

Antagonism between regular and atypical Cxcr3 receptors regulates macrophage migration during infection and injury in zebrafish

3 Frida Sommer *, Vincenzo Torraca *, Sarah Kamel *, Amber Lombardi *, Annemarie
4 H. Meijer *

5 Institute of Biology Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The
6 Netherlands.

7

8 **Summary sentence:** CXCR3 parologue with structural characteristics of atypical
9 chemokine receptors regulates the activity of a conventional receptor involved in
10 macrophage motility by scavenging shared ligands.

11 **Running title:** Antagonistic regulation of macrophage motility

12

13 Correspondence:

14 Prof. dr. Annemarie H. Meijer, Dep. Of Animal Sciences and Health, Institute of Biology
15 Leiden, Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.

16 Phone number: +31715274927

17 Email: a.h.meijer@biology.leidenuniv.nl

18

19 **Key words:** ACKR, GPCR, paralogs, scavenger, motility, *Mycobacterium marinum*

20

21

22 **Abbreviations**

23 **ACKR:** atypical chemokine receptor

24 **CFU:** colony forming units

25 **CI:** circularity index

26 **dpf:** days post fertilization

27 **dpi:** days post infection

28 **EC:** extracellular

29 **GPCR:** G-protein coupled receptor

30 **hpa:** hours post amputation

31 **IC:** intracellular

32 **qPCR:** quantitative PCR

33 **TM:** transmembrane

34 **WT:** wild-type

35

36

37

38

39

40

41 **Abstract**

42 The CXCR3-CXCL11 chemokine-signaling axis plays an essential role in infection and
43 inflammation by orchestrating leukocyte trafficking in human and animal models,
44 including zebrafish. Atypical chemokine receptors (ACKRs) play a fundamental
45 regulatory function in signaling networks by shaping chemokine gradients through their
46 ligand scavenging function, while being unable to signal in the classic G-protein-
47 dependent manner. Two copies of the CXCR3 gene in zebrafish, *cxcr3.2* and *cxcr3.3*,
48 are expressed on macrophages and share a highly conserved ligand-binding site.
49 However, Cxcr3.3 has structural characteristics of ACKRs indicative of a ligand-
50 scavenging role. In contrast, we previously showed that Cxcr3.2 is an active CXCR3
51 receptor since it is required for macrophage motility and recruitment to sites of
52 mycobacterial infection. In this study, we generated a *cxcr3.3* CRISPR-mutant to
53 functionally dissect the antagonistic interplay between the *cxcr3* paralogs in the
54 immune response. We observed that *cxcr3.3* mutants are more susceptible to
55 mycobacterial infection, while *cxcr3.2* mutants are more resistant. Furthermore,
56 macrophages in the *cxcr3.3* mutant are more motile, show higher activation status, and
57 are recruited more efficiently to sites of infection or injury. Our results suggest that
58 Cxcr3.3 is an ACKR that regulates the activity of Cxcr3.2 by scavenging common
59 ligands and that silencing the scavenging function of Cxcr3.3 results in an exacerbated
60 Cxcr3.2 signaling. In human, splice variants of CXCR3 have antagonistic functions and
61 CXCR3 ligands also interact with ACKRs. Therefore, in zebrafish, an analogous
62 regulatory mechanism appears to have evolved after the *cxcr3* gene duplication event,
63 through diversification of conventional and atypical receptor variants.

65 **Introduction**

66 Chemokine signaling is essential for the proper functioning of the immune system.
67 Leukocyte populations differentially express chemokine receptors that participate in
68 processes such as development, differentiation, cell proliferation, leukocyte trafficking,
69 and immune responses [1, 2, 3, 4]. Chemokine receptors are a type of G-protein-
70 coupled receptors (GPCRs) that belong to the class A (rhodopsin-like) family. They
71 have the prototypal GPCR structure consisting of an extracellular NH₂ terminus, an
72 intercellular COOH terminus, and 7 transmembrane domains (TM) interconnected by
73 3 extracellular (EC) and 3 intracellular (IC) loops [5, 6]. This receptor class has been
74 divided into 5 subclasses based on the pattern of highly conserved cysteine residues
75 they display (C, CC, CXC, CX3C and, XC) and on the chemokines that they bind (CCL,
76 CXCL, XCL, CX3CL) [6, 7]. A distinctive feature of chemokine signaling is its pleiotropic
77 nature. Most chemokine receptors can bind multiple chemokines, and chemokines can
78 also bind to numerous receptors [5, 2]. The redundancy of the interactions and the
79 diversity of processes involving chemokine receptors require tightly regulated
80 mechanisms to confer specificity to the response resulting from a receptor-ligand
81 interaction [8, 6, 9]. Therefore, chemokine signaling-axes regulation and signal
82 integration occur at different levels (genetic, functional, spatial and temporal) and
83 engage a wide variety of mechanisms to evoke specific responses [10, 11, 12].
84 One kind of mechanism for regulating chemokine receptor activities involves atypical
85 chemokine receptors (ACKRs), a heterogeneous group of proteins [13, 14]. Despite
86 their structural diversity and distant evolutionary relationships, all ACKRs are unified
87 by their inability to signal in the classic G-protein-dependent fashion and by their
88 shared capacity to shape chemokine gradients [13, 15]. These receptors display
89 characteristic features such as amino acid substitutions within the central activation

90 E/DRY-motif (aspartic/glutamic acid- arginine- tyrosine- motif) [13, 16], which is crucial
91 for G-protein coupling and further downstream signaling [16]. The central Arginine (R)
92 of the E/DRY-motif is highly conserved (96%) among functional GPCRs as it is critical
93 for locking and unlocking the receptor and substitutions of this residue usually result in
94 loss of function [17, 16]. In addition, ACKRs show alterations in amino acid residues
95 within the TM domains that function as microswitches by stabilizing the active
96 conformation of a GPCR. ACKRs have been shown to exert their function by
97 scavenging or sequestering chemokines or by altering the activity or membrane
98 expression of conventional chemokine receptors [10, 13]. The functional read-out of
99 ACKRs is that they fail to induce cell migration, contrary to the well-characterized
100 chemotactic function of conventional chemokine receptors [13, 18].
101 The zebrafish model has been successfully used to functionally unravel mechanistic
102 processes underlying chemokine networks involving ACKRs [19, 20]. The optical
103 transparency of larvae facilitates live visualization of immunological processes and
104 provides a reasonably simplified *in-vivo* model for chemokine signaling if used before
105 adaptive immunity arises [21, 22, 23, 24]. Besides, due to the extensive duplication of
106 chemokine receptor genes in teleost fish, the zebrafish provides a useful experimental
107 system to address sub-functionalization or loss of function events. The sub-
108 functionalization of two CXCR4 genes, *cxcr4a* and *cxcr4b*, was determined using the
109 zebrafish model. In several studies, *cxcr4a* was associated primarily with cell
110 proliferation [19, 11], whereas *cxcr4b* was related to the retention of hematopoietic
111 stem cells in hematopoietic tissue, recruitment of leukocytes to sites of infection and
112 damage, modulation of inflammation, neutrophil migration, primordial cell and tissue
113 migration, and tissue regeneration [25]. Cxcr4b interacts with Cxcl12a and it was
114 shown that this chemokine is also a ligand for the scavenger receptor Cxcr7 (ACKR3)

115 [26, 27]. Interacting with both receptors, Cxcl12a has been shown to control the
116 migration of a tissue primordium, in which expression of *cxcr4b* and *cxcr7* is spatially
117 restricted to the leading and trailing edge, respectively [19, 11]. The scavenging role of
118 CXCR7 (ACKR3) in the regulation of the CXCL12-CXCR4 axis was later confirmed in
119 human cells [26]. Moreover, the zebrafish model allowed to visualize the contribution
120 of endogenous chemokine receptors in shaping self-generated gradients of migrating
121 cells [20], and revealed how the cell-type expressing a given chemokine receptor is
122 the major determinant for the functional specificity of a chemokine receptor-ligand
123 interaction, and not the receptor-ligand pair itself [28].

124

125 The human CXCR3 chemokine receptor and its ligands (CXCL9-11) have been proven
126 instrumental for T-cell functioning as well as for macrophage recruitment to sites of
127 infection and injury, and are therefore implicated in several infectious and pathological
128 conditions, including tuberculosis [29, 30]. CXCR3 ligands have been proposed as
129 clinical markers for the diagnosis of this infectious disease and the response to
130 treatment [31, 32]. In a previous study, we assessed the role of CXCR3 in
131 mycobacterial infection using the zebrafish-*Mycobacterium marinum* model and
132 observed that CXCR3 ligands were induced upon infection in this model, like in human
133 patients [29, 33]. *Mycobacterium marinum* is a close relative of *Mycobacterium*
134 *tuberculosis* and a natural pathogen of various ectotherms, such as zebrafish, which
135 has become widely used to unravel early innate immune responses against
136 mycobacterial infections [21, 33, 34]. In zebrafish there are three copies of the CXCR3
137 gene: *cxcr3.1*, *cxcr3.2*, and *cxc3.3*. We determined that the latter two are expressed
138 on macrophages at early developmental stages as well as at 5 and 6 days post-
139 fertilization (dpf) [35] and that *cxcr3.2* is a functional homolog of human CXCR3 [29].

140 Macrophages play a pivotal role in mycobacterial infections since they are motile and
141 phagocytic cells as well as a constituent cell-type of the characteristic granulomas that
142 represent inflammatory infection foci [30, 33]. The efferocytosis of infected
143 macrophages in granulomas contributes to the amplification of the infection and is a
144 crucial process to consider to design new therapeutic strategies [21, 29]. In a previous
145 study, we showed that Cxcr3.2 is required for the proper migration of macrophages to
146 infectious foci [29]. However, in agreement with studies in *cxcr3* mutant mice, mutation
147 of *cxcr3.2* is beneficial to the host in the context of mycobacterial infection [30]. We
148 showed that *cxcr3.2* mutation favors bacterial contention, since it results in a reduced
149 macrophage motility, thereby preventing macrophage-mediated dissemination of
150 bacteria and limiting the expansion of granulomas.

151 While Cxcr3.2 is required for macrophage migration in zebrafish, the function of its
152 paralog, Cxcr3.3, which is also expressed on macrophages, remains unknown. In the
153 present study, we investigated the regulatory interplay between Cxcr3.2 and Cxcr3.3
154 in the context of *M. marinum* infection and in the response to injury, using a tail-
155 amputation model. Opposite to *cxcr3.2* mutants, functional assays showed that *cxcr3.3*
156 mutation leads to poor control of the infection and that *cxcr3.3* mutant macrophages
157 are more motile and, consequently, display an enhanced recruitment to sites of
158 infection and damage. As a result of an enhanced macrophage recruitment and an
159 increased cell motility, bacterial dissemination is facilitated in the *cxcr3.3* mutants.
160 Structural predictions suggest that the Cxcr3.3 receptor can bind the same ligands as
161 Cxcr3.2 because of the high conservation of the ligand-binding sites, but also that it
162 cannot signal using classic G-protein-dependent pathways. Taking both our structural
163 and functional data together, we posit that the two CXCR3 zebrafish paralogs *cxcr3.2*
164 and *cxcr3.3* function antagonistically. We propose that Cxcr3.3 is an ACKR that

165 functionally regulates the activity of Cxcr3.2 by scavenging common ligands and that
166 knocking out *cxcr3.3* results in an exacerbated Cxcr3.2 signaling due to an excess of
167 available chemokines.

168 **Methods**

169 **Zebrafish lines and husbandry**

170 Zebrafish husbandry and experiments were conducted in compliance with guidelines
171 from the Zebrafish Model Organism Database (<http://zfin.org>), the EU Animal
172 Protection Directive 2010/63/EU, and the directives of the local animal welfare
173 committee of Leiden University (License number: 10612). All WT, mutant and
174 transgenic lines used in this study were generated in the AB/TL background. The
175 zebrafish lines used were: WT-AB/TL, homozygous mutant (*cxcr3.2*-/-) and WT
176 siblings (*cxcr3.2*+/-) of *cxcr3.2*^{hu6044}, homozygous mutant (*cxcr3.3*-/-) and WT siblings
177 (*cxcr3.3*+/-) of *cxcr3.3*^{ibl50}, and the same lines crossed into *Tg(mpeg1: mCherry-F)^{ump2}*
178 background and *Tg (mpx: eGFP)ⁱ¹¹⁴* [36], and homozygous mutants (*dram1*-/-) and wild
179 type siblings (*dram1*+/-) of *dram1*^{ibl53} [37]. Eggs and larvae were kept at 28.5°C in egg
180 water (60 µg/ml Instant Ocean sea salts and 0.0025% methylene blue). All larvae were
181 anesthetized with 0.02% buffered tricaine, (3-aminobenzoic acid ethyl ester; Sigma
182 Aldrich, St. Louis, MO, USA) before infection, tail-amputation, and imaging. Larvae
183 were kept in egg water containing 0.003% PTU (1-phenyl-2-thiourea, Sigma Aldrich)
184 to prevent pigmentation before confocal imaging.

185 **Generation and characterization of the *cxcr3.3* mutant zebrafish line**

186 A *cxcr3.3*-/- (*cxcr3.3*^{ibl50}) zebrafish line was generated using CRISPR-Cas9 technology.
187 Short guide RNAs (sgRNAs) targeting the proximal region of the *cxcr3.3* gene
188 (ENSDARG00000070669) were designed using the chop-chop web-server [38, 39].

189 The 122 bp DNA template was generated by annealing and amplifying semi-
190 complementary oligonucleotides using the following PCR program: initial denaturation
191 3 min at 95°C, 5 denaturation cycles at 95°C for 30 s, annealing for 60 s at 55°C,
192 elongation phase for 30 s at 72°C and final extension step at 72°C for 15 min. The
193 reaction volume was 50 µL, 200uM dNTPs and 1 unit of Dream Taq polymerase
194 ([EP0703](#), ThermoFisher). The oligonucleotides were purchased from Sigma-Aldrich
195 using the default synthesis specifications (25 nmol concentration, purified by desalting).
196 The sequences of the oligonucleotides used were:

197
198 Fw 5'GCGTAATACGACTCACTATAGG ACTGGTTCTGGCAGTATTGG
199 TTTTAGAGCTAGAAA TAGCAAGTTAAAATAAGGGCTAGTC 3'
200 Rv 5'GATCCGCACCGACTCGGTGCCACTTTTCAAGTTGATAACGGACTAGCCTT
201 ATTTTAACTTGCTATTCTAGCTCTAAAC 3'

202
203 The amplicon was subsequently amplified using the primers: Fw: 5'
204 ATCCGCACCGACTCGGT 3' and Rv: 5' GCGTAATACGACTCACTATAG 3' and
205 purified using the Quick gel extraction and PCR purification combo kit (00505495,
206 ThermoFisher). The PCR products were confirmed by an agarose gel electrophoresis
207 and by Sanger sequencing (Base Clear, Netherlands). The sgRNA was generated
208 using the MEGA short script ®T7 kit (AM1354, ThermoFisher) and the mRNA for a
209 zebrafish optimized NLS-Cas9-NLS was transcribed using the mMACHINE® SP6
210 Transcription Kit (AM1340, Thermo Fisher) from a Cas9 plasmid (39312, Addgene) in
211 both cases, the RNeasy Mini Elute Clean up kit (74204, QIAGEN Benelux B.V., Venlo,
212 Netherlands) was used to purify the products. AB/TL embryos were injected with a
213 mixture of 150 pg sgRNA /150 pg/Cas9 mRNA at 0 hpf and CRISPR injections were

214 confirmed by PCR and Sanger sequencing. Five founders (F0) were outcrossed with
215 AB/TL fish and efficiently transmitted the mutated allele. The chosen mutation consists
216 of a 46 bp deletion directly after the TM1 domain and a stable line was generated by
217 incrossing heterozygous F1 carriers. The stable homozygous *cxcr3.3* mutant line was
218 later outcrossed with *Tg (mpeg1: mCherry-F)* and *Tg (mpx: eGFP)* transgenic lines to
219 visualize macrophages and neutrophils, respectively.

