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Abstract

Systems Biology models reveal relationships between signaling inputs and observable
molecular or cellular behaviors. The complexity of these models, however, often
obscures key elements that regulate emergent properties. We use a Bayesian model
reduction approach that combines Parallel Tempering with Lasso regularization to
identify minimal subsets of reactions in a signaling network that are sufficient to
reproduce experimentally observed data. The Bayesian approach finds distinct reduced
models that fit data equivalently. A variant of this approach based on Group Lasso is
applied to the NF-κB signaling network to test the necessity of feedback loops for
responses to pulsatile and continuous pathway stimulation. Taken together, our results
demonstrate that Bayesian parameter estimation combined with regularization can
isolate and reveal core motifs sufficient to explain data from complex signaling systems.

Introduction

Cells use complex networks of proteins and other biomolecules to translate
environmental cues into various cell fate decisions. Mathematical and computational
models are increasingly used to analyze the nonlinear dynamics of these complex
biochemical signaling systems [1–4]. As our knowledge of the biochemical processes in a
cell increases, reaction network models of cell signaling have been growing more
detailed [4–6]. Detailed models are a useful summary of knowledge about a system but
they suffer from several drawbacks. First, the complexity may obscure simpler motifs
that govern emergent cellular functions [7–9]. Second, the large number of parameters
creates a high-dimensional search problem for parameter values where the model fits the
data. To mitigate these problems, it is useful to reduce the number of reactions in a
model, provided that the reduced model is still able to reproduce a given set of
experimental observations. In this work we pose model reduction as a constrained
Bayesian parameter estimation (BPE) problem to simultaneously calibrate and reduce
models. Given a prior reaction network model, our method finds all possible minimal
subsets of non-zero parameters that fit the data.

Previous studies have addressed model reduction for biochemical systems [10]. Some
examples include reductions by topological modifications to resolve non-identifiability in
models [11,12] and reductions by timescale partitioning [13,14]. Non-identifiability
arises when multiple unique parameterizations of a model give the same model output.
Quaiser et al. [11] and Raue et al. [12] developed methods to find non-identifiable
parameters and used this analysis to resolve non-identifiability by model simplifications
such as lumping or removal of reactions. The simplification step, however, is not
automated and requires a skilled modeler. Timescale partitioning methods use timescale
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separations in the reaction kinetics to apply model reduction based on
quasi-steady-state and related approximations [10, 14]. Both of these methods generate
reduced models but do not carry out parameter estimation to fit experimental data.
Another approach to model reduction that includes parameter estimation [15] uses
mixed-integer nonlinear optimization to combine parameter estimation with model
reduction by reaction elimination, a technique common in the field of chemical
engineering [16,17]. Drawbacks of this approach are that it requires an additional
binary parameter for every reaction in the model and that the genetic algorithms used
for the optimization only provide point estimates of the parameters.

Here, we develop reaction elimination in a Bayesian framework that combines
parameter estimation and model reduction without requiring additional parameters.
BPE has been shown to be useful to characterize high-dimensional, rugged, multimodal
parameter landscapes common to systems biology models [1, 18–21], but it suffers from
the drawback that the Markov Chain Monte Carlo (MCMC) methods commonly used
to sample model parameter space are often slow to converge and do not scale well with
the number of model parameters. We recently showed that Parallel Tempering (PT), a
physics-based method for accelerating MCMC [22], outperforms conventional MCMC
for systems biology models with up to dozens of parameters [18]. Here, we apply Lasso
(also known as L1 regularization), a penalty on the absolute values of the parameters
being optimized, to carry out model reduction. In the fields of statistics and machine
learning, Lasso is widely used for variable selection to identify a parsimonious model – a
minimal subset of variables required to explain the data [23]. In the context of biology,
Lasso has been widely applied to gene expression and genomic data typically in
combination with standard regression techniques [24–28] and less commonly in Bayesian
frameworks [29,30]. In the mechanistic modeling context, Lasso regression has been
used to predict cell type specific parameters in ODE reaction network models [31], but
to our knowledge it has not been implemented to reduce such models.

Our method, PTLasso, combines PT with Lasso regularization to simultaneously
calibrate and reduce models. The core idea is that every reaction in the model is
governed by a rate constant parameter that, when estimated as zero, removes the
reaction from the model simulation. Since the approach is Bayesian, PTLasso extracts
all possible minimal subsets of reactions, which provides alternate mechanisms to
explain the data. Using both synthetic and real biological data, we demonstrate that
PTLasso is an effective approach for model reduction. We also apply PT coupled with
Group Lasso [32] in a larger model of NF-κB signaling to select over reaction-network
modules instead of individual reactions. Group Lasso can test mechanistic hypotheses
about the necessity of signaling modules, such as feedback loops, to explain data from
particular experimental conditions. Overall, our results demonstrate that BPE
combined with regularization is a powerful approach to dissect complex systems biology
models and identify core reactions that govern cell behavior.

