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Abstract

The Ventral Occipito-Temporal Cortex (VOTC) shows reliable category selective
response to visual information. Do the development, topography and information
content of this categorical organization depend on visual input or even visual
experience? To further address this question, we used fMRI to characterize the brain
responses to eight categories (4 living, 4 non-living) presented acoustically in
sighted and early blind individuals, and visually in a separate sighted group. Using a
combination of decoding and representational similarity analyses, we observed that
VOTC reliably encodes sounds categories in the sighted and blind groups, using a
representational structure strikingly similar to the one found in vision. Moreover, we
found that the representational connectivity between VOTC and large-scale brain
networks was substantially similar across modalities and groups. Blind people
however showed higher decoding accuracies and higher inter-subject consistency
for the representation of sounds in VOTC, and the correlation between the
representational structure of visual and auditory categories was almost double in the
blind when compared to the sighted group. Crucially, we also demonstrate that
VOTC represents the categorical membership of sounds rather that their acoustic
features in both groups. Our results suggest that early visual deprivation triggers an
extension of the intrinsic categorical organization of VOTC that is at least partially

independent from vision.

Keywords: blindness; category perception; crossmodal plasticity; fMRI; multivariate

analyses; auditory; visual.
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Introduction

The study of sensory deprived individuals represents a unique model system
to test how experience interacts with intrinsic biological constraints to shape the
development of the functional organization of the brain. One of the most striking
demonstrations of experience-dependent plasticity comes from studies of blind
individuals showing that the occipital cortex (traditionally considered as purely
visual) massively extends its response to non-visual inputs (Neville & Bavelier, 2002;
Sadato et al., 1998).

But what are the mechanisms guiding this brain reorganization process? It
was suggested that the occipital cortex of people born blind repurposes its
response toward new functions that are distant from the typical tuning of these
regions for vision (Bedny, 2017). In fact, the functional organization of occipital
regions has been thought to develop based on innate protomaps implementing
computational bias for low-level visual features including retinal eccentricity bias
(Malach, Levy, & Hasson, 2002), orientation content (Rice, Watson, Hartley, &
Andrews, 2014), spatial frequency content (Rajimehr, Devaney, Bilenko, Young, &
Tootell, 2011) and the average curvilinearity/rectilinearity of stimuli (Nasr, Echavarria,
& Tootell, 2014). This proto-organization would serve as low-level visual biases
scaffolding experience-dependent domain specialization (Arcaro & Livingstone,
2017; Gomez, Barnett, & Grill-Spector, 2019). Consequently, in absence of visual
experience, the functional organization of the occipital cortex cannot develop
according to this proto-organization and those regions may therefore switch their
functional tuning toward distant computations (Bedny, 2017).

In striking contrast with this view, several studies suggested that the occipital
cortex of congenitally blind people maintains a division of computational labor
somewhat similar to the one characterizing the sighted brain (Amedi, Raz, Azulay,
Malach, & Zohary, 2010; Dormal & Collignon, 2011; Ricciardi et al., 2007). Perhaps,
the most striking demonstration that the occipital cortex of blind people develops a

similar coding structure and topography as the one typically observed in sighted
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people comes from studies exploring the response properties of the ventral
occipito-temporal cortex (VOTC). In sighted individuals, lesion and neuroimaging
studies have demonstrated that VOTC shows a medial to lateral segregation in the
response to living and non-living visual stimuli, respectively, and that some specific
regions respond preferentially to visual objects of specific categories like the
fusiform face area (FFA; Kanwisher, McDermott, & Chun, 1997; Tong, Nakayama,
Moscovitch, Weinrib, & Kanwisher, 2000), the extrastriate body area (EBA; Downing
et al., 2001), the parahippocampal place area (PPA; Epstein & Kanwisher, 1998), and
the visual word form area (VWFA; McCandliss, Cohen, & Dehaene, 2003). The
medial-to-lateral bias underlying animate—inanimate coding was also found in the
VOTC of early blind individuals (Wang et al., 2015). In addition, the functional
preference for words (Reich, Szwed, Cohen, & Amedi, 2011) or letters (Striem-Amit,
Cohen, Dehaene, & Amedi, 2012), motion (Dormal, Rezk, Yakobov, Lepore, &
Collignon, 2016; Poirier, Collignon, Scheiber, & Volder, 2004), places (He et al.,
2013; Wolbers, Klatzky, Loomis, Wutte, & Giudice, 2011), bodies (Kitada et al.,
2014; Striem-Amit & Amedi, 2014), tools (Peelen et al., 2013) and shapes (Amedi et
al., 2007) in early blind partially overlaps with similar categorical responses in
sighted people when processing visual inputs.

Distributed multivariate pattern analyses (Haxby et al., 2001) have also
supported the idea that the large-scale categorical layout in VOTC share similarities
between sighted and blind people (Handjaras et al., 2016; Hurk, Baelen, Op, &
Beeck, 2017; Peelen, He, Han, Caramazza, & Bi, 2014; Wang et al., 2015). For
example, it was shown that the tactile exploration of different manufactured objects
(shoes and bottles) elicits distributed activity in VOTC of blind people somehow
similar to the one observed in sighted people in vision (Pietrini et al., 2004). A recent
study demonstrated that the response patterns elicited by sounds of four different
categories in the VOTC of blind people could successfully predict the categorical
response to images of the same categories in the VOTC of sighted controls,
suggesting overlapping distributed categorical response in sighted for vision and in
blind for sounds (Hurk et al., 2017). All together, these studies suggest that there is

more to the development of the categorical response of VOTC than meets the eye
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(Collignon, Dormal, & Lepore, 2012).

However, these researches leave several important questions unanswered. If
a spatial overlap exists between the sighted processing visual inputs and the blind
processing non-visual material, whether VOTC represents similar informational
content in both groups remains unknown (Hurk et al., 2017). It is, for instance,
possible that the overlap in categorical responses between groups comes from the
fact that VOTC represents visual attributes in the sighted (Arcaro & Livingstone,
2017; Gomez et al., 2019) and acoustic attributes in the blind due to crossmodal
plasticity (Bavelier & Neville, 2002). Indeed, several studies involving congenitally
blind have shown that their occipital cortex may represent acoustic features — for
instance frequencies (Huber, Jiang, & Fine, 2019; Watkins et al., 2013) - at the basis
of the development of categorical selectivity in the auditory cortex (Moerel, De
Martino, & Formisano, 2012). Such preferential responses for visual or acoustic
features in the sighted and blind, respectively, may lead to overlapping patterns of
activity for similar categories while implementing separate computations on the
sensory inputs. Alternatively, it is possible that the VOTC of both groups code for
higher-order categorical membership of stimuli presented in vision in sighted and
audition in the blind, at least in partial independence from low-level features of the
stimuli.

Another unresolved but important question is whether sighted people also
show categorical responses in VOTC to acoustic information similar to the one they
show in vision. For instance, the two multivariate studies using sensory (not word)
stimulation (tactile, Pietrini et al., 2004, auditory, Hurk et al., 2017) of various
categories in sighted and blind either did not find the existence of category-related
patterns of response in the ventral temporal cortex of sighted people (Pietrini et al.,
2004) or did not report overlapping distributed response between categories
presented acoustically or visually in sighted people (Hurk et al., 2017). Therefore, it
remains controversial whether similar categorical responses in VOTC for visual and
non-visual sensory stimuli only emerge in the absence of bottom-up visual inputs
during development or whether it is an organizational property also endowed in the

VOTC of sighted people.
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Finally, it has been suggested that VOTC regions might display similar
functional profile for sound and sight in sighted and blind because different portions
of this region integrate specific large-scale brain network sharing similar functional
coding. However, empirical evidences supporting this mechanistic account remain
scarce.

