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Abstract  

The Ventral Occipito-Temporal Cortex (VOTC) shows reliable category selective 

response to visual information. Do the development, topography and information 

content of this categorical organization depend on visual input or even visual 

experience? To further address this question, we used fMRI to characterize the brain 

responses to eight categories (4 living, 4 non-living) presented acoustically in 

sighted and early blind individuals, and visually in a separate sighted group. Using a 

combination of decoding and representational similarity analyses, we observed that 

VOTC reliably encodes sounds categories in the sighted and blind groups, using a 

representational structure strikingly similar to the one found in vision. Moreover, we 

found that the representational connectivity between VOTC and large-scale brain 

networks was substantially similar across modalities and groups. Blind people 

however showed higher decoding accuracies and higher inter-subject consistency 

for the representation of sounds in VOTC, and the correlation between the 

representational structure of visual and auditory categories was almost double in the 

blind when compared to the sighted group. Crucially, we also demonstrate that 

VOTC represents the categorical membership of sounds rather that their acoustic 

features in both groups. Our results suggest that early visual deprivation triggers an 

extension of the intrinsic categorical organization of VOTC that is at least partially 

independent from vision.  

 

Keywords: blindness; category perception; crossmodal plasticity; fMRI; multivariate 

analyses; auditory; visual. 
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Introduction  

The study of sensory deprived individuals represents a unique model system 

to test how experience interacts with intrinsic biological constraints to shape the 

development of the functional organization of the brain. One of the most striking 

demonstrations of experience-dependent plasticity comes from studies of blind 

individuals showing that the occipital cortex (traditionally considered as purely 

visual) massively extends its response to non-visual inputs (Neville & Bavelier, 2002; 

Sadato et al., 1998).  

But what are the mechanisms guiding this brain reorganization process? It 

was suggested that the occipital cortex of people born blind repurposes its 

response toward new functions that are distant from the typical tuning of these 

regions for vision (Bedny, 2017). In fact, the functional organization of occipital 

regions has been thought to develop based on innate protomaps implementing 

computational bias for low-level visual features including retinal eccentricity bias 

(Malach, Levy, & Hasson, 2002), orientation content (Rice, Watson, Hartley, & 

Andrews, 2014), spatial frequency content (Rajimehr, Devaney, Bilenko, Young, & 

Tootell, 2011) and the average curvilinearity/rectilinearity of stimuli (Nasr, Echavarria, 

& Tootell, 2014). This proto-organization would serve as low-level visual biases 

scaffolding experience-dependent domain specialization (Arcaro & Livingstone, 

2017; Gomez, Barnett, & Grill-Spector, 2019). Consequently, in absence of visual 

experience, the functional organization of the occipital cortex cannot develop 

according to this proto-organization and those regions may therefore switch their 

functional tuning toward distant computations (Bedny, 2017). 

In striking contrast with this view, several studies suggested that the occipital 

cortex of congenitally blind people maintains a division of computational labor 

somewhat similar to the one characterizing the sighted brain (Amedi, Raz, Azulay, 

Malach, & Zohary, 2010; Dormal & Collignon, 2011; Ricciardi et al., 2007). Perhaps, 

the most striking demonstration that the occipital cortex of blind people develops a 

similar coding structure and topography as the one typically observed in sighted 
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people comes from studies exploring the response properties of the ventral 

occipito-temporal cortex (VOTC). In sighted individuals, lesion and neuroimaging 

studies have demonstrated that VOTC shows a medial to lateral segregation in the 

response to living and non-living visual stimuli, respectively, and that some specific 

regions respond preferentially to visual objects of specific categories like the 

fusiform face area (FFA; Kanwisher, McDermott, & Chun, 1997; Tong, Nakayama, 

Moscovitch, Weinrib, & Kanwisher, 2000), the extrastriate body area (EBA; Downing 

et al., 2001), the parahippocampal place area (PPA; Epstein & Kanwisher, 1998), and 

the visual word form area (VWFA; McCandliss, Cohen, & Dehaene, 2003). The 

medial-to-lateral bias underlying animate–inanimate coding was also found in the 

VOTC of early blind individuals (Wang et al., 2015). In addition, the functional 

preference for words (Reich, Szwed, Cohen, & Amedi, 2011) or letters (Striem-Amit, 

Cohen, Dehaene, & Amedi, 2012), motion (Dormal, Rezk, Yakobov, Lepore, & 

Collignon, 2016; Poirier, Collignon, Scheiber, & Volder, 2004), places (He et al., 

2013; Wolbers, Klatzky, Loomis, Wutte, & Giudice, 2011), bodies (Kitada et al., 

2014; Striem-Amit & Amedi, 2014), tools (Peelen et al., 2013) and shapes (Amedi et 

al., 2007) in early blind partially overlaps with similar categorical responses in 

sighted people when processing visual inputs.  

Distributed multivariate pattern analyses (Haxby et al., 2001) have also 

supported the idea that the large-scale categorical layout in VOTC share similarities 

between sighted and blind people (Handjaras et al., 2016; Hurk, Baelen, Op, & 

Beeck, 2017; Peelen, He, Han, Caramazza, & Bi, 2014; Wang et al., 2015). For 

example, it was shown that the tactile exploration of different manufactured objects 

(shoes and bottles) elicits distributed activity in VOTC of blind people somehow 

similar to the one observed in sighted people in vision (Pietrini et al., 2004). A recent 

study demonstrated that the response patterns elicited by sounds of four different 

categories in the VOTC of blind people could successfully predict the categorical 

response to images of the same categories in the VOTC of sighted controls, 

suggesting overlapping distributed categorical response in sighted for vision and in 

blind for sounds (Hurk et al., 2017). All together, these studies suggest that there is 

more to the development of the categorical response of VOTC than meets the eye 
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(Collignon, Dormal, & Lepore, 2012). 

However, these researches leave several important questions unanswered. If 

a spatial overlap exists between the sighted processing visual inputs and the blind 

processing non-visual material, whether VOTC represents similar informational 

content in both groups remains unknown (Hurk et al., 2017). It is, for instance, 

possible that the overlap in categorical responses between groups comes from the 

fact that VOTC represents visual attributes in the sighted (Arcaro & Livingstone, 

2017; Gomez et al., 2019) and acoustic attributes in the blind due to crossmodal 

plasticity (Bavelier & Neville, 2002). Indeed, several studies involving congenitally 

blind have shown that their occipital cortex may represent acoustic features – for 

instance frequencies (Huber, Jiang, & Fine, 2019; Watkins et al., 2013) - at the basis 

of the development of categorical selectivity in the auditory cortex (Moerel, De 

Martino, & Formisano, 2012). Such preferential responses for visual or acoustic 

features in the sighted and blind, respectively, may lead to overlapping patterns of 

activity for similar categories while implementing separate computations on the 

sensory inputs. Alternatively, it is possible that the VOTC of both groups code for 

higher-order categorical membership of stimuli presented in vision in sighted and 

audition in the blind, at least in partial independence from low-level features of the 

stimuli. 

Another unresolved but important question is whether sighted people also 

show categorical responses in VOTC to acoustic information similar to the one they 

show in vision. For instance, the two multivariate studies using sensory (not word) 

stimulation (tactile, Pietrini et al., 2004; auditory, Hurk et al., 2017) of various 

categories in sighted and blind either did not find the existence of category-related 

patterns of response in the ventral temporal cortex of sighted people (Pietrini et al., 

2004) or did not report overlapping distributed response between categories 

presented acoustically or visually in sighted people (Hurk et al., 2017). Therefore, it 

remains controversial whether similar categorical responses in VOTC for visual and 

non-visual sensory stimuli only emerge in the absence of bottom-up visual inputs 

during development or whether it is an organizational property also endowed in the 

VOTC of sighted people.  
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Finally, it has been suggested that VOTC regions might display similar 

functional profile for sound and sight in sighted and blind because different portions 

of this region integrate specific large-scale brain network sharing similar functional 

coding. However, empirical evidences supporting this mechanistic account remain 

scarce. 

