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ABSTRACT

Heterogeneity in the phenotypic mean and variance across populations is often observed for
complex traits. One way to understand heterogeneous phenotypes lies in uncovering
heterogeneity in genetic effects. Previous studies on genetic heterogeneity across populations
were typically based on discrete groups of population stratified by different countries or
cohorts, which ignored the difference of population characteristics for the individuals within
each group and resulted in loss of information. Here we introduce a novel concept of
genotype-by-population (GxP) interaction where population is defined by the first and second
ancestry principal components (PCs), which are less likely to be confounded with
country/cohort-specific factors. We applied a reaction norm model fitting each of 70 complex
traits with significant SNP-heritability and the PCs as covariates to examine GxP interactions
across diverse populations including white British and other white Europeans from the UK
Biobank (N = 22,229). Our results demonstrated a significant population genetic
heterogeneity for behavioural traits such as age first had sexual intercourse and qualifications.
Our approach may shed light on the latent genetic architecture of complex traits that underlies

the modulation of genetic effects across different populations.
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Introduction

Most human traits are polygenic and their phenotypes are typically influenced by numerous
genes and environmental factors, and possibly by their interactions, e.g. genotype-
environment (GxE) interaction 4. These traits have been termed as “complex traits”, which
are distinguished from Mendelian traits that are shaped by a single or few major genes °.
Genome-wide association studies (GWAS) have successfully discovered thousands of
associations between single-nucleotide polymorphisms (SNPs) and complex traits, which
have revolutionized our understanding of the polygenic architecture of complex traits
Subsequently, in order to increase the power and precision to identify more causal variants,
there have been numerous follow-up studies using meta-analyses of GWAS summary
statistics or mega-analyses of multiple GWAS by combining diverse data sources that usually
span across different nations or populations ° 1°. However, many human complex traits (e.g.,
height and body mass index (BMI)) are substantially differentiated among diverse
populations 1. For instance, the mean height across European nations generally increases
with latitude 2. Although across-population differences in the mean values are often
observed for the phenotypes of complex traits, the underlying genetic and environmental

bases remain largely unknown 2,

One way to understand such phenotypic heterogeneity lies in uncovering genetic
differentiation for the traits captured by common variants across populations. Some studies 1%
15 have focused on examining population genetic differentiation for several anthropometric,
behavioural and psychiatric phenotypes, using whole-genome statistical methods such as
applying bivariate genomic restricted maximum likelihood (GREML) to estimate genetic
correlation between samples from the USA and Europe for height and BMI 4 or determining

interaction of genotype by seven sampling populations for behavioural traits by a G-C
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interaction (GCI)-GREML approach *°. They reported significant evidence for GXE
interaction in behavioural phenotypes (education and human reproductive behaviour) and
BMI 1. The analytical method and designs used in their studies were based on discrete
groups, which ignored the difference of population characteristics for the individuals within
each group. Furthermore, the population groups used in their studies were classified
according to their country origin, thus the results were likely to reflect heterogeneity across
countries due to country-specific factors (e.g., trait definition and measurement 18, cultural
and societal difference and socio-economic status). In addition, genetic measurement errors
(e.g., due to the genotyping platform or imputation quality) across different cohorts may

further cause confounding with genuine genetic heterogeneity across populations °.

Principal component (PC) analysis provides a powerful tool to characterize populations and
the first few PCs are typically used to control population stratifications in large-scale GWAS
19 PCs allow us to cluster individuals that are genetically similar to each other. Unlike
discrete variables such as cohort and country, PCs are continuous variables that can
differentiate individuals even within a cohort or a country according to their underlying
genetic characteristics. Here, we introduce a novel concept of genotype-by-population (GxP)
interaction where population is defined by the first and second PCs. It is of interest to test if
different genotypes respond differently to the gradient of the first or second PC for complex
traits using a whole-genome reaction norm model (RNM) 2°, which has been recently
introduced and allows fitting continuous environmental covariates, i.e. PCs in this study.
RNM has been well established to estimate GXE interaction in agriculture 2> 22 and ecology .
Furthermore, in this study we used the data source of UK BioBank (UKBB), which is a
prospective cohort study with deep genetic and phenotypic data collected on approximately

500,000 individuals across the United Kingdom, aged between 40 and 69 at recruitment 2+ 2,
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101 Therefore, in our GxP interaction model applied to UKBB, the population characteristics for
102  individuals are fully utilised and the findings are less likely to be confounded with country-
103 specific factors or genetic measurement errors as mentioned above.

104

105  The aim of the study is to explore if there exists significant GxP interaction, which is also
106  referred to genetic heterogeneity (heterogeneous genetic effects) across populations, for a
107  wide range of complex traits. To do so, we applied the whole-genome RNM with PCs as
108  continuous covariates to investigate GxP interactions for more than one hundred phenotypes
109  using the UKBB data. The significant GxP interaction detected in this study may shed light
110  on the latent genetic architecture of complex traits that underlies the modulation of genetic
111  effects across different population backgrounds.

112
113 Subjects and Methods

114  Data and quality control (QC)

115  Our study was based on the UKBB data which contains approximately 500,000 individuals
116  sampled across the United Kingdom 2°. According to the ethnic background (data field

117 21000), there are currently 472,242 individuals with the white British ancestry and 17,038
118 individuals with any other white ethnic background (not with British or Irish ethnicity) in the
119  UKBB participants. In order to match the sample size between the white British and the other
120  white ethnic individuals, we randomly selected 17,000 individuals from the white British

121 group, totalling 34,038 admixed European populations considered in this study. Using

122 ancestry PCs provided by the UKBB, we examined a two-dimensional scatter plot of the first
123 and second PC of the 17,000 white British and the 17,038 other white ethnic subjects (Figure
124 1A). It is shown that the white British group is situated within the group of the other white

125  Europeans and we named the white British group as POP1 (N=17,000). As shown in Figures
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126 1B and 1C, we used a geometric method by which we constructed a rectangle with

127 maximums and minimums of PC1 and PC2 of the white British group as four sides and then
128  group the individuals of the other white Europeans inside this rectangle, named as POP3

129  (N=9,809). The rest of the other white Europeans except POP3 were named as POP2

130 (N=7,229).