With these unsolved questions in mind, we relied on a series of
complementary multivariate analyses in order to carry out a comprehensive
mapping of the representational geometry underlying low-level (acoustic or visual
features mapping) and categorical responses to images and sounds in the VOTC of
sighted and early blind people. Our results demonstrate that (1) VOTC shows
categorical responses to sounds in the sighted and the blind in a representational
format highly similar to the one elicited by images of the same categories in sighted
people; (2) VOTC shows similar large-scale representational connectivity profiles
when processing images in sighted and sounds in sighted and blind people; (3) that
blind people however show higher decoding accuracies and higher inter-subject
consistency in the representation of auditory categories, and that the correlation
between the representational structure of visual and auditory categories is almost
double in the blind (r=.66) when compared to the sighted (r=.35) group; (4) that the
categorical responses to sounds observed in the VOTC of blind and sighted people
abstract from their acoustic features and therefore reflect categorical membership of
the sounds. All together these results demonstrate that early visual deprivation
triggers an extension of the intrinsic, partially non-visual, categorical organization of
VOTC and support a mechanistic account based on the shared representational

profile between VOTC and large-scale brain networks.
Materials and methods
Participants

Thirty-four participants completed the auditory version of the fMRI study: 17
early blinds (EBa; 10F) and 17 sighted controls (SCa; 6F). An additional group of 16

sighted participants (SCv; 8F) performed the visual version of the fMRI experiment.
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All the blind participants lost sight at birth or before 4 years of age and all of them
reported not having visual memories and never used vision functionally (see Sl table
1). The three groups were age (range 20-67 years, mean + SD: 33.29 + 10.24 for EBa
subjects, respectively 23-63, 34.12 + 8.69 for SCa subjects, and 23-51, 30.88 + 7.24
for SCv subjects) and gender (x* (2,50) =1.92, p=0.38) matched. One blind subject
performed only 2 out of the 5 runs in the fMRI due to claustrophobia; because of
that we excluded her data. All subjects were blindfolded during the auditory task.
Participants received a monetary compensation for their participation. The ethical
committee of the University of Trento approved this study (protocol 2014-007) and

participants gave their informed consent before participation.
Stimuli

We decided to use sounds and images, instead of words, because we
wanted to access and model the bottom-up cascade of sensory processing starting
from the low-level sensory steps until the more conceptual level. This
methodological decision was crucial in order to assess what level of sound
representation is implemented in VOTC of blind and sighted individuals.

A preliminary experiment was implemented in order to select the auditory
stimuli (see S| — Stimuli selection for further details). The final acoustic stimuli set
included 24 sounds from 8 different categories (human vocalization, human non-
vocalization, birds, mammals, tools, graspable objects, environmental scenes, big
mechanical objects) that could be reduced to 4 superordinate categories (human,
animals, manipulable objects, big objects/places) (see Sl Table 2).

We created a visual version of the stimuli set. The images for the visual
experiment were coloured pictures collected from Internet and edited using GIMP
(https://www.gimp.org). Images were placed on a grey (129 RGB) 400 x 400 pixels
background.
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Procedure

The experimental session was divided into two parts: first the subjects
underwent the fMRI experiment and then they performed a behavioural rating
judgment task on the same stimuli used in the fMRI experiment.

Similarity Rating

The behavioural experiment aimed to create individual behavioural
dissimilarity matrices to understand how the participants perceived the similarity of
our stimuli space. Due to practical constraints, only a subset of our participants
underwent the behavioural experiment (15 EBa, 11 SCa, and 9 SCv). We created
each possible pair from the 24 stimuli set leading to a total of 276 pairs of stimuli. In
the auditory experiment, participants heard each sound of a pair sequentially and
were asked to judge from 1 to 7 how similar the two stimuli producing these sounds
were. In the visual experiment, we presented each pair of stimuli on a screen to the
participants and we asked them to judge from 1 to 7 how similar the two stimuli
were. Since their rating was strongly based on the categorical features of the stimuli,
we used the data from the behavioural experiment to build the categorical models
for the representational similarity analysis (see the section “Representational

similarity analysis: correlation with representational low-level/behavioural models “).
fMRI experiment

Each participant took part in only one experiment, either in the auditory or in
the visual version. We decided to include two separate groups of sighted people,
one for each modality, for two crucial reasons. First, we wanted to limit as much as
possible the possibility of triggering mental imagery from one modality to the other.
Second, since cross-group comparisons of representational dissimilarity analyses
represent a core component of our analysis stream, we wanted to ensure a cross-
group variance comparable between the blind versus the sighted and the sighted in
audition versus the sighted in vision.

The procedure for the two experiments was highly similar (Fig. 1A).
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(A) Experimental design
CATEGORIES: VIS: AUD: Fig. 1. (A) Categories of stimuli and design
Animal - Birds of the visual (VIS) and auditory (AUD) fMRI

AM| Animal - Mammals

experiments. (B) The untresholded

Human - Non vocaliz. topographical selectivity maps for the

Human - Vocalization
Manip. - Tools

MG| Manip. - Graspable

Big - Environmental

Big - Mechanical

sighted-visual (top), the blind-auditory
(centre) and the sighted-auditory (bottom)
participants. These maps visualize the
functional topography of VOTC to the main
four categories. We decided to represent

. . maps including the 4 main categories
(B) Topographical selectivity map
(instead of 8) to simplify visualization of the
ANIMALS [ HUMANS [ MANIPUL. [l BIG ) )
main effects (the correlation values are
Sighted-visual

almost identical with 8 categories and those
/ B A

maps can be found in supplemental
- material). The average visual map was
/ correlated with the average auditory map of
the blind group (r = 0.51) and of the sighted
group (r = 0.29). The averaged auditory map

of the blind grou was also correlated with

J

the averaged auditory map of the sighted

group (r=0.25).

xxx6C°0

Before entering the scanner, all the stimuli (either auditory or visual) were
presented to each participant to ensure perfect recognition. In the fMRI experiment
each trial consisted of the same stimulus repeated twice. Rarely (8% of the
occurrences), a trial was made up of two different consecutive stimuli (catch trials).

Only in this case participants were asked to press a key with the right index finger if
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the second stimulus belonged to the living category and with their right middle
finger if the second stimulus belonged to the non-living category. This procedure
ensured that the participants attended and processed the stimuli. In the auditory
experiment, each pair of stimuli lasted 4s (2s per stimulus) and the inter-stimulus
interval between one pair and the next was 2s long for a total of és for each trial
(Fig. TA). In the visual experiment, each pair of stimuli lasted 2s (1s per stimulus) and
the inter-stimulus interval between one pair and the next was 2s long for a total of
4s for each trial (Fig. 1A).

