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Abstract: Researchers stand to gain insight into complex biological systems by assembling
multiple single-cell RNA-sequencing (SCRNA-seq) studies to reveal a panoramic view of
overarching biological structure. Unfortunately, many existing sScRNA-seq analyses are limited
by sensitivity to study-specific noise patterns, by lack of scalability to large datasets, or by
integrative transformations that obscure biological relevance. We therefore introduce a novel
algorithmic framework that analyzes groups of cells in coexpression space across multiple
resolutions, rather than individual cells in gene expression space, to enable multi-study analysis
with enhanced biological interpretation. We show that our approach reveals the biological
structure spanning multiple, large-scale studies even in the presence of batch effects while
facilitating biological interpretation via network and latent factor analysis. Our coexpression-
based analysis enables an unprecedented view into two complex and dynamic processes—

neuronal development and hematopoiesis—Dby leveraging a total of seven studies containing
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1,460,527 cells from laboratories spanning three continents, yielding systems-level insight

unattainable by any individual experiment. Our work demonstrates a path toward probing highly

complex biological systems from emerging consortium-scale single-cell transcriptomics.
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Introduction

Fundamental biological processes, like neuronal development or hematopoiesis, are of
broad importance but are also highly complex. While researchers can now functionally
interrogate such processes at a high resolution with single cell RNA-sequencing (sScRNA-seq)*,
the underlying biology is often more dynamic and multi-faceted than what can be captured by a
single experiment. Instead, multiple laboratories assay different parts and stages of the process
using many separate SCRNA-seq experiments. A major computational and analytic challenge is
to provide researchers with insight into the full biological landscape of interest (for example,
across the full range of development or differentiation) not previously accessible by any
individual experiment®,

Multi-study scRNA-seq analysis, however, remains challenging for a number of reasons.
Such analysis involves extracting overarching, systems-level insight, but it must do so within a
practical amount of computation. Moreover, biological signal in multi-study analysis is
confounded by study-specific noise patterns. This problem has motivated techniques for
computational batch effect correction®®, but existing approaches integrate experiments using
transformations that obscure the biological relevance of individual data values, making it
difficult for downstream analyses to interpret the transformed result. Existing integrative
algorithms also aim to minimize inter-study variation, thus removing relevant differences that
would otherwise be useful to biological researchers.

To enable robust, consortium-scale sSCRNA-seq analysis, we reasoned that SCRNA-seq
analysis of groups of cells in the gene coexpression space (captures the similarity of gene
expression changes between pairs of genes), rather than single cells in the gene expression space
(focuses on the expression patterns of individual genes), would be a more favorable paradigm.

Coexpression is more robust to experiment-specific noise patterns than gene expression
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measurements; not only are many coexpression measures (for example, Pearson correlation)
robust to affine transformation, some evidence suggests that gene coexpression and information
redundancy underlie cross-study replicability of single-cell experiments*®-8, Coexpression also
provides a rich feature space with directly meaningful values that capture pairwise dependencies
among genes, allowing for graph-theoretic analysis of gene coexpression networks. There is a
wealth of existing literature, developed in both single-cell and bulk settings'®23, for inferring a
coexpression network and determining gene modules within a network. Previous work, however,
has not focused on analyzing the meaningful variation across multiple coexpression networks
over a large biological landscape.

Here we demonstrate that coexpression is a valuable paradigm for consortium-scale
scRNA-seq analysis. We develop a novel algorithmic framework, which we call Coscape, that
constructs a landscape of coexpression variation by piecing together information across multiple
studies and resolutions to capture meaningful changes in complex biological systems. We
leverage our coexpression paradigm to conduct unprecedented meta-analyses of large-scale
scRNA-seq datasets profiling mouse neuronal development and human hematopoiesis. We focus
on these biological systems because they have been extensively profiled across many large-scale
scRNA-seq studies'" which have meaningful developmental differences that we do not wish to
completely remove. We analyze data from laboratories spanning three continents and containing
a total of 1,460,527 high quality cells and uncover rich, systems-level insight into the genes
involved in functions as diverse as neuronal activation, synaptic development, neuronal cell
division, lymphocyte activation, and coagulation. We obtain additional biological validation
from existing literature and from other data modalities including in situ hybridization and protein

interaction networks. We envision that the techniques and ideas outlined here will help enable
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4g analyses that take advantage of a wealth of SCcRNA-seq data generated across diverse biological