131

132 Our primary interest was to investigate GxP interaction where population was classified by
133 ancestry PCs. For this purpose, we used three designs of combinations of the three groups, i.e.
134  POP1+POP2 (Figure 1B), POP2+POP3 (Figure 1C) and POP1+POP3 (Figure 1D). It was
135  noted that POP1+POP3 was a negative control as there was little population difference

136 among them. To make sample size consistent across POP1 and POP2 in the design of

137  POP1+POP2, we randomly selected 7,500 individuals from the 17,000 white British

138 individuals and these were used as POP1 in the downstream analyses.

139

140  We extracted genetic data including around 92 million SNPs from the UKBB for all the

141  individuals of POP1, POP2 and POP3. Stringent QC was applied to the combined data across
142  POP1, POP2 and POP3. The QC criteria were to exclude 1) all duplicated and non-autosomal
143 SNPs, 2) SNPs with INFO score < 0.6, 3) SNPs with call rate < 0.95; (4) individuals with
144  missing rate > 0.05, 5) SNPs with Hardy-Weinberg equilibrium p-value < 0.0001, 6) SNPs
145  with minor allele frequency < 0.01, and 7) SNPs with A/T alleles or G/C alleles. We also

146  retained HapMap3 SNPs only as they are reliable and robust to bias in estimating SNP-

147  heritability and genetic correlation ** 22 Hereafter, 1,133,957 common SNPs were

148  remained for the GxP analyses. Moreover, we excluded one individual randomly selected

149  from any pair with a genetic relationship > 0.05 (see Statistical models) to avoid bias due to
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150  confounding by shared environment among close relatives. After the QC, the sample sizes of
151  POP1, POP2 and POP3 were reduced to 7487, 6913 and 7829.

152

153  UKBB phenotypes

154  For current UKBB resource, we have access to 496 variables whose data types are categorical
155  (multiple), categorical (single), continuous, integer, date, text and time. Here we focused on
156  the variables of categorical (multiple), categorical (single), continuous and integer types, and
157  categorized each variable as one of four value types: continuous, binary, ordered categorical
158  and unordered categorical 28 (Table S1). Where a data field is measured at several time points
159  we use the first occurrence only. It was noted that qualifications (data field 6138), a

160  categorical (multiple) trait, was reorganised according to the underlying system 2°. Briefly,
161  the original and unordered seven categories were reclassified and ordered as 1) none, 2) O-
162  levels or CSEs, 3) A-levels, NVQ, HND, HNC or other professional qualification, and 4)

163  college or university degree. Then the continuous, binary and ordered categorical variables
164  were selected and used as the main phenotypes in GXP interaction analyses.

165

166  Since there exist numerous “Not Available” (NA) records for individuals in UKBB, the

167  limited sample sizes of some variables may lead to insufficient statistical power to perform
168  our study. Hence, the variables with limited sample size should be excluded. As POP2 and
169  POP3 have the same ethnic background, we only examined sample sizes of POP1 and POP2,
170  and used the following thresholds to exclude the variable with: non-NA number in POP1 <
171 2,500 and non-NA number in POP2 < 2,500, and then we remain 199 variables whose sample
172 size in POP1+POP2 > 5,000 as shown in Table S1. Note that some ambiguous values in

173  variables such as “Do not know” or “Prefer not to answer” were treated as NA.

174
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175  Among the 199 variables, we selected 128 variables as the main phenotypes (Table S2) in our
176 proposed model to estimate GxP interactions where population difference was inferred from
177  the first and second PCs. The other variables were used to control confounding effects owing
178  to sex, age, year of birth, genotype batch and assessment centre (basic confounders adjusted
179  for all the main phenotypes; the first 20 PCs were also used as basic confounders to account
180  for population stratification) and Townsend deprivation index, smoking status, alcohol

181  consumptions and many other variables (additional cofounders adjusted for some relevant
182  phenotypes) or excluded if they were not likely to affect any of the main phenotypes (see the
183  note of Table S2). The 128 main phenotypes could be classified into a number of criteria, 1)
184 lifestyle and environment (alcohol, diet, electronic device use, sexual factors, sleep, smoking
185  and sun exposure), 2) physical measures (anthropometry, blood pressure and bone-

186  densitometry of heel), 3) early life factors, sociodemographics (education, employment and
187  household), 4) health and medical history (eyesight, hearing, medical conditions and

188  medication), 5) psychosocial factors (mental health), 6) female-specific factors, male-specific
189  factors, 7) verbal interview (medical conditions) and 8) cognitive function (reaction time)
190 (Table S2). Note that some phenotypes such as from sociodemographics (e.g., qualifications)
191  can also be used as additional confounders for other phenotypes.

192

193  Statistical models

194 A linear mixed model without considering GxP interaction (baseline model)

195 A standard linear mixed model assuming no GxP interaction can be written as

196 y=u+g+e,

197  wherey is an nx1 vector of phenotypes with n being the sample size, p is an nx1 vector for

198  fixed effects, g is an nx1 vector of total genetic effects of the individuals with g ~ N (O, Aagz)

199  and e is an nx1 vector of residual effects withe ~ N(0, 167), where o—g2 is the variance
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200  explained by all common SNPs and o7 is the residual variance. In the GREML context 332,

201 A‘is a genomic relationship matrix (GRM) and I is an identity matrix. GRM can be estimated
202 based on common SNPs across the genome and the elements of GRM can be defined as 3* 32

203 38

_ 1< (Xil _2p|)(xj| _2p|)
204 Aj _E; var(x,)

205  where L is the number of all common SNPs (L = 1,133,957 in this study), X,, denotes the
206  number of copies of the reference allele for the Ith SNP of the ith individual, X, denotes all

207  the numbers of copies of the reference allele across all the individuals, and p, denotes the
208 reference allele frequency of the Ith SNP.

209

210  The variance-covariance matrix of the observed phenotypes (V) is

211 V=Ac]+lo;.

212 The SNP-based heritability, the proportion of the additive genetic variance explained by the

213 genome-wide SNPs over the total phenotypic variance, is then referred as

2 2
O O
2 _ "9 _ 9
214 howe =—5 = e
o, O4+0,

215  The phenotypes with significant SNP-based heritability from this baseline model will

216  subsequently be investigated for GxP interaction.