220

221 The offspring of a *Tg (mpeg1: mCherry-F cxcr3.3+/-)* family cross was genotyped to
222 assess the segregation pattern of the *cxcr3.3* gene. To assess macrophage and
223 neutrophil development, a 25-30 larvae from 5 single crosses of *Tg (mpeg1: mCherry-*
224 *FWT, cxcr3.3-/- and cxcr3.2-/-)* and *Tg (mpx: eGFP WT, cxcr3.3-/- and cxcr3.2-/-)* fish
225 were pooled together and observed under a Leica M165C stereo-fluorescence
226 microscope from 1 dpf- 5 dpf to quantify the total number of macrophages and
227 neutrophils, respectively, in the head and tail areas. The same batch of fish was
228 observed under the stereomicroscope from 1 dpf- 5 dpf to determine if there were
229 morphological aberrations.

230 **Transient *cxcr3.3* overexpression**

231 An expression construct pcDNA™3.1/V5-His TOPO-CMV:*cxcr3.3* was generated and
232 injected into the yolk at 0 hpf to overexpress the gene in AB/TL (Figure 3-C) and *cxc3.3*
233 mutant larvae (Figure 3-E). Overexpression levels were verified by qPCR analysis.

234 **Phylogenetic analysis and protein-ligand binding site prediction**

235 Amino acid sequences of CXCR3 genes and ACKRs from 13 species (**Supplementary**
236 **table I.**) were aligned and trimmed using the free-access server gBlocks [40] and the
237 protein evolution analysis method was fitted using ProtTest3 [41]. Evolutionary

238 analyses were conducted in MEGA7 [42]. The evolutionary history was inferred by
239 using the Maximum Likelihood method based on the Dayhoff matrix-based model. The
240 tree with the highest log likelihood (-27586.19) is shown. Initial tree(s) for the heuristic
241 search were obtained automatically by applying Neighbor-Join and BioNJ algorithms
242 to a matrix of pairwise distances estimated using a JTT model, and then selecting the
243 topology with superior log-likelihood value. A discrete Gamma distribution was used to
244 model evolutionary rate differences among sites (4 categories (+G, parameter =
245 1.6611)). The tree is drawn to scale, with branch lengths measured in the number of
246 substitutions per site. The analysis involved 48 amino acid sequences. There was a
247 total of 529 positions in the final dataset. Protein-ligand site prediction was done using
248 the COACH server [43, 44] and protein structure was visualized using UGENE [45, 46,
249 47].

250 **Systemic infection with *Mycobacterium marinum* and determination of bacterial
251 burden**

252 *M. marinum* M-strain, expressing the fluorescent marker wasabi, was grown and
253 prepared freshly for injection as described in [48], and embryos were systemically
254 infected with 300 CFU of *M. marinum*-wasabi by microinjection at 28 hpf in the blood
255 island (BI) [48, 49]. Infected larvae were imaged under a Leica M165C stereo-
256 fluorescence microscope and the bacterial burden was determined using a dedicated
257 pixel counting program at 4 days post-infection (4 dpi) [50]. Data were analyzed using
258 a two-tailed t-test and a One-way ANOVA when more than two groups were compared.
259 Results are shown as mean \pm SEM (ns p > 0.05, * p \leq 0.05, ** p \leq 0.01, *** p \leq 0.001,
260 **** p \leq 0.0001) and combine data of 3 independent replicates of 20-30 larvae each.

261 **Microbicidal capacity assessment**

262 For determining the microbicidal capacity of zebrafish larval macrophages, embryos
263 were infected with 200 CFU of an attenuated strain, *ΔERP-M. marinum*-wasabi [51].
264 Bacteria were taken from a glycerol stock and microinjected at 28 hpf into the BI.
265 Infected larvae were fixed with 4% paraformaldehyde PFA at 44 hpi, mounted in 1.5%
266 low-melting-point agarose (SphaeroQ, Burgos, Spain) and bacterial clusters were
267 quantified under a Zeiss Observer 6.5.32 laser scanning confocal microscope (Carl
268 Zeiss, Sliedrecht, The Netherlands). A Mann-Whitney test was used to analyze the
269 overall bacterial burden of the pooled data of 3 independent replicates of 9 fish each,
270 where data are shown as mean \pm SEM. A Kolmogorov-Smirnov test was used to
271 analyze the distribution of bacterial cluster sizes (ns p > 0.05).

272 **RNA extraction, cDNA synthesis, and qPCR analysis**

273 For every qPCR assay a total of 3 biological samples (12 larvae each) were collected
274 in QIAzol lysis reagent (Qiagen) and RNA was extracted using the miRNeasy mini kit
275 (Qiagen) according to manufacturer's instructions. cDNA was generated using the
276 iScriptTM cDNA Synthesis Kit (Bio-Rad) and qPCR reactions were done using a MyiQ
277 Single-Color Real-Time PCR Detection System (Bio-Rad) and iTaqTM Universal
278 SYBR[®] Green Supermix (Bio-Rad). For every biological sample, 3 technical replicates
279 were performed. The cycling conditions we used were: 3 min pre-denaturation at 95°C,
280 40 denaturation cycles for 15 sec at 95°C, annealing for 30 sec at 60°C (for all primers),
281 and elongation for 30 sec at 72°C. All data were normalized to the housekeeping gene
282 *ppiab* (*peptidylprolyl isomerase Ab*) and were analyzed with the $2^{-\Delta\Delta Ct}$ method. The
283 following primers were used for our analyses:

284 *ppiab* Fw: 5' ACACTGAAACACGGAGGCAAAG 3', *ppiab* Rv: 5'
285 CATCCACAAACCTTCCCGAACAC 3', *cxcr3.2* Fw: 5'

286 CTGGAGCTTGTTCTCGCTGAATG 3', *cxcr3.2* Rv: 5'
287 CACGATGACTAAGGAGATGATGAGCC 3', *cxcr3.3* Fw: 5'
288 GCTCTCAATGCCTCTCTGGG 3', *cxcr3.3* Rv: 5' GACAGGTAGCAGTCCACACT 3',
289 *cxc11aa* Fw: 5' GCTCTGCTTCTTCAGTTAGCTG 3', *cxc11aa* Rv: 5'
290 CCACTTCATCCATTACCGAGCG 3'.

291 A One-way ANOVA was used to test for significance and data are plotted as mean ±
292 SEM (ns p > 0.05, * p ≤ 0.05, **p ≤ 0.01, *** p ≤ 0.001).

293 **Macrophage and neutrophil recruitment assays**

294 100 CFU of *M. marinum*-wasabi (Figure 5-A-B) or 1nL of purified Cxcl11aa protein (10
295 ng/mL, [29]) (Figure 5-C-D) were injected into the hindbrain ventricle of *Tg (mpeg1:*
296 *mCherry-F* WT, *cxcr3.2*-/- and *cxcr3.3*-/-) and *Tg (mpx: eGFP* WT, *cxcr3.3*-/- and
297 *cxcr3.2*-/-) larvae at 48 hpf. PBS-injected larvae from each group were pooled before
298 quantification to serve as a control group for the three genotypes. Samples were fixed
299 with 4% PFA at 3 hpi, and macrophages within the hindbrain ventricle were counted
300 under a Zeiss Observer 6.5.32 laser scanning confocal microscope (Carl Zeiss,
301 Sliedrecht, The Netherlands) by going through a z-stack comprising the whole
302 hindbrain ventricle. For the tail-amputation model, > 50 anesthetized 3 dpf larvae were
303 put on a 2% agarose covered petri-dish and the caudal fin was cut with a glass blade
304 avoiding to damage the notochord. Amputated larvae were put back into egg water
305 and fixed with 4% PFA 4hours after amputation. The tail area was imaged with a Leica
306 M165C stereo-florescence microscope and images were visualized using the LAS AF
307 lite software. The macrophages localized within an area of 500 µm from the cut towards
308 the trunk were counted as recruited cells (Figure 5-F). For both the hindbrain injection
309 and the tail-amputation assays, a Kruskal-Wallis test was conducted to assess

310 significance (* $p \leq 0.05$, *** $p \leq 0.001$, **** $p \leq 0.0001$) and data are shown as mean \pm
311 SEM.

312 **Tracking of migrating macrophages**

313 Time-lapse images of migrating macrophages from two independent replicates (5
314 larvae per genotype each) near the caudal hematopoietic tissue (CHT) were acquired
315 every 2 min for 3h under basal conditions (Figure 6-A). To prevent imaging artifacts
316 due to tail regeneration processes, time-lapse images of macrophages migrating
317 towards the injury (3 independent replicates of 4 larvae per group each) using the tail-
318 amputation model were acquired every 60 sec for 1.5 h (Figure 6-C). 4-5 larvae of each
319 group and for each condition (basal/wound-induced migration) were mounted in 1.5 %
320 low-melting-point agarose and microscopy was done using a Nikon Eclipse Ti-E
321 microscope (Nikon Instruments Europe B.V.) with a Plan Apo 20X/0.75 NA objective.
322 Data were saved as maximum projection images and were further analyzed using the
323 Fiji/ImageJ [52] plugin TrackMate v3.4.2 [53]. The tracking setting used were: Log
324 detector, estimated blob diameter=20 microns, threshold diameter= 15 microns, no
325 further initial thresholding method was applied. The chosen view was hyperstack
326 displayer and the tracking algorithm chosen was the simple LAP tracker, keeping the
327 default settings. Tracks were later filtered according to the numbers of spots on track
328 (> 40 spots / track) and spots, links, and track statistics were used to estimate the
329 mean speed of moving macrophages and the total displacement. The total
330 displacement was manually calculated in Excel by adding all the links of a given track
331 and a filter was applied to classify tracks with a maximum displacement < 20 microns
332 as static cells (mean speed = 0 and total displacement = 0). Data were analyzed with
333 a One-way ANOVA (ns $p > 0.05$, * $p \leq 0.05$, ** $p \leq 0.01$) and are shown as mean \pm SEM.

334 **Macrophage circularity assessment**

335 The cell circularity indexes were calculated using the “analyze particle” option in the
336 Fiji/ImageJ software [52]. The maximum projection images of migrating macrophages
337 of the three genotypes were processed in Fiji/ImageJ by using the “despeckle” filter
338 and by generating a binary image. In total, 30 macrophages per larvae were manually
339 selected and the circularity of the cell in every frame was determined using the “analyze
340 particle” option. A frequency histogram (%) for each group was plotted using cell
341 circularity index (CI) bins as follows: 0-0.2, 0.2-0.4, 0.4-0.6, 0.6-0.8 and 0.8-1. The
342 frequency distributions were analyzed using a Kolmogorov-Smirnov test taking the WT
343 distribution as reference distribution (** p ≤ 0.01, **** p ≤ 0.0001).

344 **Bacterial dissemination assessment**

345 200 CFU of *M.marinum-mCherry* were injected into the hindbrain ventricle of >30 WT,
346 *cxcr3.2* and *cxcr3.3* mutants at 28 hpf. Whole larvae and tail areas were imaged with
347 a Leica M165C stereo-fluorescence microscope and visualized with the LAS AF lite
348 software. Images were cropped in such way that the area encompassing the tail was
349 always the same size (4 in/10.16cm x 11 in/27.94cm). The number and size of distal
350 granulomas were analyzed with the “analyze particle” function in Fiji/ImageJ [52].
351 Particles with a total area >0.002 were considered as granulomas, smaller particles
352 were excluded from our analysis. The percentage of infected larvae that developed
353 distal granulomas was manually calculated and a χ^2 test was used to assess
354 significance. A One-way ANOVA was used to assess cluster number and size (ns p >
355 0.05, * p ≤ 0.05, **p ≤ 0.01, ***p ≤ 0.001, ****p ≤ 0.0001). Data are shown as mean ±
356 SEM.

357 **Chemical inhibition of Cxcr3.2 and Cxcr3.3**

358 Approximately 30 3-day old larvae of each genotype (WT, *cxcr3.2*-/ and *cxcr3.3*-/)
359 were pre-incubated in 2 mL egg water containing either DMSO (0.01%) or NBI 74330
360 (50 μ M) for 2 hours before tail-amputation. Larvae were put back into 2mL egg water
361 containing either DMSO or NBI 74330 after the amputation for 4h followed by fixation
362 with 4% PFA. Imaging of the tail region and quantification of macrophage recruitment
363 to the tail-amputation area was done as described above. For the bacterial burden
364 assay, approximately 30 larvae of each group were pre-incubated either with 25 μ M
365 NBI74330 or 0.01% DMSO for 3 hours before infection (24 hpf-27 hpf). Larvae were
366 infected with 300 CFU *M. marinum*-wasabi at 28 hpf in the BI and NBI74330 and
367 DMSO treatments were refreshed at 48 hpi. Imaging and bacterial pixel quantification
368 were performed as described above.

369

370 **Online Supplemental Material**

371 **Online supplementary videos 1.** Representative time-lapses of WT, *cxcr3.2*
372 mutants, and *cxcr3.3* mutant larvae after tail amputation. Time-lapses show
373 macrophages of WT, *cxcr3.2* mutants, and *cxcr3.3* mutant larvae migrating towards
374 the injury. Images from a z-stack of the injured area were acquired every 60 sec for
375 1.5 h and combined into max projection time-lapse.

376

377 **Results**

378 **Cxcr3.3 has features of both conventional Cxcr3 receptors and ACKRs.**

379 We have previously shown that zebrafish Cxcr3.2 is a functional homolog of human
380 CXCR3, required for macrophage migration towards the infection-inducible Cxcl11aa

381 chemokine ligand [29]. Since macrophages also express the paralog Cxcr3.3, we set
382 out to investigate the interaction between these two Cxcr3 family receptors. Our
383 phylogenetic analysis revealed that Cxcr3.3 clusters in the same branch as
384 conventional Cxcr3 chemokine receptors (Figure 1A) despite having an altered E/DRY-
385 motif (DCY) and distinctive microswitch features of ACKRs, which are unable to
386 conventional signaling through G-proteins (Figure 1-B). A protein-ligand binding site
387 prediction algorithm [43, 44] showed that Cxcr3.2 and Cxcr3.3 share relevant structural
388 features, such as a well conserved main ligand-binding site (Figure 1-C and D). While
389 classical CXCR3 ligands (CXCL9, 10, 11) were not found, possibly due to the
390 evolutionary distance between human and zebrafish, the top 4 hits for predicted
391 ligands by this algorithm were shared by both Cxcr3 paralogs further confirming the
392 well-preserved protein structure (Supplementary Table I). Since the conventional and
393 atypical Cxcr3 paralogs cluster together, the alterations in the E/DRY-motif and in
394 microswitches cannot be regarded as phylogenetic diagnostic features, yet these
395 characteristics are known to be functionally determinant for GPCR activation [13, 54,
396 16]. Based on these observations, we hypothesize that Cxcr3.3 might antagonize the
397 function of Cxcr3.2 since both receptors are predicted to bind the same ligands but
398 Cxcr3.3 lacks the E/DRY-motif that is required for activation of downstream G-protein
399 signaling and might, therefore, function as a scavenger.

400 **cxcr3.3 mutant larvae do not show morphological aberrations but transient
401 differences in macrophage development.**

402 Using CRISPR-Cas9 technology we generated a *cxcr3.3* mutant zebrafish line. The
403 mutation consists of a 46 bp deletion in the first exon, directly after the first
404 transmembrane domain which guarantees that the GPCR is entirely dysfunctional
405 (Figure 2-A, B). The mutated gene did not affect survival since it segregated following

406 Mendelian proportions (Figure 2-C). The development of mutant embryos was tracked
407 from 24 hpf-5 dpf and no evident morphological aberrations were observed (Figure 2-
408 D). Macrophages of *cxcr3.3* mutant and WT siblings in *Tg (mpeg1: mCherry-F)* reporter
409 background embryos were quantified from 24 hpf-5 dpf. We also included the
410 previously described *cxcr3.2* mutant [29] in this analysis. The total number of
411 macrophages (Figure 2-E) in *cxcr3.3* mutant larvae was higher at day 2. However, this
412 minor increase was short-lived since by day 3 there was no difference among the
413 groups. We also quantified macrophages in the head and tail since these were relevant
414 areas for our experimental setups. We observed that at day 4, *cxcr3.2*-/- larvae had
415 transiently fewer cells in the head area (Figure 2-F). On the other hand, *cxcr3.3* mutant
416 embryos had more macrophages during the first 2 days but leveled off after this time
417 point (Figure 2-G). Neutrophils were quantified in the same fashion as macrophages,
418 using a *Tg (mpx: eGFP)* reporter line, but we did not detect any difference between the
419 groups at any time point (Supplementary figure 1.). Taking these observations into
420 account, we performed all our experiments avoiding the time points at which
421 macrophage development was inconsistent to prevent biased observations.