With these unsolved questions in mind, we relied on a series of 

complementary multivariate analyses in order to carry out a comprehensive 

mapping of the representational geometry underlying low-level (acoustic or visual 

features mapping) and categorical responses to images and sounds in the VOTC of 

sighted and early blind people. Our results demonstrate that (1) VOTC shows 

categorical responses to sounds in the sighted and the blind in a representational 

format highly similar to the one elicited by images of the same categories in sighted 

people; (2) VOTC shows similar large-scale representational connectivity profiles 

when processing images in sighted and sounds in sighted and blind people; (3) that 

blind people however show higher decoding accuracies and higher inter-subject 

consistency in the representation of auditory categories, and that the correlation 

between the representational structure of visual and auditory categories is almost 

double in the blind (r=.66) when compared to the sighted (r=.35) group; (4) that the 

categorical responses to sounds observed in the VOTC of blind and sighted people 

abstract from their acoustic features and therefore reflect categorical membership of 

the sounds. All together these results demonstrate that early visual deprivation 

triggers an extension of the intrinsic, partially non-visual, categorical organization of 

VOTC and support a mechanistic account based on the shared representational 

profile between VOTC and large-scale brain networks.   

Materials and methods 

Participants 

Thirty-four participants completed the auditory version of the fMRI study: 17 

early blinds (EBa; 10F) and 17 sighted controls (SCa; 6F). An additional group of 16 

sighted participants (SCv; 8F) performed the visual version of the fMRI experiment. 
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All the blind participants lost sight at birth or before 4 years of age and all of them 

reported not having visual memories and never used vision functionally (see SI table 

1). The three groups were age (range 20-67 years, mean ± SD: 33.29 ± 10.24 for EBa 

subjects, respectively 23-63, 34.12 ± 8.69 for SCa subjects, and 23-51, 30.88 ± 7.24 

for SCv subjects) and gender (χ2 (2,50) =1.92, p=0.38) matched. One blind subject 

performed only 2 out of the 5 runs in the fMRI due to claustrophobia; because of 

that we excluded her data. All subjects were blindfolded during the auditory task. 

Participants received a monetary compensation for their participation. The ethical 

committee of the University of Trento approved this study (protocol 2014-007) and 

participants gave their informed consent before participation. 

Stimuli 

We decided to use sounds and images, instead of words, because we 

wanted to access and model the bottom-up cascade of sensory processing starting 

from the low-level sensory steps until the more conceptual level. This 

methodological decision was crucial in order to assess what level of sound 

representation is implemented in VOTC of blind and sighted individuals.   

A preliminary experiment was implemented in order to select the auditory 

stimuli (see SI – Stimuli selection for further details). The final acoustic stimuli set 

included 24 sounds from 8 different categories (human vocalization, human non-

vocalization, birds, mammals, tools, graspable objects, environmental scenes, big 

mechanical objects) that could be reduced to 4 superordinate categories (human, 

animals, manipulable objects, big objects/places) (see SI Table 2).  

We created a visual version of the stimuli set. The images for the visual 

experiment were coloured pictures collected from Internet and edited using GIMP 

(https://www.gimp.org). Images were placed on a grey (129 RGB) 400 x 400 pixels 

background.  
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Procedure 

The experimental session was divided into two parts: first the subjects 

underwent the fMRI experiment and then they performed a behavioural rating 

judgment task on the same stimuli used in the fMRI experiment. 

Similarity Rating 

The behavioural experiment aimed to create individual behavioural 

dissimilarity matrices to understand how the participants perceived the similarity of 

our stimuli space. Due to practical constraints, only a subset of our participants 

underwent the behavioural experiment (15 EBa, 11 SCa, and 9 SCv). We created 

each possible pair from the 24 stimuli set leading to a total of 276 pairs of stimuli. In 

the auditory experiment, participants heard each sound of a pair sequentially and 

were asked to judge from 1 to 7 how similar the two stimuli producing these sounds 

were. In the visual experiment, we presented each pair of stimuli on a screen to the 

participants and we asked them to judge from 1 to 7 how similar the two stimuli 

were. Since their rating was strongly based on the categorical features of the stimuli, 

we used the data from the behavioural experiment to build the categorical models 

for the representational similarity analysis (see the section “Representational 

similarity analysis: correlation with representational low-level/behavioural models ”).  

fMRI experiment 

Each participant took part in only one experiment, either in the auditory or in 

the visual version. We decided to include two separate groups of sighted people, 

one for each modality, for two crucial reasons. First, we wanted to limit as much as 

possible the possibility of triggering mental imagery from one modality to the other. 

Second, since cross-group comparisons of representational dissimilarity analyses 

represent a core component of our analysis stream, we wanted to ensure a cross-

group variance comparable between the blind versus the sighted and the sighted in 

audition versus the sighted in vision. 

The procedure for the two experiments was highly similar (Fig. 1A).  
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Fig. 1. (A) Categories of stimuli and design 

of the visual (VIS) and auditory (AUD) fMRI 

experiments. (B) The untresholded 

topographical selectivity maps for the 

sighted-visual (top), the blind-auditory 

(centre) and the sighted-auditory (bottom) 

participants. These maps visualize the 

functional topography of VOTC to the main 

four categories. We decided to represent 

maps including the 4 main categories 

(instead of 8) to simplify visualization of the 

main effects (the correlation values are 

almost identical with 8 categories and those 

maps can be found in supplemental 

material). The average visual map was 

correlated with the average auditory map of 

the blind group (r = 0.51) and of the sighted 

group (r = 0.29). The averaged auditory map 

of the blind grou was also correlated with 

the averaged auditory map of the sighted 

group (r=0.25). 

 

 

 

 

 

 

Before entering the scanner, all the stimuli (either auditory or visual) were 

presented to each participant to ensure perfect recognition. In the fMRI experiment 

each trial consisted of the same stimulus repeated twice. Rarely (8% of the 

occurrences), a trial was made up of two different consecutive stimuli (catch trials). 

Only in this case participants were asked to press a key with the right index finger if 
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the second stimulus belonged to the living category and with their right middle 

finger if the second stimulus belonged to the non-living category. This procedure 

ensured that the participants attended and processed the stimuli. In the auditory 

experiment, each pair of stimuli lasted 4s (2s per stimulus) and the inter-stimulus 

interval between one pair and the next was 2s long for a total of 6s for each trial 

(Fig. 1A). In the visual experiment, each pair of stimuli lasted 2s (1s per stimulus) and 

the inter-stimulus interval between one pair and the next was 2s long for a total of 

4s for each trial (Fig. 1A).  