The use of a "quick” event-related fMRI paradigm balances the need for
separable hemodynamic responses and the need for presenting many stimuli in the
limited time-span of the fMRI experiment. Within both the auditory and the visual
fMRI sessions, participants underwent 5 runs. Each run contained 3 repetitions of
each of the 24 stimuli, 8 catch trials and two 20s-long rest periods (one in the middle
and another at the end of the run). The total duration of each run was 8min and 40s
for the auditory experiment and émin for the visual experiment. For each run, the
presentation of trials was pseudo-randomized: two stimuli from the same category
were never presented in subsequent trials. The stimuli delivery was controlled using

the Psychophysics toolbox implemented in Matlab R2012a (The MathWorks).
fMRI data acquisition and analyses
fMRI data acquisition and preprocessing

We acquired our data on a 4T Bruker Biospin MedSpec equipped with an
eight-channel birdcage head coil. Functional images were acquired with a T2*-
weighted gradient-recalled echo-planar imaging (EPI) sequence (TR, 2000 ms; TE,
28 ms; flip angle, 73°; resolution, 3x3 mm?®; 30 transverses slices in interleaved
ascending order; 3 mm slice thickness; field of view (FoV) 192x192 mm?). The four
initial scans were discarded for steady-state magnetization. Before each EPI run, we
performed an additional scan to measure the point-spread function (PSF) of the
acquired sequence, including fat saturation, which served for distortion correction

that is expected with high-field imaging.
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A structural T1-weighted 3D magnetization prepared rapid gradient echo
sequence was also acquired for each subject (MP-RAGE; voxel size 1x1x1 mm?
GRAPPA acquisition with an acceleration factor of 2; TR 2700 ms; TE 4,18 ms; Tl

(inversion time) 1020 ms; FoV 256 mm; 176 slices).

To correct for distortions in geometry and intensity in the EPI images, we
applied distortion correction on the basis of the PSF data acquired before the EPI
scans (Zeng & Constable, 2002). Raw functional images were pre-processed and
analyzed with SPM8 (Welcome Trust Centre for Neuroimaging London, UK
(https://www fil.ion.ucl.ac.uk/spm/software/spm8/) implemented in MATLAB R2013b

(MathWorks). Pre-processing included slice-timing correction using the middle slice
as reference, the application of temporally high-pass filtered at 128 Hz and motion

correction.

Regions of interest

The anatomical scan was used to segment the brain in separate regions
according to the Desikan-Killiany atlas (Desikan et al., 2006) implemented in
FreeSurfer (http://surfer.nmr.mgh.harvard.edu).

Six ROIs were selected in each hemisphere: Pericalcarine, Cuneus and
Lingual areas were combined to define the early visual cortex (EVC) ROI; Fusiform,
Parahippocampal and Infero-Temporal areas were combined to define the ventral
occipito-temporal (VOTC) ROI. Then, we combined these areas in order to obtain
one bilateral EVC ROI and one bilateral VOTC ROI (Fig. 2A). Our strategy to work on
a limited number of relatively large brain parcels has the advantage to minimize
unstable decoding results collected from small regions (Norman, Polyn, Detre, &
Haxby, 2006) and reduce multiple comparison problems intrinsic to neuroimaging
studies (Etzel, Zacks, & Braver, 2013). All analyses, except for the topographical
selectivity map (see below), were carried out in subject space for enhanced

anatomico-functional precision and to avoid spatial normalization across subjects.
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General linear model

The pre-processed images for each participant were analyzed using a
general linear model (GLM). For each of the 5 runs, we included 32 regressors: 24
regressors of interest (each stimulus), 1 regressor of no-interest for the target
stimulus, 6 head-motion regressors of no-interest and 1 constant. From the GLM
analysis we obtained a B-image for each stimulus (i.e. 24 sounds) in each run, for a

total of 120 (24 stimuli x 5 runs) beta maps.

Topographical selectivity map

For this analysis, we needed all participants to be coregistered and
normalized in a common volumetric space. To achieve maximal accuracy, we relied
on the DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie
Algebra (Ashburner, 2007) toolbox. DARTEL normalization takes the grey and white
matter templates from each subject to create an averaged template based on our
own sample that will be used for the normalization. The creation of a study-specific
template using DARTEL was performed to reduce deformation errors that are more
likely to arise when registering single subject images to an unusually shaped
template (Ashburner, 2007). This is particularly relevant when comparing blind and
sighted subjects given that blindness is associated with significant changes in the
structure of the brain itself, particularly within the occipital cortex (Dormal et al.,
2016; Jiang et al., 2009; Pan et al., 2007; Park et al., 2009).

To create the topographical selectivity map (Fig. 1B) we first averaged the B-
values among participants of the same group in each voxel inside the VOTC mask
for each of our 4 main conditions (animals, humans, manipulable objects and places)
separately and we assigned to each voxel the condition producing the highest B-
value (winner take all approach). This analysis resulted in specific clusters of voxels
that spatially distinguish themselves from their surround in terms of selectivity for a
particular condition (Hurk et al., 2017). Finally, to compare how similar are the
topographical selectivity maps in the 3 groups we computed the Pearson’s

correlation between the maps of the different groups. The statistical significance
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(against 0) of these correlations was determined using permutation test (100000
iterations), building a null distribution for these correlation values by randomly
shuffling the labels of the voxels in VOTC. All the p-values are reported after false
discovery rate (FDR) correction implemented using the matlab function ‘mafdr’. We
run this analysis using the four (Fig. 1B) and the eight categories (see SI-Fig2) and
both analyses lead to almost identical results. We decided to represent the data of
the four main categories for simpler visualization of the main effect (topographical

overlap across modalities and groups).

MVP-classifications: Binary decoding

We performed a binary MVP-classification to look at the ability of each ROI to
distinguish between two categories at time. With 8 categories we can have 28
possible pairs, resulting in 28 binary MVP-classification tests in each ROI. Statistical
significance of the binary classification was assessed using t-test against the chance
level. We, then, averaged the 28 accuracy values of each subject in order to have 1
mean accuracy value for subject. Statistical significance of the averaged binary
classification was assessed using parametric statistics: t-test against zero and

ANOVA.

Representational similarity analysis (RSA): Correlation between neural dissimilarity

matrices of the 3 groups.

We further investigated the functional profile of the ROls using RSA. RSA was
performed using CoSMoMVPA  toolbox, implemented in Matlab (r2013b;
Matworks). The basic concept of RSA is the dissimilarity matrix (DSM). A DSM s a
square matrix where the number of columns and rows corresponds to the number of
the conditions (8X8 in this experiment) and it is symmetrical about a diagonal of
zeros. Each cell contains the dissimilarity index between the two stimuli. We used
the binary MVP-classification as dissimilarity index to build neural DSMs (Carlson,
Tovar, Alink, & Kriegeskorte, 2013; Radoslaw Martin Cichy & Pantazis, 2017;
Radoslaw Martin Cichy et al., 2013; Dobs, Isik, Pantazis, & Kanwisher, 2019; Haxby,
Connolly, & Guntupalli, 2014; Haxby et al., 2011; O'Toole, Jiang, Abdi, & Haxby,


https://doi.org/10.1101/719690
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/719690; this version posted July 30, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY-NC-ND 4.0 International license.

2005; Pereira, Mitchell, & Botvinick, 2009; Proklova, Kaiser, & Peelen, 2019) for each
group, in order to compare the functional profile of the ROIs between the 3 groups.
In this way, we ended up with a DSM for each group for every ROL.

We preferred to use binary MVP-classification as dissimilarity index to build
neural DSMs rather than other types of dissimilarity measures (e.g. Pearson
correlation, Euclidean distance, Spearman correlation) since two experimental
conditions that do not drive a response and therefore have uncorrelated patterns
(noise only, r = 0) appear very dissimilar (1 — r = 1). When using a decoding
approach instead, due to the intrinsic cross-validation steps, we would find that the
two conditions that don’t drive responses are indistinguishable, despite their
substantial correlation distance (Walther et al., 2016) since the noise is independent
between the training and testing partitions, therefore cross-validated estimates of
the distance do not grow with increasing noise. This was crucial in our study since
we are looking at brain activity elicited by sounds in brain regions that are primarily
visual (EVC and VOTC), therefore the level of noise is expected to be high, at least
in sighted people.