422

423 **Deficiency of *cxcr3.3* results in a higher *M. marinum* infection burden while
424 overexpressing the gene lowers bacterial burden.**

425 We previously showed that mutation of *cxcr3.2* enabled zebrafish larvae to better
426 control *M. marinum* infection, a phenotype that could be explained by a reduction of
427 macrophage migration in the absence of Cxcr3.2, which limits the dissemination of
428 infection [29]. To investigate our hypothesis that Cxcr3.2 and Cxcr3.3 might have
429 opposing functions, we started by determining if Cxcr3.3 was also involved in the

430 immune response to *M. marinum*. In contrast to the effect of the *cxcr3.2* mutation,
431 systemically infected *cxcr3.3* mutant larvae had a higher bacterial burden than WT 4
432 days after infection with *M. marinum* (Figure 3-A, B). We transiently overexpressed
433 *cxcr3.3* by injecting a *CMV: cxcr3.3* construct into AB/TL fish at 0 hpf and observed
434 that larvae overexpressing *cxcr3.3* had a lower bacterial burden than non-injected
435 controls (Figure 3-C, D). To rescue the mutant phenotype, we injected the *CMV: cxcr3.3*
436 construct into *cxcr3.3* mutant larvae. We observed that the bacterial burden of the
437 rescued mutants (*cxcr3.3 mutants + CMV-cxcr3.3*) was similar to WT and significantly
438 lower than in non-injected *cxcr3.3* mutants (Figure 3-E, F). For this assay, we used
439 non-injected larvae as controls since there was no significant difference in bacterial
440 burden of larvae injected with the empty *CMV:vector* and non-injected larvae
441 (Supplementary figure 2.). To assess whether there was genetic compensation when
442 one of the *cxcr3* paralogs was depleted, we assessed the gene expression of *cxcr3.2*
443 in *cxcr3.3* mutants and *cxcr3.3* in *cxcr3.2* mutants under basal conditions and upon
444 infection with *M. marinum*. The expression of *cxcr3.2* remained unaffected in the
445 absence of *cxcr3.3* and was induced upon infection with *M. marinum* (Figure 3-G). On
446 the other hand, *cxcr3.3* expression was lower in *cxcr3.2* mutant larvae and it was
447 moderately induced upon infection (Figure 3-H). We also assessed the expression of
448 the *Cxcl11aa* ligand, as it is the most upregulated one out of the 7 *Cxcl11*-like ligands
449 during *M. marinum* infection, in both *cxcr3* mutants [29, 31]. The gene was induced
450 upon infection independently of the expression on *cxcr3.2* and *cxcr3.3* (Figure 3-I).
451 Thus, the expression of *cxcr3.3* is partially dependent on *cxcr3.2*, but it is not strongly
452 induced upon infection like *cxcr3.2* and *cxc11aa*. Furthermore, the expression data
453 indicate that the increased bacterial burden of *cxcr3.3* mutants is not due to altered
454 *cxcr3.2* expression. Together with our previous study on *cxcr3.2* [29], we conclude that

455 mutation of *cxcr3.2* and *cxcr3.3* results in opposite infection outcomes and that *cxcr3.3*
456 overexpression phenocopies the host-protective effect of the *cxcr3.2* mutation.

457 **Macrophages lacking Cxcr3.3 efficiently clear intracellular bacteria.**

458 Lysosomal degradation of intracellular bacteria by macrophages is crucial for the
459 containment of mycobacterial infections. The *ERP* (exported repetitive protein)
460 virulence factor is required for bacteria to survive and replicate inside acidic
461 compartments. Mycobacteria lacking *ERP* are easily eliminated by macrophages and
462 can be used as an indicator of bacterial clearance efficiency since the initial infection
463 dose (200 CFU) remains unchanged in the absence of bacterial replication [51]. To
464 evaluate if the poor contention of the infection in *cxcr3.3* mutants was associated to a
465 deficient clearance of bacteria, we injected *ΔERP M. marinum* into the circulation of
466 WT and mutant larvae and quantified bacterial clusters in the tail area at 2 dpi. Figure
467 4-A shows no difference between WT and mutants regarding the total number of
468 bacterial clusters in the tail area. We divided bacterial clusters into three groups
469 according to the number of bacteria they contained: 1-5 bacteria (small cluster), 6-10
470 bacteria (medium-sized cluster) and > 10 (large cluster) as shown in the representative
471 image illustrating the cluster size categories in Figure 4-B. The frequency distributions
472 of the 3 different cluster sizes in each genotype were compared and no significant
473 difference was found (Figure 4-C). Mycobacterial clearance remained unaffected in the
474 absence of Cxcr3.3, suggesting that the poor control of the infection in *cxcr3.3* mutants
475 is not due to a deficient bacterial clearance. As a positive control, we also ran this
476 assay using DNA-damage regulated autophagy modulator 1 (*dram1*) mutant larvae,
477 and their WT siblings, since *dram1* mutants cannot efficiently clear *Mm* [37]. The total
478 number of clusters was higher in *dram1* mutants and large bacterial clusters were more
479 frequent (Supplementary figure 3.). Therefore, we conclude that macrophages in

480 *cxcr3.3* mutants, contrary to *dram1* mutants, are not affected in their microbicidal
481 capacity.

482 **Cxcr3.3-deficient macrophages show enhanced recruitment to sites of infection,
483 towards Cxcl11aa, and to sites of injury.**

484 Several studies have shown that macrophage recruitment is essential for bacterial
485 clearance and containment during mycobacterial pathogenesis but supports bacterial
486 dissemination and granuloma formation at early stages of the infection [55, 56]. We
487 previously found that *cxcr3.2* mutant larvae showed an attenuated recruitment of
488 macrophages to sites of infection and towards Cxcl11aa ligand. This study suggested
489 that macrophage-mediated dissemination of bacteria was reduced due to this
490 recruitment deficiency in *cxcr3.2* mutants since fewer cells would become infected with
491 *M. marinum* [29]. We addressed cell recruitment to examine whether the process was
492 altered in absence of the Cxcr3.3 receptor. We infected 2-day old larvae in the
493 hindbrain ventricle with either *M. marinum* or Cxcl11aa protein and quantified the
494 macrophages that infiltrated into the cavity at 3 hpi. In both cases, we observed an
495 enhanced recruitment to the site of injection in *cxcr3.3* mutants (Figure 5-A-D). In
496 contrast, recruitment was attenuated in *cxcr3.2* mutants (Figure 5-A-D), in line with our
497 previous results [29]. The response to mechanical damage was also assessed using
498 the tail-amputation model. The tail fins of WT, *cxcr3.2* mutant and *cxcr3.3* mutant
499 larvae were dissected and macrophages within an area of 500 μ m from the cut towards
500 the trunk were quantified as recruited cells. Here too, we observed opposing results
501 between the Cxcr3 mutants: more cells were recruited in the *cxcr3.3* mutants and fewer
502 cells were recruited to the site of damage in the *cxcr3.2* deficient larvae (Figure 5-E,
503 F). We conclude that Cxcr3.3 and Cxcr3.2 deficiencies have opposing phenotypes
504 regarding macrophage recruitment to sites of infection and injury or to a source of

505 Cxcl11aa chemokine. While attenuated macrophage recruitment in *cxcr3.2* mutants
506 favors bacterial contention [29], the enhanced recruitment of macrophages to sites of
507 infection in *cxcr3.3* mutants might be facilitating macrophage-mediated dissemination
508 of bacteria, resulting in the increased bacterial burden observed in our infection
509 experiments.

510 **Cxcr3.3 depletion has no significant effect on neutrophil recruitment to sites of**
511 **infection or injury.**

512 Although macrophages are the first responders towards mycobacterial infection and
513 the main components of granulomas, neutrophils are also recruited to infectious foci
514 and participate in the early immune response [57, 58]. Besides, both Cxcr3.2 and
515 Cxcr3.3 are also expressed on this cell-type [29]. Therefore, we assessed the effect of
516 the *cxcr3.2* and *cxcr3.3* mutations on neutrophil recruitment to local *Mm* infection and
517 upon injury similar as for macrophages in the previous section (Figure 6). When *Mm*
518 was locally injected into the hindbrain, fewer neutrophils were recruited to the cavity in
519 *cxcr3.2* mutants at 3 hpi, while there was no difference between WT and *cxcr3.3*
520 mutants (Figure 6 A-B). Using the tail-amputation model to assess cell recruitment, we
521 observed the same pattern: the lack of *cxcr3.2* reduced neutrophil recruitment to injury
522 while recruitment remained unaffected in *cxcr3.3* mutants (Figure 6 C-D). Our data
523 suggest that Cxcr3.2 is required for neutrophil recruitment, as shown by previous
524 studies [59], and that the effect of the *cxcr3.3* mutation does not significantly impact
525 the migratory properties of this cell type.

526

527 **Macrophages lacking Cxcr3.3 move faster than WT cells under basal conditions**
528 **and upon mechanical damage, and have an elongated and branched**
529 **morphology.**

530 We previously reported that macrophage recruitment to sites infection was attenuated
531 in *cxcr3.2* mutant macrophages because cells were less motile [29]. To further examine
532 the role of cell recruitment in *M. marinum* pathogenesis, we assessed if macrophage
533 motility was also affected when Cxcr3.3 was ablated. Cell motility was reviewed
534 concerning total cell displacement and average speed. No significant difference was
535 found in total cell displacement under basal conditions (Figure 7-A, B-1) but *cxcr3.3*
536 mutant macrophages moved faster than the other two groups (Figure 7-A, B-2). To
537 induce directional migration of macrophages we used the tail-amputation model. The
538 tracks covered by *cxcr3.2* mutant macrophages were shorter when we induced
539 directed migration (Figure 7-C, D-1). In contrast, Cxcr3.3-deficient macrophages
540 moved faster than the remaining groups when the tail-amputation model was employed
541 (Figure 7-C, D-2, Supplementary videos 1.). Cell circularity index (CI) was assessed
542 as an indicator of motility and activation status of macrophages. Both *cxcr3* mutant CI
543 distributions differ from the WT. The distribution of the CI values of Cxcr3.3-depleted
544 macrophages shows that more cells are branched and elongated, while the CI value
545 distribution in the *cxcr3.2* mutants suggests that macrophages are rounder (Figure 6-
546 E). The most frequent CI interval within WT macrophages was 0.4-0.6 (42%), for
547 *cxcr3.2* mutants it was 0.4-0.8 (71%) and for *cxcr3.3* mutants, 0.2-0.4 (39%) (Figure 7-
548 F). To further confirm that *cxcr3.2* and *cxcr3.3* mutants have different activation profiles
549 we assessed the transcriptional profile of the inflammatory markers *tnfa*, *cxc11aa* and
550 *il1b* at 4 hours post amputation in the three groups and found that *tnfa* and *cxc11aa*
551 were upregulated in *cxcr3.3* mutants (Supplementary figure 4.). Taken together, these

552 data suggest that macrophage recruitment in *cxcr3.3* mutants results from a faster
553 displacement of these cells to reach sites of infection or other inflammatory stimuli.
554 This increased speed is linked to a higher macrophage activation status (lower CI
555 values) and a pro-inflammatory phenotype of the *cxcr3.3* mutant fish. Therefore, we
556 propose that the progression of *M. marinum* infection is accelerated in *cxcr3.3* mutants
557 by facilitating the spreading of bacteria into newly recruited macrophages and the
558 subsequent seeding of secondary granulomas

559 **Enhanced motility of *cxcr3.3* mutant macrophages facilitates cell-mediated *M.*
560 *marinum* dissemination.**

561 Taking into account that *cxcr3.3* mutant macrophages move faster and are recruited
562 more efficiently to sites of infection, we wanted to know whether the enhanced motility
563 of macrophages in *cxcr3.3* mutants could facilitate bacterial dissemination by
564 accelerating granuloma formation and seeding of secondary granulomas. We
565 addressed our question by locally injecting *Mm* into the hindbrain of WT, *cxcr3.2* and
566 *cxcr3.3* mutants at 28 hpf and by assessing the percentage of infected larvae that
567 developed distal granulomas at 4 dpi (Figure 8-A), as well as the number and size of
568 such granulomas in each group (Figure 8-C,D). Our data show that *cxcr3.3* mutant
569 larvae more frequently developed distal granulomas (22%) than the other two groups
570 (Figure 8-A). In addition, the average number of the distal granulomas per fish within
571 this group was higher (Figure 8 C) and the quantified structures were also larger
572 (Figure 8-D). Consistent with previous work [29], a small proportion of *cxcr3.2* mutant
573 larvae (5%) developed fewer and smaller distal granulomas compared with the wild
574 type (12.7%). Our data suggest that *cxcr3.3* mutant macrophages favor bacterial
575 dissemination and the seeding of secondary granulomas due to their enhanced
576 recruitment to sites of infection and their higher speed.

577 **Chemical inhibition of both Cxcr3 receptors affects only macrophages**
578 **expressing Cxcr3.2 and phenocopies cxcr3.2 mutants regarding bacterial**
579 **burden and macrophage recruitment efficiency.**

580 To further inquire into the roles and interactions of Cxcr3.2 and Cxcr3.3 we chemically
581 inhibited both receptors simultaneously and addressed macrophage recruitment using
582 the tail-amputation model and the *M. marinum* infection model. To this end, we used
583 the allosteric CXCR3-specific inhibitor NBI 74330, of which the binding site is highly
584 conserved in the Cxcr3.2 and Cxcr3.3 protein structures [29]. WT, *cxcr3.2* mutant and
585 *cxcr3.3* mutant larvae were bath-exposed for 3 h before amputation and for another 4
586 h following tail-amputation to NBI 74330 (50 μ M) or to the vehicle DMSO (0.05%) as a
587 control. A significant reduction in the number of recruited macrophages occurred in WT
588 and *cxcr3.3* mutants, but there was no decline in cell recruitment in *cxcr3.2* mutants
589 when exposed to the inhibitor (Figure 9 A-D). Similarly, WT larvae were bath exposed
590 to NBI 74330 (25 μ M) for 3h prior systemic infection with *M. marinum* and kept in NBI
591 74330 (25 μ M) for the following 4 days. Inhibition of both Cxcr3 receptors resulted in a
592 lower bacterial burden than that of larvae treated with DMSO (Figure 9-E-F) and
593 thereby phenocopied the effects of the *cxcr3.2* mutation [29] or *cxcr3.3* overexpression
594 (this study). These results support our hypothesis that Cxcr3.2, an active GPCR, is
595 essential for macrophage motility and recruitment to different stimuli while Cxcr3.3, an
596 ACKR with predicted scavenger function, does not play a direct role on these
597 processes but indirectly regulates them by competing with active receptors for shared
598 ligands.

599 **Discussion**

600 Our findings illustrate the evolution of regulatory mechanisms in chemokine signaling
601 networks and show how positive or negative dysregulation of the CXCR3 signaling axis
602 results in opposite outcomes on macrophage behavior and innate host defense against
603 mycobacterial infection. The *Mycobacterium tuberculosis* epidemiology highlights the
604 urgent need to develop new clinical strategies to treat the infection given the growing
605 incidence of multidrug-resistant strains and the high prevalence of the infection
606 worldwide [12, 60]. GPCRs, such as chemokine receptors, are the largest protein
607 family targeted by approved pharmacological therapies [61]. Therefore, it is important
608 to further our understanding of the fundamental regulatory mechanisms of GPCR-
609 related pathways. In the present study, we used the zebrafish model to functionally
610 characterize the antagonistic interplay between two CXCR3 paralogs in the context of
611 mycobacterial infection and mechanical damage. Our results suggest that the potential
612 scavenging activity of an atypical CXCR3 paralog, Cxcr3.3, fine-tunes the activity of
613 the functional CXCR3 paralog, Cxcr3.2, serving as a regulatory mechanism for the
614 modulation of the immune response. These findings highlight the relevance of ACKRs
615 as regulatory components of chemokine signaling networks.