The use of a ‘‘quick’’ event-related fMRI paradigm balances the need for 

separable hemodynamic responses and the need for presenting many stimuli in the 

limited time-span of the fMRI experiment. Within both the auditory and the visual 

fMRI sessions, participants underwent 5 runs. Each run contained 3 repetitions of 

each of the 24 stimuli, 8 catch trials and two 20s-long rest periods (one in the middle 

and another at the end of the run). The total duration of each run was 8min and 40s 

for the auditory experiment and 6min for the visual experiment. For each run, the 

presentation of trials was pseudo-randomized: two stimuli from the same category 

were never presented in subsequent trials. The stimuli delivery was controlled using 

the Psychophysics toolbox implemented in Matlab R2012a (The MathWorks). 

fMRI data acquisition and analyses 

fMRI data acquisition and preprocessing 

We acquired our data on a 4T Bruker Biospin MedSpec equipped with an 

eight-channel birdcage head coil. Functional images were acquired with a T2*-

weighted gradient-recalled echo-planar imaging (EPI) sequence (TR, 2000 ms; TE, 

28 ms; flip angle, 73°; resolution, 3x3 mm3; 30 transverses slices in interleaved 

ascending order; 3 mm slice thickness; field of view (FoV) 192x192 mm2). The four 

initial scans were discarded for steady-state magnetization. Before each EPI run, we 

performed an additional scan to measure the point-spread function (PSF) of the 

acquired sequence, including fat saturation, which served for distortion correction 

that is expected with high-field imaging. 
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A structural T1-weighted 3D magnetization prepared rapid gradient echo 

sequence was also acquired for each subject (MP-RAGE; voxel size 1x1x1 mm3; 

GRAPPA acquisition with an acceleration factor of 2; TR 2700 ms; TE 4,18 ms; TI 

(inversion time) 1020 ms; FoV 256 mm; 176 slices).  

To correct for distortions in geometry and intensity in the EPI images, we 

applied distortion correction on the basis of the PSF data acquired before the EPI 

scans (Zeng & Constable, 2002). Raw functional images were pre-processed and 

analyzed with SPM8 (Welcome Trust Centre for Neuroimaging London, UK 

(https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) implemented in MATLAB R2013b 

(MathWorks). Pre-processing included slice-timing correction using the middle slice 

as reference, the application of temporally high-pass filtered at 128 Hz and motion 

correction.  

Regions of interest 

The anatomical scan was used to segment the brain in separate regions 

according to the Desikan-Killiany atlas (Desikan et al., 2006) implemented in 

FreeSurfer (http://surfer.nmr.mgh.harvard.edu).  

Six ROIs were selected in each hemisphere:  Pericalcarine, Cuneus and 

Lingual areas were combined to define the early visual cortex (EVC) ROI; Fusiform, 

Parahippocampal and Infero-Temporal areas were combined to define the ventral 

occipito-temporal (VOTC) ROI. Then, we combined these areas in order to obtain 

one bilateral EVC ROI and one bilateral VOTC ROI (Fig. 2A). Our strategy to work on 

a limited number of relatively large brain parcels has the advantage to minimize 

unstable decoding results collected from small regions (Norman, Polyn, Detre, & 

Haxby, 2006) and reduce multiple comparison problems intrinsic to neuroimaging 

studies (Etzel, Zacks, & Braver, 2013). All analyses, except for the topographical 

selectivity map (see below), were carried out in subject space for enhanced 

anatomico-functional precision and to avoid spatial normalization across subjects. 
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General linear model 

The pre-processed images for each participant were analyzed using a 

general linear model (GLM). For each of the 5 runs, we included 32 regressors: 24 

regressors of interest (each stimulus), 1 regressor of no-interest for the target 

stimulus, 6 head-motion regressors of no-interest and 1 constant. From the GLM 

analysis we obtained a b-image for each stimulus (i.e. 24 sounds) in each run, for a 

total of 120 (24 stimuli x 5 runs) beta maps.  

Topographical selectivity map 

For this analysis, we needed all participants to be coregistered and 

normalized in a common volumetric space. To achieve maximal accuracy, we relied 

on the DARTEL (Diffeomorphic Anatomical Registration Through Exponentiated Lie 

Algebra (Ashburner, 2007) toolbox. DARTEL normalization takes the grey and white 

matter templates from each subject to create an averaged template based on our 

own sample that will be used for the normalization. The creation of a study-specific 

template using DARTEL was performed to reduce deformation errors that are more 

likely to arise when registering single subject images to an unusually shaped 

template (Ashburner, 2007). This is particularly relevant when comparing blind and 

sighted subjects given that blindness is associated with significant changes in the 

structure of the brain itself, particularly within the occipital cortex (Dormal et al., 

2016; Jiang et al., 2009; Pan et al., 2007; Park et al., 2009).  

To create the topographical selectivity map (Fig. 1B) we first averaged the b-

values among participants of the same group in each voxel inside the VOTC mask 

for each of our 4 main conditions (animals, humans, manipulable objects and places) 

separately and we assigned to each voxel the condition producing the highest b-

value (winner take all approach). This analysis resulted in specific clusters of voxels 

that spatially distinguish themselves from their surround in terms of selectivity for a 

particular condition (Hurk et al., 2017). Finally, to compare how similar are the 

topographical selectivity maps in the 3 groups we computed the Pearson’s 

correlation between the maps of the different groups. The statistical significance 
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(against 0) of these correlations was determined using permutation test (100000 

iterations), building a null distribution for these correlation values by randomly 

shuffling the labels of the voxels in VOTC. All the p-values are reported after false 

discovery rate (FDR) correction implemented using the matlab function ‘mafdr’. We 

run this analysis using the four (Fig. 1B) and the eight categories (see SI-Fig2) and 

both analyses lead to  almost identical results. We decided to represent the data of 

the four main categories for simpler visualization of the main effect (topographical 

overlap across modalities and groups).  

MVP-classifications: Binary decoding 

We performed a binary MVP-classification to look at the ability of each ROI to 

distinguish between two categories at time. With 8 categories we can have 28 

possible pairs, resulting in 28 binary MVP-classification tests in each ROI. Statistical 

significance of the binary classification was assessed using t-test against the chance 

level. We, then, averaged the 28 accuracy values of each subject in order to have 1 

mean accuracy value for subject. Statistical significance of the averaged binary 

classification was assessed using parametric statistics: t-test against zero and 

ANOVA. 

 Representational similarity analysis (RSA): Correlation between neural dissimilarity 

matrices of the 3 groups. 

We further investigated the functional profile of the ROIs using RSA. RSA was 

performed using CoSMoMVPA  toolbox, implemented in Matlab (r2013b; 

Matworks). The basic concept of RSA is the dissimilarity matrix (DSM). A DSM is a 

square matrix where the number of columns and rows corresponds to the number of 

the conditions (8X8 in this experiment) and it is symmetrical about a diagonal of 

zeros. Each cell contains the dissimilarity index between the two stimuli. We used 

the binary MVP-classification as dissimilarity index to build neural DSMs (Carlson, 

Tovar, Alink, & Kriegeskorte, 2013; Radoslaw Martin Cichy & Pantazis, 2017; 

Radoslaw Martin Cichy et al., 2013; Dobs, Isik, Pantazis, & Kanwisher, 2019; Haxby, 

Connolly, & Guntupalli, 2014; Haxby et al., 2011; O’Toole, Jiang, Abdi, & Haxby, 
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2005; Pereira, Mitchell, & Botvinick, 2009; Proklova, Kaiser, & Peelen, 2019) for each 

group, in order to compare the functional profile of the ROIs between the 3 groups. 

In this way, we ended up with a DSM for each group for every ROI. 

 We preferred to use binary MVP-classification as dissimilarity index to build 

neural DSMs rather than other types of dissimilarity measures (e.g. Pearson 

correlation, Euclidean distance, Spearman correlation) since two experimental 

conditions that do not drive a response and therefore have uncorrelated patterns 

(noise only, r ≈ 0) appear very dissimilar (1 – r ≈ 1). When using a decoding 

approach instead, due to the intrinsic cross-validation steps, we would find that the 

two conditions that don’t drive responses are indistinguishable, despite their 

substantial correlation distance (Walther et al., 2016) since the noise is independent 

between the training and testing partitions, therefore cross-validated estimates of 

the distance do not grow with increasing noise. This was crucial in our study since 

we are looking at brain activity elicited by sounds in brain regions that are primarily 

visual (EVC and VOTC), therefore the level of noise is expected to be high, at least 

in sighted people. 