29 systems.
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Results

Coexpression-based analysis using pan-resolution clustering

Our coexpression-based analysis is fundamentally based on statistics computed over
groups of cells, rather than individual cells. Coexpression is typically measured by computing a
gene-by-gene correlation matrix over a cluster of cells. Coexpression measurements, however,
may change with clustering resolution'®2* and single cell datasets often have meaningful
multiresolution structure®®. We therefore introduce a strategy that repeatedly clusters a dataset at
multiple resolutions and considers all clusters for downstream analysis (Figure 1a; Methods);
we refer to this strategy as pan-resolution clustering (panclustering). Panclustering ensures that
our algorithm captures coexpression patterns across multiple resolutions, which, as we
demonstrate below, can increase the discovery of gene interactions corroborated by other
biological networks.

Our implementation of panclustering is based on the Louvain community detection
algorithm?%, a common clustering method for sScRNA-seq data. Louvain clustering iteratively
merges cells into cluster “communities” until convergence, which is controlled by a resolution
parameter?’ (higher resolutions tend to increase the number of communities). We obtain many
possible realizations of a Louvain clustering by repeating the algorithm with multiple resolution
parameters and, importantly, also keeping cluster information from each agglomerative iteration
(Figure 1a; Methods). Each cluster defines a single gene-by-gene correlation matrix, on which
we perform an additional sparsification step that sets low correlations to zero to both reduce the
influence of noisy associations and improve computational efficiency (Methods). We choose
Louvain clustering due to its asymptotic efficiency, since its runtime and space usage scales with
the size of the k-nearest neighbor (KNN) graph of cells (i.e., each cell is a node in the graph),

rather than quadratically in the number of cells as in other hierarchical clustering algorithms.
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Each datapoint in the downstream analysis therefore represents a cluster of cells
featurized by coexpression. Importantly, we can then perform analyses like visualizing the KNN
graph of coexpression matrices (which we refer to as the “coexpression landscape™), arranging
the coexpression matrices into a trajectory, and finding common patterns within groups of
similar coexpression matrices via dictionary learning (Figure 1a). We call our overall algorithm
Coscape since it constructs and analyzes the coexpression landscape. Many of the parts of
Coscape have analogous versions within typical analyses of single cells in gene expression space
(Figure 1b), but here we demonstrate that similar lines of thinking can be transferred to pan-
resolution clusters of cells in gene coexpression space. Unlike traditional ScRNA-seq analysis, in
which information is largely separated according to study, Coscape pieces together information
across multiple studies to form a naturally unified landscape (Figure 1c). Such a landscape
becomes especially valuable when researchers seek to understand the meaningful biological
changes among different studies (for example, studies assaying different stages of development),
which would be difficult to preserve using traditional integrative methods®° that attempt to

minimize any inter-study variation (Figure 1c).

Unified trajectory of neuronal development across five studies containing 932,301 cells

Given a wealth of scRNA-seq datasets that profile the mouse brain, we first sought to
determine if coexpression would be robust to combining data across diverse studies to construct
a picture of neuronal development at an unprecedented scale. We applied Coscape to five large-
scale, published scRNA-seq studies of mouse neurons spanning multiple timepoints during
development from embryo to adult. The first study* used sci-RNA-seq3 to profile 562,272 cells
representing the neural tube and notochord collected at day-length intervals from a 9.5-day-old
embryo (E9.5) through E13.5; the second® used Drop-seq and 10x Chromium v2 to profile

50,363 cortical neurons from late embryonic (E13.5 - E14.5) and P10; the third? used Microwell
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9s  Seq to profile 10,796 cells across three developmental timepoints representing embryonic

99 (E14.5), neonatal (1-day-postnatal, or P1), and adult (P56); the fourth* used 10x Chromium v1 to
100 profile 101,213 neurons from multiple adolescent timepoints from P12 through P27 and from a
101 P60 adult; and the fifth® used Drop-seq to profile 207,657 neurons from P60 through P70 adults.
102 This data was generated by laboratories spanning both United States coasts and three continents
103 using diverse scRNA-seq platforms and in total profiled more than 150 individual mice.

