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Abstract

The seasonal influenza vaccine is an important public health tool but is only effective in a subset of
individuals. The identification of molecular signatures provides a mechanism to understand the drivers of
vaccine-induced immunity. Most previously reported molecular signatures of influenza vaccination were
derived from a single age group or season, ignoring the effects of immunosenescence or vaccine
composition. Thus, it remains unclear how immune signatures of vaccine response change with age across
multiple seasons. Here we profile the transcriptional landscape of young and older adults over five
consecutive vaccination seasons to identify shared signatures of vaccine response as well as marked
seasonal differences. Along with substantial variability in vaccine-induced signatures across seasons, we
uncovered a common transcriptional signature 28 days post-vaccination in both young and older adults.
However, gene expression patterns associated with vaccine-induced antibody responses were distinct in
young and older adults; for example, increased expression of Killer Cell Lectin Like Receptor B1 (KLRBI;
CD161) 28 days post-vaccination positively and negatively predicted vaccine-induced antibody responses
in young and older adults, respectively. These findings contribute new insights for developing more
effective influenza vaccines, particularly in older adults.
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Introduction

Influenza is a major public health burden, particularly in high-risk populations such as older adults. The
seasonal inactivated influenza vaccination (IIV) is estimated to be 50-70% effective in randomized
controlled trials of young adults (1-5), and efficacy is reduced to under 50% in adults over age 65 (6).
Understanding the dynamics of vaccination-induced immune responses, and the factors associated with
immunological protection should provide insights important for improving vaccine design.

Systems vaccinology approaches utilizing high-throughput immune profiling techniques have identified
signatures of response to influenza vaccination (7—14). These include pre-vaccination transcriptional
signatures of apoptosis-related gene modules (9), as well as B cell signaling and inflammatory modules
(15). Post-vaccination transcriptional signatures have also been identified, including an early interferon
response 1 day post-vaccination and a plasma cell response 3 and 7 days post-vaccination (13). Interferon
stimulated genes were upregulated in both monocytes and neutrophils between 15 and 48 hours post-
vaccination and correlated with influenza-specific antibody responses (7, 12). In addition, the expression
of genes enriched for proliferation and immunoglobulin production 7 days post-vaccination accurately
predicted antibody response in an independent cohort (10). Studies of the influence of aging revealed that
an early interferon response 1-2 days post-vaccination as well as an oxidative phosphorylation and plasma
cell response 7 days post-vaccination were correlated with antibody response in young adults but were
diminished or dysregulated in older adults (13, 14).

Notably, previous studies of influenza vaccine response studying the effects of aging used data from a
single vaccine season (9) or from two consecutive seasons in which vaccine composition was identical
(13, 14); consequently, the generalizability of these signatures is unknown. To date, no comprehensive
characterization of vaccine response in both young and older adults has been reported to multiple
influenza vaccines which vary in composition. To address this gap, we profiled young and older adults
over five consecutive vaccination seasons (2010-11, 2011-12, 2012-13, 2013-14, and 2014-15) hereafter
referred to by the first year of each season. We developed a new automated metric to quantify antibody
response while accounting for baseline titers and used this novel metric to identify predictive
transcriptional signatures of vaccine response using post-vaccination as well as baseline gene expression
profiles.
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75 Materials and Methods

76
77  Clinical Study Design and Specimen Collection
78 A total of 317 subjects were recruited at Yale University over the five vaccination seasons between 2010
79  and 2014 and HALI titers pre- (D0) and post-vaccination (D28) were available from the 294 subjects
80  reported in Table 1. Informed consent was obtained for all subjects under a protocol approved by the
81  Human Subjects Research Protection Program of the Yale School of Medicine. Participants with an acute
82  illness two weeks prior to recruitment were excluded from the study, as were individuals with primary or
83  acquired immune-deficiency, use of immunomodulating medications including steroids or chemotherapy,
84  ahistory of malignancy other than localized skin or prostate cancer, or a history of cirrhosis or renal
85 failure requiring hemodialysis. Blood samples were collected into Vacutainer sodium heparin tubes and
86  serum tubes (Becton Dickinson) at four different time points, immediately prior to administration of
87  vaccine (D0) and on D2 (2011, 2012, 2013, 2014) or D4 (2010), D7, and D28 post-vaccination.
88
89  In order to understand the transcriptional program underlying a successful vaccination response, we
90  identified a subset of 134 subjects with extreme (strong or weak) antibody responses to perform
91  transcriptional profiling by microarrays. In the first three seasons, the selection criteria were a four-fold
92  increase to at least 2 strains (strong response) or no four-fold increase to any strain (weak response) as
93  described previously (14). In the fourth and fifth seasons, the adjMFC metric was used in addition to the
94  fold change criteria to account for baseline titers (11). The maxRBA response endpoint was developed
95  after the study completed, however, less than 10% (12/134) of subjects chosen for transcriptional
96  profiling had indeterminate responses by maxRBA (neither high or low responders using a 40% cutof¥)
97  (Table 1). These 12 subjects were excluded from the predictive modeling of antibody response.
98
99  HAI and VNA Analyses, Cell Sorting, RNA processing and Gene Expression Analyses

100  Detailed methods are provided in ST Appendix.

101
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102 Results

103

104  Antibody Titer Dynamics

105

106  We evaluated 294 healthy young (21 - 30 years old, n = 147) and older (> 65 years old, n = 147) adults
107  over five consecutive influenza vaccination seasons from 2010-2014. All subjects received the standard
108 dose trivalent (2010, 2011, 2012) or quadrivalent (2013, 2014) seasonal inactivated influenza vaccine
109  (IIV). We measured influenza-specific hemagglutination inhibition (HAI) titers pre-vaccination (D0) and
110 28 days post-vaccination (D28). Over the course of our study, the vaccine composition changed relative
111 to the previous season in three of five seasons (Table 1).