Finally, we computed the Pearson correlation between the neural DSMs to 

see if, in each ROI, the same categories that are well or poorly distinguished in 

vision in the sighted are also well or poorly distinguished in audition in the early 

blind and/or in the sighted (Fig. 3). For each group, the statistical difference from 

zero was determined using permutation test (10000 iterations), building a null 

distribution for these correlation values by computing them after randomly shuffling 

the labels of the 8X8 matrices. Similarly, the statistical difference between groups 

was assessed using permutation test (10000 iterations) building a null distribution for 

these correlation values by computing them after randomly shuffling the group 

labels. All the p-values are reported after false discovery rate (FDR) correction 

implemented using the matlab function ‘mafdr’. 
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Representational similarity analysis (RSA): correlation with representational low-

level/behavioural models .  

We then intended to investigate which features of the visual and auditory 

stimuli were represented in the different ROIs of sighted and blind subjects. RSA 

allows the comparisons between the brain DSMs extracted from specific ROIs with 

external DSMs, based on physical properties of the stimuli or based on behavioural 

rating of the perceived categorical similarity our stimuli. 

Low-level DSM in the auditory experiment: pitch DSM. Pitch corresponds to 

the perceived frequency content of a stimulus. We selected this specific low-level 

auditory feature for two reasons. First, previous studies showed that this physical 

property of the sounds is distinctly represented in the auditory cortex and may 

create some low-level bias of auditory category selective responses in the temporal 

cortex (Giordano, McAdams, Zatorre, Kriegeskorte, & Belin, 2013; Leaver & 

Rauschecker, 2010; M. Moerel et al., 2012). Second, we confirmed with our own SCa 

group that, among alternative auditory RDMs based on separate acoustic features 

(e.g. Harmonicity on noise ratio, Spectral centroid), the pitch model correlated most 

with brain RDM extracted from the temporal cortex providing strong support that 

this model was maximally efficient in capturing how encoding of sounds based on 

acoustic features in auditory cortical regions  (SI-Fig1).  

We computed a pitch value for each of the 24 auditory stimuli, using the 

Praat software and an autocorrelation method. This method extracts the strongest 

periodic component of several time windows across the stimulus and averages them 

to have one mean pitch value for that stimulus. The “pitch floor” determines the size 

of the time windows over which these values are calculated in Praat. Based on a 

previous study, we chose a default pitch floor of 60 Hz (Leaver & Rauschecker, 

2010). We then averaged the pitch values across stimuli belonging to the same 

category. Once we obtained one pitch value for each category, we built the DSM 

computing the absolute value of the pitch difference for each possible pairwise (see 

figure 5A). The pitch DSM was not positively correlated with the behavioural DSM of 

neither SCa (r=–0.36, p=.06) nor EBa (r= –0.29, p=0.13) (Fig. 4A). 

Low-level DSM in the visual experiment: Hmax- C1 model. The Hmax model (Serre, 
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Wolf, Bileschi, Riesenhuber, & Poggio, 2007) reflects the hierarchical organization of 

the visual cortex  (Hubel & Wiesel, 1962) in a series of layers from V1 to infero-

temporal (IT) cortex. To build our low-level visual model we used the output from 

the V1- complex cells layer. The inputs for the model are the grey-value luminance 

images presented in the sighted group doing the visual experiment. Each image is 

first analysed by an array of simple cells (S1) units at 4 different orientations and 16 

scales. At the next C1 layer, the image is subsampled through a local Max pooling 

operation over a neighbourhood of S1 units in both space and scale, but with the 

same preferred orientation (Serre et al., 2007). C1 layer stage corresponds to V1 

cortical complex cells, which shows some tolerance to shift and size (Serre et al., 

2007). The outputs of all complex cells were concatenated into a vector as the V1 

representational pattern of each image (Khaligh-Razavi & Kriegeskorte, 2014; 

Kriegeskorte, Mur, & Bandettini, 2008).  We averaged the vectors of images from 

the same category in order to have 1 vector for each category. We, finally, built the 

(8X8) DSM computing 1- Pearson’s correlation of each pair of vectors. The Hmax-C1 

DSM was significantly correlated with the SCv behavioural DSM (r=0.56, p=0.002) 

(Fig. 4A). 

Behavioural-categorical DSMs. We used the pairwise similarity judgments 

from the behavioural experiment to build the semantic DSMs. We computed one 

matrix for each subject that took part in the behavioural experiment and we 

averaged all the matrices of the participants from the same group to finally obtain 

three mean behavioural-categorical DSMs, one for each group (i.e. EBa, SCa, SCv; 

Fig. 4A). The three behavioural matrices were highly correlated between them (SCv-

EBa: r=0.89, p<.001; SCv-SCa: r=0.94, p<.001; EBa-SCa: r=0.85, p<.001) and the 

similarity judgment was clearly performed on a categorical-membership basis (Fig. 

4A). 

The last step consisted in comparing neural and external DSMs models using 

a second order correlation. Because we wanted to investigate each external model 

independently from the other, we relied on Pearson's linear partial correlation: in the 

auditory experiment, we removed the influence of the pitch similarity when we were 

computing the correlation with the behavioural matrix, and vice versa; in the visual 
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experiment, we removed the influence of the Hmax-C1 model similarity, when we 

were computing the correlation with the behavioural matrix, and vice versa. In this 

way, we could measure the partial correlation for each external model for each 

participant separately (Fig. 4A). Significances within group were determined using 

one-tailed permutation tests (100000 iterations), building a null distribution for these 

values by computing them after randomly shuffling the labels of the neural RDMs. 

Statistical differences between groups were determined using permutation tests 

(100000 iterations), building a null distribution for these values by computing them 

after randomly shuffling the groups’ labels. All the p-values are reported after false 

discovery rate (FDR) correction.  

RSA: Inter-subjects correlation 

To examine the commonalities of the neural representational space across 

subjects in VOTC, we extracted the neural DSM of every subject individually and 

then correlated it with the neural DSM of every other subject. Since we have 49 

participants in total, this analysis resulted in a 49X49 matrix (Fig. 5), in which each 

line and column represents the correlation of one subject’s DSM with all other 

subjects’ DSM. The three main squares in the diagonal (Fig. 5) represent the within 

group correlation of the 3 groups. We averaged the value within each main square 

on the diagonal to obtain a mean value of within group correlation for each group. 

The three main off diagonal squares (Fig. 5) represent the between groups 

correlation of the 3 possible groups’ pairs (i.e. 1.SCv/EBa; 2.SCv-SCa; 3.EBa-SCa). 

We averaged the value within each main off-diagonal square in order to obtain a 

mean value of between groups correlation for each groups’ pair. 

The significance of the within- and between-groups correlations were 

determined using permutation tests (100.000 iterations), building a null distribution 

for these values by computing them after randomly shuffling the labels of the RDMs 

conditions. Similarly, the statistical difference between groups and groups’ pairs was 

assessed using permutation test (10000 iterations) building a null distribution for 

these correlation values by computing them after randomly shuffling the group 

labels. The p-values are reported after false discovery rate (FDR) correction.  
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Representational connectivity analysis 

Representational connectivity analysis were implemented to identify the 

representational relationship among the ROIs composing VOTC and the rest of the 

brain (Kriegeskorte, Mur, & Bandettini, 2008; Pillet, Beeck, & Masson, 2018). This 

approach can be considered a type of connectivity where similar RDMs of two ROIs 

indicate shared representational structure and therefore is supposed to be a proxy 

for information exchange (Kriegeskorte, Mur, Ruff, et al., 2008). Representational 

connectivity between two ROIs does not imply a direct structural connection but can 

provide connectivity information from a functional perspective, assessing to what 

extent two regions represent information similarly (Xue, Weng, He, & Li, 2013).  

