489 defects in intervertebral disc tissue. *Arthritis and rheumatism* 64, 2611-2623.

490 **Winkler, T., Mahoney, E.J., et al.**, 2014. Wnt signaling activates Shh signaling in early postnatal
491 intervertebral discs, and re-activates Shh signaling in old discs in the mouse. *PLoS One* 9, e98444.

492 **Wu, Q., Mathers, C., et al.**, 2019. TGF- β Initiates β -Catenin-Mediated CTGF Secretory Pathway in Old
493 Bovine Nucleus Pulposus Cells: A Potential Mechanism for Intervertebral Disc Degeneration. *JBMR Plus*.

494 **Yurube, T., Hirata, H., et al.**, 2014. Notochordal cell disappearance and modes of apoptotic cell death in
495 a rat tail static compression-induced disc degeneration model. *Arthritis Res Ther* 16, R31.

496 **Zheng, Y., Fu, X., et al.**, 2019. Characterization of Cre recombinase mouse lines enabling cell type-
497 specific targeting of postnatal intervertebral discs. *Journal of cellular physiology*.

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513 **TABLES**

514 **Table 1.** Dimensions and material mechanical properties of LRP5 cKO and WT IVDs

Group	Th [mm]	Area [mm ²]	Comp [MPa]	Ten [MPa]	NZ [MPa]
WT	0.45 (0.05)	5.0 (0.6)	6.0 (2.3)	3.1 (0.7)	0.20 (0.05)
LRP5 cKO	0.44 (0.07)	4.4 (1.3)	4.6 (1.9)	1.6 (0.8)*	0.07 (0.7)**

515 Th: thickness, Comp: Compression, Ten: Tension, NZ: Neutral Zone, *: p<0.05, **: p<0.01,
516 WT vs LRP5 cKO (n=5/grp)

517

518

519 **Table 2.** Intervertebral disc-specific transgenic models with inducible Cre recombinase activity

CreERT2	Noto (McCann et al., 2012)	Shh (Choi and Harfe, 2011)	Foxa2 (Imuta et al., 2013)	Acan (Henry et al., 2009)	Col2 (Chen et al., 2014b)	Scx (Torre et al., 2019)	Col1 (Bedore et al., 2016)	Osx
NP	+	+	+	+	-	-	-	+
IAF	-	-	-	+	+	+	-	-
OAF	-	-	-	+	-	+	+	+

520 NP: Nucleus pulposus, IAF: Inner annulus fibrosus, OAF: Outer annulus fibrosus, Shh: Sonic
521 hedgehog, Foxa2: Forkhead box a2, Acan: Aggrecan, Col2: Collagen type 2, Scx: Scleraxis,
522 Col1: Collagen type 1, Osx: Osterix (Sp7), +: Present, -: Absent

523 **FIGURE LEGEND**

524 **Figure 1.** *Mouse intervertebral disc (IVD) degeneration was scored histologically on a 0-14*
525 *scale. Individual scores are noted for each representative image. (A) Mouse intervertebral disc*
526 *(IVD) degeneration increased with aging in the lumbar region. (B) Mechanical injury by tail*
527 *compression or puncture induce IVD degeneration in 5 mo and 18 mo mice. (C) Quantification*
528 *of the tail IVD degeneration. Scale bar: 100 μ m. *: p<0.05.*

529

530 **Figure 2.** *QPCR of 5 mo and 12 mo IVD subjected to tail compression. The relative gene*
531 *expression in each loaded and control intervertebral disc was determined by normalizing to*
532 *housekeeping gene IPO8 (CT value of 30) and then normalized to the control intervertebral disc.*
533 **: Main effect of loading, #: main effect of aging, p<0.05. ~:0<0.1*

534

535 **Figure 3.** *(A) Immunohistochemistry staining for osterix and counterstained with Safranin-O of*
536 *tail and lumbar IVD. (A') Magnification of the lumbar IVD. (B) Osterix staining of the NP of*
537 *IVD subjected to tail compression. (C) Magnification of the NP and rotated by 90° clockwise.*
538 *Solid brown arrows denote cells with small cell nuclei (relative to cell size) stained with a high-*
539 *intensity of osterix expression (Dark), empty brown arrows denote cells with large cell nuclei*
540 *stained with a low-intensity of osterix expression (Light) and white arrows denote cells with cell*
541 *nuclei stained with no osterix expression (No Stain). Scale bar for A, B: 100 μ m; A':25 μ m, and*
542 *C: 12.5 μ m. CB: cortical bone, CEP: cartilage endplate, GP: growth plate, NP: nucleus*
543 *pulposus, OAF: outer annulus fibrosus, TB: trabecular bone. *: p<0.05.*

544

545 **Figure 4.** *(A) Merged DAPI (blue) and immunofluorescence of osterix expression of tail IVD*
546 *from 5 mo and 12 mo OsxCreERT2/tdT mice. Immunofluorescence of osterix expression of (B)*
547 *IVD from 5 mo and 12 mo OsxCreERT2/td mice. (C) IVD of 5 and 12 mo td mice without*
548 *OsxCreERT2. AF: annulus fibrosus, CB: cortical bone, CEP: cartilage endplate, NP: nucleus*
549 *pulposus, OAF: outer annulus fibrosus, TB: trabecular bone. Scale bar: 100 μ m.*