616 At present, 5 ACKRs have been described in vertebrates, namely, ACKR1 (DARK),
617 ACKR2, ACKR3 (CXCR7), ACKR4, and ACKR5 [12, 18]. The identification of ACKRs
618 and the subsequent classification of these receptors within the subfamily is complex
619 given their structural heterogeneity and the limited phylogenetic homology [17, 18, 15].
620 However, as in all GPCRs, the E/DRY motif and microswitch elements are indicative
621 of the activation status and function of a receptor [16]. Microswitches stabilize the
622 active conformation of GPCRs and are highly conserved residues, which are
623 unchanged in Cxcr3.2 but not in Cxcr3.3 [13, 16]. The Asp (D) and the Arg (R) of the
624 E/DRY- motif are key residues to stabilize the inactive conformation of GPCRs by

625 forming a salt bridge between the 3rd IC loop and TM6 that blocks G-protein coupling.
626 This so-called “iconic-lock” breaks upon binding of an agonist and triggers structural
627 rearrangements that expose the G-protein docking site and enables canonical (G-
628 protein-dependent) downstream signaling [16]. Substitutions in the E/D and Y within
629 the E/DRY-motif are commonly associated with the permanent activation of the
630 receptor and gain of function events, while substitutions of the R, as found in Cxcr3.3
631 (DCY motif), have been shown to result in the permanent “locking” of the receptor and
632 a consequent loss of function [16, 54, 62]. The E/DRY motif also interacts with the
633 intracellular COOH terminus that is critical for GPCR activation and with G α subunits.
634 It is noteworthy to mention that chemokine receptors can also signal in a G-protein-
635 independent manner through β -arrestin in the context of chemotaxis, and that this
636 pathway is associated with the internalization and subsequent intracellular degradation
637 of ligands [16, 62]. Altogether, this information led us to propose that Cxcr3.3 is an
638 ACKR

639 The zebrafish genome encodes a family of seven *cxc11*-like paralogous genes, which
640 are thought to share common ancestry with CXCL9-10-11, the ligands of human
641 CXCR3 [29]. We have previously shown that one of the *cxc11*-like genes, *cxc11aa*,
642 is strongly inducible by mycobacterial infection and by mechanical damage [29, 63].
643 Subsequently, we used an *in vivo* macrophage migration assay in *cxcr3.2* mutants and
644 wild-type siblings to demonstrate that purified Cxcl11aa protein acts as a ligand for the
645 Cxcr3.2 receptor. Based on the structural conservation of the ligand binding site
646 Cxcr3.3 is predicted to bind the same ligands as Cxcr3.2. This is consistent with
647 several studies reporting that mutations in GPCRs may affect the structure of the
648 receptor preventing the opening of the intercellular cavity required for G-protein
649 coupling and subsequent signaling, while ligand affinity remains unchanged [16].

650 Furthermore, the fact that the top hits in our ligand prediction analysis are shared by
651 both Cxcr3 paralogs strongly suggests that both receptors can bind the same ligands
652 due to the highly conserved hydrophobic residues in the ligand-binding site. Studies
653 showing that signaling by CXCL11 and CXCL12 chemokines is subject to ACKR
654 regulation [13, 18], set a precedent for our hypothesis that both receptors can bind the
655 same ligands but only Cxcr3.2 can signal in a canonical manner, while Cxcr3.3 acts as
656 a regulator by scavenging shared ligands. Nevertheless, biochemical data are required
657 to fully confirm our hypothesis.

658 To deconstruct the proposed antagonism of Cxcr3.3 on Cxcr3.2 activity, we first
659 compared the overall outcomes of *M. marinum* infection in *cxcr3.2* and *cxcr3.3* mutants.
660 In agreement with our hypothesis, we observed that *cxcr3.2* and *cxcr3.3* mutants have
661 opposite infection phenotypes. While our previous results showed that *cxcr3.2* mutants
662 have increased resistance to mycobacterial infection [29], similar to *cxcr3* mutant mice
663 [30], the *cxcr3.3* mutant generated in this study is more susceptible to *M. marinum*.
664 The increased infection burden of *cxcr3.3* mutants could be reverted to wild-type levels
665 by injection of *cxcr3.3* mRNA, confirming the specificity of the mutant phenotype. A
666 reduced infection burden, similar to the *cxcr3.2* mutant phenotype, was induced when
667 *cxcr3.3* was overexpressed in wild-type AB/TL embryos, further supporting the notion
668 that Cxcr3.2 and Cxcr3.3 have contrasting functions. We asked whether the underlying
669 causes of the opposite effects of Cxcr3.2 and Cxcr3.3 on mycobacterial infection were
670 due to essentially antagonistic functions or to a dysregulation of the transcription of the
671 genes for the Cxcr3.2 and Cxcr3.3 receptors or the Cxcl11aa ligand. Gene expression
672 profiles showed that *cxcr3.2* and *cxc11aa* are induced upon infection with *M. marinum*
673 and that *cxcr3.3* expression depends on *cxcr3.2*. The infection-driven induction of
674 *cxc11aa* remains unaltered in the *cxcr3.2* and *cxcr3.3* mutants, suggesting that the

675 transcriptional regulation of the axis does not involve the ligand. While *cxcr3.3*
676 expression levels were lower in *cxcr3.2* mutants, no alteration of *cxcr3.2* expression
677 was detected in *cxcr3.3* mutants. Therefore, the increased infection susceptibility of
678 *cxcr3.3* mutants cannot be explained by differences in the level of the functional
679 *Cxcr3.2* receptor or the *Cxcl11aa* ligand. Taking these data together, we propose that
680 the *Cxcr3-Cxcl11* signaling axis is regulated at least at two levels. At the transcriptional
681 level, infection drives the expression of *cxcr3.2* (and indirectly *cxcr3.3*) and *Cxcl11aa*.
682 At the functional level, *Cxcr3.2* signals in response to *Cxcl11aa* ligand, while *Cxcr3.3*,
683 given its ACKR-like features, may function to negatively regulate *Cxcr3.2* activity.

684 The increased infection burden of *cxcr3.3* mutants could either be due to a defective
685 bacterial clearance or to altered macrophage migration properties, which can have
686 major effects on the development of mycobacterial infection [29, 64, 8]. We
687 demonstrated that *cxcr3.3* mutants can clear bacteria effectively and proceeded to
688 evaluate if an altered macrophage migration could be facilitating bacterial
689 dissemination. We obtained results supporting the functional antagonism between
690 *Cxcr3.2* and *Cxcr3.3* when we locally injected *M. marinum* or purified *Cxcl11aa* protein
691 into the hindbrain cavity. In both cases, we observed enhanced recruitment of
692 macrophages to the site of injection in *cxcr3.3* mutants, while *cxcr3.2* mutants
693 displayed reduced cell recruitment. Interestingly, while neutrophil recruitment was
694 reduced in the *cxcr3.2* mutant, it remained unaltered in *cxcr3.3* mutants, suggesting
695 that *Cxcr3.3* has no effect on neutrophil migratory properties.

696 To examine whether altered cell motility was the underlying reason for enhanced
697 recruitment in *cxcr3.3* mutant macrophages, we used a tail-amputation assay to
698 assess migration in terms of total cell displacement and average speed. We showed
699 that *cxcr3.3* mutant macrophages move faster than WT controls. To test our hypothesis,

700 we assessed bacterial dissemination and confirmed that, in the context of *M. marinum*
701 infection, the overall worse outcome in *cxcr3.3* mutant larvae was linked to amplified
702 macrophage-mediated dissemination of bacteria that is facilitated by the higher speed
703 of migrating macrophages and favors the formation of secondary granulomas. Since
704 more macrophages were recruited when *Cxcl11aa* was injected into the hindbrain
705 cavity and upon tail-amputation, we propose that the enhanced macrophage
706 recruitment in *cxcr3.3* mutants is not a specific *M. marinum*-induced phenotype, but
707 rather a *Cxcl11*-dependent response that can also result from wound-induced
708 inflammation or other *Cxcl11aa*-inducing stimuli.

709 The circularity index (CI) is a measure indicative of the activation status of
710 macrophages, with low CI values (stretched morphology) corresponding to a high
711 activation status [65, 66]. The predominance of macrophages with low CI values in
712 *cxcr3.3* mutants suggests that these cells have a higher activation status and that they
713 are more responsive to stimuli in their environment. *Cxcr3.3* depleted larvae showed
714 an overall upregulation of inflammatory markers (*tnfa* and *cxc11aa*) at 4 hpa. We
715 suggest that the inflammatory phenotype of *Cxcr3.3*-deficient larvae reflects a
716 dysregulation in the *Cxcr3-Cxcl11* signaling axis, supported by the upregulation of
717 *cxc11aa*, that results in an exacerbated *Cxcr3.2* signaling in the absence of the ligand-
718 scavenging function of *Cxcr3.3*. In support of this model, the simultaneous chemical
719 inhibition of the two *Cxcr3* paralogs showed that only macrophages expressing *Cxcr3.2*
720 were affected and that the inhibitor treatment phenocopied *cxcr3.2* mutants regarding
721 *M. marinum* burden and wound-induced macrophage recruitment. These data provide
722 further evidence that *Cxcr3.2* is directly involved in leukocyte trafficking, while *Cxcr3.3*
723 only fine-tunes the process by shaping the chemokine gradient and the availability of
724 shared ligands.

725 Although we found that enhancement of Cxcr3.2 signaling due to the loss of Cxcr3.3
726 is detrimental in *M. marinum* infection, it might be beneficial in the context of other
727 infections or in other processes dependent on macrophage recruitment, such as tissue
728 repair and regeneration. Furthermore, it should be noted that the function of a
729 chemokine receptor is primarily dependent on the type of cell expressing it, as the sub-
730 set of receptors expressed by the cell and the intracellular integration of the signals
731 have been shown to be determinant for functional specificity [28]. While our study
732 revealed that macrophage migration is modulated by an antagonistic interplay between
733 the Cxcr3.2 and Cxcr3.3 receptors, it remains to be determined how interactions
734 between Cxcr3 paralogs may affect the function of other innate and adaptive immune
735 cells. Although there is only one copy of CXCR3 in humans, there are 3 splice variants
736 of the gene (CXCR3-A, CXCR3-B, and CXCR3-alt), and a regulatory mechanism for
737 fine-tuning of CXCR3 function also exists. The splice variants CXCR3-A and CXCR3-
738 B differ in their N and C termini and carry out antagonistic functions. CXCR3-A
739 mediates chemotaxis and proliferation, while CXCR3-B inhibits cell migration and
740 proliferation, and induces apoptosis [67, 68]. Both splice forms can bind to CXCL9-11
741 chemokines but mediate opposite functions. While there are no splice variants of
742 *cxcr3.2* and *cxcr3.3* in zebrafish [69], the regulatory antagonism between the two
743 paralogs resembles the interaction between the two human CXCR3 splice variants,
744 which might suggest a form of convergent evolution. However, this functional
745 diversification of CXCR3 variants is not conserved in the murine model, where CXCR3
746 is a single copy gene and no splice variants have been identified so far [30, 67].

747 In conclusion, our work illustrates the antagonistic interaction between the two CXCR3
748 paralogs Cxcr3.2 and Cxcr3.3 in zebrafish. The structural analysis of Cxcr3.3 supports
749 that this receptor is unable to signal in the conventional G-protein-dependent way, but

750 that it can still bind ligands and shape chemokine gradients, thereby regulating active
751 receptors with shared ligands. Our experimental data show that the absence of the
752 scavenging function of Cxcr3.3 is detrimental in the context of mycobacterial infection
753 due to an exacerbated Cxcr3.2 signaling and a consequently enhanced macrophage
754 motility that facilitates bacterial dissemination. However, we propose that enhanced
755 macrophage motility could be benign in other contexts, such as tissue repair. Our
756 findings suggest an extensive crosstalk between several chemokine signaling axes
757 such as CXCR3-CXCL11 and CXCR4-ACKR3 (CXCR7), since ACKR3 also binds
758 CXCL11 besides CXCL12 [26, 18]. Furthermore, ACKR1 a silent receptor that does
759 not scavenge chemokines but redistributes them to mediate leukocyte extravasation,
760 shares the CXCL11 and CXCL4 ligands with CXCR3 [70, 71]. The complexity of
761 signaling axis integration, further emphasizes the relevance of unraveling the
762 fundamental mechanistic principles underlying intricate chemokine networks. Our
763 findings contribute to understanding one such mechanistic interaction and suggest that
764 a more comprehensive ACKR classification needs to be developed to aid the
765 understanding of complex chemokine signaling regulation.

766

767 **Authorship**

768 FS designed and performed experiments, analyzed the data, and wrote the
769 manuscript. VT designed and performed experiments and analyzed data. SK and AL
770 contributed to the experimental work. AM supervised the study and reviewed the
771 manuscript. All authors commented on the manuscript and approved the final
772 version.

773

774 **Acknowledgements**

775 The authors thank Georges Lutfalla (University of Montpellier) and Steve Renshaw
776 (University of Sheffield) for zebrafish reporter lines, Bjørn Koch for advice on time lapse
777 imaging, and Gabriel Forn-Cuní for advice on the phylogenetic analyses. We are
778 grateful to all members of the fish facility team for zebrafish care. FS was supported
779 by a fellowship from CONACYT. VT was a Marie Curie fellow in the Initial Training
780 Network FishForPharma (PITN-GA-2011-289209), funded by the 7th Framework
781 Programme of the European Commission.

782

783 **Conflict of interest**

784 The authors declare no conflict of interest

785

786

787

788

789

790

791

792

793

794 **References**

795

- [1] I. F. Charo and R. M. Ransohoff, "The many roles of chemokines and chemokine receptors in inflammation," *New England Journal of Medicine*, vol. 354, pp. 610-621, 2006.
- [2] A. Rot and U. H. Von Andrian, "Chemokines in innate and adaptive host defense: basic chemokinese grammar for immune cells," *Annu. Rev. Immunol.*, vol. 22, pp. 891-928, 2004.
- [3] S. Oliveira, E. E. Rosowski and A. Huttenlocher, "Neutrophil migration in infection and wound repair: going forward in reverse," *Nature Reviews Immunology*, vol. 16, p. 378, 2016.
- [4] D. R. Powell and A. Huttenlocher, "Neutrophils in the tumor microenvironment," *Trends in immunology*, vol. 37, pp. 41-52, 2016.
- [5] S. Bird and C. Tafalla, "Teleost chemokines and their receptors," *Biology*, vol. 4, pp. 756-784, 2015.
- [6] A. Zlotnik and O. Yoshie, "The chemokine superfamily revisited," *Immunity*, vol. 36, pp. 705-716, 2012.
- [7] A. J. M. Zweemer, J. Toraskar, L. H. Heitman and A. P. IJzerman, "Bias in chemokine receptor signalling," *Trends in immunology*, vol. 35, pp. 243-252, 2014.

- [8] J. W. Griffith, C. L. Sokol and A. D. Luster, "Chemokines and chemokine receptors: positioning cells for host defense and immunity," *Annual review of immunology*, vol. 32, pp. 659-702, 2014.
- [9] B. Bajoghli, "Evolution and function of chemokine receptors in the immune system of lower vertebrates," *European journal of immunology*, vol. 43, pp. 1686-1692, 2013.
- [10] A. Marchese, "Endocytic trafficking of chemokine receptors," *Current opinion in cell biology*, vol. 27, pp. 72-77, 2014.
- [11] B. Boldajipour, H. Mahabaleshwar, E. Kardash, M. Reichman-Fried, H. Blaser, S. Minina, D. Wilson, Q. Xu and E. Raz, "Control of chemokine-guided cell migration by ligand sequestration," *Cell*, vol. 132, pp. 463-473, 2008.
- [12] G. Bernardini, F. Antonangeli, V. Bonanni and A. Santoni, "Dysregulation of chemokine/chemokine receptor axes and NK cell tissue localization during diseases," *Frontiers in immunology*, vol. 7, p. 402, 2016.
- [13] F. Bachelerie, G. J. Graham, M. Locati, A. Mantovani, P. M. Murphy, R. Nibbs, A. Rot, S. Sozzani and M. Thelen, "An atypical addition to the chemokine receptor nomenclature: IUPHAR Review 15," *British journal of pharmacology*, vol. 172, pp. 3945-3949, 2015.
- [14] J. Canton, D. Nucleai and S. Grinstein, "Scavenger receptors in homeostasis and immunity," *Nature Reviews Immunology*, vol. 13, p. 621, 2013.