The remainder of this paper is organized as follows. In Methods we provide an
overview of the PTLasso approach with in-depth descriptions of PT, Lasso
regularization, Group Lasso and the setup of computational experiments. In Results we
demonstrate PTLasso on synthetic examples of increasing complexity followed by an
application of the Group Lasso approach to address mechanistic questions in NF-κB
signaling. Finally, in Discussion we highlight advances as well as limitations of the
method and present the implications of this study for the broader context of biological
modeling and analysis.
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Methods

In this work we use Bayesian parameter estimation (BPE) for model reduction.
Following [18], BPE methods aim to estimate the probability distribution for the model
parameters conditioned on the data. The probability of observing the parameter vector,
~θ, given the data, Y , is given by Bayes’ rule

p(~θ|Y ) ∝ p(Y |~θ)p(~θ). (1)

Here, p(Y |~θ) is the conditional probability of Y given ~θ, and is described by a likelihood
model. For the ODE models in this study, we assumed Gaussian experimental
measurement error, in which case the likelihood of a parameter vector, ~θ, is given by

L(~θ) = e−ΣSΣT (Ysim(~θ)−Yexpt)
2/2σ2

, (2)

where S is a list of the observed species, T is a list of the time points at which
observations are made, σ is the standard deviation of the likelihood model, Ysim(~θ) is

the model output for parameter vector, ~θ, and Yexpt is the corresponding experimental

data. p(~θ) is the independent probability of ~θ, often referred to as the prior distribution,
which represents our prior beliefs about the model parameters. It can be used to restrict
parameters to a range of values or even to limit the number of nonzero parameters, as
discussed further below.

MCMC sampling

MCMC methods sample from the posterior distribution, p(θ|Y ), by constructing a
Markov chain with p(θ|Y ) as its stationary distribution. Following the notation of

Metropolis et al. [33], we define the energy of a parameter vector ~θ as

E(~θ) = − logL(~θ)− log p(~θ), (3)

where L and p are the likelihood and prior distribution functions defined above. In this
section we will briefly describe the Metropolis-Hastings and Parallel Tempering
algorithms for MCMC sampling.

Metropolis-Hastings algorithm

The Metropolis-Hastings (MH) algorithm is a commonly-used MCMC algorithm for
BPE [34]. At each step, n, the method uses a proposal function to generate a new

parameter vector, ~θnew, given the current parameter vector, ~θn. A common choice of
proposal function is a normal distribution centered at ~θn:

f(~θnew, ~θn) ∝ e−α|~θnew−~θn|
2

. (4)

For any f that is symmetric with respect to ~θnew and ~θn, the move ~θn+1 = ~θnew is

accepted with probability min(1, e−∆E), where ∆E = E(~θn+1)− E(~θn). If the move is
not accepted θn+1 is set to θn

Parallel Tempering

In PT (also referred to as replica exchange Monte Carlo [22]), several Markov chains are
constructed in parallel, each with a different temperature parameter, β, which scales the
acceptance probability from the MH algorithm, which is now given by min(1, e−β∆E) A
Markov chain with β = 1 samples the true energy landscape as in MH. Higher
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temperature chains have β < 1 and accept unfavorable moves with a higher probability,
sampling parameter space broadly. Tempering refers to periodic attempts to swap
parameter configurations between high and low temperature chains. These moves allow
the low temperature chain to escape from local minima and improve both convergence
and sampling efficiency [22]. Following [18], the PT algorithm is as follows:

1. For each of N swap attempts (called “swaps” for short)

(a) For each of Nc chains (these can be run in parallel)

i. Run NMCMC MH steps

ii. Record the values of the parameters and energy on the final step.

(b) For each consecutive pair in the set of chains in decreasing order of
temperature, accept swaps with probability min(1, e∆β∆E), where ∆E and
∆β are the differences in the energy and β of the chains, respectively.

Adapting the step size and the temperature parameter can further increase the
efficiency of sampling [22], but varying parameters during the construction of the chain
violates the assumption of a symmetric proposal function (also referred to as “detailed
balance”). It is therefore advisable to do this during a “burn-in” phase prior to
sampling.

Regularization with Lasso

Lasso regularization penalizes the L1-norm (sum of absolute values) of the parameter
vector, which biases all model parameters towards a value of zero [23]. In a Bayesian
framework, the Lasso penalty is equivalent to assuming a Laplace prior on each
parameter θi given by

p(θi) =
1

2b
exp (

|θi − µ|
b

), (5)

where b is the width and µ is the mean, which is set to zero for variable selection in
linear parameter space. The energy function is then

E(~θ) = − logL(~θ)−
npar∑
i=1

|θi − µ|
b

, (6)

where npar is the number of model parameters. Since PT only uses energy differences,
the normalization constant 1

2b in Eq. 5 does not appear in Eq. 6. b is inversely
proportional to the regularization strength.

For efficiency we usually perform parameter estimation in log parameter space, so
instead of regularizing by setting µ to zero, we set it to a large negative value, such that
the parameter value is small enough that it does not affect the dynamics of the model
variables on the timescale of the simulation.

Regularization with Group Lasso

To account for modularity in complex signaling networks [35], we use Group Lasso,
previously described for regression problems [32], to perform selection at the level of
reaction modules instead of individual reactions. All reactions in a module share a
common penalty parameter that is multiplied with a reaction-specific parameter to get
the full reaction rate constant.