104 When we visualize the coexpression landscape formed by the KNN graph in which each
105 node is a pan-resolution cluster, the graphical topology naturally arranges according to biological
106 age (Figure 2a,b) rather than study-specific structure. Our visualization method is based on the
107 ForceAtlas2 algorithm?, which learns a force-directed embedding of the KNN graph. Then,

108 analogous to assigning pseudotimes to cells in gene expression space, we can likewise run a

109 diffusion-based pseudotime (DPT) algorithm?® within the coexpression landscape. We quantify
110 the clear visual age-dependent structure by running a DPT algorithm using the cluster with the
111 lowest average age as the root of the diffusion process (Figure 2c,d). Pseudotimes assigned to
112 pan-resolution clusters in coexpression space were substantially more correlated with biological
113 age than to clusters in gene expression space with or without integration (Figure 2c;

114 Supplementary Fig. 1).

115 If instead we use gene expression to learn two-dimensional visualizations of these

116 datasets, either by plotting the cells themselves or by plotting pan-resolution clusters using

117 average gene expression, the datapoints show large amounts of structure corresponding to both
118 study of origin and neuronal subclusters, without conveying any continuous developmental

119 structure (Supplementary Fig. 1). Study-specific and subcluster-specific structure is also present
120 after applying existing integrative algorithms based on mutual nearest neighbors matching®

121 (Scanorama) or on learning a latent space parameterized by a variational autoencoder** (scVI)
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122 (Supplementary Fig. 1); these methods are representative of many others also based on nearest
123 neighbors matching*®*2 or on learning a joint latent space™'®. Visualization and analysis that
124 conveys such structure is not necessarily undesirable and may be useful in many cases,

125 especially when analysis is limited to a single SCRNA-seq experiment. However, in cases when
126 we seek higher order, systems-level patterns spanning multiple datasets, such as those generated
127 across a consortium of institutions, we find that coexpression provides a naturally unified and

128 much more advantageous space.

129 Interpretation of coexpression landscape yields insight into neuronal development

130 A notable advantage of analysis in coexpression space is our ability to gain systems-level
131 insight into processes occurring throughout neuronal development from embryo to adult. Like
132 methods for clustering cells in the gene expression setting, we can facilitate interpretation by

133 clustering coexpression matrices that share similar structure and analyzing each cluster’s unique,
134 representative patterns. We leverage a technique known as dictionary learning to discover

135 consistent patterns across many coexpression networks. Dictionary learning across covariance
136 matrices has been successfully applied to diverse problems, including information retrieval®® and
137 functional brain profiling®!, and can be naturally extended to single cell coexpression. Dictionary
138 learning is distinct from but analogous to methods like nonnegative matrix factorization (NMF)
139 for finding the components underlying a set of gene expression profiles. In our dictionary

140 learning setup, we represent each pan-resolution cluster as a sparse weighted sum of a few

141 underlying coexpression matrices, or “dictionary entries,” each of which represents important

142 patterns reproduced across many coexpression matrices. We found that only six basis

143 coexpression matrices were required to achieve good reconstruction error of the full set of pan-

144 resolution coexpression matrices (Methods). These basis coexpression matrices can also be
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145 interpreted as networks with genes as nodes and edges between genes with nonzero