217

218  GxP RNM method

219  In cases where GXP interaction exists across populations, the baseline model cannot account
220  for heterogeneous genetic effects. We therefore applied RNM methods to detect

221  heterogeneity across populations using the UKBB data. RNM and multivariate RNM
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222 (MRNM) have been demonstrated to perform better than the current state-of-the-art methods
223 when detecting genotype-covariate and residual-covariate interactions in terms of simulation
224 studies on type | error rate and power analyses 2°. Here we focus on GxP interaction by

225  considering PCs as covariates in the RNM:

226 y=p+gt+e=p+g,+g -ct+e,

227  wherey, Y, g and e are the same defined in the baseline model above, g, and g, are nx1
228  vectors of zero- and first-order random regression coefficients, respectively, ¢ is an nx1

229  vector of covariate values of the n individuals (for which we used PC1 and PC2 values in this
230 study). In the RNM, the random genetic effects, g, are regressed on the covariate gradient
231 (reaction norm), which can be modelled with random regression coefficients, g, and g, .

232 The variance-covariance matrix of the random regression coefficients (K) is

233

K:( var(g,) cov(go,gl)j
COV(go | gl) Var(gl) .

234  Then the variance-covariance matrix of genetic effects between n individuals (who have

235  unique PC values) can be expressed as

2
Ogy -+ OGgan
236 V, =0OK®'= : : ,

2
%ny 7 g

237  where o?

o) denotes the genetic variance at the ith covariate level, oy ;, indicates the genetic

238  covariance between the ith and jth covariate levels (i=1, ...,n,andj =1, ..., n), and

C
239 ®=|. :2 denotes the covariate matrix. This GxP RNM accounts for phenotypic plasticity
240  and norms of reaction in response to different populations (represented by PC values) among

241 samples.

10
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242
243 The mathematical properties of K allow us to verify whether estimates of the parameters are
244  reasonable or not. Specifically, estimated values in the matrix K should be within a valid

245  parameter space:
246 (1)var(g,)=0;

247 (2)var(9,)>0;

248 (3)—y/var(§o) var(@,) <cov(§o, ) < \var(@,) var(§,)

249  The estimates which violated one of above criteria were excluded for follow-up analyses. We
250  obtained a p-value to detect GxP interaction using a likelihood ratio test (LRT) that compared
251  the goodness of fitness of two models (GREML and GxP RNM), penalising the difference in
252 the number of parameters between them.

253

254  We further tested if the significant GxP interactions were orthogonal (independent without
255  confounding) to residual-population (RxP) interactions, i.e. residual heterogeneity across

256  populations 2°. Similarly, the RxP interaction can be detected by an RxP RNM:
257 y=p+g+e=p+g+e,+e -c,
258  where €, and e, are vectors of zero- and first-order random regression coefficients when

259  residual effects, e, are regressed on the covariate, c, i.e. an n vector of PC1 or PC2.

260

261  Furthermore, a full RNM model with both GxP and RxP interactions can be expressed as
262 y=p+0,+0,-C+€,+¢€,-C.

263 Since the GxP and RxP models are nested within the full model, LRT comparing the full and

264  RxP or GxP model with an appropriate degree of freedom can determine the significance of

265  orthogonal GxP or RxP interaction 2.

11
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266

267  For the analyses showing a significant GxP interaction, we used rank-based INT phenotypes
268  to check explicitly if the significance was due to phenotypic heteroscedasticity or normality
269  assumption violation 34, The bias of RNM/MRNM estimates due to non-normality of

270  phenotypic values can also be remedied by applying the rank-based INT 2°. All models

271 described above (i.e., GREML, bivariate GREML, RNM, MRNM) can be fitted using

272 software MTG2 %,

273

274  Spurious signals due to selection or collider bias

275  We used the UKBB data that have only a 5.5% response rate, i.e. selection. Consequently, the
276  resulting sample may not be representative of the UK population as a whole and the selection
277  may be associated with some of the phenotypes in the UKBB, causing selection or collider
278  bias ** 3¢, To test whether the GxP interaction effects detected by our method was genuine or
279  spurious due to selection or collider bias, we conducted a series of simulation studies with
280  phenotypes differentially selected for POP1 (white British) and POP2 (other white

281  Europeans). A selection model using a logistic regression with a trait Y can be written as

282 logit(p) = In(&) =1 +IN(ORpopy v) Y for POP1
283 and
284 logit(p) = In(&) = +IN(ORpgpy v) Y for POP2

285  where p is a vector of participation probabilities in a study (e.g., UKBB questionnaire survey)

286  forall individuals, [ is an overall mean vector which regulates the response rate, y is a vector
287  of phenotypic values of the trait Y, OR.p, vand OR.., , are selection odds ratios for

288  POP1 and POP2, respectively. Then the sample selection bias can be simulated with varying
289  selection odds ratios.

12
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290
291 One hundred replicates of phenotypic values of the trait Y on POP1+POP2 (14,400
292 individuals) were simulated under a baseline model (GREML) that assumes no GxP

293  interaction: y = g + e, where the variance-covariance structure between g and e was

05 O _ L. - .
294 [ 0 0 5} . For each replicate, to avoid insufficient statistical power, we set u as a vector of

295  zeros which simulates a response rate of 50%. Letting us divide y and p into subsets
296  according to specific populations (i.e. Y, and p, for POP1 and Yy, and p, for POP2), we

297  obtain the participation probability for each individual as

28 o, 1 for POP1
1+exp(=In(ORpop; v) - Y1)

299 ,and

300 D, 1 for POP2.

~ 1+exp(=IN(ORpopz y)-Y,)
301  Then, individuals in each population are selected based on the participation probability.

302 Specifically, we generate a uniform distribution vector u, on (0, 1) with sample size of POP1,
303  and compare the values of corresponding components in p,and u, . The individuals having
304  larger values in p,than in u, are assumed to participate in this study. Similarly, we can select
305 individuals in POP2 by comparing p,with a random number drawn from a uniform

306  distribution (0, 1). Different combinations of selection odds ratios for POP1 and POP2 (e.g.,
307  ORpgpyv=1and OR,p, = 2) Will generate selection bias associated with phenotypic

308  values in the POP1+POP2 groups.
309
310  Since the phenotypic data was simulated under the null model, a significant GxP interaction

311  detected from LRT comparing GxP RNM versus GREML was a type | error (false positive).

13
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312 This allowed us to investigate the type | error rate of GxP interaction due to selection bias
313  attributed to various selection pressures (odds ratios) on POP1 and POP2. Using the same
314  simulated data, we also applied a bivariate GREML *7 to test if estimated genetic correlation
315  between POP1 and POP2 was significantly different from 1 (i.e. evidence of GxP interaction
316  across POP1 and POP2) . This allowed us to assess the type | error rate of GxP interaction
317  when using the bivariate GREML.