For every reaction i in module m, the reaction rate constant is given by

θi = kiλm, (7)
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where λm is the penalty parameter for module m and ki is a reaction-specific parameter.
Defining θ′i = log(θi), k

′
i = log(ki), and λ′m = log(λm), we have

θ′i = k′i + λ′m. (8)

The energy function is then

E(~θ′) = − logL(~θ′)−
nmod∑
m=1

|λ′m − µ|
b

−
npar∑
i=1

f(k′i), (9)

where

f(k′i) =

{
0, if k′i ∈ (LBi, UBi)

∞, otherwise.
(10)

Here, nmod is the number of modules and LBi and UBi are parameters that restrict the
reaction-specific parameters. UBi is chosen such that when λ′m is within the Laplace
prior boundaries, i.e., λ′m ≈ µ, the maximum value of θ′i, ≈ UBi + µ, is small enough
that it does not affect the dynamics of the model variables on the timescale of the
simulation. For the application to NF-κB signaling we chose µ = −25, LBi = −5 and
UBi = 10 for all i.

Synthetic data sets used in model calibration

For the two examples presented in Results that used synthetic data, we generated the
sets labeled “true data” by simulating the model with a single set of parameter values
and sampling with a fine time resolution. We then generated 10 noisy replicates of this
data at a coarser set of time points by adding Gaussian noise with mean of zero and
variance of either 10% or 30% of the true value at each point. The mean and variance of
the replicates then defined the “observed data” used for fitting.

Constraining the model

We use two kinds of constraints in fitting, soft constraints and hard constraints. Soft
constraints can be violated, but are associated with a finite penalty [36]. For example,
the energy function penalizes parameter vectors for producing model outputs that
deviate from the data. Hard constraints, on the other hand, cannot be violated because
they are associated with an infinite penalty. We used hard constraints in the NF-κB
signaling model to enforce certain known properties of the NF-κB system, such as that
the exit rate of NF-κB -IκB complex from the nucleus is greater than that of free
NF-κB [37]. A full list of constraints applied to the NF-κB signaling model is listed in
Table S4.

MCMC chain initialization

All MCMC chains must be initialized with a starting parameter vector. For simple
examples, such as the pulse-generator motif and linear dose-response models, chains
were initialized by randomly sampling from the prior until a parameter vector with
energy below a threshold is found. For more complex examples, to avoid long burn-in
periods when starting from unfavorable start points, parameter vectors obtained from
short PT runs were used to initialize longer PT chains. For example, parameter sets
obtained for one NF-κB trajectory could be used as a start point for fitting a different
NF-κB trajectory, or a PTLasso chain with a small value of b (more constrained) could
be initialized from a parameter set obtained from PTLasso with a large value of b (less
constrained). The exact procedures used to generate the starting configurations used in
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all computational experiments are provided in the Supplemental Code that will be
provided on GitHub upon publication of this manuscript.

Convergence testing

To check for convergence, PT or PTLasso was run twice for each computational
experiment, and the two parameter chains were used to calculate the Potential Scale
Reduction Factor (PSRF) for each model parameter. The PSRF compares intra-chain
and inter-chain variances for model parameters and serves as a measure of
convergence [38]. In keeping with the literature, we consider a PSRF less than
1.2 [19,20,38] as indicating convergence. We also calculated the stricter Multivariate
PSRF (MPSRF), which extends PSRF by checking for convergence of parameter
covariation. Third-party MATLAB libraries used for the MPSRF calculations are
available at https://research.cs.aalto.fi/pml/software/mcmcdiag/.

For models with a large number of parameters, such as the 26-parameter NF-κB
signaling model, the number of PT samples needed for convergence was large and time
consuming to obtain in a single run. Instead of running two long PT chains each of
length N , we picked two favorable initial conditions and from each ran a set of M PT
chains of length N/M in parallel to reduce wall clock time. We calculated the
univariate PSRF of the M energy chains within each group, and if PSRF was less than
1.2, we assumed that the chains were sampling the same energy basin and combined
them (Table S5). This gave us two groups of N PT samples that we used to calculate
parameter convergence.

PSRF and MPSRF valuess for each computational experiment are shown in
Tables S1 and S2 respectively. We also show in Table S3 that the acceptance rates for
most chains are close to the optimal value of 0.234 [39].

Hyperparameter selection

The hyperparameters associated with PTLasso are µ and b, the mean and width of the
Laplace prior on each parameter that is being regularized. For simplicity, we keep these
the same for all model parameters, although they could in principle vary, which would
lead to a more difficult inference problem. To select the hyperparameters, we varied b
and used the “elbow” in the negative log likelihood vs. b plot to find the smallest value
of b (maximum regularization strength) that does not substantially increase the
negative log likelihood of the fit [18, 40]. We also checked that the results were
insensitive to small variations in µ (Figs. S1–S3).

For more computationally expensive models, we used hyperparameter estimates close
to those obtained from the smaller synthetic models and compared the average log
likelihoods of the fits from PT and PTLasso. For all of the examples shown, we found
that the fit with PTLasso is at least as good as the fit with PT (Figs. 4, S1–S3).