112

113  Inall seasons, pre-vaccination titers were negatively correlated with the increase in titers post-vaccination
114 (SI Appendix, Fig. S1). Previous work defined an adjusted maximum fold change (adjMFC) endpoint that
115  removes the nonlinear correlation between fold change and baseline titers (11). However, adjMFC

116  separates subjects into manually defined bins, making it difficult to perform high-throughput analysis.
117  Furthermore, adjMFC does not allow for information sharing between bins as each bin is adjusted

118  independently. To address these limitations, we developed maximum Residual after Baseline Adjustment
119  (maxRBA), which corrects for the dependence on baseline titers for each strain by modeling titer fold
120  changes as an exponential function of pre-vaccination titers and selecting the maximum residual across
121 strains (Fig. 1A). All vaccine strains were approximately equally responsible for the maximum residual in
122 any given season. “High responders” (HR) and “low responders” (LR) were defined as the top and bottom
123 40th percentiles of the residuals, respectively. maxRBA can be interpreted as the maximum change from
124  expected fold change given the initial titer; it is fully automated, is strain agnostic, and is correlated with
125  plasmablast frequencies seven days post-vaccination (SI Appendix, Fig. S2A-B). Thus, maxRBA allows a
126  completely automated assessment of the relative strength of each subject’s antibody response independent
127  of pre-existing antibody titers.

128

129  Older adults had significantly lower pre-vaccination titers than young adults for three of five seasons (Fig.
130  1B). The maximum fold change to any vaccine strain showed an increasing trend in young adults

131  compared to older adults (S7 Appendix, Fig. S3C). Because of the inverse relationship between baseline
132 titers and fold change (S Appendix, Fig. S1), we adjusted for baseline titers using maxRBA and found
133  that the difference in vaccine response between young and older adults was statistically significant in

134  more seasons (Fig. 1C). Males and females had similar pre-vaccine geometric mean titers (preGMTs) (S7
135  Appendix, Fig. S3A). However, the antibody response calculated by maxRBA showed a trend toward

136  stronger antibody responses in females compared to males with similar baseline titers in both age groups
137  (Fisher’s combined p = 0.02 (Young), p = 0.12 (Older); ST Appendix, Fig. S3B). We did not detect any
138  significant difference in baseline titers or titer responses across seasons when stratifying subjects by body
139  mass index, smoking history, aspirin use, or diabetes medication use (p > 0.05 two-sided Wilcoxon rank
140  sum test (discrete) or simple linear regression (continuous)).

141

142

143

144

145
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146  Table 1l
147  Vaccine Compositions and Cohorts
2010-11 2011-12 2012-13 2013-14 2014-15
Vaccine A/California/7/2009 | _A/California/7/2009 | _A/California/7/2009 A/California/7/2009 A/California/7/2009
P A/Perth/16/2009 A/Perth/16/2009 AlVictoria/361/2011 AlTexas/50/2012 AlTexas/50/2012
Composition B/Brisbane/60/2008 B/Brisbane/60/2008 | _B/Wisconsin/1/2010 B/Brisbane/60/2008 B/Brisbane/60/2008
B/Massachusetts/2/2012 B/Massachusetts/2/2012
Sllbj ects 42 69 92 56 35
Gender (% Male) 33 42 40 36 51
Age Group (% Older) 43 54 49 52 46
Transcriptomes® 19 39 30 26 20
Young (LR | I | HR) 41116 8(2]6 6109 625 4125
Older (LR | I| HR)® 50013 1157 700]8 70016 210]7

148 2 The three vaccine strains in 2009-10 were A/Brisbane/59/2007, A/Brisbane/10/2007, and B/Brisbane/60/2008. A monovalent
149 A/California/7/2009 vaccine was administered to some subjects in March 2010.

150 ® Subjects with transcriptional data are a subset of subjects with antibody titers.

151 ¢ Subjects are listed by antibody response category: low responder (LR), indeterminate (I), high responder (HR).

152

153  We also examined the dynamics of viral titers over the course of the five seasons (ST Appendix, Fig. S3D).
154  The A/California 7/2009 HIN1 strain was introduced into the seasonal vaccine in 2010 and remained

155  through the 2014 season; however, pre-vaccine titers to this strain were consistently lower in older vs.
156  young adults for 2011-2014. While we did not follow the same subjects across multiple seasons, 50-80%
157  of young and 80-98% of older adults self-reported receiving influenza vaccine in the previous year. Taken
158  together, these results support existing evidence that the capability for antibody persistence is reduced
159  with age (16).
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9  Substantial Seasonal Variability in Signatures Induced by Influenza Vaccination. (A) A row-
0  normalized heatmap of the 2,462 significantly differentially expressed genes (DEGs). Clusters A-G were
1 defined by hierarchical clustering. Asterisks within the heatmap indicate genes significantly differentially
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expressed compared to day 0. (B) The first two principal components from a principal component
analysis of all DEGs. Each point is a sample and lines connect the median of the points at each day post-
vaccination within each season. (E) DUSP2 expression in sorted CD4 and CD8 T cells. ** p <0.01, *** p
< 0.001 one-sided t-test comparing day 28 and day 0 only. (F) Probability density functions calculated by
QuSAGE for two representative gene modules significantly downregulated 28 days post-vaccination in
four seasons. M31 contains DUSPI while M89.1 contains both DUSPI and DUSP2.