318

319  If two or more phenotypic variables simultaneously influence the probability of participation
320 of individuals in a study, then investigating associations between those variables in the

321 selected sample may induce collider bias *¢. Therefore, we further considered the same

322 selection model but including two traits to evaluate collider bias effects on the detection of
323  GXxP interaction across POP1 and POP2. The selection model with two traits Y and Z can be

324  written as

325 logit(p) = In(ﬁ) =1+ IN(ORpopr )Y +IN(ORpgpy ;) - Z for POP1

326 ,and

327 logit(p) = |n(1l) = p+IN(ORpopy )Y +IN(ORpops ;) -2 for POP2
_p ! ’

328  where z is a vector of phenotypic values of the trait Z, OR ., , and OR,, , are selection

329  odds ratios with the trait Z for POP1 and POP2. The magnitude of collider bias depends on
330 the levels of selection odds ratios for the two phenotypes.

331

332 We simulated 100 replicates of phenotypic values of the trait Z on POP1+POP2 under the

333 null model of no GxP interaction: z = a + B, where the variance-covariance structure between

. (05 O . _ .
334 aandpis [ 0 0 5}. Since genetic components g and a are uncorrelated and residual

14
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335  components e and B are uncorrelated, the phenotypic variable z and previous simulated y = g
336+ e are totally independent, but after selection we expect that the two variables will be

337  associated because of a collider. Letting us divide z into subsets according to specific

338  populations (i.e. z, for POP1 and z, for POP2), the individuals can be selected based on

339 p, = L for POP1
1+exp(=In(ORpgpy v ) - Y: —IN(ORppy 2) - 2,)

340 and

341 P, 1 for POP2,

" 1+exp(—IN(ORpopy )Y, —IN(OR morp 5)Z,)
342 Similarly, we can select individuals in POP1 or POP2 by comparing p, or p,with a random
343 number drawn from a uniform distribution (0, 1). Therefore, in terms of collider bias,

344  different combinations of selection odds ratios for different traits and populations (e.g.,

345  ORpopiy =2, ORpop, v =3, ORpopy ; =2 and ORgp, , = 2) Will generate collider bias in the
346  POP1+POP2 groups. Similarly, we can examine GxP interaction by type | error rate analysis
347  using GxP RNM and bivariate GREML methods, and assess collider bias effects for the two
348  methods.

349

350 Results

351  Estimating SNP-based heritability for 128 phenotypes

352 We first applied the standard GREML model to estimate hZ, for the 128 phenotypes across

353 POP1+POP2, POP2+POP3 and POP1+POP3, respectively. The phenotypes with significant
354  hZ, (Tables S3-5) were further investigated for GxP interaction effects using our GxP RNM
355  approach.

356

357  Genetic and residual correlations between phenotypes and PCs
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358  The main response (y) and environmental covariates (c) are not always uncorrelated, for

359  which multivariate RNM accounting for (genetic and residual) correlations between y and ¢
360  should be used 2. We examined if there were non-negligible genetic and residual covariances
361  between the main phenotypes and covariate (PC1 or PC2) for the complex traits with

362  significant heritabilities (Tables S6-8). All genetic and residual covariances estimated by

363  bivariate GREML were not significantly different from zero, and thus we used univariate

364 RNM to detect the GxP interaction effects with covariate PC1/PC2 for those phenotypes.

365

366  GxP interaction
367  For POP1+POP2, we fit the data of the 70 phenotypes with significant hZ, by modelling the

368  GxP RNM with covariates PC1 and PC2, respectively (Tables S9 and S10). We excluded
369  those estimates, which were not within the valid parameter space (see Statistical models),
370  from the follow-up statistical test analyses, resulting in 29 and 32 traits remaining for PC1
371  (Table S9) and PC2 analyses (Table S10). We examined if there was significant GxP

372 interaction and obtained p-values based on LRT comparing the fit to the data of the GxP

373  RNM and null model. Significance level was determined by Bonferroni multiple testing

374  correction: 0.05/140 = 3.57E-4 for the 70 phenotypes with covariates PC1 and PC2. Figures
375 S1A and S1B show that significant GxP interactions were found for ten complex traits which
376  are related to blood pressure (pulse rate, automated reading), bone-densitometry of heel (heel
377  BMD T-score, automated; heel broadband ultrasound attenuation, direct entry; heel QUI,

378  direct entry; heel BMD), diet (lamb/mutton intake), sexual factor (age first had sexual

379 intercourse), sleep (sleep duration), smoking (ever smoked) and education (qualifications).
380  For each of the ten traits, we further considered a multiple covariate model that fit PC1 and
381 PC2jointly (Table S11). However, GXP interactions were less significant than those obtained

382  using the single covariate model fitting PC1 or PC2 separately (Figure S2), otherwise, the
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383  estimates were out of the valid parameter space. This was probably due the fact that there was
384  collinearity between GxP interactions from PC1 and PC2.

385

386 In addition to the basic confounders for which the main phenotypes were initially adjusted
387  (see Subjects and Methods), we further considered additional trait-specific confounders that
388  might be relevant to some of traits (Table S2), e.g. Townsend deprivation index, smoking
389  status, alcohol drinker status, etc. After controlling for additional trait-specific confounders,
390 the GXxP interactions in POP1+POP2 were still significant for bone-densitometry of heel (heel
391  BMD T-score, automated; heel broadband ultrasound attenuation, direct entry; heel QUI,
392  direct entry; heel BMD), age first had sexual intercourse and qualifications, whereas the
393  signals disappeared for the other traits (Table S12).

394

395  We examined the distribution of phenotypic values after controlling additional confounders
396  of the six traits with significant GxP interactions (Figure S3) and could not rule out the

397  possibility that the interaction signals were due to non-normality (e.g. residual

398  heteroscedasticity). We conducted the same analyses for the six traits using rank-based INT
399  phenotypes (Table 1), which could control type I error rate due to a skewed and non-normal
400 distribution of residual values %. Indeed, phenotypic heteroscedasticity was remedied when
401  using rank-based INT for the phenotypes of six traits as shown in Figures S4-9. We found
402  that the interaction signals of age first had sexual intercourse and qualifications were

403  remained significant even after applying rank-based INT phenotypes, however, the other
404  traits were not significant anymore (Table 1).