550

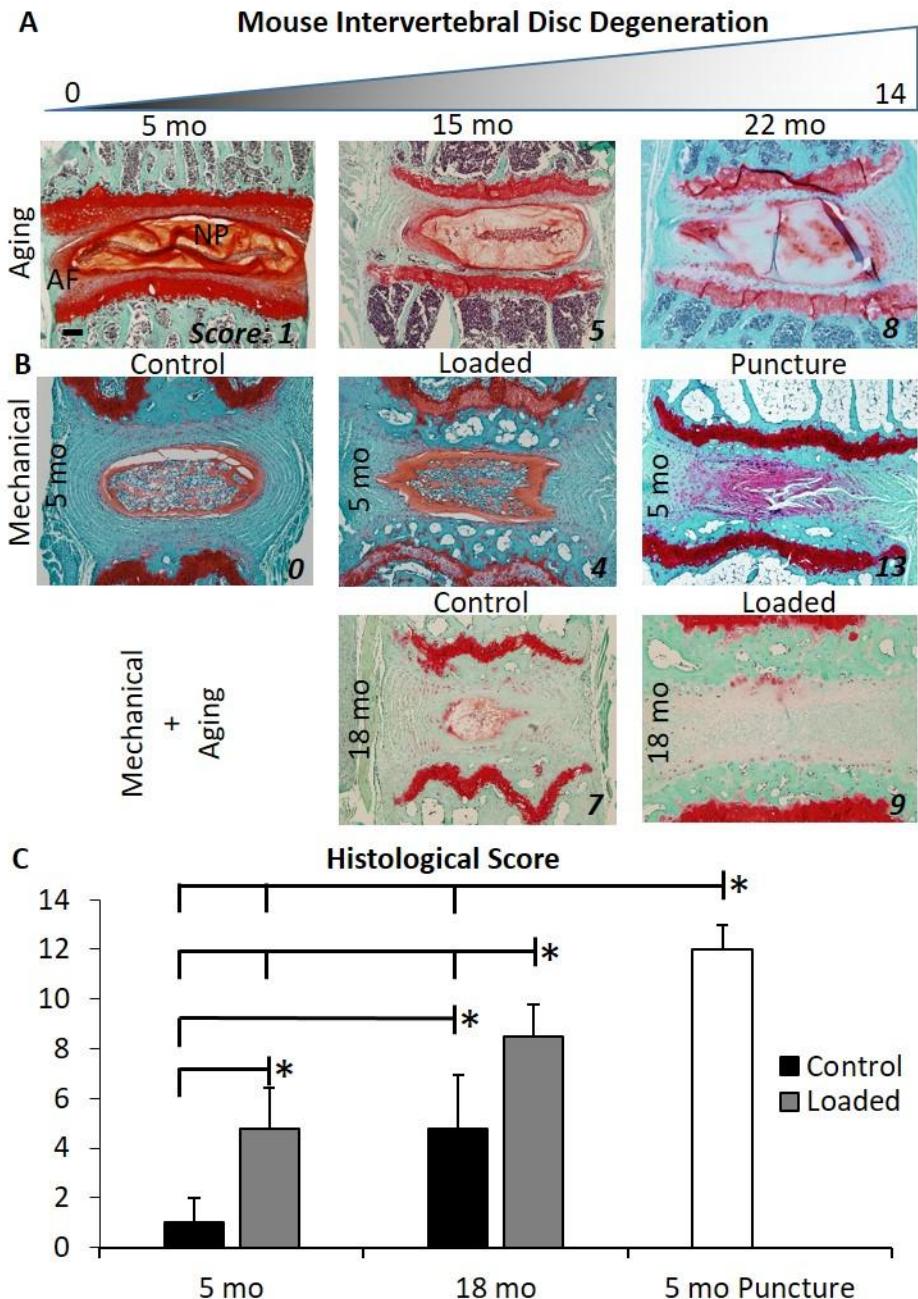
551 **Figure 5.** *From WT and LRP5 cKO mice, (A) LacZ staining for WNT signaling (blue arrow*
552 *head), quantification of WNT signaling, Safranin-O/Fast green staining and histological scoring*
553 *of (A-D) lumbar and (E-H) tail IVD. Scale bar: 100 μ m. *: p<0.05.*

554

555 **Figure 6.** *(A) Force/Displacement curves of control (WT) and LRP5 cKO tail IVD. (B) Stiffness*
556 *in compression, neutral zone and tension of WT and LRP5 cKO IVD. *: p<0.05.*

557

558 **Figure 7.** *QPCR of (A) lumbar and (B) tail IVD from WT and LRP5 cKO mice. (C) LacZ*
559 *staining for WNT signaling (blue arrow) and immunohistochemical staining for osterix (brown*
560 *arrow) from WT and LRP5 cKO tail IVD. Cells stained for both are brown with blue lining.*
561 *Scale bar: 50 μ m *: p<0.05.*


562

563 **Figure 8.** *(A) Proposed role between chondrocyte-like (CLC) and notochordal (NC1) cells*
564 *during optimal regeneration, suboptimal regeneration and IVD degeneration. NC1 cells have*
565 *high WNT signaling and no osterix. IVD degeneration is characterized by a loss (X's) of both*
566 *cells. (B) During suboptimal regeneration, progenitor cells with high osterix expression gain*
567 *WNT signaling to become NC2 and finally become CLC by losing osterix and WNT signaling.*

568 Aging limits differentiation of progenitors to CLC through NC2 and promotes it directly, which
569 is suboptimal because fewer NC cells become involved.