146 Coexpression.

147 As a first interpretative step, we looked at genes involved in edges unique to each of the
148 six basis networks; analogous to “marker gene” analysis in expression space, we can refer to this
149 as “marker edge” analysis in coexpression space. We then looked for significant gene ontology
150 (GO) process enrichments® within the set of genes involved in marker edges for a particular
151 dictionary entry, using a background set of all genes considered in our coexpression analysis
152 (around two thousand highly variable genes; Methods). Within the embryonic portion of the
153 coexpression landscape (Figure 2e), we observe differentiation and developmental processes
154 like synapse organization (GO:0050808, hypergeometric test P = 9.2e-7), regulation of nervous
155 system development (GO:0051960, P = 5.5e-6), and cell fate determination (GO:0001709, P =
156 1.6e-4). Late-fetal and early-postnatal development (Figure 2f,g) includes more growth-related
157 processes including neuron projection development (GO:0031175, P = 3.4e-6) and mitotic cell
158 cycle (GO:0000278, P = 4.5e-4). The adolescent and adult stages (Figure 2h; Supplementary
159 Fig. 2) are enriched for a more diverse set of processes relative to the earlier stages, which

160 includes cellular homeostasis (GO:0048878, P = 1.7e-5) and regulation of amyloid-f formation
161 (G0O:1902003, P = 3.9¢e-5).

162 We sought to further characterize our coexpression networks by scoring genes on their
163 betweenness centrality, which is a general measure of node importance based on the number of
164 shortest paths containing a particular node, in each of the basis coexpression networks®?

165 (Methods). High betweenness genes of note include Bmp4 (dictionary entry 1, fetal), an

166 important neural stem cell morphogen®*; Cbin1 (dictionary entry 1, fetal), an important gene in
167 synaptic formation3®; Corola (dictionary entry 2, fetal/neonatal) and Snhg11 (dictionary entry 3,

168 fetal/neonatal), both involved in axon growth®®37; and Htr2c (dictionary entry 4,
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169 adolescent/adult), which encodes the serotonin receptor (Figure 2e-h). These high-betweenness
170 genes are more likely to be centrally located within the coexpression network or be involved in
171 multiple gene modules; we also note that many other possible node and edge centrality measures
172 can be applied to these networks to yield additional insights. We can also look at gene expression
173 that is strongly associated with diffusion pseudotime in the coexpression landscape. The gene

174 with the strongest positive correlation between expression and development is Fos (Spearman

175 correlation of 0.75; n = 2,380 pan-resolution clusters), which encodes a well-known marker of
176 neuronal activity®®; the gene with the strongest negative correlation is Eomes (Spearman

177 correlation of -0.51; n = 2,380 pan-resolution clusters), which encodes an important transcription
178 factor in early neurogenesis®® (Figure 3; Supplementary Data).

179 We found additional validation for the genes that had the strongest correlation with

150 developmental pseudotime by using the Allen Developing Mouse Brain Atlas (ADMBA),

181 which spatially locates the expression of around 2000 genes using in situ hybridization (ISH)

182 experiments. Genes with the strongest associations with developmental pseudotime in our

183 unified coexpression landscape also showed strong developmental changes in ISH-quantified

184 transcriptional intensity in the expected direction, i.e., increasing or decreasing with development
185 (Figure 3). Interestingly, for genes with increased expression over development, we observed

186 earlier developmental expression in our sScRNA-seg-based analysis than in the ISH data;

187 conversely, for genes that decrease, we observed more persistent expression later in development
188 in the scCRNA-seq data than in the ISH data. Our analysis also reveals genes strongly associated
189 with development, such as Thrsp, Isg15, and Top2a (Spearman correlation of 0.65, 0.55, and -
190 0.42, respectively; n = 2,380 pan-resolution clusters), that the ADMBA did not include in their

191 list of assayed genes but may be important to include in future developmental studies. We make
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192 these correlations available as Supplementary Data, which may be of further interest to

193 developmental biologists.

194 Two important parameters control the amount of information considered in our analysis
195 and can be thought of as “smoothing” parameters. The first is the correlation cutoff parameter
196 that controls the amount of sparsity in the underlying correlation matrices; lower values include
197 more information in the analysis but may also introduce noisy associations and can greatly

198 increase the computational burden. The second is the number of nearest neighbors to consider
199 when building the graph representing the coexpression landscape, which impacts both

200 visualization and diffusion pseudotime; considering more nearest neighbors results in a smoother
201 trajectory. While we do introduce some smoothing into our analysis, the studies are consistently
202 arranged according to their developmental order even as these parameters vary (Supplementary
203 Fig. 3). We also observed that neither the sparsity nor size of the pan-resolution clusters was

204 strongly correlated with coexpression landscape structure, as quantified by diffusion pseudotime
205 (Spearman correlation of 0.38 and 0.19, respectively, compared to 0.80 for developmental age; n
206 = 2,380 pan-resolution clusters), and changes to sparsity did not substantially affect the structure

207 of our developmental landscape (Supplementary Fig. 3).