405

406  For age first had sexual intercourse and qualifications that were shown to have significant

407  GxP interactions, we further tested if the GxP interactions were orthogonal to RxP
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408 interactions, i.e. residual heterogeneity (see Subjects and Methods). Using the rank-based
409 INT phenotypes adjusted for basic and additional confounders, we carried out an RxP model
410 and a full model in which both GxP and RxP were fitted jointly. Subsequently, we conducted
411  LRT to obtain p-values, comparing the full and nested models. A significant p-value from
412  LRT between the full and RxP model indicates that GXP interaction is orthogonal to RxP
413  interaction (see Subjects and Methods and Tables S13). For age first had sexual intercourse,
414  although GxP or RxP interaction was significantly detected from the GxP or RxP model, it
415  was shown that GxP interaction was not orthogonal to RxP (p-value = 0.88 for PC1 and 0.92
416  for PC2 in Table S13). For qualifications, on the other hand, it was shown that the GxP and
417  RxP interactions were statistically independent (p-value = 4.15E-05 for PC1 and 0.003 for
418 PC2in Table S13).

419

420  For POP2+POP3, we conducted analyses using the same procedure as in the analyses of

421  POP1+POP2. The POP3 individuals are very close to those in POP1 in terms of ancestry PC,
422  but their ethnicities are not white British as in POP1 (see Subjects and Methods and Figure 1).
423  Thirteen phenotypes demonstrated a significant genetic heterogeneity for covariate PC1 or
424  PC2 as shown in Tables S14 and S15. After controlling for additional trait-specific

425  confounders and transforming by rank-based INT (Table S16), the results for behavioural
426  phenotypes age first had sexual intercourse (p-value = 7.86E-05 for PC1) and qualifications
427  (p-value = 1.06E-15 for PC1) have demonstrated strong genetic heterogeneity signals, which
428  are consistent with our findings for POP1+POP2. For qualifications, GXP interactions were
429  significantly orthogonal to RxP interactions (p-value = 0.003 for PC1 in Table S17). We also
430  found significant results across POP2+POP3 for anthropometric traits (waist circumference
431  and weight) and diabetes diagnosed by doctor. However, these phenotypes were not

432  discovered across POP1+POP2 with significant GxP interaction signals. We presented
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433 genetic variance, interaction variance and their covariance component estimates for these
434  significant traits across POP2+POP3 in Table 2.

435

436  We also performed the same analyses on POP1+POP3, which is not a diverse population
437  group as POP1+POP2 or POP2+POP3, and thus was used as a negative control group (see
438  Methods). For several traits showing significant heterogeneous signals with covariate PC1 or
439  PC2 after Bonferroni correction (see Tables S18 and S19), we further examined them by

440  adding stringent confounders to correct for fixed effects and applying rank-based INT. The
441  final results included no significant GxP interaction across POP1+POP3 (see Tables S20 and
442  S21).

443

444  For the categorical phenotype qualifications, there were various ways to convert the seven
445  UKBB categories into a continuous or a binary measure 3% 49, Following a previous study 3,
446  we transformed the multiple categories (data fields: 6138.0.0 to 6138.0.5) into an educational
447  year measure (Table S22). Based on this continuous phenotypic measure, we found

448  significant genetic heterogeneity across POP1+POP2 and POP2+POP3 but no signal across
449  POP1+POP3 (Table S23), which was consistent with our results obtained using four-level
450  categories. We also examined GxP interactions for qualifications based on two types of

451  binary measures (highest educational attainment versus other levels, and lowest educational
452  attainment versus other levels)*. The results were consistent with those obtained using four-
453  level qualifications, except that an unexpected significant signal across POP1+POP3 for

454  covariate PC1 was detected based on the binary measure of “college or university degree”
455  versus other six categories (Table S24).

456

457  Testing effects of selection or collider bias
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458  We examined the distribution of phenotypic values for age first had sexual intercourse and
459  qualifications in which GxP interactions were consistently detected from both POP1+POP2
460 and POP2+POP3 (Tables S25 and S26). The distribution of age first had sexual intercourse is
461  similar across POP1, POP2 and POP3. However, for qualifications, it is apparently shown
462  that the subjects in POP2 and POP3 (other white Europeans) have higher qualification levels
463  than those in POP1 (white British). Moreover, it is likely that the individuals in POP1 have
464  higher educational levels than the general population of UK because individuals with higher
465  educational levels are more likely to response to surveys from UKBB 3°.

466

467  Our simulation studies testing for detecting spurious heterogeneity across POP1 and POP2
468  with multiple scenarios varying the level of selection odds ratios (see Supplementary Notes
469  for details) have verified that (1) both GxP RNM and bivariate GREML are robust to the

470  selection bias when using the same selection odds ratio across populations (Table 3); (2) only
471  bivariate GREML is robust against the selection bias when using different selection odds

472  ratios across populations (Table 3); (3) bivariate GREML is robust against the collider bias
473 when estimating genetic correlation between POP1 and POP2, however it generates biased
474  estimation of genetic correlation between the two traits (Table 4). It is noted that the level of
475  selection odds ratios used in simulations is likely to reflect the real situation of qualifications,
476 i.e. different selection pressure between POP1 and POP2 in UKBB (see Supplementary Notes
477  and Tables S27).

478

479  For age first had sexual intercourse and qualifications, we confirmed our findings using

480  bivariate GREML, a robust approach against selection bias (Table 5). The bivariate GREML
481  results for qualifications indicated a significant genetic heterogeneity between POP1 and

482  POP2 (p-value = 8.09E-04), and between POP2 and POP3 (p-value = 7.85E-04), but showed
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483  no genetic heterogeneity between POP1 and POP3. These results were consistent with our
484  findings from the GxP RNM. For age first had sexual intercourse, the bivariate GREML

485  detected a significant heterogeneity between POP2 and POP3 (p-value = 3.14E-05), however,
486  there was no interaction signal between POP1 and POP3 (as expected). Unexpectedly, the
487  bivariate GREML failed to find genetic heterogeneity across POP1+POP2 (Table 5) although
488  RNM provided a significant signal.