Substantial Seasonal Variability in Vaccine-Induced Signatures

To identify correlates and predictors of vaccine response, we selected a subset of individuals (20 - 40
subjects per season) from young and older adult cohorts who had strong or weak antibody responses
according to HAI titers and performed longitudinal transcriptional profiling pre-vaccination (baseline)
and 4 (2010 cohort) or 2 days (all other cohorts), 7 days, and 28 days post-vaccination (Table 1;
Methods). We first performed differential expression analysis independently in each season without
differentiating subjects by antibody response. We compared each post-vaccination time point to baseline

and found a vaccine-induced signature that comprised a total of 2,462 significantly differentially
expressed genes (DEGs) over all five seasons (FDR < 0.05, Fold Change > 1.25; SI File I).

Most of the DEGs were from the first two seasons whereas vaccination in the latter three seasons induced
relatively weak changes (Fig. 2A; SI Appendix, Fig. S4E). In fact, a substantial fraction of DEGs were
unique to a single season and not differentially expressed at any time point in another season (Y oung:
38%, Older: 75%). In young adults, there were 1,330 DEGs shared across two or more seasons while in
older adults there were 265 shared DEGs. In both young and older adults, a substantial fraction of these
shared genes was differentially expressed 28 days post-vaccination (SI Appendix, Fig. S4F). To assess
whether vaccine-induced changes were consistent between seasons, we divided the 2,462 DEGs into 7
clusters by hierarchical clustering (Fig. 2A; SI File 2) and tested for their activity in every season using
QuSAGE (17) (SI Appendix, Fig. S5). In young adults, three of the clusters (B, F, G) had significant, but
opposite, activity during the 2010 and 2011 seasons, while these clusters were relatively consistent across
seasons in older adults. Genes in cluster A were induced strongly in the 2011 season in both age groups
and notably enriched for multiple pathways related to mitochondria, including mitochondrial inner
membrane, oxidative phosphorylation, respiratory electron transport, citric acid (TCA) cycle and
respiratory electron transport, and mitochondrial respiratory chain complex assembly (FDR < 0.05; S/
File 2). These findings reflect our previous identification of a mitochondrial biogenesis signature
associated with influenza vaccine antibody response (14). Cluster D was only significantly induced in the
2013 season at 7 and 28 days post-vaccination and was not significantly enriched for any gene sets tested
(FDR > 0.05; SI File 2). The cluster with the most consistent expression pattern across the five seasons
was cluster C, which was enriched for pathways related to Toll-like receptor signaling, B and T cell
signaling, NF-«B signaling, MAPK signaling, cell senescence or proliferation, and apoptosis (SI File 2).
Interestingly, cluster C contains three genes (DUSPI, DUSP2, CCL3L3) which were significantly
downregulated 28 days post-vaccination in four of five seasons. CCL3L3 is a ligand for CCRI, CCR3 and
CCR5, known to be chemotactic for monocytes and lymphocytes (18). DUSPI and DUSP2 are dual
specificity phosphatases; DUSP2 dephosphorylates STAT3, leading to inhibition of survival and
proliferation signals (19-21), and an age-associated decrease in DUSP/ function contributed to
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inappropriate IL-10 production in monocytes before and after influenza vaccination (22). To determine
whether downregulation of these three genes was a result of changes in cell subset composition or
observed in subpopulations of cells, we performed transcriptional profiling on sorted B and T cells in a
subset of individuals from three seasons. DUSPI and DUSP2, but not CCL3L3, were significantly
downregulated 28 days post-vaccination over multiple seasons in CD4 and CDS8 T cells of young adults
(One sided t-test p < 0.01; Fig. 2C, ST Appendix, Fig. S4C-D). Furthermore, while DUSP2 was only
significantly decreased in PBMCs of older individuals in the 2011 season, expression of DUSP2 was
significantly decreased 28 days post-vaccination in sorted CD4 and CDS8 T cells from older individuals in
multiple seasons (Fig. 2C). Thus, the downregulation of DUSP2 28 days post-vaccination is observed in
the T cell compartment of both young and older adults.

To further assess shared patterns in vaccine-induced changes across five seasons, we performed a
principal component analysis (PCA) on gene expression fold changes post-vaccination for all DEGs. The
first two components together explained 38% of the variation in young adults’ and 46% of the variation in
older adults’ transcriptional changes post-vaccination (Fig. 2B, SI Appendix, Fig. S4B). Notably, in young
adults, the 2011 and 2014 seasons (both with vaccine composition identical to the previous year) had
similar trajectories, increasing along the first principal component (PC1) by D28 post-vaccine. Examining
the genes contributing to PC1 reveals that four of the top 10 genes (SLMAP, MATR3, MBNL3, RANBP3)
increase in expression post-vaccination more in the 2011 and 2014 seasons than in any other season. The
shared trajectories along PC1 are not significantly enriched for any blood transcription modules (BTMs)
(23), KEGG pathways (24), or cell subset signatures (25) (FDR > 0.05; S/ File 3). The trajectory of the
2010 season was quite distinct from the other seasons in young adults. This season is consistently
elevated on PC2, which is significantly enriched for monocytes, TLRs and inflammatory signaling (FDR
<0.05; SI File 3). The 2012 and 2013 seasons also appear to have similar trajectories, both decreasing in
PC2 over time. The vaccines used in these two seasons each introduced multiple new strains while
retaining the A/California/7/2009 strain. Five of the top 10 genes (ZNF493, ZNF652, OCIADI1, C21orf58,
IL11RA) contributing to PC2 increased in expression 28 days post-vaccination in the 2012 and 2013
seasons while decreasing in expression in the other seasons. This differential expression analysis shows
that there are large variations in vaccine-induced transcriptional signatures between seasons which, in
young adults, might be explained in part by vaccine composition.