570

571 **FIGURES**

Figure 1

572

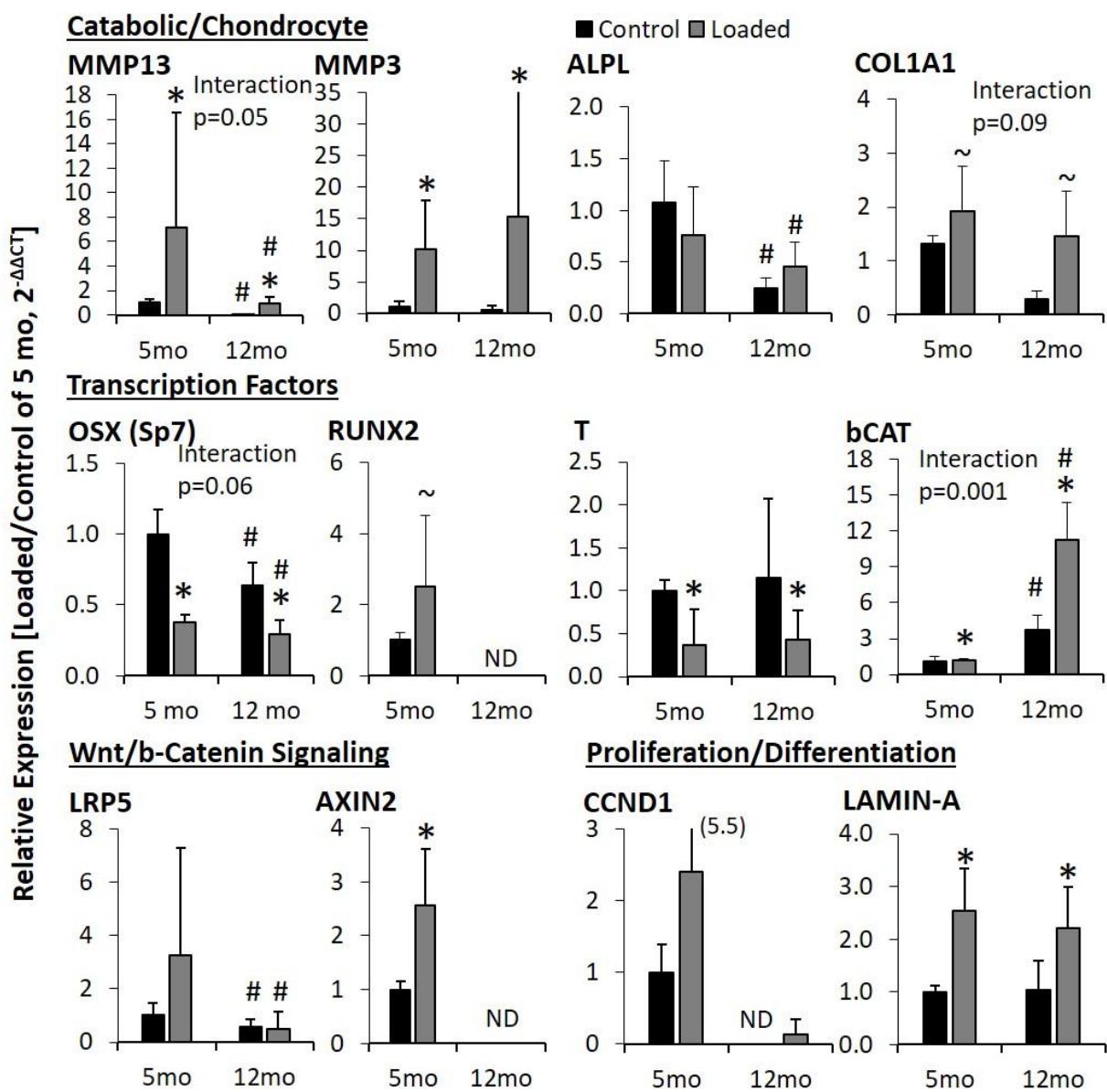


Figure 2

573