489

490  As confirmed by the bivariate GREML, it was not likely that the findings for qualifications
491  were spurious because of selection and collider bias. This was also evidenced by the fact that
492  GxP RNM detected a significant interaction signal from POP2+POP3, noting that POP2 and
493  POP3 were similarly distributed for qualifications (see Table S26). Similarly, the findings for
494  age first had sexual intercourse were mostly robust whether using RNM or bivariate GREML
495  except that there was no signal for POP1+POP2 when using the bivariate GREML, probably
496  due to the lack of power. It was noted that the phenotypic distributions of age first had sexual
497  intercourse were very similar across POP1, POP2 and POP3 (Table S25).

498

499  Hidden heritability

500 For the significant traits qualifications and age first had sexual intercourse, we examined

501  SNP-based heritabilities estimated by GREML and GxP RNM (see Table S28). The

502  phenotypic values were adjusted for basic and additional confounders of fixed effects and
503 transformed using rank-based INT. For POP1+POP2, the SNP-based heritability for

504  qualifications estimated by GxP RNM increased by 28% (from 0.0998 to 0.1281) and 84%
505  (from 0.0998 to 0.1840) with covariate PC1 and PC2, compared to those estimated by

506 GREML. But there was no such apparent increase of estimated SNP-based heritability for

507 POP2+POP3 and POP1+POP3 when comparing GREML and GxP RNM.
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508
509 Discussion

510  Previous results 2> were more likely to reflect heterogeneous genetic effects across nations
511  or cohorts rather than populations as those designs were evidently confounded with country-
512  specific factors (e.g., trait definition and measurement, cultural and societal difference). In
513 this study, we focused on populations and proposed the new concept “genotype-population
514  interaction” in which population is defined by the first and second ancestry PCs (each

515 individual has a unique PC value). Using the RNM with whole-genome data from the UKBB,
516  we have demonstrated significant GxP interaction effects for qualifications and age first had
517  sexual intercourse across populations. Our findings corroborate the results in Tropf et al.
518  who reported that behavioural phenotypes (education and human reproductive behaviour)
519  have significant GXE interactions across populations. For anthropometric phenotypes, height
520 and BMI, our GxP RNM model did not detect any significant interaction signals'4. However,
521  the analyses of another two anthropometric traits (waist circumference and weight) have

522  demonstrated significant genetic heterogeneity across the POP2+POP3 group (other white
523  Europeans). Actually, the results by Tropf et al. > across seven populations have also

524  revealed significant GXE interaction for BMI although the heterogeneity is not strong as for
525  education and reproductive behaviours. Robinson et al. 12 also reported that, for BMI,

526  environmental differences across Europe masked genetic differentiation. Thus, these findings
527  may be consistent for some anthropometric phenotypes when using diverse European

528  ancestry populations. From the POP2+POP3 analyses, we also found a significant GxP

529 interaction for diagnosis of diabetes that is a binary response variable.

530

531  Asthe RNM has not been explicitly verified for binary traits, we also used bivariate GREML

532  to estimate the genetic correlation between POP2 and POP3 for this disease trait and found
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533 no significant signal for genetic heterogeneity (estimate is 0.7988, SE = 0.2044, p-value =
534  0.3249). This might be due to the fact that there was no genuine interaction effects or that the
535  bivariate GREML was simply underpowered. For the two binary measuring ways of

536  qualifications (lowest educational attainment versus other levels, and highest educational

537  attainment versus other levels), we also used bivariate GREML to examine genetic

538  correlations between POP1, POP2 and POP3 (Table S29). The results for the binary

539  phenotype of “none of the above” versus other six educational categories demonstrated

540  significant genetic heterogeneity between POP1 and POP2 (p-value = 5.58E-05) and between
541  POP2 and POP3 (p-value = 7.59E-05) but no significant signal between POP1 and POP3 (p-
542  value = 0.0619), which were consistent with those obtained from the main analyses. For the
543  binary data of “college or university degree” versus other six categories, the bivariate

544  GREML indicated a marginally significant heterogeneity between POP1 and POP2 (p-value
545  =0.035) and no significant signal between POP2 and POP3 (p-value = 0.494), and POP1 and
546  POP3 (p-value = 0.94). The reason that the genetic heterogeneity became weaker or

547  disappeared is probably due to the fact that the bivariate GREML has less power compared to
548  the RNM approach, and the phenotype categories reduced from four to two levels.

549

550  Our results imply that causal variants at multiple loci may not be universal but rather specific
551  to populations for some complex traits. The results on qualifications across POP1+POP2

552  suggested that GxP interaction might be a reason for attenuation of SNP-based heritability
553  when using data from different populations, for which we hold the same view as by Tropf et
554  al. 1. This missing or hidden heritability issue *! can produce lower predictive power of

555  polygenic risk scores from large GWAS (usually generated from meta-analyses of different
556  populations) compared with single homogenous population since the reference heritability

557  obtained from the meta-analyses among several populations is smaller than that obtained
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558  from single homogenous population 2. Therefore, our findings suggest that large

559  homogeneous population data sources (e.g., around 400,000 white British individuals in the
560 UKBB) should be used to conduct genetic risk prediction for some specific traits such as

561  human behaviors.

562

563  The current methods used for estimating GxE (or GxP) interactions, e.g. random regression
564 (RR)-GREML %2 and GCI-GREML 2 require that the main response should be stratified
565  into multiple discrete groups according to covariate levels even for a continuous covariate 3.
566  However, the arbitrary grouping ignores the difference of covariate values for the individuals
567  within each group, and results in some loss of information. In contrast, the RNM allows us to
568 fit a continuous covariate representing individuals uniquely (e.g. PC) in the model and

569  produces unbiased estimates 2°. In our results, bivariate GREML which labels the individuals
570 into two discrete groups (POP1 and POP2) failed to find genetic heterogeneity for age first
571  had sexual intercourse (Table S27), while RNM detected significant GXP interaction across
572 POP1+POP2 (see Table 1). It may imply that GxP RNM is more powerful as it uses

573 individual-level information represented by PC across populations, while bivariate GREML
574  ignores such information within each stratified group. However, on the other hand, RNM

575  may suffer from the selection bias when using different selection odds ratios across

576  populations (Table 3) while bivariate GREML is robust against such selection and collider
577  bias (Tables 3 and 4).