To perform this analysis, we included 30 bilateral parcels (covering almost 

the entire cortex) extracted from the segmentation of individual anatomical scan 

following the Desikan-Killiany atlas implemented in FreeSurfer 

(http://surfer.nmr.mgh.harvard.edu). We only excluded 3 parcels (Entorhinal cortex, 

Temporal Pole and Frontal Pole) because their size was too small and signal too 

noisy (these regions are notably highly susceptible to signal drop in EPI acquisition) 

to allowed the extraction of reliable dissimilarity matrices in most of the participants. 

We merged together the left and right corresponding parcels in order to have a 

total of 30 bilateral ROIs for each subject. From each ROI we extracted the 

dissimilarity matrix based on binary decoding accuracies as described in the section 

“Representational similarity analysis (RSA): Correlation between neural dissimilarity 

matrices of the 3 groups”. Finally, we computed the Pearson’s correlation between 

the 3 seed ROIs (i.e. fusiform gyrus, parahippocampal gyrus and infero-temporal 

cortex) and all the other 27 ROIs. We ended up with a connectivity profile of 3X27 

correlation values for each subject. Then we averaged these values across subjects 

from the same group in order to have one averaged connectivity profile for each 

group (Fig. 6). To assess how similar is the connectivity profile of VOTC in the 3 

groups, the last step was to compute the Pearson’s correlation between the VOTC 

connectivity profiles of the 3 groups (Fig. 6).  
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Results 

Behavioural ratings  

We asked our participants to rate each possible pair of stimuli in the 

experiment they took part in (either visual or acoustic) and we built three 

dissimilarity matrices based on their judgments. A visual exploration of the ratings 

using the dissimilarity matrix visualization revealed a clustering of the stimuli into a 

main living/non-living distinction, with some sub-clustering such as humans, animals 

and objects (Fig. 4A). The three DSMs were highly correlated (SCa/EBa: r= .85, 

p<0.001; SCa/SCv: r= .95, p<0.001; EBa/SCv: r= .89, p<0.001), revealing a similar 

way to group the stimuli across the three groups following mostly a categorical 

strategy to classify the stimuli. Based on this observation, we used the behavioural 

matrices as a categorical/high-level model to contrast with the low-level models 

built on the physical properties of the stimuli (HmaxC1 and pitch models, Fig. 4A). 

Topographical selectivity map 

 Fig. 1B represents the topographical selectivity maps, which show the voxel-

wise preferred stimulus condition based on a winner take-all approach (for the four 

main categories: animals, humans, small objects & places). In the visual modality, we 

found the well-known functional selectivity map for visual categories (Julian, 

Fedorenko, Webster, & Kanwisher, 2012; Kanwisher, 2010). The auditory selectivity 

maps of the blind subjects closely matched the visual map obtained in sighted 

controls during vision (r=0.51, p<0.001). This similarity is mostly driven by place-, 

object- and human-selective clusters bilaterally. The blind map and the visual control 

map are strongly correlated. 

In addition, a similar selectivity map was also observed in the sighted 

controls using sounds. The correlation was significant both with visual map in 

sighted (r=.29, p<0.001), and with the auditory map in blinds (r=.25, p<0.001). This 

correlation was mostly explained by the more anterior part of the place-selective 

clusters bilaterally, the animal-selective patch bilaterally and the object-selective 

patch in the left hemisphere.  
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 Here, we report the results on the four main categories for the simplicity of 

visualization, however in the supplemental material we show that the results 

including eight categories are almost identical (SI-Fig. 2). 

Binary MVP classification  

Fig. 2B represents the results from the average binary classification analyses 

for each group and every ROI (FDR corrected). In SCv and in EBa the averaged 

decoding accuracy was significantly higher than chance level in both EVC (SCv: 

DA=69%; t(15)=6.69, p<.00001; EBa: DA=55%; t(15)=4.48, p=0.0006) and VOTC (SCv: 

DA=71%; t(15)=7.37, p<.00001; EBa: DA=57%; t(15)=8.00, p<0.0001). In the SCa the 

averaged decoding accuracy was significantly higher than the chance level in VOTC 

(DA=54%; t(16)=4.32, p=0.0006) but not in EVC (DA=51%; t(16)=1.70, p=0.11). 

Moreover, independent sample t-tests revealed higher decoding accuracy values in 

EBa when compared to SCa in both EVC (t(31)=2.52, p=0.017) and VOTC (t(31)=2.08, 

p=0.046). 

Results from each binary classification analysis (n=28) for each group are 

represented in figure 3 panel A1 for EVC and in panel B1 for VOTC. The p-values for 

each t-test is reported in the SI-table 3.  

 

 
Fig. 2. (A) Representation of the 2 ROIs in one representative subject’s brain; (B) Binary decoding 

averaged results in early visual cortex (EVC) and ventral occipito-temporal cortex (VOTC) for visual 

stimuli in sighted (green), auditory stimuli in blind (orange) and auditory stimuli in sighted (blue). 

***p<.001, **p<.05.  
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RSA: Correlation between the neural dissimilarity matrices of the 3 groups. 

We used the accuracy values from the binary classifications to build neural 

dissimilarity matrices for each subject in EVC (Fig. 3 - Panel A2) and in VOTC (Fig. 3 -

Panel B2). Then, in every ROI we averaged the neural DSMs across subjects from the 

same group and we computed the correlations (FDR corrected) between averaged 

DSMs for each groups’ pair (i.e. SCv-EBa; SCv-SCa; EBa-SCa).  

In EVC, the one-tailed permutation test revealed a significant positive 

correlation only between the SCv and the EBa DSMs (r=.41; p=0.03), whereas the 

correlation between the SCv and SCa DSMs (r= –.50; p=0.99) and the correlation 

between the SCa and the EBa DSMs (r= –.12; p=0.88) were not significant. 

Moreover, the correlation between SCv and EBa was significantly higher compared 

to both the correlation between SCv and SCa (corr. diff= .91; p=0.005) and the 

correlation between SCa and EBa (corr. diff= .53; p=0.04).  

In VOTC, we observed a significant correlation for all the groups’ pairs: SCv 

and EBa (r=.66; p=0.01), SCv and SCa (r= .35; p=0.05), SCa and EBa (r=.43; 

p=0.03). However, the correlation between SCv and EBa was significantly higher 

compared to both the correlation between SCv and SCa (corr. diff= .31; p=0.02) and 

the correlation between SCa and EBa (corr. diff= .23; p=0.03).  
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Fig. 3. EVC and VOTC functional profiles. (A1 & B1) Binary decoding bar plots. For each group (SCv: 

top; EBa: centre; SCa: bottom) the decoding accuracy from the 28 binary decoding analyses are 

represented. Each column represents the decoding accuracy value coming from the classification 

analysis between 2 categories. The 2 dots under each column represent the 2 categories. (A2 & B2) 

The 28 decoding accuracy values are represented in the form of a dissimilarity matrix. Each column and 

each row of the matrix represent one category. In each square there is the accuracy value coming from 
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the classification analysis of 2 categories. Blue colors mean low decoding accuracy values and yellow 

colors mean high decoding accuracy values. (A3 & B3) Binary decoding multidimensional scaling 

(MDS). The categories have been arranged such that their pairwise distances approximately reflect 

response pattern similarities (dissimilarity measure: accuracy values). Categories placed close together 

were based on low decoding accuracy values (similar response patterns). Categories arranged far apart 

generated high decoding accuracy values (different response patterns). The arrangement is 

unsupervised: it does not presuppose any categorical structure (Kriegeskorte et al., 2008). (A4 & B4) 

Binary decoding dendrogram. We performed hierarchical cluster analysis (based on the accuracy 

values) to assess if EVC(A4) and VOTC (B4) response patterns form clusters corresponding to natural 

categories in the 3 groups (SCv: top; EBa: centre; SCa: bottom).  