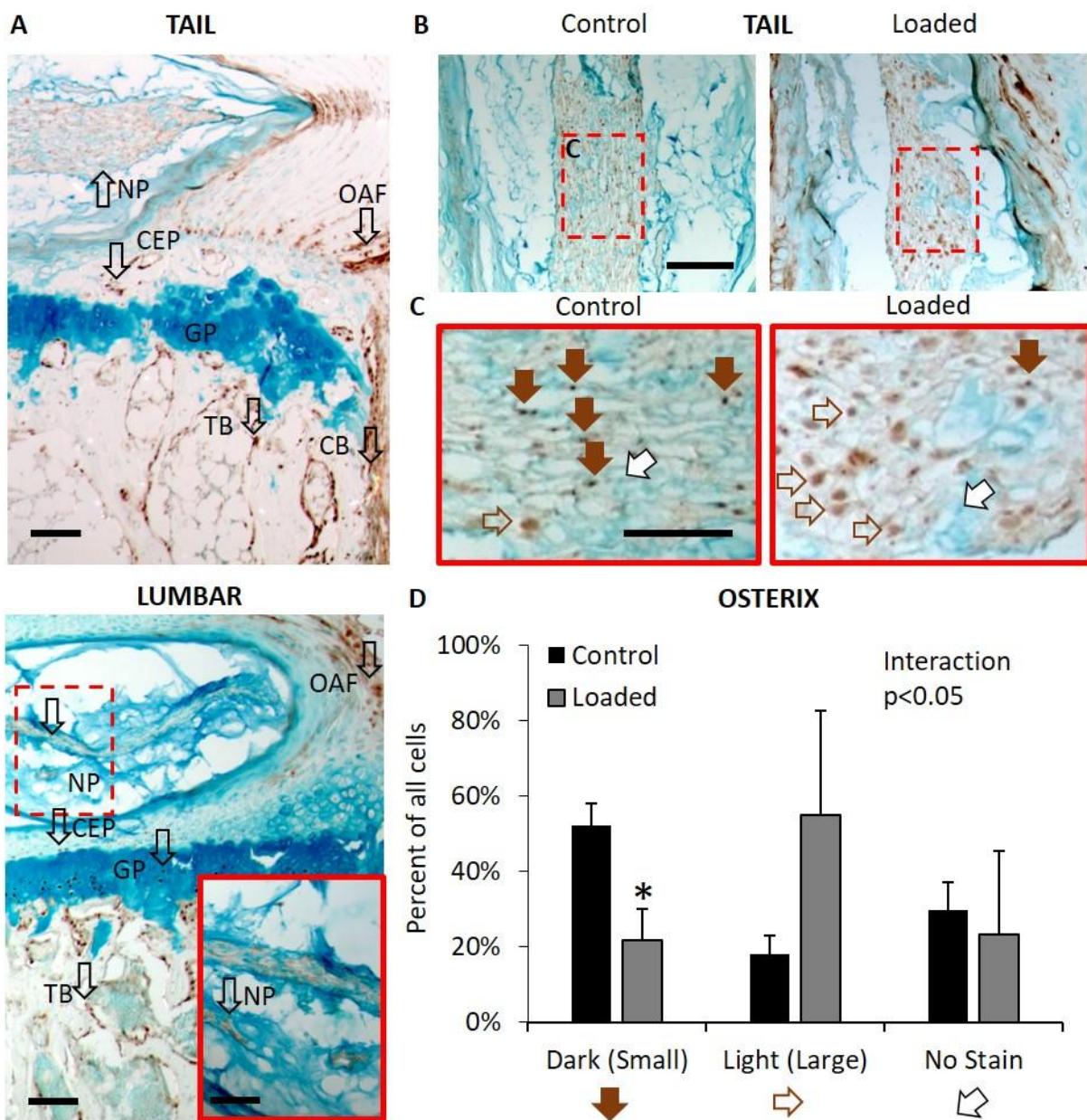


Figure 3

574

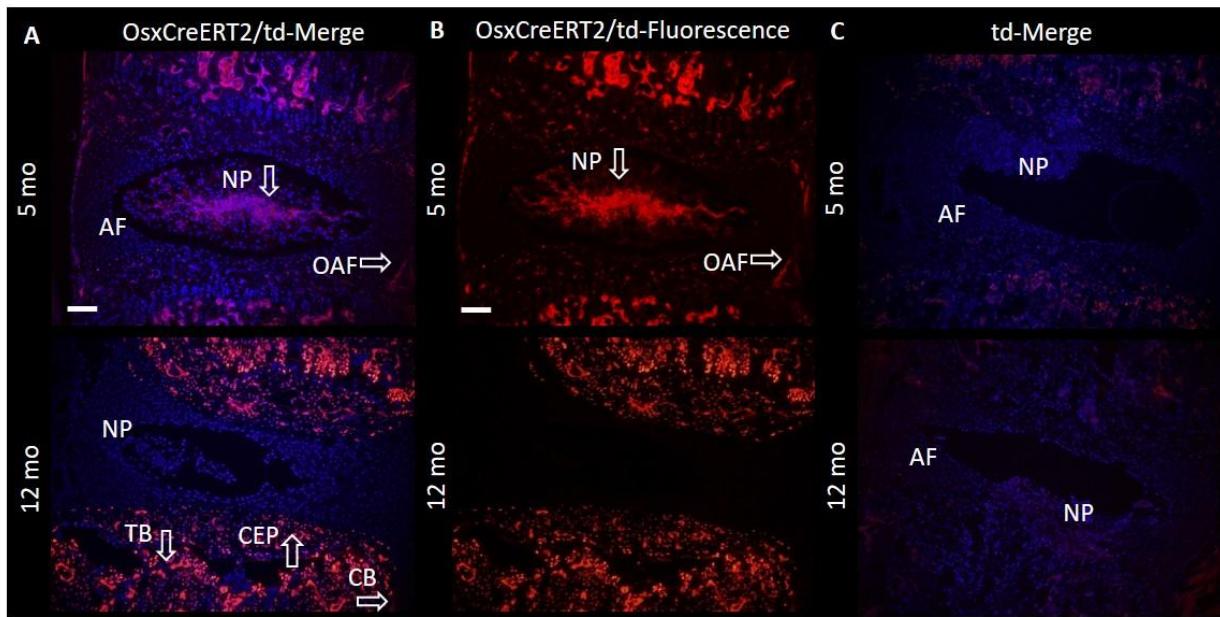