Given the substantial seasonal variation in the number of DEGs, we next performed an analysis of
differential expression of gene modules using QuSAGE to quantify the gene module activity of 346
previously defined BTMs (23). There were 262 differentially expressed modules (DEMs) (FDR < 0.05; S/
File 4, SI Appendix, Fig. S4A). Similar to the gene-level analysis, no significant changes were identified
in the 2014 season, but six modules (cell cycle and growth arrest (M31), chemokines and inflammatory
molecules in myeloid cells (M86.0), enriched for TF motif TTCNRGNNNNTTC, leukocyte differentiation
(M160), putative targets of PAX3 (M&89.1), and signaling in T cells (I) (M35.0)) were significantly
downregulated in young adults at D28 in four of five seasons (Fig. 2D). These changes were largely
driven by decreases in DUSP1/2, EGR1/2, JUN/JUNB, FOS/FOSB, TNF, CD83, and IL1B. Thus, while
there was substantial variability in the signatures induced by vaccination across multiple seasons, there is
a shared signature consisting of three genes and six modules which was downregulated at D28 in four of
five seasons.
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101 Figure 3

102  Vaccine-Induced Changes are Correlated Between Young and Older Adults at Day 28. Scatter plots
103  show the meta-analysis effect sizes of changes post-vaccination for every gene in young vs older adults
104  ondays 2 (A), 7 (B) and 28 (C) post-vaccination.

105

106  Shared Vaccine-Induced Signatures Across Five Seasons

107

108  The differential expression approach is limited by fixed fold change and significance cutoffs that may
109  vary between seasons. To increase our power to identify shared signatures across seasons and in older
110  adults, we performed a meta-analysis at the individual gene and gene module level. We identified 338
111 genes with significantly altered expression post-vaccination (FDR < 0.05; S7 File 5). In young adults, we
112  identified significant genes at D2, D7 and D28 with little overlap among genes on each day. Genes

113  induced on D2 were moderately enriched for innate immune genes from InnateDB (http://innatedb.com/)
114 including MYHY, TYK2, GLRX, and IP6K1 (p = 0.12, hypergeometric test). Some of the genes

115  consistently induced at D7 included IGLL1, CD38, ITM2C, TNFRSF17, MZB1, and TXNDC5. We

116  previously identified TNFRSF17, B cell maturation antigen, as induced seven days following influenza
117  vaccination (26), and it was also identified as a predictive marker gene of antibody response to multiple

118  vaccines including influenza, meningococcal conjugate (MCV4), and yellow fever (YF17D) vaccines (11,
119 23, 27-29). Consistent with the individual season analysis, the majority of genes identified by the meta-
120  analysis were altered at D28; these D28 DEGs included DUSP1, DUSP2, and CCL3L3, identified in the
121  single-season analysis, and many other downregulated genes including /LB, CCL3, and JAK1. Thus,
122  there are consistent changes identified across all seasons in young adults at every time point measured.
123

124 In older adults, we identified 125 genes with significantly altered expression at D28, but no genes with
125  significantly altered expression at D2 or D7 (SI File 5). The most significantly increased gene at D28 is
126  XRNI, the primary 5’ to 3’ cytoplasmic exonuclease involved in mRNA degradation (30). XRNI plays a
127  critical role in the control of RNA stability in general, but in addition appears to regulate the response to
128  viral infection at several levels—for example, by targeting viral RNAs for degradation (31), or regulating
129  levels of potential activating ligands such as double-stranded RNA (32). Notably, XRN1 has also been
130  reported to facilitate replication of influenza and other viruses by inhibiting host gene expression (33, 34)
131 - suggesting that dysregulated expression of XRN/ in older adults could influence host response to

132  vaccination. We identified 3 genes shared between both age groups: ARRDC3 and USP30 were

133  downregulated while TNPO1 was upregulated, all at D28. ARRDC3 encodes a member of the arrestin
134  protein family which regulates G protein-mediated signaling and is implicated in regulating metabolism
135  (35). USP30 is a ubiquitin-specific protease that acts as a mitochondrial deubiquitinating enzyme (36).
136  TNPOI encodes Transportin-1 that serves to import proteins into the nucleus (37). The effect sizes of all
137  genes at D28 were positively correlated between young and older adults with weak positive associations
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138  at D2 and D7 (Fig. 3). These results provide additional evidence that transcriptional changes are broadly
139  similar in young and older adults at D28 post-vaccine.