RSA: correlation with representational low-level/behavioural models  

In order to better understand the representational content of VOTC and 

EVC, we computed second-order partial correlations between each ROI’s DSM and 

our representational models (i.e. behavioural and low-level DSMs) for each 

participant. Fig. 4B represents the results (FDR corrected) for the correlation 

between the brain DSMs in the 3 groups and the representational low-

level/behavioural models DSMs (i.e. behavioural, pitch and Hmax-C1 DSMs).  

The permutation test revealed that in SCv the EVC’s DSM was significantly 

correlated with both the behavioural DSMs (r=.09; p=0.01) and the Hmax-C1 model 

(r=.14; p=0.004). Even though the correlation was numerically higher with the Hmax-

C1 model than with the behavioural model, a paired samples t-test did not reveal a 

significant difference between the two (t(15)=0.6, p=.56). The permutation test 

showed that VOTC’s DSM, instead, was significantly correlated with the behavioural 

model (r=.38, p<.001) but not with the Hmax-C1 model (r= –.03, p=.35). A paired 

samples t-test revealed that the difference between the correlation with the two 

models was significant (t(15)=7.93, p<.001). 

In the EBa and SCa groups EVC’s DSMs were not significantly correlated with 

neither the behavioural (EBa: r=.04, p=.22; SCa: r= –.09, p=.487) nor the pitch 

model (EBa: r= –.05, p=.487; SCa: r= –.08, p=.487). In contrast, the VOTC’s DSMs 

were significantly correlated with the behavioural model both in EBa (r=.14, p=002) 

and in SCa (r=.08, p=.045). In addition, a 2 Groups (EBa/SCa) X 2 Models 

(behavioural/pitch) ANOVA in VOTC revealed a significant main effect of Model 
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(F(31)=10.37, p=.003), whereas  the main effect of Group (F(31)=0.006, p=.94),  and the 

interaction Group X Model (F(31)=3.61, p=.07), were both non-significant. A 

Bonferroni post-hoc test confirmed that the correlation was significantly higher for 

the behavioural model compared to the pitch model (t=3.22, p=0.003) in both 

groups. 

 

 
Fig. 4. Representational similarity analysis (RSA) between brain and representational low-

level/behavioural models  (A) In each ROI we computed the brain dissimilarity matrix (DSM) in every 

subject based on binary decoding of our 8 different categories. In the visual experiment (left) we 

computed the partial correlation between each subject’s brain DSM and the behavioral DSM from the 

same group (SCv-Behav.) regressing out the shared correlation with the HmaxC1 model, and vice 

versa. In the auditory experiment (right) we computed the partial correlation between each subject’s 

brain DSM (in both Early Blind and Sighted Controls) and the behavioral DSM from the own group 

(either EBa-Behav. or SCa-Behav.) regressing out the shared correlation with the pitch model, and vice 

versa. (B) Results from the correlation between representational low-level/behavioural models and 
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brain DSMs from both EVC and VOTC. On the left are the results from the visual experiment. Dark 

green: partial correlation between SCv brain DSM and behavioral model; Light green: Partial 

correlation between SCv brain DSM and HmaxC1 model. On the right are the results from the 

auditory experiment in both early blind (EBa) and sighted controls (SCa). Orange: partial correlation 

between EBa brain DSM and behavioral model; Yellow: Partial correlation between EBa brain DSM 

and pitch model. Dark blue: partial correlation between SCa brain DSM and behavioral model; Light 

blue: partial correlation between SCa brain DSM and pitch model. For each ROI and group, the grey 

background bar represents the reliability of the correlational patterns, which provides an approximate 

upper bound of the observable correlations between representational low-level/behavioural models 

and neural data (Bracci & Beeck, 2016; Nili et al., 2014). Error bars indicate SEM. ***p<.001, **p<.005, 

*p<.05. P values are FDR corrected. 

RSA: Inter-subjects correlation 

We run this analysis to understand how variable was the brain representation 

in VOTC across subjects belonging either to the same groups or to different groups. 

Since we have 3 groups, this analysis resulted in 6 different correlation values: 3 

values for the 3 within group correlation conditions (SCv; EBa; SCa) and 3 values for 

the 3 between groups correlation conditions (i.e. SCv-EBa; SCv-SCa; EBa-SCa). 

Results are represented in figure 5 (FDR corrected).  

The permutation test revealed that the correlation between subjects’ DSMs 

in the within group condition was significant in SCv (r=.42; p<.001) and EBa ( r=.10; 

p<.001), whereas it was not significant in SCa (r=–.03; p=.98). Moreover, the 

correlation between subjects’ DSMs was significant in all the three between groups 

conditions (SCv-EBa: r=.17, p<.001; SCv-SCa: r=.04, p=002; EBa-SCa: r=.02; p=.04). 

When we ranked the correlations values (Fig. 5) we observed that the highest inter-

subject correlation is the within SCv group condition, which was significantly higher 

compared to all the other five conditions. It was followed by inter-subject correlation 

between SCv and EBa group and the within EBa group correlation. Interestingly, 

both the between groups SCv-EBa and the within group EBa correlations were 

significantly higher compared to the last 3 inter-subjects correlation’s values 

(between SCv-SCa; between EBa-SCa; within SCa).  
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Fig. 5. VOTC Inter-subject correlation within and between groups. Upper panel represents the 

correlation matrix between the VOTC brain DSM of each subject with all the other subjects (from the 

same group and from different groups). The mean correlation of each within- and between-group 

combination is reported in the bottom panel (bar graphs). The straight line ending with a square 

represents the average of the correlation between subjects from the same group (i.e. within groups 

conditions: SCv, EBa, SCa), the dotted line ending with the circle represents the average of the 

correlation between subjects from different groups (i.e. between group conditions: SCv-EBa/ SCv-

SCa/ EBa-SCa). The mean correlations are ranked from the higher to the lower inter-subject 

correlation values.  

Representational connectivity analysis 

Figure 6 represents the results from the representational connectivity 

analysis. The representational connectivity profile of VOTC with the rest of the brain 

is significantly correlated between all pairs of groups (SCv-EBa: r=.48, p<.001; SCv-

SCa: r=.40 , p<.001; EBa-SCa: r=.48 ,p<.001; FDR corrected).  

 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/719690doi: bioRxiv preprint 

https://doi.org/10.1101/719690
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

 
 

Fig. 6. Representational connectivity. (A) Representation of the z-normalized correlation values 

between the dissimilarity matrix of the three VOTC seeds (left: Fusiform gyrus, centre: 

Parahippocampal gyrus, Right: Infero-Temporal cortex) and the dissimilarity matrix of 27 parcels 

covering the rest of the cortex in the three groups (top: SCv, central: EBa, bottom: SCa). Blue colors 

represent low correlation with the ROI seed; yellow color represent high correlation with the ROI seed. 

(B) The z-normalized correlation values are represented in format of one matrix for each group. This 

connectivity profile is correlated between groups. SCv: sighted control-vision; EBa: early blind-

audition; SCa: sighted control-audition. 