Figure 4

575

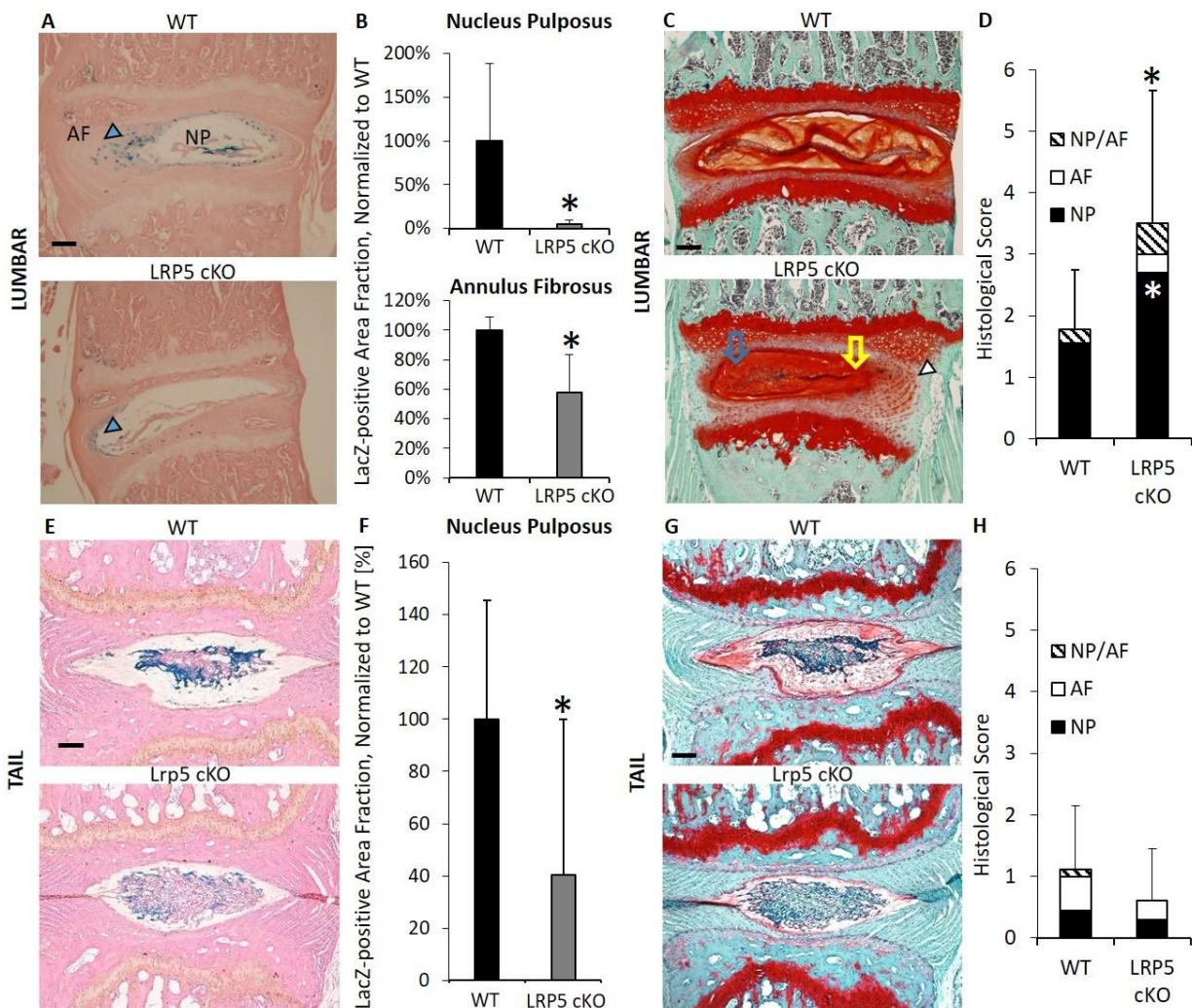


Figure 5

576

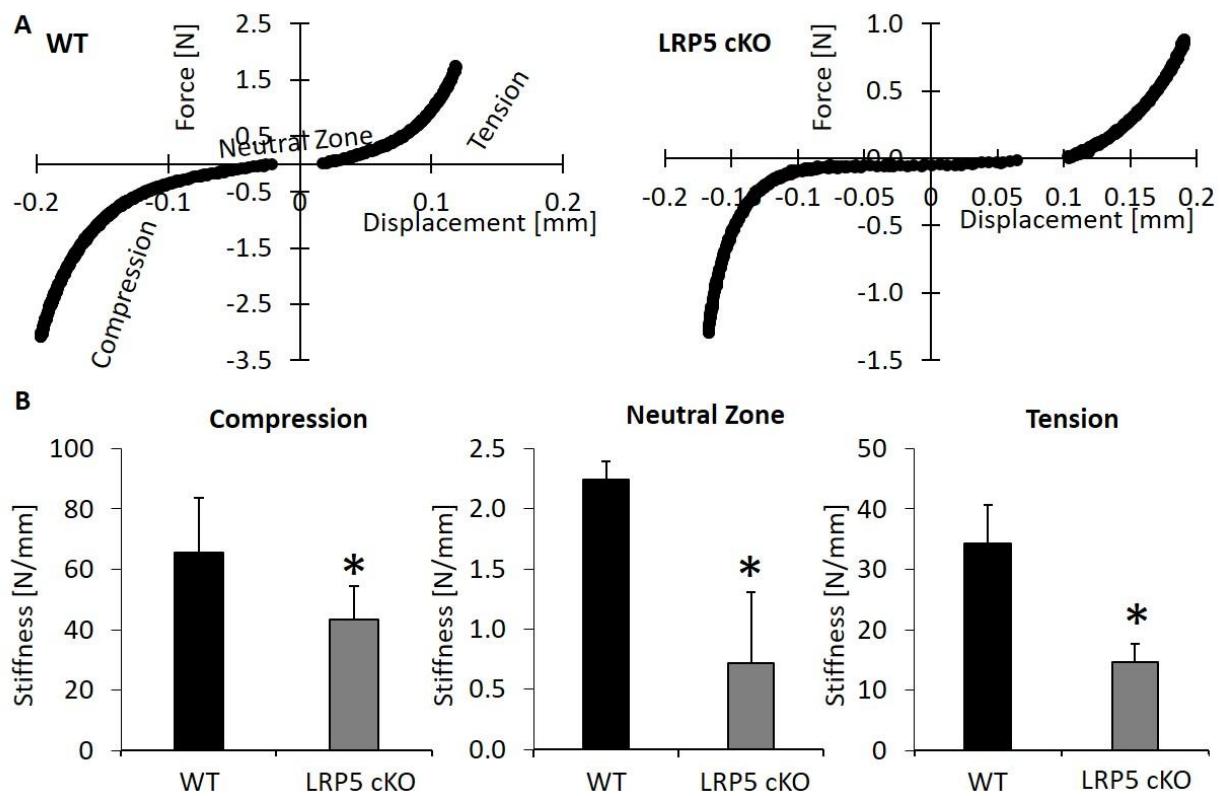