208 Coexpression-based developmental trajectories yields insight into hematopoiesis

209 We next sought to demonstrate the broad applicability of Coscape to other complex

210 biological phenomena besides neuronal development. To this end, we analyzed the coexpression

211 landscape of three large-scale hematopoietic datasets: 240,898 cells from bone marrow and

212 158,639 cells from cord blood, both generated by the Human Cell Atlas’, and 128,689 peripheral

213 blood mononuclear cells (PBMCs)®. From these tissues, we expect to observe cells at most stages
214 of hematopoiesis*! including hematopoietic stem cells and erythroid progenitors, mostly in the

215 bone marrow and cord blood, to more mature lymphocytes and myeloid cells, mostly as PBMCs.
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216 A large number of the PBMCs underwent fluorescence activated cell sorting (FACS)

217 prior to sScCRNA-seq, giving us experimentally-determined proteomic labels for a subset of the
218 data. We therefore labeled some clusters as containing a substantial amount of progenitor-

219 associated (CD34%), myeloid-associated (CD14%), and lymphoid-associated (CD4", CD8",

220  CD19*, CD56") cell-surface marker expression (Figure 4, Supplementary Fig. 4); these labels
221 allowed us to see which parts of the coexpression landscape were more associated with

222 progenitor, myeloid, or lymphoid states. We applied the same dictionary-learning procedure

223 (Methods) to the hematopoietic coexpression landscape, yielding four main dictionary entries.
224 The first dictionary entry, which we call the progenitor coexpression network, corresponds to all
225 of the CD34"-labeled clusters and also has high betweenness centrality scores for genes that have
226 been previously implicated in early hematopoiesis including KIAA0101%?, APOE**44, and

227 TIMP3%*. Among the progenitor network-specific genes, the strongest GO enrichments are for
228 processes like regulation of signaling receptor activity (GO:0010469, P = 5.9e-12), extracellular
229 matrix organization (GO:0030198, P = 6.1e-7), and morphogenesis (GO:0048646, P = 3.9e-5).
230 The second dictionary entry, which we call erythropoietic, includes high betweenness genes

231 associated with erythrocytes like HBB*® and some genes associated with megakaryocyte-

232 erythroid progenitors like FCER1A*" and F13A1%. GO process enrichments related to this

233 dictionary entry include negative regulation of hemostasis (GO:1900047, P = 1.1e-8), platelet
234 degranulation (GO:0002576, P = 1.1e-4), and cell cycle (GO:0044843, P = 1.4e-4). The third
235 dictionary entry, which we call lymphopoietic, includes all lymphoid-specific (CD4", CD8",

236 CD19*, CD56") clusters and is significantly enriched for GO processes related to lymphoid

237 activation (G0O:0051249, P = 2.4e-5), cell maturation (GO:0048469, P = 6.9e-7), and immunity
238 (GO:006955, P =9.1e-13). The fourth dictionary entry, which we call myelopoietic, includes the

239 CD14" clusters. High betweenness genes in this entry include the myeloid-specific gene LYZ*°
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240 and significant GO enrichments include immunity (GO:0006955, P = 3.0e-9), coagulation

241 (G0O:0050817, P = 1.8e-5), and response to bacterium (GO:0009617, P = 3.8e-4). We make the
242 full set of dictionary entry gene sets and GO process enrichments available as Supplementary
243 Data.