Finally, we computed the Pearson correlation between the neural DSMs to
see if, in each ROI, the same categories that are well or poorly distinguished in
vision in the sighted are also well or poorly distinguished in audition in the early
blind and/or in the sighted (Fig. 3). For each group, the statistical difference from
zero was determined using permutation test (10000 iterations), building a null
distribution for these correlation values by computing them after randomly shuffling
the labels of the 8X8 matrices. Similarly, the statistical difference between groups
was assessed using permutation test (10000 iterations) building a null distribution for
these correlation values by computing them after randomly shuffling the group
labels. All the p-values are reported after false discovery rate (FDR) correction

implemented using the matlab function ‘mafdr’.
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Representational similarity analysis (RSA): correlation with representational low-

level/behavioural models .

We then intended to investigate which features of the visual and auditory
stimuli were represented in the different ROIls of sighted and blind subjects. RSA
allows the comparisons between the brain DSMs extracted from specific ROls with
external DSMs, based on physical properties of the stimuli or based on behavioural
rating of the perceived categorical similarity our stimuli.

Low-level DSM in the auditory experiment: pitch DSM. Pitch corresponds to
the perceived frequency content of a stimulus. We selected this specific low-level
auditory feature for two reasons. First, previous studies showed that this physical
property of the sounds is distinctly represented in the auditory cortex and may
create some low-level bias of auditory category selective responses in the temporal
cortex (Giordano, McAdams, Zatorre, Kriegeskorte, & Belin, 2013; Leaver &
Rauschecker, 2010; M. Moerel et al., 2012). Second, we confirmed with our own SCa
group that, among alternative auditory RDMs based on separate acoustic features
(e.g. Harmonicity on noise ratio, Spectral centroid), the pitch model correlated most
with brain RDM extracted from the temporal cortex providing strong support that
this model was maximally efficient in capturing how encoding of sounds based on
acoustic features in auditory cortical regions (SI-Fig1).

We computed a pitch value for each of the 24 auditory stimuli, using the
Praat software and an autocorrelation method. This method extracts the strongest
periodic component of several time windows across the stimulus and averages them
to have one mean pitch value for that stimulus. The “pitch floor” determines the size
of the time windows over which these values are calculated in Praat. Based on a
previous study, we chose a default pitch floor of 60 Hz (Leaver & Rauschecker,
2010). We then averaged the pitch values across stimuli belonging to the same
category. Once we obtained one pitch value for each category, we built the DSM
computing the absolute value of the pitch difference for each possible pairwise (see
figure 5A). The pitch DSM was not positively correlated with the behavioural DSM of
neither SCa (r=-0.36, p=.06) nor EBa (r= -0.29, p=0.13) (Fig. 4A).

Low-level DSM in the visual experiment: Hmax- C1 model. The Hmax model (Serre,
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Wolf, Bileschi, Riesenhuber, & Poggio, 2007) reflects the hierarchical organization of
the visual cortex (Hubel & Wiesel, 1962) in a series of layers from V1 to infero-
temporal (IT) cortex. To build our low-level visual model we used the output from
the V1- complex cells layer. The inputs for the model are the grey-value luminance
images presented in the sighted group doing the visual experiment. Each image is
first analysed by an array of simple cells (S1) units at 4 different orientations and 16
scales. At the next C1 layer, the image is subsampled through a local Max pooling
operation over a neighbourhood of S1 units in both space and scale, but with the
same preferred orientation (Serre et al.,, 2007). C1 layer stage corresponds to V1
cortical complex cells, which shows some tolerance to shift and size (Serre et al.,
2007). The outputs of all complex cells were concatenated into a vector as the V1
representational pattern of each image (Khaligh-Razavi & Kriegeskorte, 2014;
Kriegeskorte, Mur, & Bandettini, 2008). We averaged the vectors of images from
the same category in order to have 1 vector for each category. We, finally, built the
(8X8) DSM computing 1- Pearson’s correlation of each pair of vectors. The Hmax-C1
DSM was significantly correlated with the SCv behavioural DSM (r=0.56, p=0.002)
(Fig. 4A).

Behavioural-categorical DSMs. We used the pairwise similarity judgments
from the behavioural experiment to build the semantic DSMs. We computed one
matrix for each subject that took part in the behavioural experiment and we
averaged all the matrices of the participants from the same group to finally obtain
three mean behavioural-categorical DSMs, one for each group (i.e. EBa, SCa, SCv;
Fig. 4A). The three behavioural matrices were highly correlated between them (SCv-
EBa: r=0.89, p<.001; SCv-SCa: r=0.94, p<.001; EBa-SCa: r=0.85, p<.001) and the
similarity judgment was clearly performed on a categorical-membership basis (Fig.
4A).

The last step consisted in comparing neural and external DSMs models using
a second order correlation. Because we wanted to investigate each external model
independently from the other, we relied on Pearson's linear partial correlation: in the
auditory experiment, we removed the influence of the pitch similarity when we were

computing the correlation with the behavioural matrix, and vice versa; in the visual
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experiment, we removed the influence of the Hmax-C1 model similarity, when we
were computing the correlation with the behavioural matrix, and vice versa. In this
way, we could measure the partial correlation for each external model for each
participant separately (Fig. 4A). Significances within group were determined using
one-tailed permutation tests (100000 iterations), building a null distribution for these
values by computing them after randomly shuffling the labels of the neural RDMs.
Statistical differences between groups were determined using permutation tests
(100000 iterations), building a null distribution for these values by computing them
after randomly shuffling the groups’ labels. All the p-values are reported after false

discovery rate (FDR) correction.

RSA: Inter-subjects correlation

To examine the commonalities of the neural representational space across
subjects in VOTC, we extracted the neural DSM of every subject individually and
then correlated it with the neural DSM of every other subject. Since we have 49
participants in total, this analysis resulted in a 49X49 matrix (Fig. 5), in which each
line and column represents the correlation of one subject’'s DSM with all other
subjects’ DSM. The three main squares in the diagonal (Fig. 5) represent the within
group correlation of the 3 groups. We averaged the value within each main square
on the diagonal to obtain a mean value of within group correlation for each group.
The three main off diagonal squares (Fig. 5) represent the between groups
correlation of the 3 possible groups’ pairs (i.e. 1.SCv/EBa; 2.SCv-SCa; 3.EBa-SCa).
We averaged the value within each main off-diagonal square in order to obtain a
mean value of between groups correlation for each groups’ pair.

The significance of the within- and between-groups correlations were
determined using permutation tests (100.000 iterations), building a null distribution
for these values by computing them after randomly shuffling the labels of the RDMs
conditions. Similarly, the statistical difference between groups and groups’ pairs was
assessed using permutation test (10000 iterations) building a null distribution for
these correlation values by computing them after randomly shuffling the group

labels. The p-values are reported after false discovery rate (FDR) correction.
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Representational connectivity analysis

Representational connectivity analysis were implemented to identify the
representational relationship among the ROIs composing VOTC and the rest of the
brain (Kriegeskorte, Mur, & Bandettini, 2008; Pillet, Beeck, & Masson, 2018). This
approach can be considered a type of connectivity where similar RDMs of two ROls
indicate shared representational structure and therefore is supposed to be a proxy
for information exchange (Kriegeskorte, Mur, Ruff, et al., 2008). Representational
connectivity between two ROls does not imply a direct structural connection but can
provide connectivity information from a functional perspective, assessing to what
extent two regions represent information similarly (Xue, Weng, He, & Li, 2013).