Figure 6

577

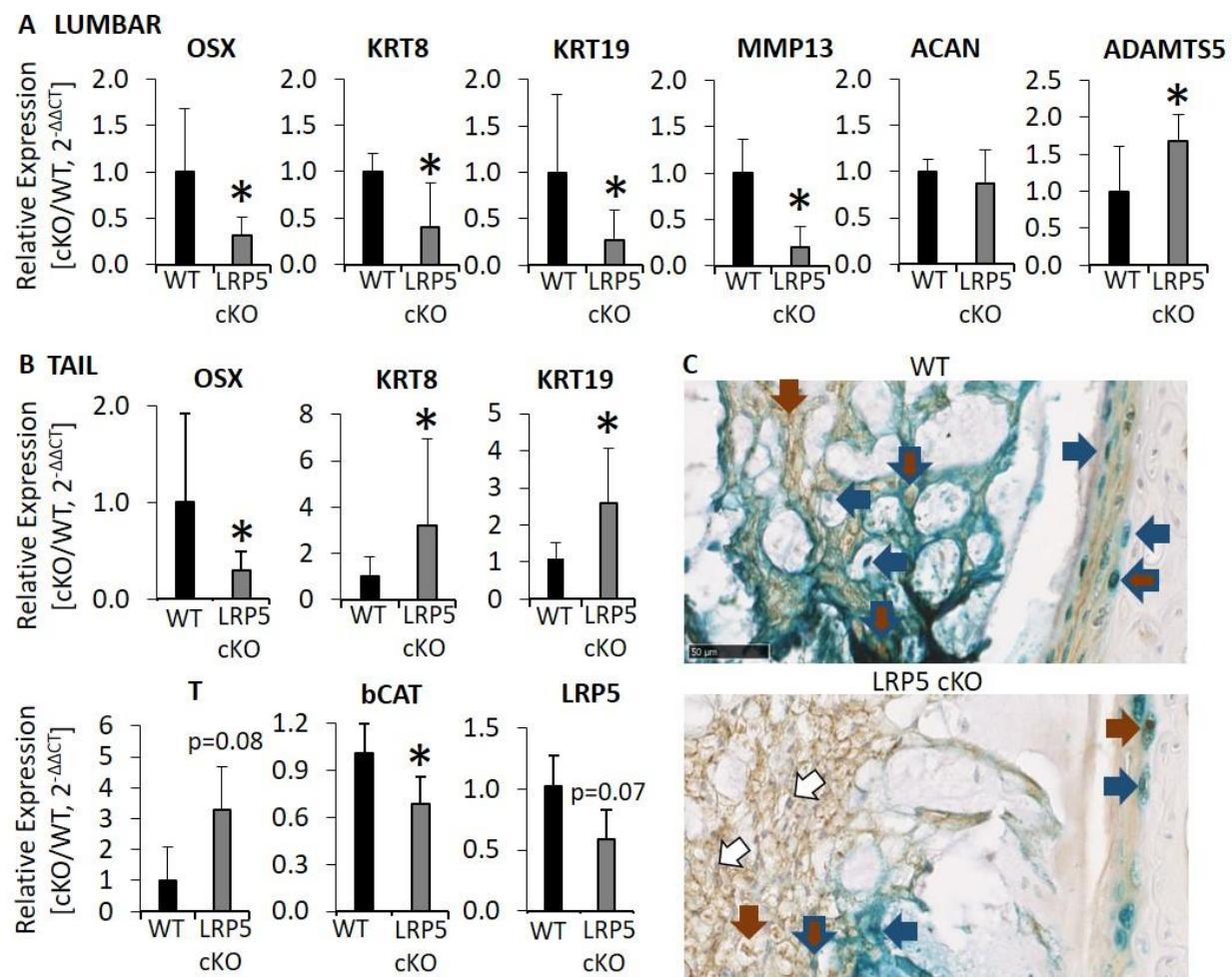


Figure 7

578