244 Visualizing the coexpression landscape of the pan-resolution clusters reveals an

245 Organization consistent with the three main branches of hematopoiesis corresponding to

246 erythropoiesis, myelopoiesis, and lymphopoiesis (Figure 4). Such organization has been

247 similarly observed in the gene expression space? and in the chromatin accessibility space of
248 single studies in single tissues, but, importantly, here we instead show a unified hematopoietic
249 landscape across three separate tissues generated by multiple laboratories. When we visualize
250 either pan-resolution clusters or individual cells in gene expression space, we again observe

251 much more substantial study-specific and tissue-specific structure (Supplementary Fig. 5). In
252 contrast, coexpression finds the high-level, cross-dataset structure consistent with cellular

253 differentiation.

254 We also note that we observed lower amounts of erythroid and myeloid cells within the
255 PBMC dataset due to transcriptional quiescence and that, in general, the number of clusters does
256 not necessarily reflect the “true” in vivo proportion of the various cell lineages. However, by

257 combining information across multiple tissues and hundreds of thousands of cells, we are able to

258 obtain a more complete view of the hematopoietic coexpression landscape.

259 Coexpression across pan-resolution clusters has greater correspondence with other known gene-
260  gene associations

261 While coexpression dictionary learning across many pan-resolution clusters highlighted a
262 wealth of biologically relevant genes, we looked to assess if the interactions captured by our

263 analysis also had any additional biological support, as well as if our particular pan-resolution
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264 clustering strategy provided any advantage in uncovering biologically important interactions

265 over simpler baseline techniques. More specifically, because pan-resolution clustering discovers
266 associations across many resolutions which may not be discovered otherwise, we reasoned that
267 our coexpression networks might also have greater overlap with real gene-gene associations.

268 We therefore leveraged an existing strategy?® for determining the functional quality of a
269 coexpression network based on the intuition that a coexpression network with high

270 correspondence to other functional interaction networks also captures more biologically relevant
271 information. We obtained four networks representing protein-protein interactions (PPIs), cellular
272 signaling networks, metabolic pathways, and text-mining cooccurrence (Methods) from

273 Skinnider et al.?. We assessed overlap significance using a standard permutation-based

274 procedure in which the four interaction networks were randomized (while controlling for the

275 degree distribution) to construct the respective null distributions of overlap. We used the union
276 of the dictionary entries learned across pan-resolution clusters as the coexpression network

277 representative of our approach since we wanted to consider any evidence of a real gene-gene

278 interaction throughout our entire analysis. As baselines, we computed (1) the coexpression

279 network from the union of dictionary entries learned across single-resolution clusters and (2) the
280  coexpression network learned by concatenating all cells across all studies (Methods). In all

281 networks, an edge was added if and only if a gene pair had nonzero coexpression.

282 Consistently, across all four networks and both of our large-scale data collections, pan-
283 resolution clustering had higher overlap with other biological networks than the two baselines
284 (Figure 5a,b). We reasoned that this result is due to more discoverable gene-gene interactions
285 (as captured by coexpression) within the pan-resolution setting because coexpression changes in
236 strength with clustering resolution®?4. We also note that this result is not limited to the multi-

287 study integration setting but can, in principle, also increase discovery of coexpressed genes
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288 within a single study. Many gene-gene interactions are discovered via pan-resolution clustering
289 but not by lower resolution methods (Figure 5c¢,d). For example, in the neuronal development
200  (atasets, a coexpression association between Fzd1 and Wnt7b is uniquely found by panclustering
201 with additional support from all four other biological interaction networks; this pair of genes is a
202 part of the canonical Wnt pathway and the particular interaction has been implicated in both

293 neuronal differentiation and amyotrophic lateral sclerosis in mice by previous studies®°2,

204 Coscape is practical for datasets with millions of cells

295 To enable consortium-scale analysis, we designed our algorithm for scalability to large
206 numbers of cells. When designing our pipeline, our algorithmic choices are meant to balance

297 model complexity and scalability. For example, we choose to sparsify our coexpression matrices
208 using a nominal cutoff rather than the memory intensive strategy of preserving dense correlation
299 matrices or the runtime intensive strategy of learning sparse covariance matrices via

300 regularization® (Supplementary Table 1, also see Discussion).