[15] M. H. Ulvmar, E. Hub and A. Rot, "Atypical chemokine receptors," *Experimental cell research*, vol. 317, pp. 556-568, 2011.

[16] H. Stoy and V. V. Gurevich, "How genetic errors in GPCRs affect their function: possible therapeutic strategies," *Genes & diseases*, vol. 2, pp. 108-132, 2015.

[17] M. Massara, O. Bonavita, A. Mantovani, M. Locati and R. Bonecchi, "Atypical chemokine receptors in cancer: friends or foes?," *Journal of leukocyte biology*, vol. 99, pp. 927-933, 2016.

[18] A. Vacchini, M. Locati and E. M. Borroni, "Overview and potential unifying themes of the atypical chemokine receptor family," *Journal of leukocyte biology*, vol. 99, pp. 883-892, 2016.

[19] C. Dambly-Chaudière, N. Cubedo and A. Ghysen, "Control of cell migration in the development of the posterior lateral line: antagonistic interactions between the chemokine receptors CXCR4 and CXCR7/RDC1," *BMC developmental biology*, vol. 7, p. 23, 2007.

[20] E. Donà, J. D. Barry, G. Valentin, C. Quirin, A. Khmelinskii, A. Kunze, S. Durdu, L. R. Newton, A. Fernandez-Minan, W. Huber and others, "Directional tissue migration through a self-generated chemokine gradient," *Nature*, vol. 503, p. 285, 2013.

[21] R. Lesley and L. Ramakrishnan, "Insights into early mycobacterial pathogenesis from the zebrafish," *Current opinion in microbiology*, vol. 11, pp. 277-283, 2008.

[22] S. Masud, V. Torraca and A. H. Meijer, "Modeling infectious diseases in the context of a developing immune system," in *Current topics in developmental biology*, vol. 124, Elsevier, 2017, pp. 277-329.

[23] K. B. Walters, J. M. Green, J. C. Surfus, S. K. Yoo and A. Huttenlocher, "Live imaging of neutrophil motility in a zebrafish model of WHIM syndrome," *Blood*, pp. blood--2010, 2010.

[24] S. K. Yoo and A. Huttenlocher, "Spatiotemporal photolabeling of neutrophil trafficking during inflammation in live zebrafish," *Journal of leukocyte biology*, vol. 89, pp. 661-667, 2011.

[25] G. Valentin, P. Haas and D. Gilmour, "The chemokine SDF1a coordinates tissue migration through the spatially restricted activation of Cxcr7 and Cxcr4b," *Current Biology*, vol. 17, pp. 1026-1031, 2007.

[26] U. Naumann, E. Camerini, M. Pruenster, H. Mahabaleshwar, E. Raz, H.-G. Zerwes, A. Rot and M. Thelen, "CXCR7 functions as a scavenger for CXCL12 and CXCL11," *PLoS one*, vol. 5, p. e9175, 2010.

[27] M. Thelen and S. Thelen, "CXCR7, CXCR4 and CXCL12: an eccentric trio?," *Journal of neuroimmunology*, vol. 198, pp. 9-13, 2008.

[28] D. Malhotra, J. Shin, L. Solnica-Krezel and E. Raz, "Spatio-temporal regulation of concurrent developmental processes by generic signaling downstream of chemokine receptors," *eLife*, vol. 7, p. e33574, 2018.

[29] V. Torraca, C. Cui, R. Boland, J.-P. Bebelman, A. M. Sar, M. J. Smit, M. Siderius, H. P. Spaink and A. H. Meijer, "The CXCR3-CXCL11 signaling axis mediates macrophage recruitment and dissemination of mycobacterial infection," *Disease models & mechanisms*, pp. dmm-017756, 2015.

[30] S. D. Chakravarty, J. Xu, B. Lu, C. Gerard, J. Flynn and J. Chan, "The chemokine receptor CXCR3 attenuates the control of chronic *Mycobacterium tuberculosis* infection in BALB/c mice," *The Journal of Immunology*, vol. 178, pp. 1723-1735, 2007.

[31] W. Y. Chung, D. Yoon, K. S. Lee, Y. J. Jung, Y. S. Kim, S. S. Sheen and K. J. Park, "The Usefulness of Serum CXCR3 Ligands for Evaluating the Early Treatment Response in Tuberculosis: A Longitudinal Cohort Study," *Medicine*, vol. 95, 2016.

[32] K. Lee, W. Chung, Y. Jung, Y. Kim, J. Park, S. Sheen and K. Park, "CXCR3 ligands as clinical markers for pulmonary tuberculosis," *The International Journal of Tuberculosis and Lung Disease*, vol. 19, pp. 191-199, 2015.

[33] L. E. Swaim, L. E. Connolly, H. E. Volkman, O. Humbert, D. E. Born and L. Ramakrishnan, "Mycobacterium marinum infection of adult zebrafish causes caseating granulomatous tuberculosis and is moderated by adaptive immunity," *Infection and immunity*, vol. 74, pp. 6108-6117, 2006.

[34] D. M. Tobin and L. Ramakrishnan, "Comparative pathogenesis of *Mycobacterium marinum* and *Mycobacterium tuberculosis*," *Cellular microbiology*, vol. 10, pp. 1027-1039, 2008.

[35] J. Rougeot, V. Torraca, V. Zakrzewska, Z. Kanwal, H. Jansen, F. Sommer, H. Spaink and A. Meijer, "RNAseq profiling of leukocyte populations in zebrafish larvae reveals a cxcl11 chemokine gene as a marker of macrophage polarization during mycobacterial infection," *frontiers in Immunology*, vol. 10, no. and Sommer, Frida and Spaink, Herman P. and Meijer, Annemarie H., pp. 1664-3224, 2019.

[36] A. Bernut, J.-L. Herrmann, K. Kiss, J.-F. Dubremetz, J.-L. Gaillard, G. Lutfalla and L. Kremer, "Mycobacterium abscessus cording prevents phagocytosis and promotes abscess formation," *Proceedings of the National Academy of Sciences*, p. 201321390, 2014.

[37] R. Zhang, M. Varela, W. Vallentgoed, G. Forn-Cuni, M. van der Vaart, A. H. Meijer and Rui, "The selective autophagy receptors Optineurin and p62 are both required for zebrafish host resistance to mycobacterial infection," *PLoS pathogens*, vol. 15, no. 5, 2019.

[38] K. Labun, T. G. Montague, J. A. Gagnon, S. B. Thyme and E. Valen, "CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering," *Nucleic acids research*, vol. 44, pp. W272--W276, 2016.

[39] T. G. Montague, J. M. Cruz, J. A. Gagnon, G. M. Church and E. Valen, "CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing," *Nucleic acids research*, vol. 42, pp. W401--W407, 2014.

[40] G. Talavera and J. Castresana, "Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments," *Systematic biology*, vol. 56, pp. 564-577, 2007.

[41] D. Darriba, G. L. Taboada, R. Doallo and D. Posada, "ProtTest 3: fast selection of best-fit models of protein evolution," *Bioinformatics*, vol. 27, pp. 1164-1165, 2011.

[42] S. Kumar, G. Stecher and K. Tamura, "MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets," *Molecular biology and evolution*, vol. 33, pp. 1870-1874, 2016.

[43] J. Yang, A. Roy and Y. Zhang, "BioLiP: a semi-manually curated database for biologically relevant ligand--protein interactions," *Nucleic acids research*, vol. 41, pp. D1096--D1103, 2012.

[44] J. Yang, A. Roy and Y. Zhang, "Protein--ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment," *Bioinformatics*, vol. 29, pp. 2588-2595, 2013.

[45] O. Golosova, R. Henderson, Y. Vaskin, A. Gabrielian, G. Grekhov, V. Nagarajan, A. J. Oler, M. Quinones, D. Hurt, M. Fursov and others, "Unipro UGENE NGS pipelines and components for variant calling, RNA-seq and ChIP-seq data analyses," *PeerJ*, vol. 2, p. e644, 2014.

[46] K. Okonechnikov, O. Golosova, M. Fursov and U. Team, "Unipro UGENE: a unified bioinformatics toolkit," *Bioinformatics*, vol. 28, pp. 1166-1167, 2012.

[47] R. Rose, O. Golosova, D. Sukhomlinov, A. Tiunov and M. Prosperi, "Flexible design of multiple metagenomics classification pipelines with UGENE," *Bioinformatics*, 2018.

[48] E. L. Benard, A. M. Sar, F. Ellett, G. J. Lieschke, H. P. Spaink and A. H. Meijer, "Infection of zebrafish embryos with intracellular bacterial pathogens," *Journal of visualized experiments: JoVE*, 2012.

[49] K. Takaki, J. M. Davis, K. Winglee and L. Ramakrishnan, "Evaluation of the pathogenesis and treatment of *Mycobacterium marinum* infection in zebrafish," *Nature protocols*, vol. 8, p. 1114, 2013.

[50] E. J. M. Stoop, T. Schipper, S. K. R. Huber, A. E. Nezhinsky, F. J. Verbeek, S. S. Gurcha, G. S. Besra, C. M. J. E. Vandenbroucke-Grauls, W. Bitter and A. M. Sar, "Zebrafish embryo screen for mycobacterial genes involved in the initiation of granuloma formation reveals a newly identified ESX-1 component," *Disease models & mechanisms*, pp. dmm--006676, 2011.

[51] F. J. Roca and L. Ramakrishnan, "TNF dually mediates resistance and susceptibility to mycobacteria via mitochondrial reactive oxygen species," *Cell*, vol. 153, pp. 521-534, 2013.

[52] J. Schindelin, I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid and others, "Fiji: an open-source platform for biological-image analysis," *Nature methods*, vol. 9, p. 676, 2012.

[53] J.-Y. Tinevez, N. Perry, J. Schindelin, G. M. Hoopes, G. D. Reynolds, E. Laplantine, S. Y. Bednarek, S. L. Shorte and K. W. Eliceiri, "TrackMate: An open and extensible platform for single-particle tracking," *Methods*, vol. 115, pp. 80-90, 2017.

[54] R. Seifert and K. Wenzel-Seifert, "Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors," *Naunyn-Schmiedeberg's archives of pharmacology*, vol. 366, pp. 381-416, 2002.

[55] H. Clay, J. M. Davis, D. Beery, A. Huttenlocher, S. E. Lyons and L. Ramakrishnan, "Dichotomous role of the macrophage in early *Mycobacterium marinum* infection of the zebrafish," *Cell host & microbe*, vol. 2, pp. 29-39, 2007.

[56] L. Ramakrishnan, "Revisiting the role of the granuloma in tuberculosis," *Nature Reviews Immunology*, vol. 12, p. 352, 2012.

[57] C. Yang, C. Cambier, J. Davis, C. Hall, P. Crosier and L. Ramakrishnan, "Neutrophils exert protection in the early tuberculous granuloma by oxidative killing of mycobacteria phagocytosed from infected macrophages," *Cell host & microbe*, vol. 12, no. 3, pp. 301-312, 2012.

[58] A. Meijer, A. van der Sar, C. L. G. Cunha, M. Laplante, H. Kikuta, W. Bitter, H. Becker and H. Spaink, "Identification and real-time imaging of a myc-expressing neutrophil population involved in inflammation and mycobacterial granuloma formation in zebrafish," *Developmental & Comparative Immunology*, vol. 32, no. 1, pp. 36-49, 2008.

[59] Y. Xie, S. Tolmeijer, J. Oskam, T. Tonkens, A. Meijer and M. Schaaf, "Glucocorticoids inhibit macrophage differentiation towards a pro-inflammatory phenotype upon wounding without affecting their migration," *Disease models & mechanisms*, vol. 12, no. 5, 2019.

[60] R. Bonecchi and G. J. Graham, "Atypical chemokine receptors and their roles in the resolution of the inflammatory response," *Frontiers in immunology*, vol. 7, p. 224, 2016.

[61] R. A. Bond and A. P. IJzerman, "Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery," *Trends in pharmacological sciences*, vol. 27, pp. 92-96, 2006.

[62] A. J. Venkatakrishnan, X. Deupi, G. Lebon, C. G. Tate, G. F. Schertler and M. M. Babu, "Molecular signatures of G-protein-coupled receptors," *Nature*, vol. 494, p. 185, 2013.

[63] K. Van Raemdonck, P. E. Van den Steen, S. Liekens, J. Van Damme and S. Struyf, "CXCR3 ligands in disease and therapy," *Cytokine & growth factor reviews*, vol. 26, pp. 311-327, 2015.

[64] A. J. Pagán, C.-T. Yang, J. Cameron, L. E. Swaim, F. Ellett, G. J. Lieschke and L. Ramakrishnan, "Myeloid growth factors promote resistance to mycobacterial infection by curtailing granuloma necrosis through macrophage replenishment," *Cell host & microbe*, vol. 18, pp. 15-26, 2015.

[65] M. Mues, I. Bartholomäus, T. Thestrup, O. Griesbeck, H. Wekerle, N. Kawakami and G. Krishnamoorthy, "Real-time in vivo analysis of T cell activation in the

central nervous system using a genetically encoded calcium indicator," *Nature medicine*, vol. 19, p. 778, 2013.

[66] Y. Volkov, A. Long, S. McGrath, D. N. Eidhin and D. Kelleher, "Crucial importance of PKC-β (I) in LFA-1--mediated locomotion of activated T cells," *Nature immunology*, vol. 2, p. 508, 2001.

[67] C. Billottet, C. Quemener and A. Bikfalvi, "CXCR3, a double-edged sword in tumor progression and angiogenesis," *Biochimica et Biophysica Acta (BBA)-Reviews on Cancer*, vol. 1836, pp. 287-295, 2013.

[68] L. Lasagni, M. Francalanci, F. Annunziato, E. Lazzeri, S. Giannini, L. Cosmi, C. Sagrinati, B. Mazzinghi, C. Orlando, E. Maggi and others, "An alternatively spliced variant of CXCR3 mediates the inhibition of endothelial cell growth induced by IP-10, Mig, and I-TAC, and acts as functional receptor for platelet factor 4," *Journal of Experimental Medicine*, vol. 197, pp. 1537-1549, 2003.

[69] Q. Xu, R. Li, M. M. Monte, Y. Jiang, P. Nie, J. W. Holland, C. J. Secombes and T. Wang, "Sequence and expression analysis of rainbow trout CXCR2, CXCR3a and CXCR3b aids interpretation of lineage-specific conversion, loss and expansion of these receptors during vertebrate evolution," *Developmental & Comparative Immunology*, vol. 45, pp. 201-213, 2014.

[70] R. Horuk, "The Duffy antigen receptor for chemokines DARC/ACKR1," *Frontiers in immunology*, vol. 6, p. 279, 2015.

[71] M. Pruenster, L. Mudde, P. Bombosi, S. Dimitrova, M. Zsak, J. Middleton, A. Richmond, G. J. Graham, S. Segerer, R. J. B. Nibbs and others, "The Duffy

antigen receptor for chemokines transports chemokines and supports their promigratory activity," *Nature immunology*, vol. 10, p. 101, 2009.

796

797

798

799 **Figure Legends**

800 **Figure 1. Cxcr3.3 has features of both conventional Cxcr3 receptors and ACKRs.**

801 Phylogenetic analyses including CXCR3 (green) and ACKR sequences (blue) of
802 relevant species revealed that Cxcr3.3 is closely related to its paralogs Cxcr3.1 and
803 Cxcr3.2 (**A**) (ZF=zebrafish, COE=coelacanth, HU=human, MO=mouse, ES= elephant
804 shark, LAM= lamprey) despite having structural features of ACKRs (**B**), such as an
805 altered E/DRY-motif (orange) and microswitches (green). The predicted primary
806 ligand-binding site of both Cxcr3.2 and Cxcr3.3 is highly conserved and structural
807 predictions suggest that they share several ligands (**Supplementary table II**). **C** and
808 **D** show the whole predicted structure of the Cxcr3.2 and Cxcr3.3 receptors (**a**), the
809 ligand binding site of both proteins (**b**) and the binding of one of the shared predicted
810 ligands (0NN) by each receptor (**c**).