140

141 We carried out a gene set level meta-analysis using QuSAGE to combine probability density estimates of
142  gene module activity for each season (38). We identified 186 BTMs significantly altered post-vaccination
143  across five seasons (FDR < 0.05; ST File 4). The module with the largest increase in activity was plasma
144  cells, immunoglobulins (M156.1) which peaked on D7 with a combined fold change of 1.17 in young
145  adults and 1.08 in older adults at D7. Most BTMs showing significant changes were identified in young
146  adults and, unlike the individual gene level, there was a large overlap between sets at each time point,
147  suggesting the same module changes were sustained over the 28 days following vaccination (SI Appendix,
148  Fig. S4A). Indeed, a heatmap of module activity shows that in young adults, transcriptional changes

149  continued to intensify at D28 for many modules rather than returning to the baseline state (SI Appendix,
150  Fig. S6). Older adults showed a qualitatively similar pattern to young adults on D2 and D28, but not D7.
151 The majority (40/59) of the modules significantly altered in older adults on D28 were also significantly
152  altered in young adults at D28 (SI Appendix, Fig. S4A). The modules downregulated on D28 in both

153  young and older adults were annotated with antigen processing and presentation (M95.0, M95.1, M28,
154  M71,M200, M5.0) and T cell activation (M36, M44, M52). The modules upregulated on D28 included
155  golgi membrane (Il) (M237), enriched in DNA interacting proteins (M182), and chaperonin mediated
156  protein folding (I, 11) (M204.0, M204.1). Taken together, the high correlation between individual gene
157  changes and overlap of many BTMs suggest a convergence toward a common transcriptional program in
158  young and older adults at D28.

159

160  Age-Associated Genes are Induced 7 Days Post-Vaccination

161

162 A meta-analysis across all five seasons revealed markedly different baseline transcriptional profiles in
163  young vs. older adults, with 1,072 genes significantly altered (FDR < 0.05, ST File 6). Of these age-

164  associated genes, 204 genes were also significantly induced by the vaccine in young adults and 125 genes
165  in older adults. We tested whether age-associated genes were enriched for vaccine-induced genes at each
166  time point and found that the overlap was significantly more than expected by chance for the 6 age-

167  associated genes induced on D7 in young adults (p = 0.017, hypergeometric test). Of these 6 overlapping
168  genes, 5 genes (ITM2C, MZB1, IGLLI, TNFRSF17, and TYNDCS5) exhibited decreased basal expression
169  in older adults while 1 (SELENOS) exhibited increased basal expression compared to young adults. While
170  these genes were induced in young adults, they were not significantly induced in older adults on D7.

171  Notably, MZBI and TNFRSF17 are B cell associated genes, suggesting that older adults have decreased B
172 cell activity pre-vaccination and fail to induce the same B cell response as young adults at D7. SELENOS
173  encodes selenoprotein S, which is involved in degrading misfolded endoplasmic reticulum (ER) proteins
174  and influences inflammation via the ER stress response (39, 40). Our results show that age-associated
175  genes are significantly over-represented in the set of genes altered in young adults 7 days post-

176  vaccination.

177

178  We next performed a meta-analysis of BTMs between age groups at baseline and identified 120 modules
179  significantly altered with age (FDR < 0.05, SI File 7). Most of the modules that were decreased with age
180  were associated with adaptive immunity, whereas those that had increased expression with age were

181  mostly innate and inflammatory modules (reflecting age-associated inflammatory dysregulation; S/
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182  Appendix, Fig. S7B). Of these 120 modules, 52 were also significantly altered post-vaccination; however,
183  the overlap at each time point was not significantly more than expected by chance (hypergeometric p >
184  0.05, SI Appendix, Fig. STA). Thus, age-related genes are enriched among the genes induced at D7 in
185  young adults while no gene modules were significantly over-represented.

186

187  Post-Vaccination Predictors of Antibody Response

188

189  We next asked whether any transcriptional changes post-vaccination could discriminate high antibody
190  responders (HR) from low antibody responders (LR). Regularized logistic regression models with an L1
191 (Lasso) or L1 and L2 (Elastic Net) penalties were fit to identify genes predictive of antibody response. In
192  addition, to identify biologically interpretable predictors we used the Logistic Multiple Network-

193  constrained Regression (LogMiNeR) framework (26) that facilitates the generation of predictive models
194  with improved biological interpretability over standard methods. We combined the fold changes in gene
195  expression data post-vaccination from five seasons and trained LogMiNeR to predict HR vs. LR in young
196  and older cohorts separately (SI Appendix). At each time point, models were trained on all five seasons of
197  data (except for D2, which was not available in the 2010 season; see Methods). Publicly-available data
198  sets from independent groups were used to validate the models. For the models built from expression

199  changes at D2 or D28, no studies at identical time-points were available, so we attempted to validate these
200  models on studies with similar time points (day 1 or 3 in (11) and day 14 in (13)). While we could build
201  predictive models on our data (median AUC > 0.75) they did not validate on other data sets at the

202  (different) time points available (median AUC < 0.55).

203

204  For D7 post-vaccine, direct validation data were available in independent datasets. In young adults, D7
205  models were predictive for HR in the discovery and validation (11) datasets (Fig. 4A). Another MAP
206  kinase phosphatase acting on ERK1/2, DUSPS5, was one of 37 genes selected by the Lasso model whose
207  expression was increased in HR (Fig. 4C). DUSPYS is expressed in multiple immune cell types such as B
208  cells (including plasma cells), T cells, dendritic cells, macrophages and eosinophils (41). In murine T
209  cells, DUSPS5 appears to promote the development of short-lived effector CD8+ T cells and inhibit

210  memory precursor effector cell generation in an LCMV infection model (42); while optimizing memory
211 precursor cell generation would be the goal of vaccination, the upregulation of DUSPS5 in HR could

212  reflect regulation of the balance between short-lived vs. memory precursor effector CD8+ T cells. A

213  sensitivity analysis of the maxRBA cutoff shows that the average expression of predictive genes is

214  consistent across a range of definitions for HR and LR (20" — 40™ percentile; SI Appendix, Fig. S2C-D).
215  Using LogMiNeR, the models were consistently enriched for the B Cell signature as well as the KEGG
216  chemokine signaling pathway (SI File 8).