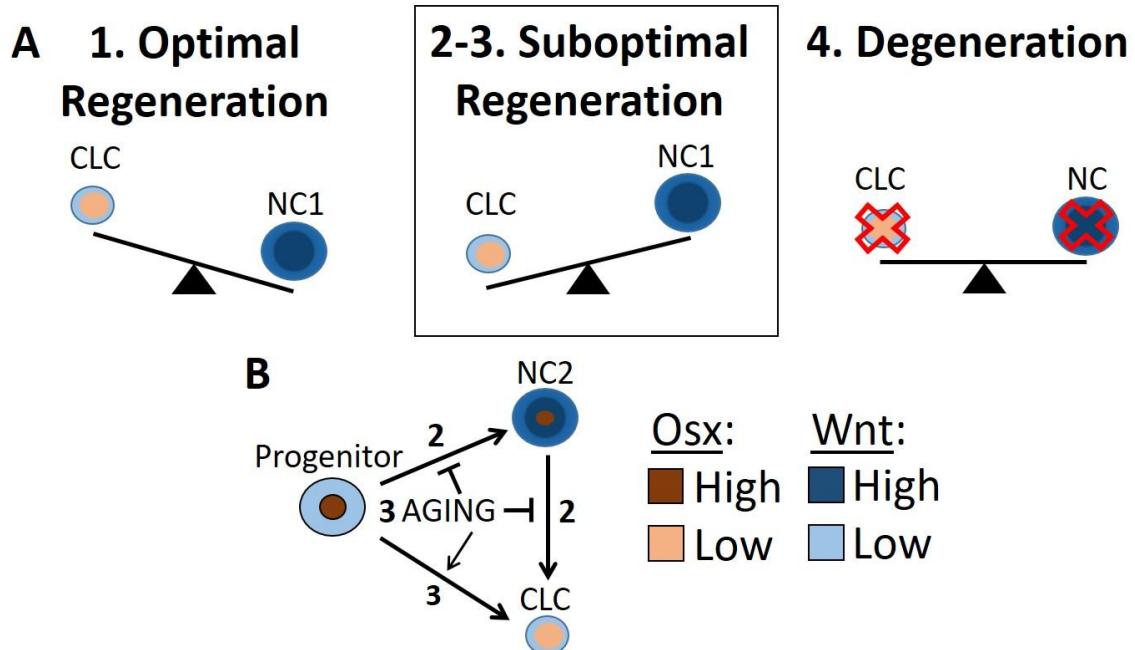


Figure 8

579

580 **SUPPLEMENTAL FIGURES**