To perform this analysis, we included 30 bilateral parcels (covering almost
the entire cortex) extracted from the segmentation of individual anatomical scan
following ~ the  Desikan-Killiany  atlas  implemented  in FreeSurfer
(http://surfer.nmr.mgh.harvard.edu). We only excluded 3 parcels (Entorhinal cortex,
Temporal Pole and Frontal Pole) because their size was too small and signal too
noisy (these regions are notably highly susceptible to signal drop in EPI acquisition)
to allowed the extraction of reliable dissimilarity matrices in most of the participants.
We merged together the left and right corresponding parcels in order to have a
total of 30 bilateral ROIs for each subject. From each ROl we extracted the
dissimilarity matrix based on binary decoding accuracies as described in the section
“Representational similarity analysis (RSA): Correlation between neural dissimilarity
matrices of the 3 groups”. Finally, we computed the Pearson’s correlation between
the 3 seed ROIs (i.e. fusiform gyrus, parahippocampal gyrus and infero-temporal
cortex) and all the other 27 ROIs. We ended up with a connectivity profile of 3X27
correlation values for each subject. Then we averaged these values across subjects
from the same group in order to have one averaged connectivity profile for each
group (Fig. 6). To assess how similar is the connectivity profile of VOTC in the 3
groups, the last step was to compute the Pearson’s correlation between the VOTC

connectivity profiles of the 3 groups (Fig. 6).
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Results

Behavioural ratings

We asked our participants to rate each possible pair of stimuli in the
experiment they took part in (either visual or acoustic) and we built three
dissimilarity matrices based on their judgments. A visual exploration of the ratings
using the dissimilarity matrix visualization revealed a clustering of the stimuli into a
main living/non-living distinction, with some sub-clustering such as humans, animals
and objects (Fig. 4A). The three DSMs were highly correlated (SCa/EBa: r= .85,
p<0.001; SCa/SCv: r= .95, p<0.001; EBa/SCv: r= .89, p<0.001), revealing a similar
way to group the stimuli across the three groups following mostly a categorical
strategy to classify the stimuli. Based on this observation, we used the behavioural
matrices as a categorical/high-level model to contrast with the low-level models

built on the physical properties of the stimuli (HmaxC1 and pitch models, Fig. 4A).

Topographical selectivity map

Fig. 1B represents the topographical selectivity maps, which show the voxel-
wise preferred stimulus condition based on a winner take-all approach (for the four
main categories: animals, humans, small objects & places). In the visual modality, we
found the well-known functional selectivity map for visual categories (Julian,
Fedorenko, Webster, & Kanwisher, 2012; Kanwisher, 2010). The auditory selectivity
maps of the blind subjects closely matched the visual map obtained in sighted
controls during vision (r=0.51, p<0.001). This similarity is mostly driven by place-,
object- and human-selective clusters bilaterally. The blind map and the visual control
map are strongly correlated.

In addition, a similar selectivity map was also observed in the sighted
controls using sounds. The correlation was significant both with visual map in
sighted (r=.29, p<0.001), and with the auditory map in blinds (r=.25, p<0.001). This
correlation was mostly explained by the more anterior part of the place-selective
clusters bilaterally, the animal-selective patch bilaterally and the object-selective

patch in the left hemisphere.
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Here, we report the results on the four main categories for the simplicity of
visualization, however in the supplemental material we show that the results

including eight categories are almost identical (SI-Fig. 2).

Binary MVP classification

Fig. 2B represents the results from the average binary classification analyses
for each group and every ROl (FDR corrected). In SCv and in EBa the averaged
decoding accuracy was significantly higher than chance level in both EVC (SCuv:
DA=69%; t15=6.69, p<.00001; EBa: DA=55%; tu5=4.48, p=0.0006) and VOTC (SCv:
DA=71%,; tus=7.37, p<.00001; EBa: DA=57%; t15=8.00, p<0.0001). In the SCa the
averaged decoding accuracy was significantly higher than the chance level in VOTC
(DA=54%; tuy=4.32, p=0.0006) but not in EVC (DA=51%; tus=1.70, p=0.11).
Moreover, independent sample t-tests revealed higher decoding accuracy values in
EBa when compared to SCa in both EVC (tz))=2.52, p=0.017) and VOTC (ti1=2.08,
p=0.046).

Results from each binary classification analysis (n=28) for each group are

represented in figure 3 panel A1 for EVC and in panel B1 for VOTC. The p-values for

each t-test is reported in the Sl-table 3.

(A) Regions of interest (B) Binary decoding - average
WEvC EVOTC M sCv M EBa M SCa

~

(%]
o
o

**

EVC

Fig. 2. (A) Representation of the 2 ROIs in one representative subject’s brain; (B) Binary decoding

% Decoding Accuracy
% Decoding Accuracy

- chance

a1

o
a1
o

VOTC

EVC VOTC

averaged results in early visual cortex (EVC) and ventral occipito-temporal cortex (VOTC) for visual

stimuli in sighted (green), auditory stimuli in blind (orange) and auditory stimuli in sighted (blue).

*exp< 001, **p<.05.
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RSA: Correlation between the neural dissimilarity matrices of the 3 groups.

We used the accuracy values from the binary classifications to build neural
dissimilarity matrices for each subject in EVC (Fig. 3 - Panel A2) and in VOTC (Fig. 3 -
Panel B2). Then, in every ROl we averaged the neural DSMs across subjects from the
same group and we computed the correlations (FDR corrected) between averaged
DSMs for each groups’ pair (i.e. SCv-EBa; SCv-SCa; EBa-SCa).

In EVC, the one-tailed permutation test revealed a significant positive
correlation only between the SCv and the EBa DSMs (r=.41; p=0.03), whereas the
correlation between the SCv and SCa DSMs (r= -.50; p=0.99) and the correlation
between the SCa and the EBa DSMs (r= -.12; p=0.88) were not significant.
Moreover, the correlation between SCv and EBa was significantly higher compared
to both the correlation between SCv and SCa (corr. diff= .91; p=0.005) and the
correlation between SCa and EBa (corr. diff= .53; p=0.04).

In VOTC, we observed a significant correlation for all the groups’ pairs: SCv
and EBa (r=.66; p=0.01), SCv and SCa (r= .35; p=0.05), SCa and EBa (r=.43;
p=0.03). However, the correlation between SCv and EBa was significantly higher
compared to both the correlation between SCv and SCa (corr. diff= .31; p=0.02) and

the correlation between SCa and EBa (corr. diff= .23; p=0.03).
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Fig. 3. EVC and VOTC functional profiles. (A1 & B1) Binary decoding bar plots. For each group (SCv:

top; EBa: centre; SCa: bottom) the decoding accuracy from the 28 binary decoding analyses are

represented. Each column represents the decoding accuracy value coming from the classification

analysis between 2 categories. The 2 dots under each column represent the 2 categories. (A2 & B2)

The 28 decoding accuracy values are represented in the form of a dissimilarity matrix. Each column and

each row of the matrix represent one category. In each square there is the accuracy value coming from
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the classification analysis of 2 categories. Blue colors mean low decoding accuracy values and yellow
colors mean high decoding accuracy values. (A3 & B3) Binary decoding multidimensional scaling
(MDS). The categories have been arranged such that their pairwise distances approximately reflect
response pattern similarities (dissimilarity measure: accuracy values). Categories placed close together
were based on low decoding accuracy values (similar response patterns). Categories arranged far apart
generated high decoding accuracy values (different response patterns). The arrangement is
unsupervised: it does not presuppose any categorical structure (Kriegeskorte et al., 2008). (A4 & B4)
Binary decoding dendrogram. We performed hierarchical cluster analysis (based on the accuracy
values) to assess if EVC(A4) and VOTC (B4) response patterns form clusters corresponding to natural

categories in the 3 groups (SCv: top; EBa: centre; SCa: bottom).