217

218  In older adults, models predicting antibody responses built from D7 gene expression were highly

219  predictive in the discovery dataset but did not validate on an independent dataset (13) (Fig. 4B, D).

220  Expression of the Solute Carrier Family 25 gene SLC25420 of mitochondrial transporters contribute to
221  predicting HR vs. LR in older adults. SLC25A20 is the carrier for carnitine and acylcarinitine (43), and so
222 would be expected to be crucial for the transport of fatty acids into mitochondria. The models of response
223  in older adults were significantly enriched for several BTMs of monocyte signatures as well as TLR and
224  Inflammatory Signaling (M16), which positively predicted vaccine response; together with previous

225  studies linking age-associated impairments in TLR function to influenza vaccine antibody response (44,
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226  45), these findings provide additional support for the crucial role of innate immune function in

227  vaccination (SI File §8).

228

229  Notably, none of the models built in young adults at any time point are predictive in older adults (AUC <
230  0.5). In fact, models built on transcriptional changes at D28 in young adults had a median AUC near 0.8
231 in young adults, but no more than 0.3 in older adults, suggesting that the same genes predictive of HR in
232  young adults predicted LR in older adults (S7 Appendix,; Fig. S8E). The Lasso models making these

233  predictions often chose a single gene, Killer Cell Lectin Like Receptor B1 (KLRBI, also known as

234  CDI161), which was driving this inverse pattern (Fig. 4E). KLRBI is an inhibitory receptor on NK cells
235 (46, 47) and is also a biomarker of Th17 cells (48-50). Notably, changes in KLRBI expression in sorted
236  CD4 and CD8 T cells at D28 closely mirrored the changes in PBMCs for young, but not older adults (S/
237  Appendix, Fig. S8A-B). We confirmed this inverse correlation between age groups on a genome-wide
238  scale by performing a meta-analysis comparing HR vs. LR (S7 File 9). We observed a weak negative
239  correlation in effect sizes between young and older adults at D28 (r =-0.27; Fig. 4F). We confirmed this
240  negative correlation in effect sizes between young and older adults using a virus neutralization assay
241 (VNA) in a test sample of blood from seasons 2011 and 2012 (r = -0.32; SI Appendix, Fig. S8D). Thus,
242  expression changes of many genes at D28 have opposing signs between age groups for the effect size
243  comparing HR vs. LR, and a single gene, KLRBI, predicts response with AUC > 0.7 in opposing

244  directions in young vs. older adults.
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247  Post-Vaccination Transcriptional Predictors of Antibody Response. (A and B) Boxplots of the area
248  under the receiver operating characteristic curve (AUROC) in the validation data for Lasso (L 1), Elastic
249  Net (EN), and Logistic Multiple Network-constrained Regression (LogMiNeR) models built from day 7
250  transcriptional changes in young (A) and older (B) adults. 50 iterations of cross-validation were
251  performed. x-labels indicate the prior knowledge network for LogMiNeR (see ST Appendix). (C and D)
252  Heatmaps of Discovery (Disc.) and Validation (Valid.) data showing the z-score of the fold change for
253  individual genes selected by the L1 models in any iteration for young (C) and older (D) adults. (E)
254  Boxplots of KLRBI expression changes in PBMCs 28 days post-vaccination in low responders (LR) and
255  high responders (HR). (F) A scatter plot of the gene effect sizes comparing HR to LR 28 days post-
256  vaccination in young vs older adults. KLRB] is indicated as a gene that has a positive effect size in one
257  age group and negative effect size in the other.
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Baseline Predictors of Antibody Response

We next sought to identify baseline transcriptional predictors of antibody response. In young adults,
LogMiNeR models were predictive above random on discovery and validation (11) (Fig. SA) datasets.
Lasso models included the gene VASHI, known as an angiogenesis inhibitor and mediator of stress
resistance in endothelial cells, which was expressed at lower levels in HRs (Fig. 5C); notably, the KEGG
gene set leukocyte transendothelial migration was significantly enriched in over 50% of the models when
LogMiNeR was used with ImmuNet as prior knowledge (51). Another predictive gene, EIF4E, a
translation initiation factor important in type I interferon production, was decreased in HRs. A sensitivity
analysis of the maxRBA cutoff shows that the average expression of predictive genes is consistent across
a range of definitions for HR and LR (20™ — 40™ percentile; SI Appendix, Fig. S2E-F). Finally, the BTMs
cell adhesion (M51) and B cell surface signature (S2) were consistently enriched in the models (S/ File
8). In older adults, LogMiNeR models were also predictive on the discovery and one validation dataset
(9) (Fig. 5B) but not another (13) (SI Appendix, Fig. S8C). Two of the individual genes that predict
response, ALDHIAI and ALDH3BI, are aldehyde dehydrogenases which metabolize vitamin A to retinoic
acid (Fig. 5D). Recently, aldehyde dehydrogenases were implicated in antiviral innate immunity as
mediators of the interferon response through their role in the biogenesis of retinoic acid (52). Multiple
monocyte gene sets are enriched in the predictive genes, including the BTM enriched in monocytes (1)
(M11.0), which negatively predicts vaccine response (S File 8). Thus, these baseline predictive models
built from five seasons of transcriptional profiling data provide further evidence for functional