Software

All results reported in this work were obtained using ptempest [18], which is a
MATLAB package for parameter estimation that implements PT with support for
regularization. The source code is available at
http://github.com/RuleWorld/ptempest.
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Results

Reduced motifs can be inferred from dense reaction-networks in
the absence of a prior architecture

To demonstrate that PTLasso can recover a minimal model architecture without prior
knowledge of the reaction network, we used synthetic time-course data to infer a
pulse-generator motif from a fully connected 3-node network of unimolecular reactions.
The motif A→B→C (Fig. 1A, left), modeled as a system of ODE’s, was used to
generate a time course for species B after initializing the system with 100 molecules of
species A at time t = 0 (red curves in Fig. 1B labeled ‘true data’). To simulate the
effects of experimental noise and cell-to-cell variability, Gaussian noise was added to
generate ten noisy trajectories that were sampled at eight time points (Fig. S1A). The
mean and standard deviation of these synthetic trajectories formed the ‘observed data’
(black points and error bars in Fig. 1B) used for subsequent parameter estimation and
model reduction.

PT and PTLasso were then used to fit this data using the fully-connected 3-node
network comprised of six reactions (Fig. 1A, right). Time courses from PT and
PTLasso (Fig. 1B) both fit the observed data (Fig. S1C), but the PTLasso curves fit
the true data better at times before the first observed data point. PT finds parameter
probability distributions (Fig. 1C, top row) that exhibit sharp peaks near the exact
values of the two nonzero parameters, KAB and KBC, but finds significant probability
for other values of these parameters and non-zero values for the other rate constants in
the complete network that should have zero value (labeled ‘extraneous’). By contrast,
PTLasso (Fig. 1C, bottom row) recovers tight distributions on the values of the two
nonzero parameters that lie well outside the Laplace prior, while the probability
distributions for the extraneous parameters all conform tightly to the prior distribution,
indicating that the corresponding reactions can be removed from the network. Taken
together, these results demonstrate that PTLasso can recover network architecture and
parameter values that are not inferred by PT alone.

To determine if the method scales to larger networks, we applied PT and PTLasso
to a fully connected 5-node network (Fig. 2A, Fig. S2A). As with the 3-node example,
PTLasso fits for a complete 5-node network are more similar to the true data than fits
with PT alone (Fig 2B). Similarly, rate constant parameter distributions with PT are all
broad (Fig. 2C), whereas the extraneous parameters for the PTLasso fits were within
the Laplace prior (Fig 2D). In addition to a correct reaction rate constant distribution
for KAB, PTLasso recovered bimodal distributions for and KBC, KBD, and KBE,
suggesting that the essentiality of each of the reactions B→C, B→D and B→E depends
on which of the other two are included. This is because the model A→B→C is
indistinguishable from A→B→D and A→B→E without more information about the
system. Even though the marginal posterior distributions show all three parameters
playing a role, parameter covariation (Fig. S2D, right) reveals that only one of the
reactions B→C, B→D, B→E is simultaneously active and rate constant distributions
for the other two are centered at 10−10 (proxy for 0 when sampling in log-scale). The
same covariation plot obtained without Lasso does not show any meaningful structure
(Fig. S2D, left). Taken together, these results show that PTLasso correctly identifies
network parameters and suggests that A→B→C, A→B→D, and A→B→E are
equivalent parsimonious models.

Overall, our results show that PTLasso is a global approach that can extract correct
parameter estimates and architectures of all equivalent reduced models that fit the data
from fully connected networks of varying sizes. This is especially useful in the context of
complex cell signaling systems that often have redundant elements in which case the
method can be used to identify alternate signaling mechanisms that fit the data.
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Fig 1. Model reduction using Lasso with a fully connected 3-node graph. A) Motif used to
generate the observed data (left) and reaction network diagram of the fully connected 3-node network used
as the starting point for PTLasso (right). The initial concentration of A (light red) is 100 molecules. The
initial concentrations of B and C are 0. The concentration of B (red) is observed at multiple time points,
but the concentration of C (blue) is not observed. Each reaction has an associated rate constant parameter.
KAB = 0.1 and KBC = 1 are the rate constant values used to generate the observed data. B) Fits of the
model to the data with PT (left) and PTLasso (right). Blue lines show ensemble fits (4e3 samples, 100 time
points per sample), red line shows the true data (100 time points), and the black error bars show the mean
± standard deviation of the observed data (8 time points). C) Frequency histograms showing probability
distributions of the parameters (from 4e5 PT samples) for fits with PT (top row) and PTLasso (bottom
row). The y-axis for each panel is scaled from 0 to the max value of the distribution to emphasize
differences in the shapes of the distribution. The pink lines show the Laplace prior boundaries, the dashed
red lines (panels for KAB and KBC) show the parameter values of the known model used to generate the
true data, and the x-axis range, [-12,3], represents the sampling range. Parameter distributions confined
within the Laplace prior boundaries are extraneous.
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Motifs with specific dose-response relationships can be inferred
from a prior network

In the previous section we assumed no prior knowledge of a reaction-network and fitted
a simple model output. To demonstrate the extraction of motifs with more complex
behaviors in the more likely scenario where there is some prior network of hypothesized
molecular interactions, we used PTLasso to extract parts of the prior network required
to produce specific dose-response relationships.