RSA: correlation with representational low-level/behavioural models

In order to better understand the representational content of VOTC and
EVC, we computed second-order partial correlations between each ROI's DSM and
our representational models (i.e. behavioural and low-level DSMs) for each
participant. Fig. 4B represents the results (FDR corrected) for the correlation
between the brain DSMs in the 3 groups and the representational low-
level/behavioural models DSMs (i.e. behavioural, pitch and Hmax-C1 DSMs).

The permutation test revealed that in SCv the EVC's DSM was significantly
correlated with both the behavioural DSMs (r=.09; p=0.01) and the Hmax-C1 model
(r=.14; p=0.004). Even though the correlation was numerically higher with the Hmax-
C1 model than with the behavioural model, a paired samples t-test did not reveal a
significant difference between the two (tt5-0.6, p=.56). The permutation test
showed that VOTC's DSM, instead, was significantly correlated with the behavioural
model (r=.38, p<.0017) but not with the Hmax-C1 model (r= -.03, p=.35). A paired
samples t-test revealed that the difference between the correlation with the two
models was significant (t5-7.93, p<.001).

In the EBa and SCa groups EVC's DSMs were not significantly correlated with
neither the behavioural (EBa: r=.04, p=.22; SCa: r= -.09, p=.487) nor the pitch
model (EBa: r= -.05, p=.487; SCa: r= -.08, p=.487). In contrast, the VOTC's DSMs
were significantly correlated with the behavioural model both in EBa (r=.14, p=002)
and in SCa (r=.08, p=.045). In addition, a 2 Groups (EBa/SCa) X 2 Models
(behavioural/pitch) ANOVA in VOTC revealed a significant main effect of Model
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(Fe1)=10.37, p=.003), whereas the main effect of Group (F31=0.006, p=.94), and the
interaction Group X Model (Fg)=3.61, p=.07), were both non-significant. A
Bonferroni post-hoc test confirmed that the correlation was significantly higher for
the behavioural model compared to the pitch model (t=3.22, p=0.003) in both

groups.

(A) Brain Dissimilarity Matrices & External Models
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Fig. 4. Representational similarity analysis (RSA) between brain and representational low-
level/behavioural models (A) In each ROl we computed the brain dissimilarity matrix (DSM) in every
subject based on binary decoding of our 8 different categories. In the visual experiment (left) we
computed the partial correlation between each subject’s brain DSM and the behavioral DSM from the
same group (SCv-Behav.) regressing out the shared correlation with the HmaxC1 model, and vice
versa. In the auditory experiment (right) we computed the partial correlation between each subject’s
brain DSM (in both Early Blind and Sighted Controls) and the behavioral DSM from the own group
(either EBa-Behav. or SCa-Behav.) regressing out the shared correlation with the pitch model, and vice

versa. (B) Results from the correlation between representational low-level/behavioural models and
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brain DSMs from both EVC and VOTC. On the left are the results from the visual experiment. Dark
green: partial correlation between SCv brain DSM and behavioral model; Light green: Partial
correlation between SCv brain DSM and HmaxC1 model. On the right are the results from the
auditory experiment in both early blind (EBa) and sighted controls (SCa). Orange: partial correlation
between EBa brain DSM and behavioral model; Yellow: Partial correlation between EBa brain DSM
and pitch model. Dark blue: partial correlation between SCa brain DSM and behavioral model; Light
blue: partial correlation between SCa brain DSM and pitch model. For each ROl and group, the grey
background bar represents the reliability of the correlational patterns, which provides an approximate
upper bound of the observable correlations between representational low-level/behavioural models
and neural data (Bracci & Beeck, 2016; Nili et al., 2014). Error bars indicate SEM. ***p<.001, **p<.005,

*p<.05. P values are FDR corrected.

RSA: Inter-subjects correlation

We run this analysis to understand how variable was the brain representation
in VOTC across subjects belonging either to the same groups or to different groups.
Since we have 3 groups, this analysis resulted in 6 different correlation values: 3
values for the 3 within group correlation conditions (SCv; EBa; SCa) and 3 values for
the 3 between groups correlation conditions (i.e. SCv-EBa; SCv-SCa; EBa-SCa).
Results are represented in figure 5 (FDR corrected).

The permutation test revealed that the correlation between subjects’ DSMs
in the within group condition was significant in SCv (r=.42; p<.007) and EBa ( r=.10;
p<.007), whereas it was not significant in SCa (r=-.03; p=.98). Moreover, the
correlation between subjects’ DSMs was significant in all the three between groups
conditions (SCv-EBa: r=.17, p<.001; SCv-SCa: r=.04, p=002; EBa-SCa: r=.02; p=.04).
When we ranked the correlations values (Fig. 5) we observed that the highest inter-
subject correlation is the within SCv group condition, which was significantly higher
compared to all the other five conditions. It was followed by inter-subject correlation
between SCv and EBa group and the within EBa group correlation. Interestingly,
both the between groups SCv-EBa and the within group EBa correlations were
significantly higher compared to the last 3 inter-subjects correlation’s values

(between SCv-SCa; between EBa-SCa; within SCa).
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Fig. 5. VOTC Inter-subject correlation within and between groups. Upper panel represents the
correlation matrix between the VOTC brain DSM of each subject with all the other subjects (from the
same group and from different groups). The mean correlation of each within- and between-group
combination is reported in the bottom panel (bar graphs). The straight line ending with a square
represents the average of the correlation between subjects from the same group (i.e. within groups
conditions: SCv, EBa, SCa), the dotted line ending with the circle represents the average of the
correlation between subjects from different groups (i.e. between group conditions: SCv-EBa/ SCv-
SCa/ EBa-SCa). The mean correlations are ranked from the higher to the lower inter-subject

correlation values.

Representational connectivity analysis

Figure 6 represents the results from the representational connectivity
analysis. The representational connectivity profile of VOTC with the rest of the brain
is significantly correlated between all pairs of groups (SCv-EBa: r=.48, p<.001; SCv-
SCa: r=.40, p<.001; EBa-SCa: r=.48 ,p<.001; FDR corrected).
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Fig. 6. Representational connectivity. (A) Representation of the z-normalized correlation values
between the dissimilarity matrix of the three VOTC seeds (left: Fusiform gyrus, centre:
Parahippocampal gyrus, Right: Infero-Temporal cortex) and the dissimilarity matrix of 27 parcels
covering the rest of the cortex in the three groups (top: SCv, central: EBa, bottom: SCa). Blue colors
represent low correlation with the ROI seed; yellow color represent high correlation with the ROI seed.
(B) The z-normalized correlation values are represented in format of one matrix for each group. This
connectivity profile is correlated between groups. SCv: sighted control-vision; EBa: early blind-

audition; SCa: sighted control-audition.