distinctions present in subjects prior to vaccination that influence the immunologic response to influenza
vaccine in young and older adults.
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Baseline Transcriptional Predictors of Antibody Response. (A and B) Boxplots of the area under the
receiver operating characteristic curve (AUROC) in the validation data for Lasso (L1), Elastic Net (EN),
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288  and Logistic Multiple Network-constrained Regression (LogMiNeR) models built from baseline (pre-
289  vaccination) transcriptional profiles in young (A) and older (B) adults (9). 50 iterations of cross-validation
290  were performed. x-labels indicate the prior knowledge network for LogMiNeR (see ST Appendix). (C and
291 D) Heatmaps of Discovery (Disc.) and Validation (Valid.) data showing the z-score of the fold change for
292  individual genes selected by the L1 models in any iteration for young (C) and older (D) adults.

293

294

295  Behavior of Published Signatures Over Five Seasons

296
297  To link our findings to previously identified influenza vaccine signatures, we performed a comprehensive

298  assessment of the behavior of 1,603 previously published individual gene and gene module signatures in
299  our data set. We manually curated published signatures from studies that carried out transcriptional

300 profiling on adult cohorts after influenza vaccination (9, 11, 13, 15, 27, 53). We further limited the

301  signatures to shared time points post-vaccination. This set of findings describe 935 response-associated
302  and 653 temporal signatures in B cells and PBMCs as well as 15 age-associated signatures (S7 File 10).
303

304  Most of the previously published signatures we validated in our data were single genes induced 7 days
305  post-vaccination in PBMCs or B cells (SI Appendix, Fig. S9). Of the 135 signatures that showed

306  significant differential expression (p < 0.001), 103 changed in the same direction as the published

307  signature. In PBMCs we validated 26 D7 vaccine-induced genes including four genes independently
308  discovered in our meta-analysis: CD38, ITM2C, TNFRSF17, and SPATS?2 (SI Appendix, Fig. S9B) (11).
309 (D38 is upregulated on the surface of antibody secreting cells, and TNFRSF17, or B cell maturation
310  antigen (BCMA) is a receptor for B cell activating factor (BAFF) expressed on memory B cells and

311 plasma cells (54). Notably, validated vaccine-induced genes in B cells include several associated with
312  mitochondrial function whose expression was upregulated at Day 7, including UQCRQ (ubiquinol

313  cytochrome ¢ reductase, complex III, subunit VII), ME2 (NAD-dependent malic enzyme), TAL

314  (transaldolase 1), and GLDC (glycine decarboxylase) (SI Appendix, Fig. S9A). We validated several
315  modules significantly associated with antibody response at baseline in young and older adults (S7

316  Appendix, Fig. S9D) (13). Of these modules, one positively associated with antibody response (enriched
317  in B cells (I) (M47.0)) is enriched in our baseline predictive model of young adults and three negatively
318  associated with antibody response are enriched in our baseline predictive model of older adults (Monocyte
319  surface signature (S4), myeloid cell enriched receptors and transporters (M4.3), enriched in monocytes
320  (1I) (M11.0)). Interestingly, these latter three modules are also enriched in predictive models of HR vs LR
321 from D7 fold changes. Finally, there are seven validated single genes whose fold change at D7 is

322  positively associated with antibody response in young adults (ST Appendix, Fig. S9C) (11). One of these
323  genes, HSP90BI, or gp96 — an ER-based chaperone protein implicated in innate and adaptive immune
324  function — is also selected as a predictive gene of antibody response (55, 56).

325

326 Discussion

327

328  This study is the first to evaluate the transcriptomic response to influenza vaccination in young and older
329  adults in five consecutive vaccine seasons with three different vaccine compositions. We sought to

330  address whether common signatures of vaccine response or transcriptional predictors of antibody

331  response could be elucidated despite differences in seasonal vaccine composition.

11
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332

333  To adjust for the inverse relationship between baseline antibody titers and vaccine-induced antibody

334  production, we developed a novel vaccine response endpoint, maxRBA, to automatically correct for

335  variation in baseline titers; this allowed us to demonstrate an age-associated decrease in antibody response
336  in gender-matched participants. Comparing the transcriptional profiles across five seasons revealed

337  substantial seasonal variability in both the magnitude as well as direction of response. For example, the
338  vaccines administered in the 2010 and 2011 seasons elicited large changes in gene expression, but no
339  statistically significant DEGs were found in the 2014 season despite a comparable sample size.

340  Potentially, the large transcriptional changes observed in 2010 and 2011 could reflect the introduction of
341  the A/California/7/2009 viral pandemic strain to the seasonal vaccine (as well as a change in the H3N2
342  vaccine strain beginning in 2010—the only year of the five studied when both influenza A strains

343  changed). Notably, a principal component analysis revealed similar vaccine-induced signatures in the
344 2011 and 2014 seasons and in the 2012 and 2013 seasons. The similarities between the 2011 and 2014
345  seasons are intriguing because in both seasons the composition of the vaccine was identical to that in the
346  preceding year, perhaps suggesting that these gene signatures reflect a relatively recent recall response. In
347  contrast, the 2012 and 2013 vaccines each contained two strains which had not been present in the

348  previous year’s vaccine. We did not observe the same trends in older adults; nonetheless, our results

349  indicate that changes in vaccine composition, influencing factors such as vaccine strain immunogenicity
350  and the effects of previous vaccination or infection, can alter the transcriptional response to influenza
351  immunization.