Tyson et al. [9] previously described two simple biochemical models that individually
produce linear or perfectly adapting dose-response relationships. We constructed a prior
network of a signal, S, response, R, and intermediate, X, by combining the linear and
adaptive dose-response models into a single shared architecture (Fig. 3A). We show that
PTLasso correctly identifies the linear and adaptive submodels when the combined
model is fit to different simulated data. To begin with, the linear dose-response
submodel was used to generate synthetic time courses for R in response to 4 increasing
levels of S (S=1,2,3,4). As earlier, Gaussian noise was added to each trajectory to
simulate experimental noise and cell-to-cell variability, and the mean and standard
deviation for each time course was calculated at 4 distinct time points (including t=0),
creating 16 data points that constitute the observed data. When fit to the observed
data, PT produced fitted time courses for R that go through the observed data points
but have fast time scale deviations from the true data time courses (Fig. 3B, left).
PTLasso again produced fits closer to the true data (Fig. 3B, right). Parameter
distributions inferred with PTLasso show that the 2-parameter model reduced from the
combined model correctly recovers the architecture and parameterization of the
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Fig 2. Model reduction using Lasso with a fully connected 5-node graph. A) Motif used to
generate the observed data (left) and reaction network diagram of the fully connected 5-node network used
as the starting point for PTLasso (right). The initial concentration of A (light red) is 100 molecules. The
initial concentrations of B,C and D are 0. The concentration of B (red) is observed at multiple time points,
but the concentration of C, D and E (blue) are not observed. KAB = 0.1 and KBC = 1 are the rate
constant values used to generate the observed data. B) Fit of the model to the data with PT (left) and
PTLasso (right). Blue lines show ensemble fits (7e3 samples, 100 time points per sample), red line shows the
true data (100 time points), and the black error bars show the mean ± standard deviation of the observed
data (8 time points). C) Frequency histograms showing probability distributions of the parameters (from
7e5 PT samples) for fits with PT and D) PTLasso. The y-axis for each panel is scaled from 0 to the max
value of the distribution to emphasize differences in the shapes of the distribution. The pink lines show the
Laplace prior boundaries, the dashed red lines (panels for KAB and KBC) show the parameter values of the
known model used to generate the true data, and the x-axis range, [-12,3], represents the sampling range.
Parameter distributions that deviate from the prior are necessary.
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linear-dose response submodel used to generate the synthetic time courses (Fig 3C,E).
When the perfectly adaptive dose-response submodel was similarly used to generate

observed data in response to two successive increasing signal concentrations, PTLasso
reduced the combined system to a 4-parameter model (Fig 3D,F). In this case,
parameters ks−xs and kxr−x in the reduced model are unidentifiable, however, PTLasso
captures their linear correlation (Fig. S3A) even though these parameters are not
individually constrained, providing a complete picture of the system. While signaling
systems are complex and can involve large numbers of reactions, not every reaction is
relevant for every function. Taken together our results demonstrate that distinct
elements of a large reaction-network may be responsible for different complex behaviors
and can be successfully isolated using PTLasso.
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Fig 3. Motif inference from a prior network constrained with dose-response data. A) Reaction
network diagram of the prior network. The value of the signal S is known, response R (red) is observed at
multiple time points, but intermediate X (blue) is not observed. Solid lines show species conversions and
dashed lines show influences. ks−rs = 10, kr−0 = 0.01 are the rate constant values used to generate
observed data for the linear dose-response model. ks−rs = 10, kxr−x = 10, ks−xs = 1, kr−0 = 1 are the
rate constant values used to generate observed data for the perfectly adapting dose-response model B) Fit
of the model to the linear dose-response data (top, y-axis is in linear scale) and perfectly adapting
dose-response data (bottom, y-axis is in log scale) with PT (left) and PTLasso (right). Blue lines show
ensemble fits (400 samples with 1000 time points for linear dose-response, 800 samples with 2000 time
points for perfectly adapting dose response), red line shows the true data (1000 time points for linear
dose-response, 2000 time points for perfectly adapting dose response), and the black error bars show the
mean ± standard deviation of the observed data C) Frequency histograms showing probability distributions
of the parameters for linear dose response fits (from 4e5 PT samples) and D) perfectly adapting
dose-response (from 8e5 PT samples) with PT (top) and PTLasso (bottom). The pink lines show the
Laplace prior boundaries, the dashed red lines show the parameter values of the known model used to
generate the true data, and the x-axis range, [-12,6], represents the sampling range. Parameter distributions
that deviate from the prior are necessary, while those that are confined within the Laplace prior boundaries
are extraneous. E) Reduced model corresponding to linear dose-response and F) perfectly adapting
dose-response highlighted in prior network. Faded nodes and arrows are extraneous and are removed from
the model. Solid lines show species conversions and dashed lines show influences.
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A reduced model of NF-κB signaling without A20 feedback
explains single-cell NF-κB responses to a short TNF pulse

Complex biological signaling networks are frequently modular [41,42] with distinct
motifs such as feedback loops that operate on separate time scales [35]. To account for
the modular structure of signaling we extended our Lasso approach to Group Lasso [32],
a technique that applies a module-specific Lasso penalty to all reactions within a
particular module (see Methods). PT combined with Group Lasso finds minimal sets of
reaction modules that explain experimental data. We used this method to test the
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requirement of A20 feedback to explain previously published single-cell NF-κB
responses to a short TNF pulse [43].