811

812 **Figure 2. cxcr3.3 mutant larvae do not show morphological aberrations or major**
813 **differences in macrophage development.**

814 A 46 bp deletion was induced in the *cxcr3.3* gene using CRISPR-Cas9 technology (**A**).
815 The deletion is located in the first exon (orange), at the very end of the first

816 transmembrane domain (TM1). The mutation shifts the reading frame and results in a
817 premature stop codon (**B**). Nonsense-mediated decay assessment suggests that the
818 *cxcr3.3* mutant gene codes a truncated Cxcr3.3 protein (**C**). No evident morphological
819 aberrations were observed in *cxcr3.3*-/- larvae within the first 5 dpf and the mutant
820 allele segregated following Mendelian proportions (**D**). Macrophage development was
821 faster in *cxcr3.3*-/- embryos at 2 dpf but reverted to WT and *cxcr3.2*-/- pace after day
822 3 (**E**). Fewer macrophages were found in the head area of *cxcr3.2*-/- larvae only at day
823 4 (**F**), while there were more macrophages in the tail region in *cxcr3.3*-/- (**G**). The cell
824 numbers corresponding to each day are the average of 35 larvae of each of the 3
825 groups (genotypes). Data were analyzed using a two-way ANOVA and are shown as
826 mean \pm SEM (ns p > 0.05, * p \leq 0.05, **p \leq 0.01, *** p \leq 0.001, **** p \leq 0.0001).

827

828 **Figure 3. Depletion and overexpression of *cxcr3.3* result in opposite *M. marinum***
829 **infection outcomes.**

830 Cxcr3.3 deficient larvae had a higher bacterial burden than their WT siblings at 4 days
831 following blood island (BI) infection with 300 CFU of *M. marinum* (*Mm*) (**A, B**). We
832 transiently overexpressed *cxcr3.3* in AB/TL embryos by injection of a CMV: *cxcr3.3*
833 construct at 0 hpf and observed that bacterial burden was lower in larvae
834 overexpressing the gene than in non-injected controls at 4 dpi (**C, D**). To rescue the
835 *cxcr3.3*-/- phenotype we restored the expression of the gene by transiently
836 overexpressing it (CMV: *cxcr3.3*) in one half of the *cxcr3.3* mutants (*cxcr3.3*-/- rescued).
837 The bacterial burden was lower in the rescued group than in non-injected *cxcr3.3*
838 mutants (*cxcr3.3*-/-) and similar to the bacterial burden in WT controls (**E, F**). Results
839 from qPCR show that *cxcr3.2* expression remained unaltered in the *cxcr3.3* mutants

840 and that it was induced upon infection (**G**), while *cxcr3.3* expression was lower in
841 *cxcr3.2* and was moderately induced upon *Mm* infection (**H**). The ligand *cxc11aa*
842 was induced upon infection independently of any of the *cxcr3* genes. In all cases,
843 systemic infection was done at 28 hpf in the BI with 300 CFU of *Mm*. The bacterial
844 burden data were analyzed using a two-tailed t-test (**A-C**) and a One-way ANOVA (**E**).
845 Results are shown as mean \pm SEM (ns p > 0.05, * p \leq 0.05, **p \leq 0.01, *** p \leq 0.001,
846 **** p \leq 0.0001) and combine data of 3 independent replicates of 20-30 larvae each.
847 The qPCR data were analyzed with the $2^{-\Delta\Delta Ct}$ method and a One-way ANOVA. Results
848 are plotted as mean \pm SEM (ns p > 0.05, * p \leq 0.05, ** p \leq 0.01, *** p \leq 0.001).

849

850 **Figure 4. Macrophages lacking Cxcr3.3 efficiently clear intracellular bacteria.**

851 Cxcr3.3 deficient larvae and their WT siblings were infected in the BI at 28 hpf with 200
852 CFU of the Δ ERP *M. marinum*-wasabi strain that is unable to survive and replicate
853 inside acidic compartments and can be easily cleared by macrophages. The total
854 number of bacterial clusters in every fish was quantified (**A**). We divided the bacterial
855 clusters into 3 groups based on the number of bacteria they contained (1-5, 1-6 and >
856 10) to assess bacterial clearance at 44 hpi (**B**). No difference between WT and *cxcr3.3*-
857 /- cluster size distributions (frequency in %) was found (**C**). A Mann-Whitney test was
858 conducted to analyze the overall bacterial burden of the pooled data of 3 independent
859 replicates of 9 fish each. Data are shown as mean \pm SEM (**A**). A Kolmogorov-Smirnov
860 test was used to analyze the distribution of bacterial cluster sizes (**C**) (ns p > 0.05).

861

862 **Figure 5. Macrophages lacking Cxcr3.3 show an enhanced recruitment to sites
863 of infection, towards Cxcl11aa, and to sites of mechanical damage.**

864 Significantly fewer cells were recruited to the hindbrain ventricle in *cxcr3.2* at 3 hpi
865 with *Mm* and more macrophages were recruited to the same site in *cxcr3.3*-
866 compared to WT controls (**A, B**). The same trend was observed when 1nL of Cxcl11aa
867 protein (10 ng/mL) was injected in the same experimental setup (**C, D**). To assess
868 macrophage recruitment to sites of injury, we used the tail-amputation model and
869 observed enhanced recruitment of macrophages in *cxcr3.3*- larvae and attenuated
870 recruitment of macrophages in *cxcr3.2*- relative to WT at 4 hpa (**E, F**). The PBS
871 injected control group combines WT, *cxcr3.2* and *cxcr3.3* mutants and shows no cell
872 recruitment at 3 hpi. In all cases, statistical analyses were done with pooled data of
873 three independent replicates (20-30 larvae per group each). A Kruskal-Wallis test was
874 used to assess significance (* p ≤ 0.05, *** p ≤ 0.001, **** p ≤ 0.0001) and data are
875 shown as mean ± SEM.

876 **Figure 6. Neutrophil recruitment to sites of infection and injury is not altered in**
877 ***cxcr3.3* mutants.**

878 100 CFU of *Mm*-mCherry were injected in the hb ventricle of 2 day-old WT, *cxcr3.2*
879 and *cxcr3.3* mutant larvae to assess neutrophil (*mpx*: *eGFP*) recruitment to the
880 infection site at 3 hpi. The number of cells that infiltrated the cavity was lower in *cxcr3.2*
881 mutants but remained unchanged in WT and *cxcr3.3* mutants (A-B). The tail fin of WT
882 larvae and *cxcr3.2* and *cxcr3.3* mutants was amputated and neutrophil recruitment was
883 assessed at 4 hours post amputation. There were fewer recruited neutrophils in the
884 *cxcr3.2* mutants while there was no difference between *cxcr3.3* mutants and WT. The
885 PBS injected control group PBS combines WT, *cxcr3.2* and *cxcr3.3* mutants and shows
886 no cell recruitment at 3 hpi. In all cases, statistical analyses were done with pooled
887 data of three independent replicates (20-30 larvae per group each). A Kruskal-Wallis

888 test was used to assess significance (ns $p > 0.05$, *** $p \leq 0.001$, **** $p \leq 0.0001$) and
889 data are shown as mean \pm SEM.

890 **Figure 7. Cxcr3.3 depleted macrophages move faster than WT cells under basal**
891 **conditions and upon mechanical damage and have a lower circularity index (CI).**

892 Panel **A** shows representative images of tracks of macrophages of 3-day-old larvae
893 from the three genotypes under unchallenged conditions (random patrolling).
894 Macrophages were tracked for 3 h and images were taken every 2 minutes. Graphs in
895 **B** show the total displacement of all cells tracked shortly after amputation in each group
896 throughout 3h (**B-2**) and the average speed of each cell (**B-2**). In this case,
897 macrophages were tracked for 1.5 h and images were acquired every 1 minute. There
898 was no significant difference between the groups in terms of total cell displacement (**B-**
899 **1.**), however *cxcr3.3*-/- macrophages did move faster than the remaining groups as
900 indicated by the dot-plots in (**B-2**). Panel **C** shows representative images of
901 macrophage tracks of the three groups directly after a tail amputation. The tracks of
902 *cxcr3.2*-/- macrophages were shorter than those of the remaining groups (**D-1.**) and
903 *cxcr3.3*-/- macrophages moved faster than the other two groups when mechanical
904 damage was inflicted (**D-2.**). Data of unchallenged larvae were collected from two
905 independent replicates (5 larvae per group each) and for the tail-amputation model
906 data from 3 independent replicates (4 larvae per group each) were pooled together for
907 analysis. A One-way ANOVA was performed to test for significance (ns $p > 0.05$, * $p \leq$
908 0.05 , ** $p \leq 0.01$) and data are shown as mean \pm SEM. The circularity index (CI)
909 distributions of both *cxcr3.2*-/- and *cxcr3.3*-/- differ from the WT control but are skewed
910 in opposite directions as low CI values are more frequent in *cxcr3.3* mutants than in
911 WT and high CI values are more frequent in *cxcr3.2* mutants as shown by the curves.
912 **(E).** Panel **F** shows representative images of the most frequent CI interval in each

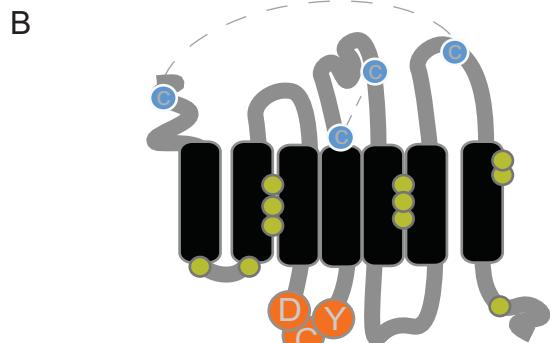
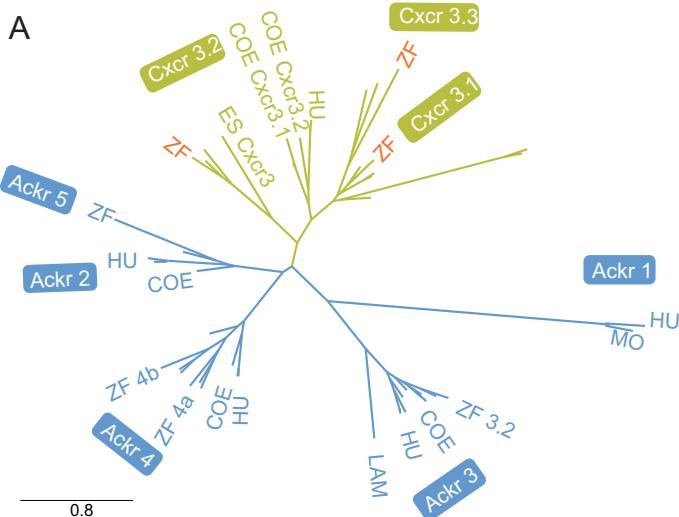
913 group and the bar displays the percentage of each CI category within each genotype.
914 A Kolmogorov-Smirnov test was used to evaluate the CI value distributions using the
915 WT data as reference distribution (** $p \leq 0.01$, **** $p \leq 0.0001$).

916 **Figure 8. Enhanced motility of *cxcr3.3* mutant macrophages facilitates bacterial
917 dissemination**

918 Four days after local infection with 200 CFU of *Mm* in the hb, *cxcr3.3* mutants
919 developed more distal granulomas (22%) than WT (12.7%) and *cxcr3.2* mutants (5%)
920 while the latter developed fewer than the other two groups (A). Embryos from the three
921 genotypes were infected at 28 hpf and imaged under the stereo fluorescence
922 microscope (whole body and zoom to the tail) at 4 dpi. **B** illustrates the imaging process
923 of a representative *cxcr3.3* mutant larvae. Cxcr3.3 depleted larvae developed more
924 distal granulomas per fish (**C**) and these granulomas were also larger in *cxcr3.3*
925 mutants than the other two groups, while *cxcr3.2* mutants showed an opposite trend
926 (**D**). Graphs show pooled data from four independent replicates, each of 12-15 infected
927 larvae per group. The number and size of distal granulomas were determined using
928 the “analyze particle” function in Fiji. A χ^2 test was conducted to assess differences in
929 the proportion of larvae that developed distal granulomas within the 3 groups and a
930 One-way ANOVA to compare the number and size of distal granulomas (ns $p > 0.05$,
931 * $p \leq 0.05$, *** $p \leq 0.001$ and **** $p \leq 0.001$). Data are shown as mean \pm SEM.

932 **Figure 9. Chemical inhibition of both Cxcr3 receptors affects only macrophages
933 expressing Cxcr3.2 and renders a similar bacterial burden and macrophage
934 recruitment efficiency as *cxcr3.2* mutants.**

935 After bath exposure of 3-day old larvae to either the CXCR3-specific inhibitor NBI
936 74330 (50 μ M) or vehicle (DMSO 0.01%), before and after tail-amputation showed that



937 cell recruitment to the site of injury was reduced in macrophages expressing Cxcr3.2,
938 namely WT and *cxcr3.3-/-* (**A, C**), while no further decline in cell recruitment was
939 observed in *cxcr3.2* mutants (**B, D**). Chemical inhibition of both Cxcr3 receptors with
940 NBI 74330 (25 μ M) before and after systemic infection with *Mm* resulted in a lower
941 bacterial burden at 4 dpi than in the vehicle-treated control and resembles the *cxcr3.2*
942 mutant phenotype (**E, F**). The data of three independent replicates were pooled and
943 are presented as mean \pm SEM. A Kruskal-Wallis test was conducted to assess
944 significance (ns p > 0.05, **** p \leq 0.0001) in the macrophage recruitment assay. Only
945 the p values between each condition (vehicle/ NBI 74330) within each group are shown
946 (**D**). Bacterial burden data were analyzed using a two-tailed t-test and data are shown
947 as mean \pm SEM (**** p \leq 0.0001).

948

949

950

Figure 1.

	Position 71	105-107	148-150	242	250
CXCR3	GNGAV	LLVLTLPL	SFD DRY LNIV	AGFL L LLLVMAYCYA	
Cxcr3.1	GNGLV	LLLLTLPF	SL DRY LSIV	LGFI I PAIMMVFCYT	
Cxcr3.2	GNILV	LLAATL PF	SFD DRY LAIV	LGFI L LLLMLYCYL	
Cxcr3.3	GHGLV	LLLL SMPL	SVDCYLSIV	I-FGV G TLVLLFCCT	

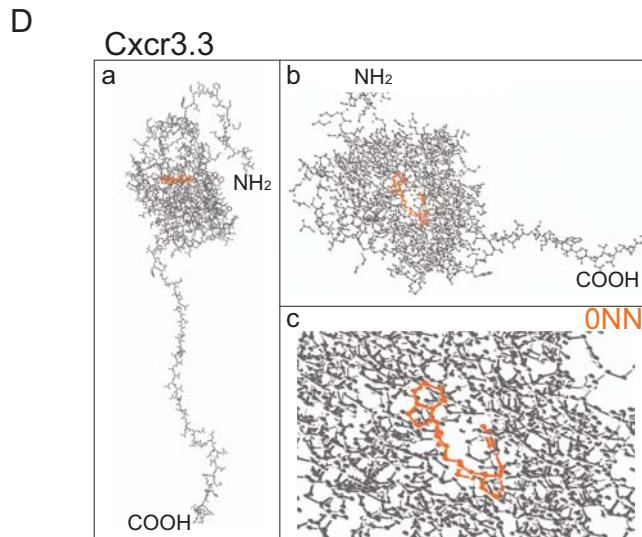
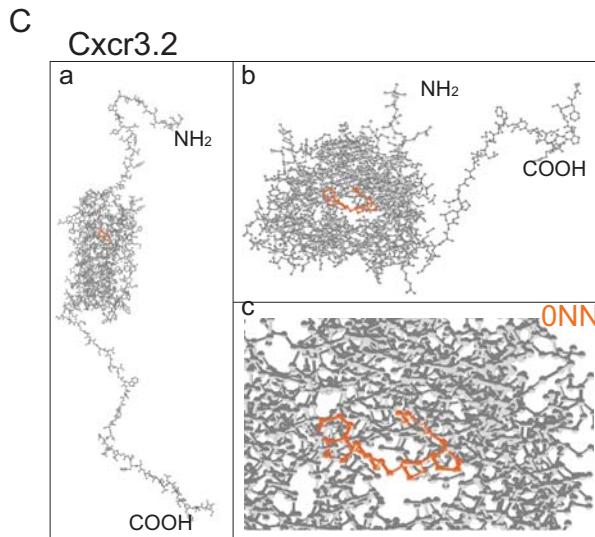



Figure 2.