Discussion 

In our study, we demonstrate that VOTC reliably encodes the categorical 

membership of sounds from eight different categories in sighted and blind people, 

using a topography (Fig. 1B), representational format (Fig. 3) and a representational 

connectivity profile (Fig. 6) strikingly similar to the one observed in response to 

images of similar categories in vision. In contrast to previous studies that have used 

linguistic stimuli  to investigate the pre-existing representation of categories in 
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VOTC (Borghesani et al., 2016; Martin, Douglas, Newsome, Man, & Barense, 2017; 

Peelen et al., 2013; Peelen & Downing, 2017; Striem-Amit, Wang, Bi, & Caramazza, 

2018; Wang et al., 2015), we employed sensory-related non-linguistic stimuli 

(sounds), in order to investigate both the sensory (acoustic) and categorical nature of 

the representation implemented in VOTC. To the limit of our knowledge, only one 

recent study investigated the macroscopic functional organization of VOTC during 

categorical processing of auditory and visual stimuli in sighted and in blind 

individuals (Hurk et al., 2017). They found that it is possible to predict the global 

large-scale distributed pattern of activity generated by different categories 

presented visually in sighted using the pattern of activity generated by the same 

categories presented acoustically in early blind. Relying on a different analytical 

stream focusing on representational matrices extracted from pairwise decoding of 

our eight categories, our study support and extend those findings by showing that 

VOTC reliably encodes sounds categories in blind people using a representational 

structure strikingly similar to the one found in vision. However, our study goes 

beyond those previous results in at least four significant ways. First, our study 

showed that a similar categorical representational structure in VOTC for sounds and 

images is also observable in sighted people. This result is crucial to support the idea 

that the intrinsic categorical organization of VOTC might be partially independent 

from vision even in sighted and, therefore that such intrinsic functional scaffolding 

may constrain the way crossmodal plasticity expresses in early blind people. Second, 

we showed that brain regions that represent information similarly (or dissimilarly) 

compared to VOTC are similar when we present different categories in visual format 

in sighted and in auditory format in both blind and sighted. This result provides 

strong support to the general hypothesis that the functional tuning of a region is 

determined by large-scale connectivity patterns with regions involved in similar 

coding strategies (Behrens & Sporns, 2012; Mahon & Caramazza, 2011; Passingham, 

Stephan, & Kötter, 2002). Third, our design allowed us to investigate which 

dimension of sound features, either categorical membership or acoustic properties, 

may determine the response properties of VOTC. By harnessing the opportunities 

provided by representational similarity analyses, we demonstrate that categorical 
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membership is the main factor that predicts the representational structure of sounds 

in VOTC in both blind and sighted people, rather than other alternatives related to 

lower-level attributes of sounds that are at the basis of category selectivity in the 

temporal cortex (Moerel, De Martino, & Formisano, 2012). These last results 

elucidate for the first time the computational characteristics that determine the 

categorical response for sounds in VOTC in sighted and blind people. Finally, our 

study discloses an interesting dissociation between VOTC and EVC by showing that 

categorical membership are encoded in the EVC of blind people only, using a 

representational format that does not relate neither to the acoustic or categorical 

structure of our stimuli and using a representational format different from the one 

implemented in VOTC.  

 Different visual categories elicit distinct distributed responses in VOTC using 

a remarkable topographic consistency across individuals (Julian et al., 2012; 

Kanwisher, 2010). It was suggested that regular visual properties specific to each 

category like retinotopic eccentricity biases (Gomez et al., 2019; Malach et al., 

2002), curvature (Nasr et al., 2014) or spatial frequencies (Rajimehr et al., 2011) 

could drive the development of categorical response in VOTC for visual information 

(Andrews, Clarke, Pell, & Hartley, 2010; Baldassi et al., 2013; Bracci, Kalfas, & Op de 

Beeck, 2018; Rice et al., 2014). For instance, the parahippocampal place area (PPA) 

and the fusiform face area (FFA) receive dominant inputs from downstream regions 

of the visual system with differential selectivity for high vs low spatial frequencies 

and peripheral vs. foveal inputs, causing them to respond differentially to place and 

face stimuli (Levy, Hasson, Avidan, Hendler, & Malach, 2001). These biases for 

specific visual attributes could be present at birth and represent a proto-

organization driving the development of the categorical responses of VOTC based 

on experience (Arcaro & Livingstone, 2017; Gomez et al., 2019). For instance, a 

proto-eccentricity map is evident early in infant development (Arcaro & Livingstone, 

2017) and monkeys trained early in life to discriminate different categories varying in 

their curvilinearity/rectilinearity develop distinct and consistent functional clusters for 

these categories (Srihasam, Vincent, & Livingstone, 2014). Further, adults who had 

intensive visual experience with Pokémon early in life demonstrate distinct 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/719690doi: bioRxiv preprint 

https://doi.org/10.1101/719690
http://creativecommons.org/licenses/by-nc-nd/4.0/


	

distributed cortical responses to this trained visual category with a systematic 

location supposed to be based on retinal eccentricity (Gomez et al., 2019). 

Although our results by no means disprove the observations that inherent visual 

biases can influence the development of the functional topography of high-level 

vision  (Gomez et al., 2019; Hasson, Levy, Behrmann, Hendler, & Malach, 2002; Nasr 

et al., 2014); our data however suggest that category membership independently of 

visual attributes is also a key developmental factor that determines the consistent 

functional topography of the VOTC. Our study demonstrates that VOTC responds to 

sounds using a similar distributed functional profile to the one found in response to 

vision, even in case of people that have never had visual experience.  

By orthogonalizing category membership and visual features of visual stimuli, 

previous studies reported a residual categorical effect in VOTC, highlighting how 

some of the variance in the neural data of VOTC might be explained by high-level 

categorical properties of the stimuli even when the contribution of the basic low-

level features has been controlled for (Bracci & Beeck, 2016; Kaiser, Azzalini, & 

Peelen, 2016; Proklova, Kaiser, & Peelen, 2016). Category-selectivity has also been 

observed in VOTC during semantic tasks when word stimuli were used, suggesting 

an involvement of the occipito-temporal cortex in the retrieval of category-specific 

conceptual information. Moreover, previous research has shown that learning to 

associate semantic features (e.g., "floats") and spatial contextual associations (e.g., 

"found in gardens") with novel objects influence VOTC representations, such that 

objects with contextual connections exhibited higher pattern similarity after learning 

in association with a reduction in pattern information about the object's visual 

features (Clarke, Pell, Ranganath, & Tyler, 2016).  

 Even if we cannot fully exclude that the processing of auditory information in 

the VOTC of sighted people could be the by-product of the visual imagery 

triggered by the non-visual stimulation (Cichy, Heinzle, & Haynes, 2012; Kosslyn, 

Thompson, Klm, & Alpert, 1995; Reddy, Tsuchiya, & Serre, 2010; Slotnick, 

Thompson, & Kosslyn, 2005; Stokes, Thompson, Cusack, & Duncan, 2009), we find it 

unlikely.  First, we purposely included two separate groups of sighted people, each 

one performing the experiment in one modality only, in order to minimize the 
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influence of having heard or seen the stimuli in the other modality in the context of 

the experiment. Also, we used a fast presentation of the stimuli, that restricted the 

time window to build a visual image of the actual sound since the next sound was 

presented quickly after (Logie, 1989). Finally, we would expect that visual imagery 

would also triggers information to be processed in posterior occipital regions 

(Kosslyn et al., 1999). Instead, we found that EVC does not discriminate the different 

sounds in the sighted group (fig. 2B and fig. 3A), making the visual imagery 

hypothesis unlikely to explain our results.  

 Comparing blind and sighted individuals arguably provides the strongest 

evidence for the hypothesis that category-selective regions traditionally considered 

to be "high-level visual regions" can develop independently of visual experience. 

Interestingly, we found that the decoding accuracy for the auditory categories in 

VOTC is significantly higher in the early blind compared to the sighted control 

group (Fig. 2B). In addition, the correlation between the topographic distribution of 

categorical response observed in VOTC was stronger in blind versus sighted people 

(Fig. 1B). Moreover, the correlation between the representational structure of visual 

and auditory categories is almost double in the blind when compared to the sighted 

group (Fig. 3-panel A2). Finally, the representation for the auditory stimuli in VOTC 

is more similar between blind than between sighted subjects (fig. 5), showing an 

increased inter-subject stability of the representation in case of early visual 

deprivation. All together, these results not only demonstrate that a categorical 

organization similar to the one found in vision could emerge in VOTC in absence of 

visual experience, but also that such categorical response to sounds is actually 

enhanced and more stable in congenitally blind people.  