A prior model of NF-κB signaling was created by combining simplified elements of
models from [37] and [2]. The network was divided into three biologically motivated
network modules (Fig. 4A). The IκB and A20 modules describe negative feedback
mediated by the inhibitor IκB and negative regulator A20, respectively. The activation
module includes all remaining reactions that describe the path from TNF binding to its
cognate TNF-receptor (TNFR) to the eventual translocation of NF-κB into the nucleus.
The reaction rate constants within a module are constrained by a common Lasso
penalty parameter (see Methods). If the penalty parameter for a module is estimated as
0, (here, 10−25 is used as a proxy for 0 when sampling in log scale), the entire module is
removed from the simulation. To test which of the three modules are necessary to
explain NF-κB responses to a single TNF pulse, PTLasso was used to fit the model to
three previously published, experimentally obtained, single-cell NF-κB responses (Fig.
4B, Column 1) [43]. In addition to the NF-κB data, other constraints were applied to
make the system behave consistently with known biology. These constraints are listed in
Table S4, and Fig. S4 demonstrates that PTLasso correctly followed the imposed
parameter covariation.

The probability distributions for the module penalty parameters (Fig. 4B, Columns
2-4) show that the A20 penalty parameter is confined within the prior boundaries while
the others have deviated, suggesting that to fit these particular single-cell NF-κB
trajectories, the A20 module is dispensable, whereas the IκB and activation modules are
not. The A20 module might still be essential for other biology of the system, but the
model does not require the A20 module to produce these single-cell NF-κB responses
under the given experimental condition and network constraints. The fits with PTLasso
were as good as the fits with PT alone (Fig. 4B, Column 1), as is demonstrated by
comparing the average log-likelihoods (Fig. 4C).

To test the requirement of A20 feedback under different experimental conditions and
network constraints, we fit the model to a published single-cell NF-κB response to
continuous TNF stimulation [43]. A soft constraint that IKK responses are transient
was added for consistency with published observations [44, 45]. For responses to a TNF
pulse, IKK activity naturally adapts back to its baseline abundance without additional
negative regulation (Fig. S6). In this case, all three module penalty parameters deviate
from the prior (Fig. S7), indicating that the A20 mediated negative regulation of IKK is
essential for responses to continuous TNF stimulation. Taken together, the results for
the NF-κB signaling model provide an example where PTLasso isolate reaction modules
sufficient for responses to specific experimental conditions and time scales.

Discussion

In this work we have demonstrated that PT combined with Lasso is an effective
approach to learn reduced models from a prior model with a larger number of reactions.
Even when starting from a complete graph without prior knowledge of the underlying
signaling network, PTLasso correctly identified reduced model architectures and
reaction rate constants. PTLasso also correctly isolated subnetworks that are necessary
for distinct concentration and temporal dose-response relationships. In a model of
NF-κB signaling, PT with Group Lasso found that in the absence of other network
constraints, A20 feedback was not required to explain single-cell responses to a short
TNF pulse, but is required when TNF treatment was continuous. Model reduction using
PTLasso can therefore highlight aspects of the reaction network that are important for
specific experimental conditions and timescales and not others.

A potential application of model reduction arises in fitting a model to data from
different cell types. Differences in responses to the same experimental condition might
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Fig 4. Model reduction using Group Lasso with a model of NF-κB signaling A) Reaction network
diagram of a simplified model of TNF-NF-κB signaling. The colors indicate the different modules. ‘a’ or ‘n’
refer to active and nuclear versions of the species respectively. Solid lines indicate transformations and
dashed lines indicate influences. B) Ensemble fits of the model (in blue, 288 PTLasso samples, µ=-25,b=2)
to a single-cell NF-κB response to pulsatile TNF stimulation (in red). Error bars show the 10% standard
deviation assumed for the likelihood function during fitting and represent measurement error (Column 1).
Frequency histograms (from 5.64e6 samples) for the penalty parameter distributions corresponding to the
different network modules (Columns 2-4). The pink lines show the Laplace prior boundaries, and the x-axis
range, [-35,6], represents the sampling range. C) Box plots (5640 samples) comparing the log likelihood of
the fits with PT and PTLasso (µ=-25,b=2) for the three trajectories (Tr. 1-3)
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be explained by differences in parameters values [31], but comparing cell-type specific
parameter distributions in high dimensional space may be difficult. Reducing the
number of model parameters lowers the dimensionality of the space and makes this
problem easier.

A limitation of PTLasso is the large number of samples required to reach
convergence, which can lead to long execution times. For the simplest examples
presented here, convergence happens on the order of hours on a standard workstation
computer, but for the more complex signaling systems, convergence can take several
days. Most of the execution time is dedicated to converging the joint parameter
distribution. Currently PT and PTLasso are both run for fixed chain lengths followed
by convergence testing at the end, often generating more samples than were required to
pass convergence tests. Testing convergence on-the-fly and terminating PT chains when
convergence is reached would prevent unnecessary sampling and reduce the overall
execution time. Approaches such as APT-MCMC [46] and Hessian-guided MCMC [20]
that account for the shape of the parameter landscape during sampling could also
reduce the number of samples required for convergence.