Discussion

In our study, we demonstrate that VOTC reliably encodes the categorical
membership of sounds from eight different categories in sighted and blind people,
using a topography (Fig. 1B), representational format (Fig. 3) and a representational
connectivity profile (Fig. 6) strikingly similar to the one observed in response to
images of similar categories in vision. In contrast to previous studies that have used

linguistic stimuli  to investigate the pre-existing representation of categories in
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VOTC (Borghesani et al., 2016; Martin, Douglas, Newsome, Man, & Barense, 2017,
Peelen et al., 2013; Peelen & Downing, 2017; Striem-Amit, Wang, Bi, & Caramazza,
2018; Wang et al.,, 2015), we employed sensory-related non-linguistic stimuli
(sounds), in order to investigate both the sensory (acoustic) and categorical nature of
the representation implemented in VOTC. To the limit of our knowledge, only one
recent study investigated the macroscopic functional organization of VOTC during
categorical processing of auditory and visual stimuli in sighted and in blind
individuals (Hurk et al., 2017). They found that it is possible to predict the global
large-scale distributed pattern of activity generated by different categories
presented visually in sighted using the pattern of activity generated by the same
categories presented acoustically in early blind. Relying on a different analytical
stream focusing on representational matrices extracted from pairwise decoding of
our eight categories, our study support and extend those findings by showing that
VOTC reliably encodes sounds categories in blind people using a representational
structure strikingly similar to the one found in vision. However, our study goes
beyond those previous results in at least four significant ways. First, our study
showed that a similar categorical representational structure in VOTC for sounds and
images is also observable in sighted people. This result is crucial to support the idea
that the intrinsic categorical organization of VOTC might be partially independent
from vision even in sighted and, therefore that such intrinsic functional scaffolding
may constrain the way crossmodal plasticity expresses in early blind people. Second,
we showed that brain regions that represent information similarly (or dissimilarly)
compared to VOTC are similar when we present different categories in visual format
in sighted and in auditory format in both blind and sighted. This result provides
strong support to the general hypothesis that the functional tuning of a region is
determined by large-scale connectivity patterns with regions involved in similar
coding strategies (Behrens & Sporns, 2012; Mahon & Caramazza, 2011; Passingham,
Stephan, & Kotter, 2002). Third, our design allowed us to investigate which
dimension of sound features, either categorical membership or acoustic properties,
may determine the response properties of VOTC. By harnessing the opportunities

provided by representational similarity analyses, we demonstrate that categorical
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membership is the main factor that predicts the representational structure of sounds
in VOTC in both blind and sighted people, rather than other alternatives related to
lower-level attributes of sounds that are at the basis of category selectivity in the
temporal cortex (Moerel, De Martino, & Formisano, 2012). These last results
elucidate for the first time the computational characteristics that determine the
categorical response for sounds in VOTC in sighted and blind people. Finally, our
study discloses an interesting dissociation between VOTC and EVC by showing that
categorical membership are encoded in the EVC of blind people only, using a
representational format that does not relate neither to the acoustic or categorical
structure of our stimuli and using a representational format different from the one
implemented in VOTC.

Different visual categories elicit distinct distributed responses in VOTC using
a remarkable topographic consistency across individuals (Julian et al., 2012;
Kanwisher, 2010). It was suggested that regular visual properties specific to each
category like retinotopic eccentricity biases (Gomez et al., 2019; Malach et al.,
2002), curvature (Nasr et al., 2014) or spatial frequencies (Rajimehr et al., 2011)
could drive the development of categorical response in VOTC for visual information
(Andrews, Clarke, Pell, & Hartley, 2010; Baldassi et al., 2013; Bracci, Kalfas, & Op de
Beeck, 2018; Rice et al., 2014). For instance, the parahippocampal place area (PPA)
and the fusiform face area (FFA) receive dominant inputs from downstream regions
of the visual system with differential selectivity for high vs low spatial frequencies
and peripheral vs. foveal inputs, causing them to respond differentially to place and
face stimuli (Levy, Hasson, Avidan, Hendler, & Malach, 2001). These biases for
specific visual attributes could be present at birth and represent a proto-
organization driving the development of the categorical responses of VOTC based
on experience (Arcaro & Livingstone, 2017; Gomez et al., 2019). For instance, a
proto-eccentricity map is evident early in infant development (Arcaro & Livingstone,
2017) and monkeys trained early in life to discriminate different categories varying in
their curvilinearity/rectilinearity develop distinct and consistent functional clusters for
these categories (Srihasam, Vincent, & Livingstone, 2014). Further, adults who had

intensive visual experience with Pokémon early in life demonstrate distinct
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distributed cortical responses to this trained visual category with a systematic
location supposed to be based on retinal eccentricity (Gomez et al., 2019).

Although our results by no means disprove the observations that inherent visual
biases can influence the development of the functional topography of high-level
vision (Gomez et al., 2019; Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Nasr
et al., 2014); our data however suggest that category membership independently of
visual attributes is also a key developmental factor that determines the consistent
functional topography of the VOTC. Our study demonstrates that VOTC responds to
sounds using a similar distributed functional profile to the one found in response to
vision, even in case of people that have never had visual experience.

By orthogonalizing category membership and visual features of visual stimuli,
previous studies reported a residual categorical effect in VOTC, highlighting how
some of the variance in the neural data of VOTC might be explained by high-level
categorical properties of the stimuli even when the contribution of the basic low-
level features has been controlled for (Bracci & Beeck, 2016; Kaiser, Azzalini, &
Peelen, 2016; Proklova, Kaiser, & Peelen, 2016). Category-selectivity has also been
observed in VOTC during semantic tasks when word stimuli were used, suggesting
an involvement of the occipito-temporal cortex in the retrieval of category-specific
conceptual information. Moreover, previous research has shown that learning to
associate semantic features (e.g., "floats") and spatial contextual associations (e.g.,
"found in gardens") with novel objects influence VOTC representations, such that
objects with contextual connections exhibited higher pattern similarity after learning
in association with a reduction in pattern information about the object's visual
features (Clarke, Pell, Ranganath, & Tyler, 2016).

Even if we cannot fully exclude that the processing of auditory information in
the VOTC of sighted people could be the by-product of the visual imagery
triggered by the non-visual stimulation (Cichy, Heinzle, & Haynes, 2012; Kosslyn,
Thompson, Klm, & Alpert, 1995; Reddy, Tsuchiya, & Serre, 2010; Slotnick,
Thompson, & Kosslyn, 2005; Stokes, Thompson, Cusack, & Duncan, 2009), we find it
unlikely. First, we purposely included two separate groups of sighted people, each

one performing the experiment in one modality only, in order to minimize the
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influence of having heard or seen the stimuli in the other modality in the context of
the experiment. Also, we used a fast presentation of the stimuli, that restricted the
time window to build a visual image of the actual sound since the next sound was
presented quickly after (Logie, 1989). Finally, we would expect that visual imagery
would also triggers information to be processed in posterior occipital regions
(Kosslyn et al., 1999). Instead, we found that EVC does not discriminate the different
sounds in the sighted group (fig. 2B and fig. 3A), making the visual imagery
hypothesis unlikely to explain our results.

Comparing blind and sighted individuals arguably provides the strongest
evidence for the hypothesis that category-selective regions traditionally considered
to be "high-level visual regions" can develop independently of visual experience.
Interestingly, we found that the decoding accuracy for the auditory categories in
VOTC is significantly higher in the early blind compared to the sighted control
group (Fig. 2B). In addition, the correlation between the topographic distribution of
categorical response observed in VOTC was stronger in blind versus sighted people
(Fig. 1B). Moreover, the correlation between the representational structure of visual
and auditory categories is almost double in the blind when compared to the sighted
group (Fig. 3-panel A2). Finally, the representation for the auditory stimuli in VOTC
is more similar between blind than between sighted subjects (fig. 5), showing an
increased inter-subject stability of the representation in case of early visual
deprivation. All together, these results not only demonstrate that a categorical
organization similar to the one found in vision could emerge in VOTC in absence of
visual experience, but also that such categorical response to sounds is actually
enhanced and more stable in congenitally blind people.