Several studies have shown that in absence of vision, the occipital cortex 

enhances its response to non-visual information processing (Collignon et al., 2012, 

2011; Pietrini et al., 2004; Sadato et al., 1998; Weeks et al., 2000). However, people 

debate on the mechanistic principles guiding the expression of this crossmodal 

plasticity. For instance, it was suggested that early visual deprivation changes the 

computational nature of the occipital cortex which would reorganize itself for higher-

level functions, distant from the ones typically implemented for visual stimuli in the 
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same region (Bedny, 2017). In contrast with this view, our results demonstrate that 

the expression of crossmodal plasticity, at least in VOTC (see differences in EVC 

below), is constrained by the inherent categorical structure endowed in this region. 

First, we highlighted remarkably similar functional profile of VOTC for visual and 

auditory stimuli in sighted and in early blind individuals (Fig. 3B). In addition, we 

showed that VOTC is encoding a similar categorical dimension of the stimuli across 

different inputs of presentation and different visual experiences (Fig. 4B). In support 

of such idea, we recently demonstrated that the involvement of right dorsal occipital 

region for arithmetic processing in blind people actually relates to the intrinsic 

“spatial” nature of these regions, a process involved in specific arithmetic 

computation (e.g. subtraction but not multiplication) (Crollen et al., 2019). Similarly, 

the involvement of VOTC during “language” as observed in previous studies 

(Bedny, Pascual-Leone, Dodell-Feder, Fedorenko, & Saxe, 2011; Burton, McLaren, & 

Sinclair, 2006; Kim, Kanjlia, Merabet, & Bedny, 2017; Lane, Kanjlia, Omaki, & Bedny, 

2015; Röder, Stock, Bien, Neville, & Rösler, 2002) may relate to the fact that some 

level of representation involved in language (e.g. semantic) can be intrinsically 

encoded in VOTC as supported by the current results (Huth, De Heer, Griffiths, 

Theunissen, & Gallant, 2016). In fact, we suggest that VOTC regions have innate 

predispositions relevant to important categorical distinctions that cause category-

selective patches to emerge regardless of sensory experience. Why would the 

“visual” system embed representation of categories independently of their 

perceptual features? One argument might be that items from a particular broad 

category (e.g. inanimate) are so diverse that they may not share systematic 

perceptual features and therefore a higher-level of representation, partially 

abstracted from vision, might prove important.  Indeed, we gather evidence in 

support of an extension of the intrinsic categorical organization of VOTC that is 

already partially independent from vision in sighted. This finding represents an 

important step forward in understanding how experience and intrinsic constraints 

interact in shaping the functional properties of VOTC. An intriguing possibility raised 

by our results is that the crossmodal plasticity observed in early blind individuals 

may actually serve to maintain the functional homeostasis of occipital regions.  
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 What would be the mechanism driving the preservation of the categorical 

organization of VOTC in case of congenital blindness? It is thought that the specific 

topographic location of a selective brain functions is constrained by an innate profile 

of functional and structural connections with extrinsic brain regions (Passingham et 

al., 2002). Since the main fiber tracts are already present in full-term human 

neonates (Dubois et al., 2014; Jessica Dubois, Adibpour, Poupon, Hertz-Pannier, & 

Dehaene-Lambertz, 2016; Kennedy et al., 1999; Kostović & Judaš, 2010; Marín-

Padilla, 2011; Takahashi, Sakurai, Davis, & Buxbaum, 2011), such initial connectome 

may at least partly drive the functional development of a specific area. Supporting 

this hypothesis, the visual word form area (VWFA) in VOTC shows robust and 

specific anatomical connectivity to EVC and to frontotemporal language networks 

and this connectivity fingerprint can predict the location of VWFA even before a 

child learn to read (Saygin et al., 2016). Similarly, anatomical connectivity profile can 

predict the location of the fusiform face area (FFA) (Saygin et al., 2012). In addition 

to intra-occipital connections, FFA has a direct structural connection with the 

temporal voice area (TVA) in the superior temporal sulcus (Benetti et al., 2018; 

Blank, Anwander, & von Kriegstein, 2011) thought to support similar computations 

applied on faces and voices as well as their integration (Von Kriegstein, 

Kleinschmidt, Sterzer, & Giraud, 2005). Interestingly, recent studies suggested that 

the maintenance of those selective structural connections between TVA and FFA 

explain the preferential recruitment of TVA for face processing in congenitally deaf 

people (Benetti et al., 2018, 2017). This TVA-FFA connectivity may explain why 

voices preferentially map slightly more lateral to the mid-fusiform sulcus  (Fig. 1B) 

(Hurk et al., 2017). Similarly, sounds of big objects or natural scenes preferentially 

recruit more mesial VOTC regions (Fig. 1B), overlapping with the parahippocampal 

place area, potentially due to the preserved pattern of structural connectivity of 

those regions in blind people (Wang et al., 2017). The existence of these innate 

large-scale brain connections that are specific for each region supporting separate 

categorical domain may provide the structural scaffolding on which crossmodal 

inputs capitalizes to reach VOTC in both sighted and blind people, potentially 

through feed-back connections. Indeed, it has been shown that the main white 
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matter tracks including those involving occipital regions are not significantly 

different between blind and sighted individuals (Shimony et al., 2006). In EB, the 

absence of competitive visual inputs typically coming from feed-forward inputs from 

EVC may actually trigger an enhanced weighting of those feed-back inter-modal 

connection leading to an extension of selective categorical response to sounds in 

VOTC, as observed in the current study. Our results provide crucial support for this 

“biased connectivity” hypothesis (Hannagan, Amedi, Cohen, Dehaene-lambertz, & 

Dehaene, 2015; Mahon & Caramazza, 2011) showing that VOTC subregions are part 

of a large-scale functional network representing categorical information in a format 

that is at least partially independent from the modality of the stimuli presentation 

and from the visual experience.  

A different profile emerged from the more posterior portion of the occipital 

cortex. First, sound categories could be decoded in the EVC of EB (Fig. 2B) but not 

in the SC. In addition, the representational structure of EVC for sounds correlated to 

the one found in vision only in EB (Fig. 3 – Panel A2). However, neither the 

categorical membership nor the acoustic attributes of sounds correlated with the 

representational structure found in the EVC of EB (Fig. 3B). A possible explanation 

for this result is that the posterior part of the occipital cortex in EB is the region that 

distance itself the most from the native computation it typically implements (Bi, 

Wang, & Caramazza, 2016; Büchel, 2003; Wang et al., 2015). Because this area has a 

native computation that does not easily transfer to another sensory modality, it may 

therefore rewire itself for distant functions (Bedny, 2017). Some studies, for instance 

reported an involvement of EVC in high-level linguistic tasks (Ackeren et al., 2018; 

Amedi, Raz, Pianka, Malach, & Zohary, 2003; Bedny et al., 2011). However, as 

demonstrated here, the categorical membership of sounds, which may be a proxy 

for semantic representation, does not explain the representational structure of EVC 

in our study. It would be interesting to investigate whether models based on 

linguistic properties such as word frequency or distributional statistic in language 

corpus (Baroni, Bernardini, Ferraresi, & Zanchetta, 2009) would, at least partially, 

explain the enhanced information that we found in EVC of EB. However, our design 

does not allow us to implement this analysis because the language-statistic DSM 
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based on our stimuli space highly correlate with categorical models. Future studies 

should investigate this point using a set of stimuli in which the categorical and the 

linguistic dimensions should be orthogonalized.  
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