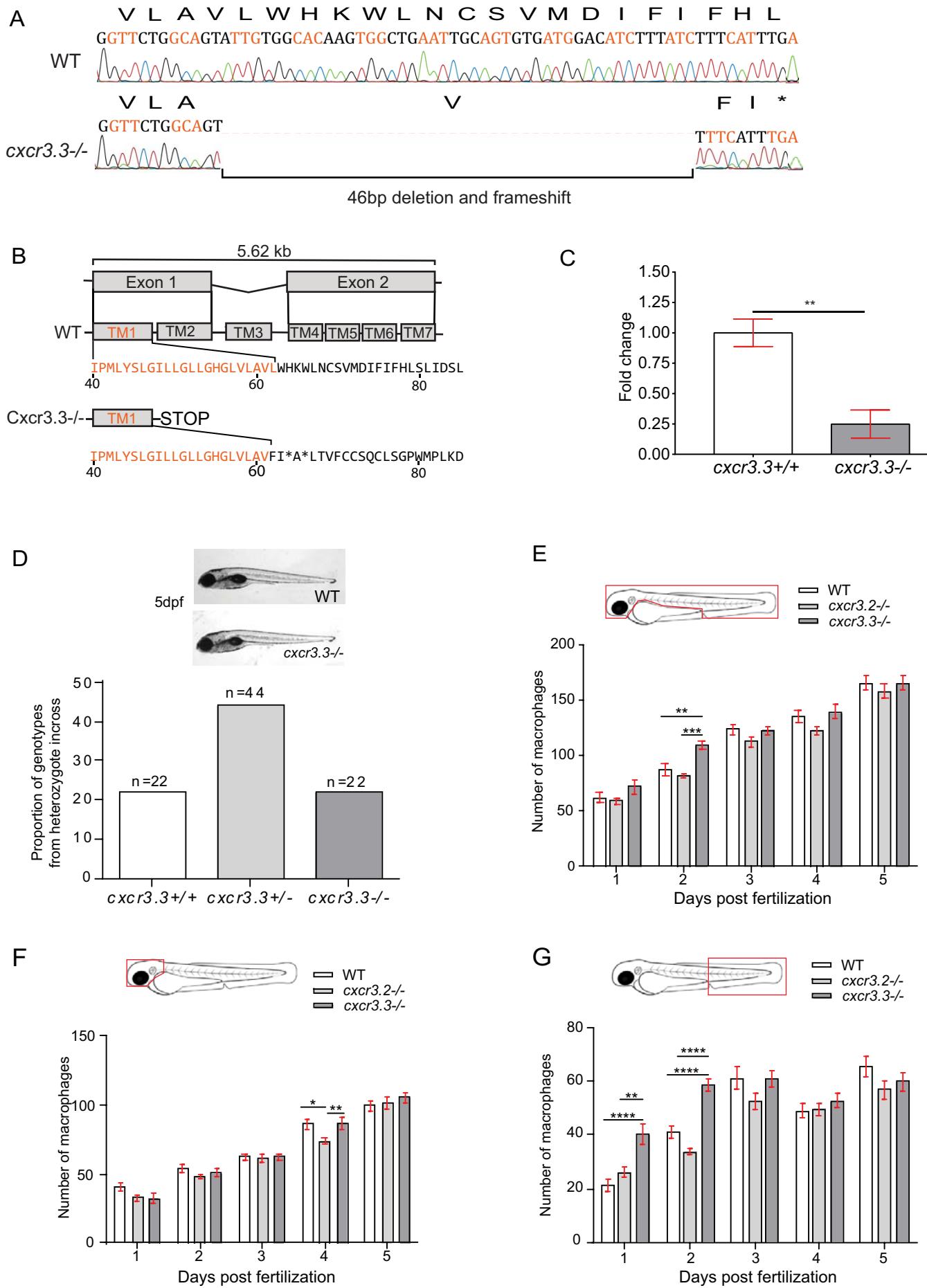
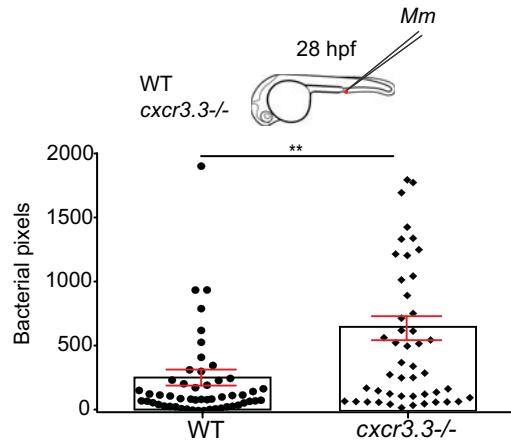
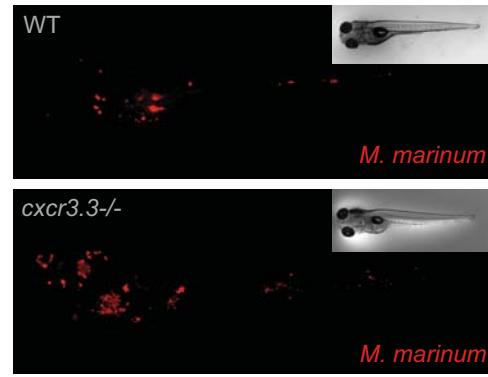
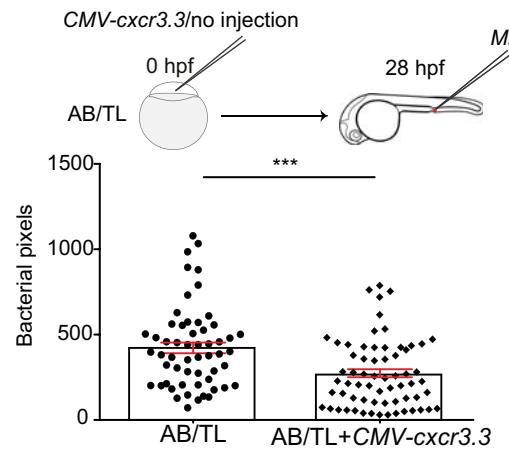
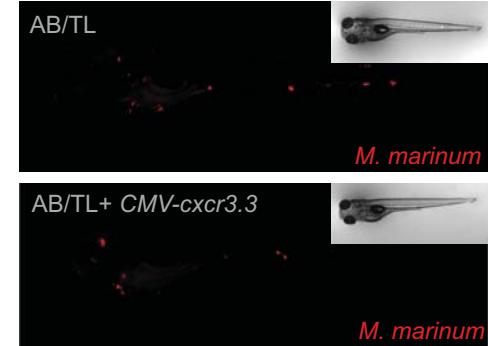
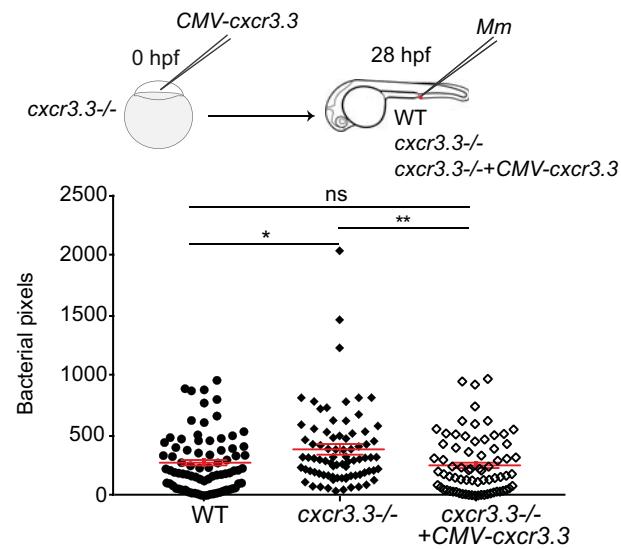
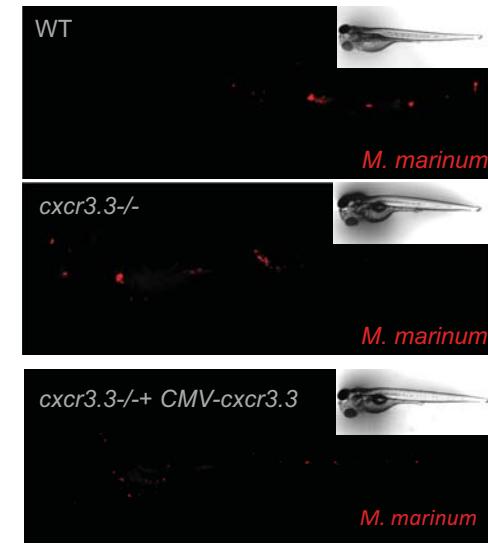




Figure 3.


A


B

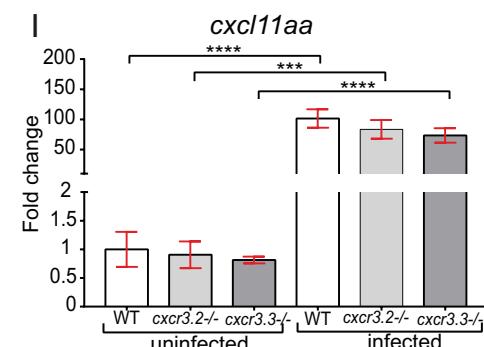
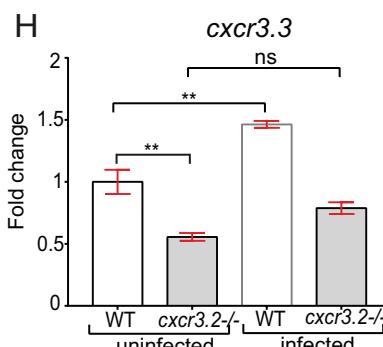
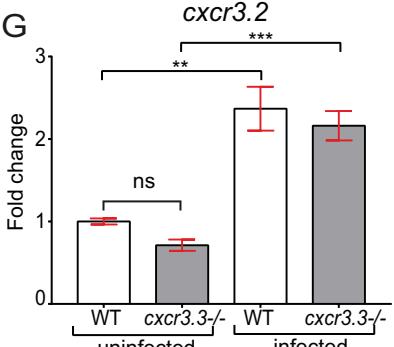
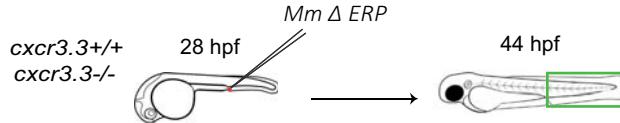
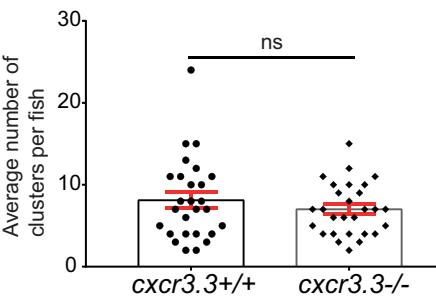

C

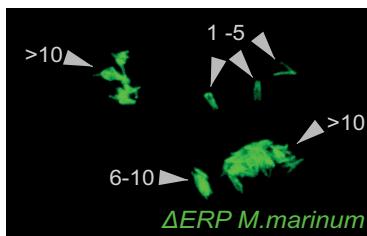

D

E

F

G


Figure 4.

A

B

C

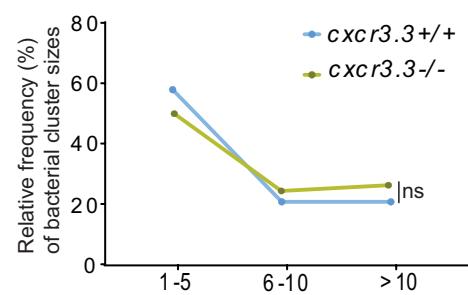
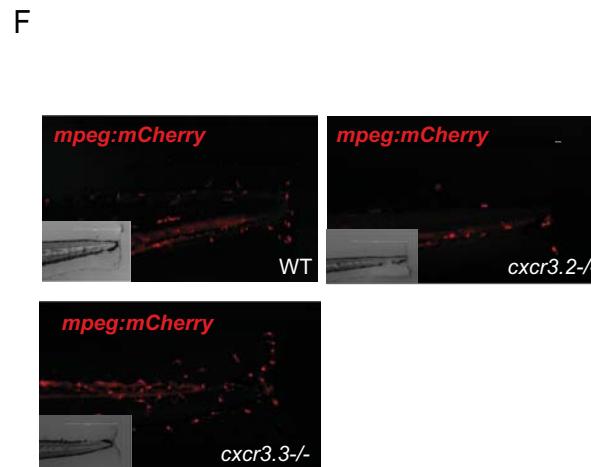
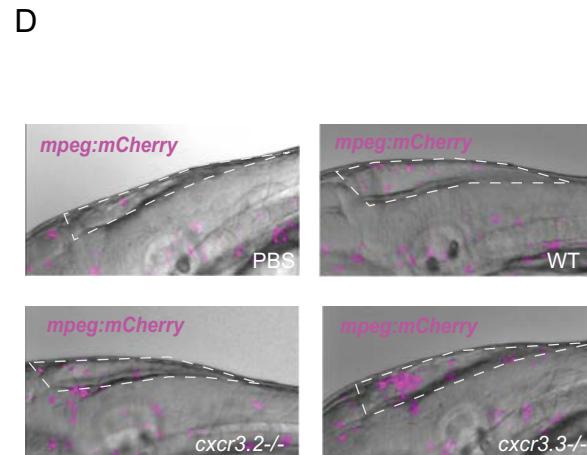
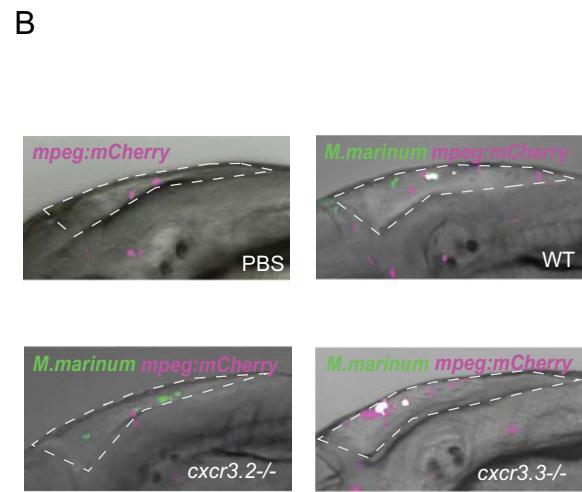
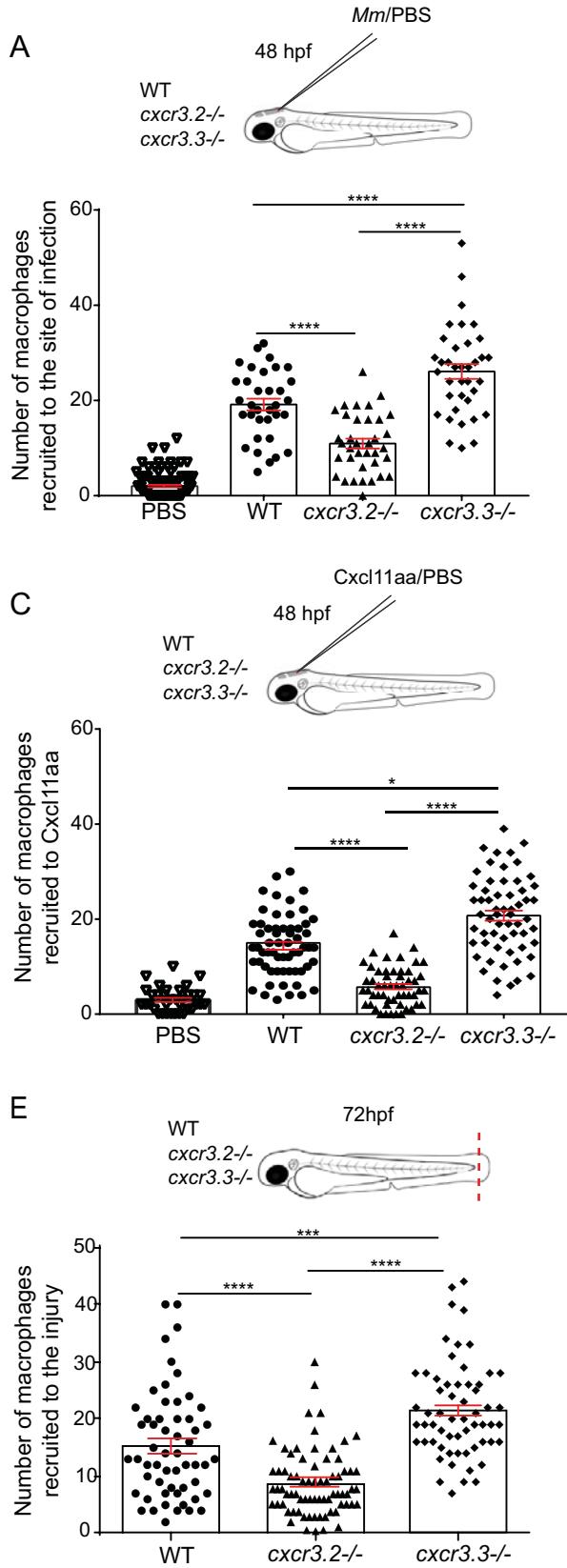






Figure 5.