Along with working to reduce the amount of sampling, we are also investigating
algorithmic modifications to reduce the execution time of individual samples or PT
swaps. Synchronous swapping in our current implementation of PT requires each chain
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to complete a fixed number of steps before attempting a swap. Because high
temperature chains sample parameter space broadly and encounter regions where
stiffness leads to long integration times, lower temperature chains often have to wait for
the higher temperature chains to complete before swaps can be attempted.
Asynchronous swapping [18] may therefore reduce execution times. Overall, there are
still many opportunities for future PTLasso implementations to increase efficiency and
applicability to larger systems biology models.

In this study we have presented a Bayesian framework that systematically dissects
mechanistic ODE models of biochemical systems to identify minimal subsets of model
reactions that are sufficient to explain experimental data. Technology now enables the
building and simulating of highly detailed models that provide accurately reflect
existing knowledge of a biochemical system. But detailed models may obscure our
ability to identify underlying mechanisms. PTLasso serves as a bridge between these
detailed models and simpler mechanistic explanations that can account for system
behavior under specific conditions.

Supporting information

Fig S1. Hyperparameter tuning for PTLasso with a fully connected 3-node graph. A) Data
generated for fitting. Red dashed lines show the model simulation at 8 time points with the known
parameter values. Each colored line represents a noisy trajectory obtained by adding Gaussian noise to the
true simulation. The black error bars show the mean and standard deviation of the 10 repeats, and is used
for fitting. B) Hyperparameter tuning plot showing variation in the negative log likelihood distribution with
µ and b (red points show the mean, and black lines show mean ± standard deviation for 4e3 samples). The
hyperparameters selected (µ = −10, b = 1) provide the most regularization while not substantially
increasing the negative log likelihood. D) Comparison of the log likelihood distributions (4000 samples) of
the fits with PT and PTLasso (µ = −10, b = 1). Box plots are obtained using a third party MATLAB
library, aboxplot*, with outliers not shown. D) Example of PTLasso fits (4e3 samples) where b is too small
(µ = −10, b = 0.1) and the negative log likelihood of the fit is increased, and E) the corresponding
parameter distributions (4e5 samples). Since the regularization strength was too high, none of the
parameters deviated from the prior. *http://alex.bikfalvi.com/research/advanced_matlab_boxplot/
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Fig S2. Hyperparameter tuning for PTLasso with a fully connected 5-node graph. A)
Observed data generated for fitting. Red dashed lines show the model simulation at 8 time points with the
known parameter values. Each colored line represents a noisy trajectory obtained by adding Gaussian noise
to the true data. The black error bars show the mean and standard deviation of the 10 repeats, and is the
observed data used for fitting.B) Hyperparameter tuning plot showing variation in the negative log
likelihood distribution with µ and b (red points show the mean, and black lines show mean ± standard
deviation for 7e3 samples). The hyperparameters selected (µ = −10, b = 1) provide the most regularization
while not substantially increasing the negative log likelihood. C) Box plots comparing the log likelihood
distribution (4000 samples) obtained with and without Lasso for the chosen values of hyperparameters. Box
plots are obtained using a third party MATLAB library, aboxplot*, with outliers not shown. D). Parameter
co-variation (400000 samples from the distribution) of the three selected parameters with PT and E) with
PTLasso. *http://alex.bikfalvi.com/research/advanced_matlab_boxplot/
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Fig S3. Hyperparameter tuning for PTLasso with dose-response motifs inferred from a prior
network. A). Linear correlation of non identifiable parameters in the reduced perfectly adapting model
shown as a scatter plot (8e5 PTLasso samples). B) Hyperparameter tuning plot for the linear dose response
model and C) the perfectly adapting dose response model. The hyperparameter tuning plot shows variation
in the negative log likelihood distribution with µ and b (red points show the mean, and black lines show
mean ± standard deviation, 4e2 samples for the linear dose response model and 8e2 samples for the
perfectly adapting dose response model). The hyperparameters selected (µ = −10, b = 0.5 for linear
dose-response and µ = −10, b = 1 for perfectly adapting dose-response) provide the most regularization
while not substantially increasing the negative log likelihood. D) Box plots comparing the log likelihood
distribution obtained with PT and PTLasso for the chosen values of hyperparameters for the linear dose
response model (4e2 samples) and E) the perfectly adapting dose response model (8e2 samples). Box plots
are obtained using a third party MATLAB library, aboxplot*, with outliers not shown.
*http://alex.bikfalvi.com/research/advanced_matlab_boxplot/
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Fig S5. Marginal distributions of model parameters shown with the corresponding published
values for a representative NF-κB trajectory. Distributions of protein abundance parameters and rate
constant parameters (from 5.64e6 samples) from the A20 module (blue), Activation module (yellow) and
IκB module (orange). All parameters are in logscale. Protein abundance parameters have uniform priors,
and the x-axis range indicates the sampling range. Rate constant parameters are sums of the module
penalty parameters and reaction-specific parameters. The pink line corresponds to a best-fit parameter set
from one of the PTLasso repeats. The dashed lines correspond to published values of parameters – Pekalski
et al. [2] (red), Lee et al. [37] (black), and Kearns et al. [47] (blue). A published parameter value for a
model is only included if the corresponding reaction maintained the same structure in both the published
and current models. For unit conversions we used the values mentioned in Lee et al., 1µM of NF-κB =
50,000 molecules/cell and applied this to other species in the model. In the parameter labels ‘import’ refers
to translocation from the cytoplasm into the nucleus and ‘export’ is the reverse. ‘Complex’ refers to the
NF-κB -IκB complex.
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Fig S7. Group Lasso applied to NF-κB signaling with continuous TNF stimulation. A)
PTLasso fits of the model (in blue, 172 samples) to a single-cell NF-κB response to TNF stimulation (in
red). Errorbars show mean and standard deviation that represents the assumed 10% measurement
uncertainty B) Frequency histograms (from 3.4e6 samples) comparing the probability distributions of the
penalty parameters corresponding to the different network modules. All the distributions have deviated
from the Laplace prior boundaries shown in pink, indicating that all the modules in the network were
essential to fit this data.
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Table S1. Maximum PSRF across all model parameters for each example shown up to
4 significant digits.