352

353  Despite substantial inter-season variability, we identified shared vaccine-induced signatures in both young
354  and older adults at D28. We expected D28 expression profiles to be similar to baseline; however, there
355  were numerous transcriptional changes at D28 that were consistent across seasons with different vaccine
356  compositions. Some of the most significant changes identified from single-season differential expression
357  analysis in four out of five seasons were in DUSPI, DUSP2, and CCL3L3; moreover, DUSP2 expression
358  was also decreased in sorted CD4+ and CD8+ T cells from both young and older adults at D28. It is

359  notable that a basal age-related alteration in phosphorylation of DUSP1, a negative regulator of IL-10
360  production, was associated with increased expression of IL-10 in monocytes from older adults (seen pre-
361  and post-influenza vaccination) (57) and that increased DUSP6 expression was associated with impaired
362 T cell receptor signaling in CD4+ T cells from older adults (58). These results emphasize the importance
363  of modulation of MAP kinase function, such as through phosphatases of the DUSP family, in the

364  regulation of influenza vaccine response. Surprisingly, early response signatures at D2 and D7 post-

365  vaccination were not as consistent across seasons as D28 signatures in a meta-analysis of genes and gene
366  modules. One potential hypothesis that explains this observation is that temporal variations in early

367  responses across seasons were not captured at the time points used, and that responses at D28 are less
368  variable, and thus were captured in every season. It is possible that this common transcriptional program
369  at D28 reflects a convergence towards resolution of the vaccine response in both young and older adults.
370  However, a substantial number of BTMs showed upregulated activity at D28 without evidence of

371  resolution to baseline, particularly in young adults; notably, we previously found evidence of enhanced
372  TNF-alpha and IL-6 production in monocytes 28 days post-influenza immunization (57) that was blunted
373  in monocytes from older adults. Thus, it remains possible that the transcriptional signature we observed

374  also reflects elements of an ongoing immune activated state several weeks after vaccination.
375

12
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376  We built predictive models of antibody response from post-vaccination transcriptional responses which
377  were successfully validated in an independent cohort of young adults. Although transcriptional changes
378  were correlated between age groups at D28, models of antibody response built in young adults did not
379  validate in older adults. Strikingly, we identified a genome-wide inverse correlation between the effect
380  size of genes discriminating HR and LR at D28 and confirmed this finding with both HAI and VNA

381 titers. A similar inverse correlation related to age was recently reported using baseline (D0) gene

382  expression signatures (15). We identified a single gene, KLRB1, whose expression alone predicted

383  response in both age groups but in opposite directions. In young adults, changes in KLRB1 expression
384  were also observed in sorted CD4 and CDS8 T cells, perhaps reflecting the finding that KLRB1 expression
385 s increased in populations of memory T cells (59). Furthermore, KLRBI™ CD8+ T cells are self-renewing
386  memory cells that are able to reconstitute the memory T cell pool after chemotherapy (60). Thus, KLRB1
387  induction in young adults may reflect an increase in memory T cell populations. In older adults, these
388  expression patterns were not observed in sorted T cells, implying that KLRBI expression in another cell
389  type, perhaps NK cells or Th17 cells, was the basis for the predictive performance.

390

391  We also built and validated predictive models of antibody response in young and older adults from DO
392  gene expression data. One of the predictive genes in young adults, VASH, showed evidence of genetic
393  regulation of gene expression in a previous study of influenza vaccination, suggesting that genotype may
394  have predictive power to explain the antibody response (8). Leukocyte migration and a B cell surface
395  signature were enriched in the predictive models. This is consistent with a recently reported meta-analysis
396  which included baseline transcriptional profiles from the 2010, 2011, and 2012 seasons of the present
397  study and validated a temporally stable B cell receptor signaling gene module that positively predicted
398  response at baseline (15). While the B cell surface signature (S2) module we identified was not the same
399  one identified in the previous study, our findings further support the implication of B cell transcriptional
400  signatures as pre-vaccine biomarkers of antibody response in young adults. In older adults, we

401  incorporated prior knowledge on gene coexpression using LogMiNeR to identify monocyte signatures
402  which were enriched in the predictive models and were negatively associated with antibody response. Our
403  model validated on one older adult cohort (9) but not another (13); this may reflect substantial variability
404  in cohorts of older adults, which would be expected to be more heterogeneous in terms of comorbid

405  medical conditions or medication use compared to young adults. Finally, we linked our findings to

406  previously identified influenza vaccination signatures by performing a comprehensive assessment of
407 1,603 previously published individual gene and gene module signatures. We present the signatures that
408  validate in any season or a meta-analysis of all seasons of our data to highlight the most consistent set of
409  genes and gene modules associated with vaccination or antibody response in PBMC and B cells.

410

411 In summary, we profiled nearly 300 young and older adults across five vaccination seasons and, despite
412  substantial seasonal variability in vaccine-induced transcriptional signatures, identified a core

413  transcriptional signature shared between seasons and across age groups 28 days post-vaccination. In

414  addition, we defined a new endpoint (maxRBA) to capture antibody response relative to baseline titer and
415  were able to predict response in young and older adults separately using baseline transcriptional profiles.
416  Our results suggest that vaccine composition, in concert with differences in pre-existing immunity and
417  other individual factors, dramatically influences immune response to inactivated influenza vaccination.
418  Furthermore, this work is a step toward understanding the underlying mechanisms of response in older
419  adults which may be beneficial for rationally designing more effective vaccines.
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