Several studies have shown that in absence of vision, the occipital cortex
enhances its response to non-visual information processing (Collignon et al., 2012,
2011; Pietrini et al., 2004; Sadato et al., 1998; Weeks et al., 2000). However, people
debate on the mechanistic principles guiding the expression of this crossmodal
plasticity. For instance, it was suggested that early visual deprivation changes the
computational nature of the occipital cortex which would reorganize itself for higher-

level functions, distant from the ones typically implemented for visual stimuli in the
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same region (Bedny, 2017). In contrast with this view, our results demonstrate that
the expression of crossmodal plasticity, at least in VOTC (see differences in EVC
below), is constrained by the inherent categorical structure endowed in this region.
First, we highlighted remarkably similar functional profile of VOTC for visual and
auditory stimuli in sighted and in early blind individuals (Fig. 3B). In addition, we
showed that VOTC is encoding a similar categorical dimension of the stimuli across
different inputs of presentation and different visual experiences (Fig. 4B). In support
of such idea, we recently demonstrated that the involvement of right dorsal occipital
region for arithmetic processing in blind people actually relates to the intrinsic

|II

“spatial” nature of these regions, a process involved in specific arithmetic
computation (e.g. subtraction but not multiplication) (Crollen et al., 2019). Similarly,
the involvement of VOTC during “language” as observed in previous studies
(Bedny, Pascual-Leone, Dodell-Feder, Fedorenko, & Saxe, 2011; Burton, McLaren, &
Sinclair, 2006; Kim, Kanjlia, Merabet, & Bedny, 2017; Lane, Kanjlia, Omaki, & Bedny,
2015; Roder, Stock, Bien, Neville, & Rosler, 2002) may relate to the fact that some
level of representation involved in language (e.g. semantic) can be intrinsically
encoded in VOTC as supported by the current results (Huth, De Heer, Griffiths,
Theunissen, & Gallant, 2016). In fact, we suggest that VOTC regions have innate
predispositions relevant to important categorical distinctions that cause category-
selective patches to emerge regardless of sensory experience. Why would the
“visual” system embed representation of categories independently of their
perceptual features? One argument might be that items from a particular broad
category (e.g. inanimate) are so diverse that they may not share systematic
perceptual features and therefore a higher-level of representation, partially
abstracted from vision, might prove important. Indeed, we gather evidence in
support of an extension of the intrinsic categorical organization of VOTC that is
already partially independent from vision in sighted. This finding represents an
important step forward in understanding how experience and intrinsic constraints
interact in shaping the functional properties of VOTC. An intriguing possibility raised
by our results is that the crossmodal plasticity observed in early blind individuals

may actually serve to maintain the functional homeostasis of occipital regions.
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What would be the mechanism driving the preservation of the categorical
organization of VOTC in case of congenital blindness? It is thought that the specific
topographic location of a selective brain functions is constrained by an innate profile
of functional and structural connections with extrinsic brain regions (Passingham et
al., 2002). Since the main fiber tracts are already present in full-term human
neonates (Dubois et al., 2014; Jessica Dubois, Adibpour, Poupon, Hertz-Pannier, &
Dehaene-Lambertz, 2016; Kennedy et al., 1999; Kostovi¢ & Judas, 2010; Marin-
Padilla, 2011; Takahashi, Sakurai, Davis, & Buxbaum, 2011), such initial connectome
may at least partly drive the functional development of a specific area. Supporting
this hypothesis, the visual word form area (VWFA) in VOTC shows robust and
specific anatomical connectivity to EVC and to frontotemporal language networks
and this connectivity fingerprint can predict the location of VWFA even before a
child learn to read (Saygin et al., 2016). Similarly, anatomical connectivity profile can
predict the location of the fusiform face area (FFA) (Saygin et al., 2012). In addition
to intra-occipital connections, FFA has a direct structural connection with the
temporal voice area (TVA) in the superior temporal sulcus (Benetti et al., 2018;
Blank, Anwander, & von Kriegstein, 2011) thought to support similar computations
applied on faces and voices as well as their integration (Von Kriegstein,
Kleinschmidt, Sterzer, & Giraud, 2005). Interestingly, recent studies suggested that
the maintenance of those selective structural connections between TVA and FFA
explain the preferential recruitment of TVA for face processing in congenitally deaf
people (Benetti et al.,, 2018, 2017). This TVA-FFA connectivity may explain why
voices preferentially map slightly more lateral to the mid-fusiform sulcus (Fig. 1B)
(Hurk et al., 2017). Similarly, sounds of big objects or natural scenes preferentially
recruit more mesial VOTC regions (Fig. 1B), overlapping with the parahippocampal
place area, potentially due to the preserved pattern of structural connectivity of
those regions in blind people (Wang et al., 2017). The existence of these innate
large-scale brain connections that are specific for each region supporting separate
categorical domain may provide the structural scaffolding on which crossmodal
inputs capitalizes to reach VOTC in both sighted and blind people, potentially

through feed-back connections. Indeed, it has been shown that the main white
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matter tracks including those involving occipital regions are not significantly
different between blind and sighted individuals (Shimony et al., 2006). In EB, the
absence of competitive visual inputs typically coming from feed-forward inputs from
EVC may actually trigger an enhanced weighting of those feed-back inter-modal
connection leading to an extension of selective categorical response to sounds in
VOTC, as observed in the current study. Our results provide crucial support for this
“biased connectivity” hypothesis (Hannagan, Amedi, Cohen, Dehaene-lambertz, &
Dehaene, 2015; Mahon & Caramazza, 2011) showing that VOTC subregions are part
of a large-scale functional network representing categorical information in a format
that is at least partially independent from the modality of the stimuli presentation
and from the visual experience.

A different profile emerged from the more posterior portion of the occipital
cortex. First, sound categories could be decoded in the EVC of EB (Fig. 2B) but not
in the SC. In addition, the representational structure of EVC for sounds correlated to
the one found in vision only in EB (Fig. 3 — Panel A2). However, neither the
categorical membership nor the acoustic attributes of sounds correlated with the
representational structure found in the EVC of EB (Fig. 3B). A possible explanation
for this result is that the posterior part of the occipital cortex in EB is the region that
distance itself the most from the native computation it typically implements (Bi,
Wang, & Caramazza, 2016; Blichel, 2003; Wang et al., 2015). Because this area has a
native computation that does not easily transfer to another sensory modality, it may
therefore rewire itself for distant functions (Bedny, 2017). Some studies, for instance
reported an involvement of EVC in high-level linguistic tasks (Ackeren et al., 2018;
Amedi, Raz, Pianka, Malach, & Zohary, 2003; Bedny et al., 2011). However, as
demonstrated here, the categorical membership of sounds, which may be a proxy
for semantic representation, does not explain the representational structure of EVC
in our study. It would be interesting to investigate whether models based on
linguistic properties such as word frequency or distributional statistic in language
corpus (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009) would, at least partially,
explain the enhanced information that we found in EVC of EB. However, our design

does not allow us to implement this analysis because the language-statistic DSM
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based on our stimuli space highly correlate with categorical models. Future studies
should investigate this point using a set of stimuli in which the categorical and the

linguistic dimensions should be orthogonalized.
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