578

579  Residual-covariate interaction may result in heterogeneous residual variances across different
580  covariate values, thus it is necessary to examine and distinguish genotype-covariate and

581 residual-covariate interactions 2°. Our results (Tables S13 and S17) provided cogent evidence

582  of GxP and RxP interaction effects, which are (partially) independent without confounding,
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583  across populations for qualifications. However, for age first had sexual intercourse, there was
584  no evidence showing that GxP interaction was orthogonal to RxP interaction from LRT

585  comparing the full and nested models. Therefore, we could not rule out the possibility that the
586 significant signal was mainly because of residual heterogeneity across populations. In order
587  to disentangle GxP interaction from RxP interaction, the magnitude of GxP interaction

588  should be large (e.g. qualifications) or sample size may have to be increased.

589

590  The previous results *>>were based on pooled data across different nations, and thus various
591 trait definitions in phenotypic measure and genetic measurement errors across countries may
592  generate artificial heterogeneity. In our study, however, we used the data resource

593  standardized across one country (the United Kingdom) to rule out those cross-country factors
594 and influences. The phenotypic definitions and measurement of complex traits in this cohort
595  have been standardized nationwide. Moreover, UKBB utilized uniform standards of

596 imputation and quality control for genotype data and provided genotyping batch information
597  for each individual that was used as fixed effect adjusted in our models. Therefore, our results
598  may reflect authentic GxP interaction effects across populations.

599

600  There are several limitations in this study. Firstly, we examined GxP interaction across

601  populations using three data designs (POP1+POP2 and POP2+POP3 as primary data, and

602  POP1+POP3 as a negative control), in which population is referred to the first and second
603  ancestry PCs. As POP1 and POP3 are very close in terms of PCs, the individuals in the two
604  primary groups POP1+POP2 and POP2+POP3 have common population structures (Figure
605 1). But both groups involve in different white ethnic backgrounds, i.e., POP1 may be closer
606  to native British and POP2/POP3 is more likely to be descended from recent immigrants from

607  many other European nations. Therefore, for our data designs, we cannot rule out the
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608  possibility that GxP interaction was confounded with immigration-specific factors such as
609  socioeconomic attainment, social relations and cultural beliefs 3. We also notice that, in the
610 UKBB data source, there are numerous samples with other ethnicities (e.g., Indian, Caribbean
611  and African), thus future studies using our approach may aim to detect genotype-ethnicity
612 interaction, which may uncover challenges for investigations into the genetic architecture of
613  phenotypes across various ethnicities. Secondly, population defined by PCs in this study or
614 by discrete groups in others * 1> includes both environmental and genetic information for
615 individuals, thus the GxP interaction may not merely embody GXE interaction but also

616  contains confounded genotype-by-genotype (GxG) interaction across populations. It may
617  become a new challenge in the future to distinguish GXE and GxG in studies of genetic

618  heterogeneity across populations. Thirdly, the sample size for people with other white

619  ethnicity in UKBB (i.e., the sum of POP2 and POP3) is not large, thus the study may lack
620  power for phenotypes with small SNP-based heritability such as behavioural traits. The

621  phenotypes without significant heritability in the current samples were not investigated for
622  GXxP interaction, however, if boosting statistical power for those phenotypes, there may be
623  new findings for heterogeneity across populations. Fourthly, the simulations on selection bias
624  have demonstrated that the GXP RNM is not robust for data across populations with different
625  selection odds ratios (see Table 3). Thus our approach is more preferable and restricted to
626  data without selection bias or with the same selection pressure for populations. Finally, for
627  genotypic information used in this study, we only examined common SNPs (minor allele

628  frequency > 0.01). However, a recent study ** reported that the missing heritability for height
629 and BMI may be explained by rare genetic variants accessed from whole-genome sequence
630 data. Therefore, can rare population-specific variants increase our understanding of genetic
631  heterogeneity across populations? Further research is required to answer this question.

632
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633  In conclusion, our study provided a paradigm shift tool in investigating genetic heterogeneity
634  across populations. The new concept of GxP interaction with the use of ancestry PC is more
635  plausible in explaining the genetic architecture of complex traits across heterogeneous

636  populations. The GxP interaction effects on behavioural phenotypes (qualifications and age
637  first had sexual intercourse) were found by a powerful approach based on technically

638  homogeneous data (free of genetic measurement errors and cohort/country confounding

639  factors), and these findings were validated in both data designs POP1+POP2 and

640 POP2+POP3. The analyses performed in this study can be applied to dissect the genetic

641  architecture of complex traits and diseases across populations, and the results from these

642  analyses will provide important information and suggestion for studies of genomic risk

643  prediction across Europeans.

644
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646  Supplemental data file includes supplemental notes, 9 figures and 29 tables and can be found
647  with this article online.
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Figure 1. Two-dimensional scatter plots of PC1 and PC2 with red points representing
white British individuals and blue points representing other white ethnic individuals
from the UKBB.

The white British group named as POP1 is situated within the group of the other white
Europeans. As shown in (B) and (C), we used a geometric method by which we constructed a
rectangle with maximums and minimums of PC1 and PC2 of POP1 as four sides and then
group the individuals of the other white Europeans inside this rectangle, named as POP3. The

rest of the other white Europeans except POP3 were named as POP2.
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TABLE TITLES AND LEGENDS

Table 1. Genetic variance, interaction variance and their covariance component estimates for six phenotypes across POP1+POP2 with
the covariates PC1 and PC2. The phenotypes were adjusted by basic plus additional confounders of fixed effects and transformed by rank-
based INT. The estimates which were not within the valid parameter space are marked as “Excluded”. SE denotes standard error. DF denotes
degree of freedom.