Model name, With Without
No. of PT samples/chain Lasso Lasso

3-node graph, 4e5 1.000 1.002
5-node graph, 4e5 1.032 1.001

Linear Dose-Response, 2e5 1.001 1.001
Perfectly adapting Dose-Response, 8e5 1.015 1.004

Group Lasso with NF-κB signaling:
Trajectory 1, 5.6e6 1.025 1.024
Trajectory 2, 5.6e6 1.027 1.057
Trajectory 3, 5.6e6 1.027 1.007

Table S2. MPSRF values for all PT runs in this study shown up to 4 significant digits.

Model name, With Without
No. of PT samples/chain Lasso Lasso

3-node graph, 4e5 1.001 1.002
5-node graph, 4e5 1.031 1.010

Linear Dose-Response, 2e5 1.003 1.004
Perfectly adapting Dose-Response, 8e5 1.012 1.006

Group Lasso with NF-κB signaling:
Trajectory 1, 5.6e6 1.074 1.094
Trajectory 2, 5.6e6 1.120 1.200
Trajectory 3, 5.6e6 1.129 1.014
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Table S3. Step acceptance rates for the lowest temperature chain of all PT runs in this
study.

Model name, With Lasso Without Lasso
No. of PT samples (repeat 1, 2) (repeat 1, 2)

3-node graph, 4e5 0.24, 0.25 0.24, 0.25
5-node graph, 4e5 0.24, 0.23 0.24, 0.26

Linear Dose-Response, 2e5 0.24, 0.22 0.24, 0.24
Perfectly adapting Dose-Response, 8e5 0.24, 0.24 0.25, 0.25

Group Lasso with NF-κB signaling, 5.8e6
Trajectory 1 0.26, 0.26 0.23, 0.22
Trajectory 2 0.26, 0.25 0.45, 0.26
Trajectory 3 0.24, 0.25 0.26, 0.22

Table S4. Hard constraints in NF-κB signaling fit

Index Constraint description Constraint
1 Exit rate of NF-κB -IκB from the nucleus

is greater than free NF-κB
ke2a > ke1

2 Exit rate of NF-κB -IκB from the nucleus
is greater than free IκB

ke2a > ke2

3 IKK mediated degradation of free cytosolic
IκB is greater than the basal rate

kt1a > c4a

4 IKK mediated degradation of NF-κB bound
cytosolic IκB is greater than the basal rate

kt2a > c5a

5 At equilibrium there is some NF-κB in the
nucleus

nNFκBeq + nNFκB− IκBeq

TotalNFκB
∈ [0.05,0.5]

6 At least 1 TNFR molecule/cell is activated min(TNFRa) > 1
7 At least 1 IKK molecule/cell is activated min(IKKa) > 1
8 Equilibrium check before TNF stimulation Rate of change for each

model species < 1e-4
molecules/5e5 seconds

Table S5. PSRF to show convergence of energy distributions when combining PT runs
for NF-κB signaling fit.

Traje-
ctory

Lasso group 1,
M=6, N=5.6e6

Lasso group 2,
M=6, N=5.6e6

Without Lasso
group 1, M=6,
N=5.6e6

Without Lasso
group 2, M=6,
N=5.6e6

1 1.041 1.016 1.049 1.021
2 1.139 1.134 1.011 1.003
3 1.028 1.009 1.001 1.003
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Table S6. Swap acceptance rates for the two lowest temperature chains of all PT runs
in this study.

Model name, With Lasso Without Lasso
No. of PT samples/chain (repeat 1, 2) (repeat 1, 2)

3-node graph, 4e5 0.24, 0.33 0.25, 0.35
5-node graph, 4e5 0.33, 0.47 0.32, 0.26

Linear Dose-Response, 2e5 0.26, 0.97 0.24, 0.24
Perfectly adapting Dose-Response, 8e5 0.17, 0.37 0.25, 0.26

Group Lasso with NF-κB signaling, 5.6e5
Trajectory 1 0.28, 0.25 0.19, 0.25
Trajectory 2 0.17, 0.17 0.29, 0.32
Trajectory 3 0.16, 0.16 0.26, 0.28
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