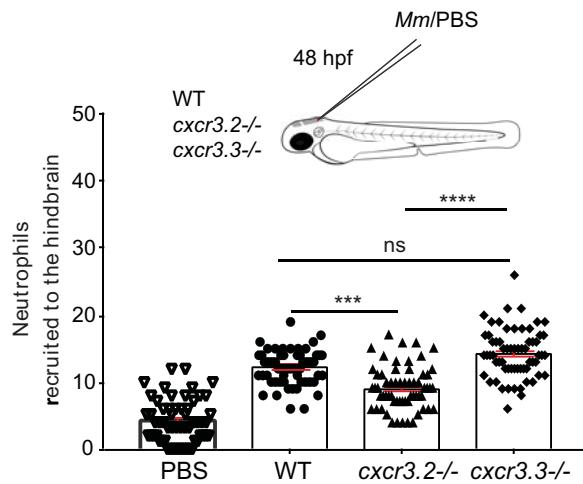
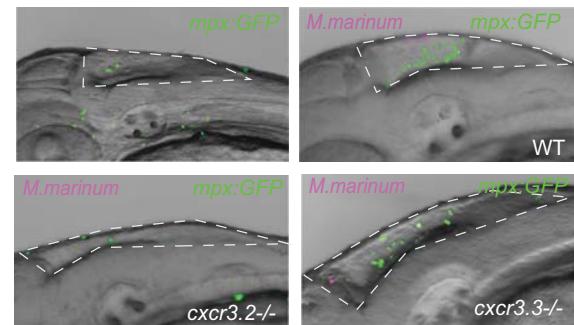
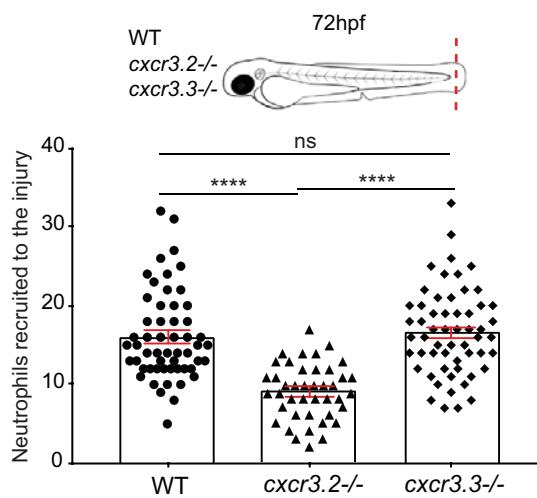
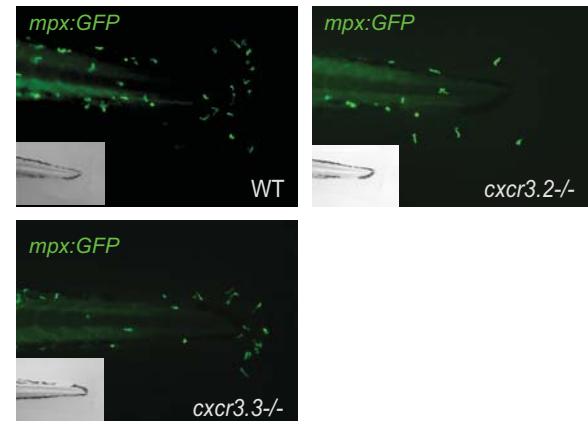




Figure 6.**A****B****C****D**

Figure 7.

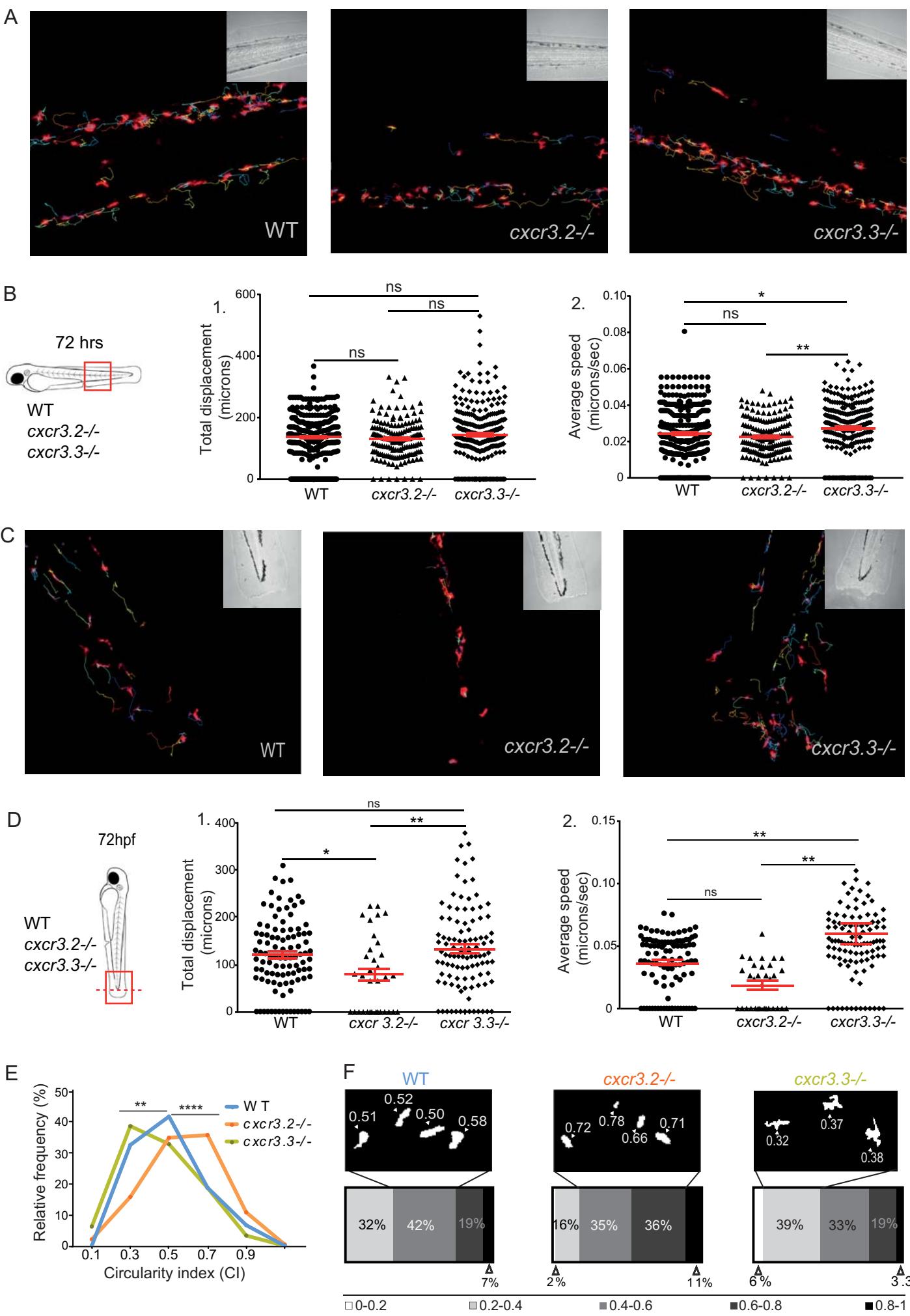
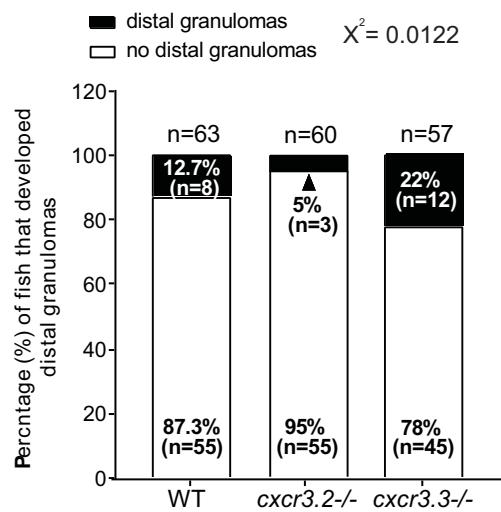
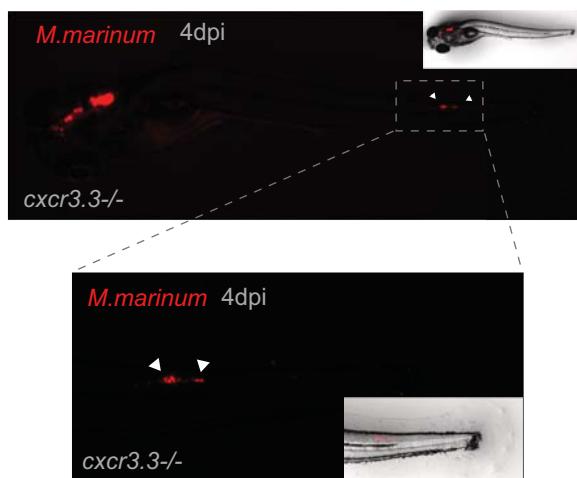
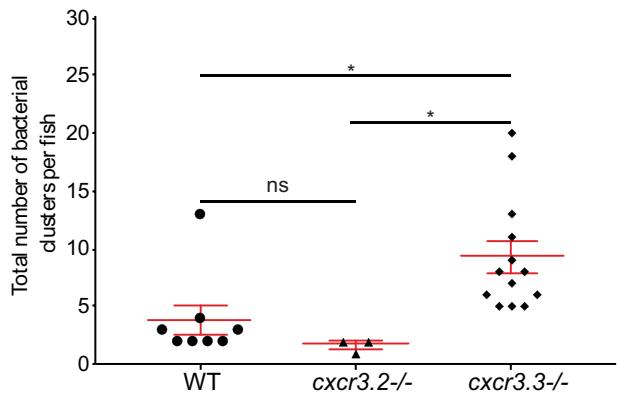




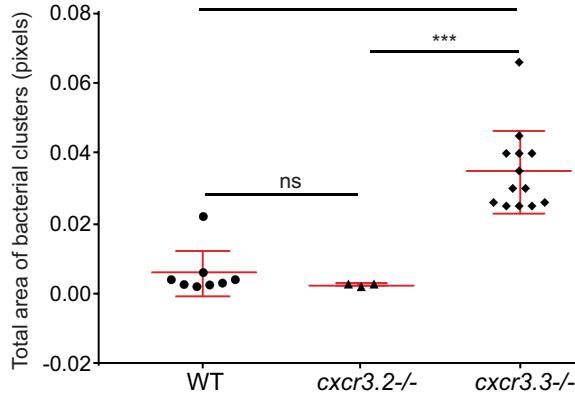
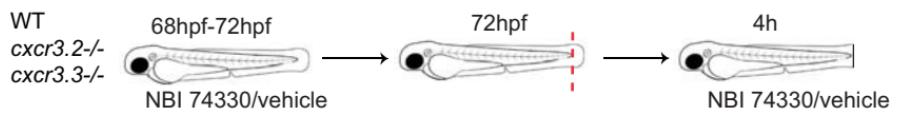
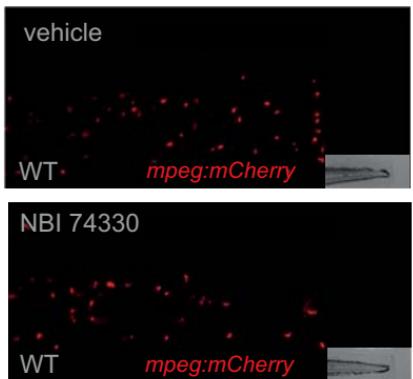
Figure 8.

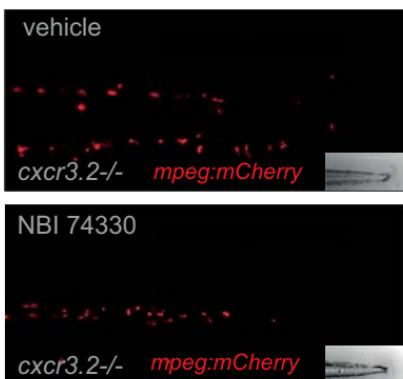

A

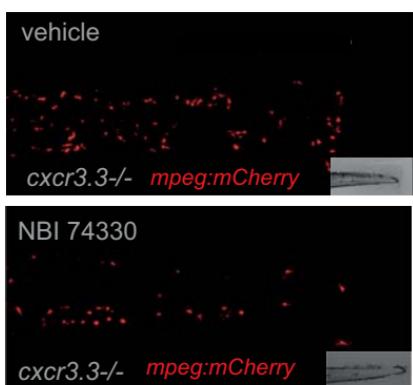
B

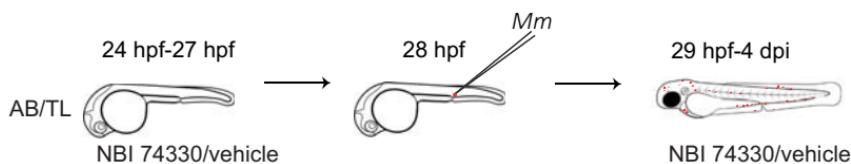
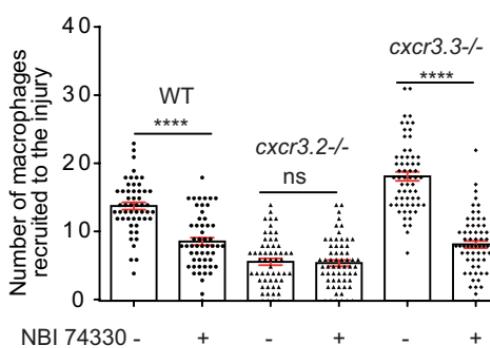
C

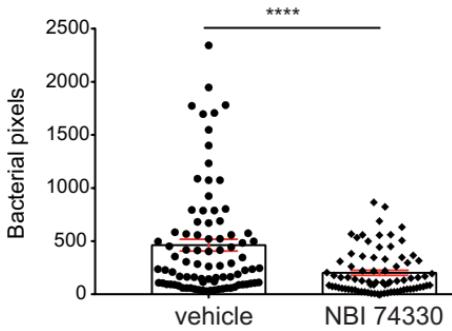
D

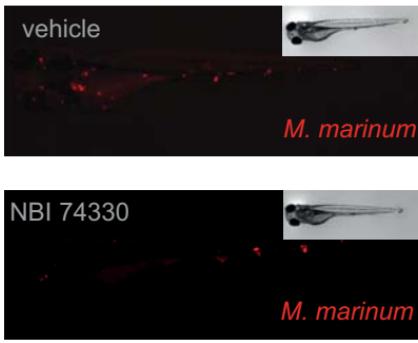





Figure 9.


A



B


C


D

E

F