dUKfE’_,Eid Phenotype Covariate var(g,) var(g,) cov(d,,9,) var(e,) P—value_by LR'}I;
ata fie comparing wit
(SE) (SE) (56) (SE) baseF;ine r?mdel
(DF =2)
78 | Heel bone mineral density PC1 0.3151(0.0459) | 0.0124(0.0110) | 0.0013(0.0120) | 0.6739(0.0456) 0.1586
(BMD) T-score, automated PC2 0.3187(0.0460) | -0.0008(0.0047) | -0.0037(0.0110) | 0.6838(0.0450) Excluded
3144 | Heel Broadband ultrasound PC1 0.2754(0.0454) | 0.0094(0.0110) | 0.0087(0.0120) | 0.7161(0.0454) 0.0789
attenuation, direct entry PC2 0.2774(0.0454) | 0.0006(0.0048) | -0.0024(0.0111) | 0.7232(0.0450) 0.8987
3147 | Heel quantitative ultrasound PC1 0.3151(0.0459) | 0.0124(0.0110) | 0.0013(0.0120) | 0.6739(0.0456) 0.1597
index (QUI), direct entry PC2 0.3187(0.0460) | -0.0009(0.0047) | -0.0037(0.0110) | 0.6839(0.0450) Excluded
3148 | Heel bone mineral density PC1 0.3070(0.0458) | 0.0107(0.0109) | 0.0046(0.0120) | 0.6836(0.0455) 0.1315
(BMD) PC2 0.3106(0.0459) | -0.0016(0.0046) | -0.0069(0.0110) | 0.6926(0.0450) Excluded
2139 | Age first had sexual intercourse PC1 0.1006(0.0266) | 0.0080(0.0078) | 0.0203(0.0087) | 0.8909(0.0290) 5.16E-05
PC2 0.1012(0.0266) | 0.0110(0.0057) | -0.0015(0.0087) | 0.8880(0.0286) 0.0097
6138 | Qualifications PC1 0.1194(0.0235) | 0.0706(0.0103) | -0.0791(0.0090) | 0.8124(0.0261) 9.21E-18
PC2 0.1778(0.0214) | 0.0360(0.0059) | 0.0833(0.0081) | 0.7885(0.0233) 2.22E-24
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Table 2. Genetic variance, interaction variance and their covariance component estimates for six phenotypes across POP2+POP3 with
the covariates PC1 and PC2. The phenotypes were adjusted by basic plus additional confounders of fixed effects and transformed by rank-
based INT. SE denotes standard error. DF denotes degree of freedom.

dU KEEid Phenotype Covariate var(g,) var(g,) cov(g,,9,) var(e,) P—value_by LR:]'
ata fie comparing wit
(SE) (56) (SE) (SE) baseﬁine r%lodel
(DF =2)
48 | Waist circumference PC1 0.1802(0.0243) | 0.0222(0.0069) | -0.0395(0.0079) | 0.7990(0.0256) 2.92E-06
PC2 0.1789(0.0243) | 0.0076(0.0037) | 0.0300(0.0078) | 0.8147(0.0252) 0.0004
21002 | Weight PC1 0.2537(0.0252) | 0.0209(0.0069) | -0.0328(0.0081) | 0.7270(0.0257) 0.0002
PC2 0.2529(0.0252) | 0.0077(0.0040) | 0.0219(0.0080) | 0.7408(0.0252) 0.0252
2443 | Diabetes diagnosed by doctor PC1 0.1688(0.0203) | 0.0259(0.0070) | -0.0015(0.0077) | 0.7901(0.0218) 6.65E-11
PC2 0.1734(0.0204) | 0.0162(0.0051) | -0.0005(0.0076) | 0.7966(0.0219) 3.73E-08
2139 | Age first had sexual intercourse PC1 0.0936(0.0258) | 0.0267(0.0086) | -0.0072(0.0087) | 0.8795(0.0283) 7.86E-05
PC2 0.0933(0.0258) | 0.0153(0.0056) | 0.0112(0.0086) | 0.8918(0.0278) 0.0071
6138 | Qualifications PC1 0.0937(0.0264) | 0.0324(0.0094) | 0.0159(0.0091) | 0.8715(0.0287) 1.06E-15
PC2 0.1139(0.0267) | 0.0150(0.0057) | 0.0137(0.0086) | 0.8713(0.0285) 0.0162
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Table 3. Simulation study results for selection bias on the phenotype Y across POP1+POP2. Different odds ratio combinations (OR o,

and ORp, ) generated phenotypic values in POP1+POP2 with different selection bias levels. Type I error rates based on 100 simulation

replicates were examined by GxP RNM and bivariate GREML respectively. The genetic correlations of the phenotype between POP1 and POP2
were estimated by bivariate GREML. SE denotes standard error.

Selection scenarios in

Type | error rate

Type | error rate

100 estimated genetic correlations

POP1+POP2 by GXP RNM with PC1 | by bivariate GREML Mean SE
ORpopry =1, ORpgp, v =1 5% 0% 0.9722 0.0145
ORpopry =1, ORpopy v =2 55% 2% 0.9876 0.0166
ORpopry =2, ORpgpy y =2 1% 0% 1.0245 0.0160
ORpopry =2, ORpgp, v =3 64% 6% 0.9882 0.0202
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Table 4. Simulation study results for collider bias on two phenotypes Y and Z across POP1+POP?2. Different odds ratio combinations
(ORpopt v » ORpopa v ORpopy z and ORpqp, ;) generated phenotypes in POP1+POP2 with different selection bias levels. Type | error rates

based on 100 simulation replicates were examined through estimated genetic correlations of the phenotype Y between POP1 and POP2 by
bivariate GREML. SE denotes standard error.

ORpopz, v =3, ORpop, 2 =3

Selection scenarios with collider bias | Type | error | Estimated genetic correlations of the Estimated genetic correlations between
in POP1+POP2 rate phenotype Y between POP1 and POP2 Y and Z on selected POP1+POP2
Mean SE Mean SE

ORpopr v =2, ORpopy 5 =2, 1% 1.0141 0.0189 -0.2516 0.0032
ORpop, v =3, ORpop, 2 =2

OR;opiy =2, ORpopy 5 =2, 2% 1.0220 0.0165 -0.2942 0.0031
ORpopz,v =3, ORpop, 2 =3

ORpopr v =2, ORpopy ;= 3, 2% 1.0091 0.0187 -0.3415 0.0036
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Table 5. Genetic correlation estimates between population groups (POP1, POP2 and POP3) by bivariate GREML for two phenotypes.

Here the phenotypes were adjusted by basic plus additional confounders of fixed effects and transformed by rank-based INT. SE denotes
standard error. P-value was obtained through a Wald test under a null hypothesis that genetic correlation equals to 1.

Genetic correlation

Phenotype Genetic correlation Genetic correlation
between POP1 and POP2 between POP2 and POP3 between POP1 and POP3
Estimate SE P value Estimate SE P value Estimate SE P value
Qualifications 0.2554 0.2223 | 8.09E-04 | 0.4795 0.1550 | 7.85E-04 | 0.5676 0.2743 | 0.1149
Age first had sexual intercourse 0.7418 0.3984 0.5169 0.0491 0.2284 | 3.14E-05 1.2176 0.3629 | 0.5488
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