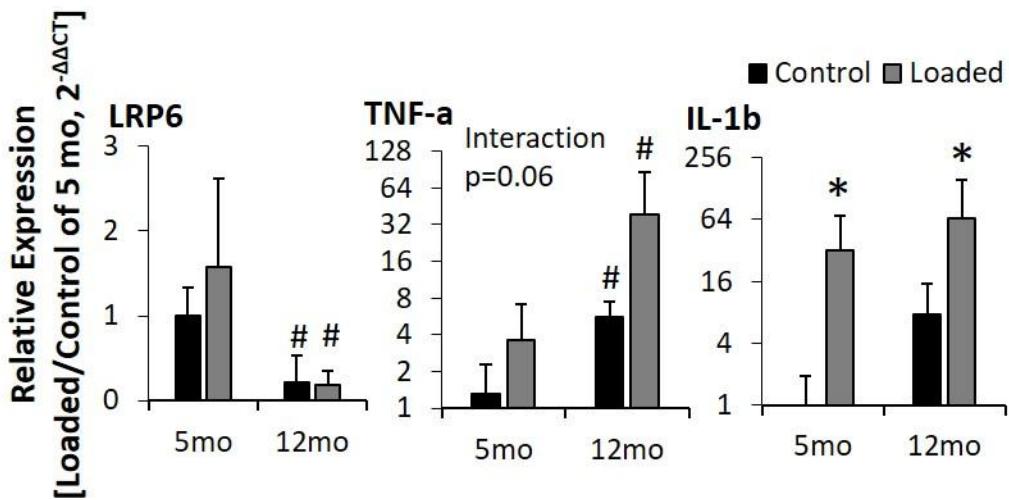


Figure 1S

581

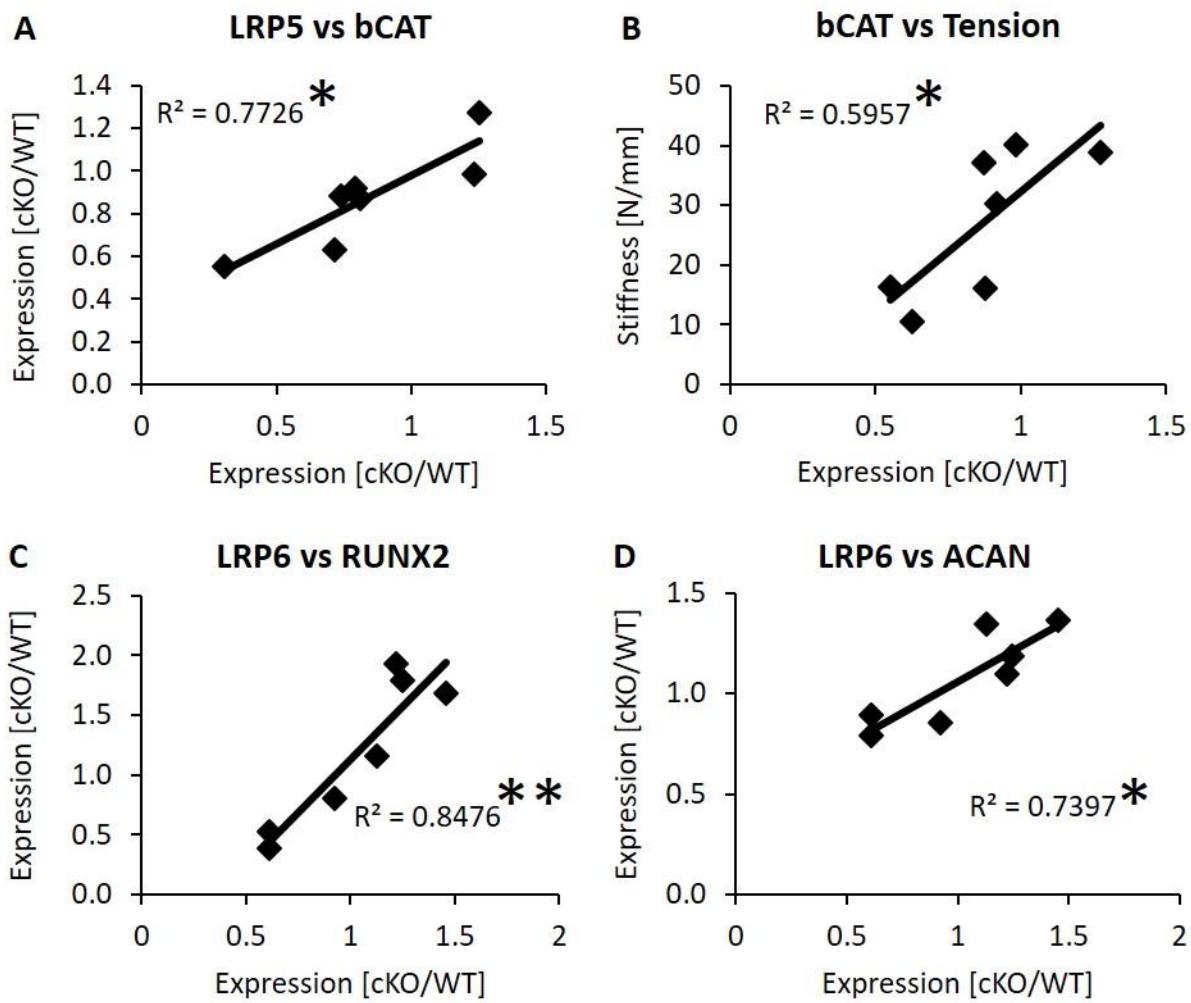


Figure 2S

582