301 We performed all of our analyses in a practical amount of computational time and

302 resources. Our entire coexpression-based procedure, which includes pan-resolution clustering
303 through downstream analysis of the coexpression landscape, analyzes almost a million cells in a
304 little over an hour on a standard cloud instance with 16 cores and a peak memory usage of 93.1
305 gigabytes (GB) (Supplementary Table 2; Methods). Our pipeline has a runtime and memory
306 usage with a close-to-linear asymptotic scaling in the number of cells and a worst-case quadratic
307 asymptotic scaling in the number of features (i.e., genes), but which is efficient in practice by
308 taking advantage of sparsity (Supplementary Table 1). Once the data has been summarized as
309 pan-resolution clusters, further downstream analysis including visualization, pseudotime

310 assignment, and dictionary learning becomes extremely efficient due to the greatly reduced

311 number of datapoints; in the case of mouse neuronal development, analysis is done on just 2,380
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312 pan-resolution clusters instead of 932,301 single-cells. The resource requirements for different

313 stages of our analytic pipeline on the mouse neuronal development analysis are provided in

314 Supplementary Table 2.
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Discussion

Our work shows that researchers can analyze an unprecedented amount of information
across sSCRNA-seq studies by focusing on the coexpression matrix of a group of cells as the
fundamental unit of analysis. Within this coexpression-based paradigm, Coscape introduces
several key procedures: panclustering, which enables us to compute coexpression at multiple
resolutions and reduces the amount of datapoints involved in the analysis; dictionary learning for
identifying common patterns across many coexpression networks; and visualization of the
coexpression landscape via a force-directed embedding of the coexpression matrix nearest-
neighbors graph. Moreover, Coscape favors strong associations reproduced across many
clustering realizations and studies, reducing the influence of noisy outliers.

While a large amount of recent work has focused on techniques for integrating
information across multiple datasets®1%!21% these methods produce embeddings with values that
are not directly interpretable but either only have relative meaning (for example, relative
similarity to other cells in the dataset)®'%1213 or require a nonlinear decoder that transforms the
integrated embedding into some useful statistic***®. While these embeddings and their associated
properties are useful in many contexts, reasoning about particular integrative decisions made by
these algorithms, in particular in the case of over- or under-correction®, is very difficult when the
final embedding values are not intrinsically meaningful. In contrast, the value of each dimension
in the coexpression space is simply a bivariate correlation, a fundamental interpretive concept in
biological data analysis. Distant points in coexpression space have fewer gene associations in
common; closer points in coexpression space share more associations.

Another advantage of Coscape is that it naturally summarizes information over groups of
cells and reduces the number of data points to consider (instead of considering all cells in

expression space, analyses need only consider a smaller number of groups of cells in
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339 coexpression space). While the coexpression space may seem cumbersomely quadratic in the

340 number of possible genes (which is usually in the tens of thousands), SCcRNA-seq experiments
241 typically measure only around one or two thousand genes with nontrivial variability®*; moreover,
a2 the number of meaningful correlations is sparse and usually within the same order of magnitude
243 as the number of highly variable genes. Therefore, like data sketching® or summarization?>®

344 algorithms that aim to improve scalability by capturing only the most salient features of a

345 dataset, downstream analysis of coexpression matrices is very efficient, even on millions of cells,
346 because a single coexpression matrix summarizes information across many cells.

347 Our results suggest many directions for future work. Our coexpression matrices are not
a48  positive semidefinite (PSD) for practical reasons, but efficiently learning large numbers of

349 nontrivially sparse PSD matrices with many features is an important direction to consider. If all
350 coexpression matrices are PSD, it may be possible to leverage the distance along the manifold
351 represented by all PSD matrices to get more natural dictionary learning-based decompositions
352 and nearest-neighbor queries (which would also involve designing new techniques for efficient
353 nearest-neighbor search). Scalability to large coexpression matrices also remains a challenge for
354 many approaches. This includes methods that enforce additional constraints within the dictionary
355 learning objective (e.g., basis matrices that are PSD or valid correlation matrices) or methods for
356 analyzing large numbers of coexpression matrices like common principal components analysis®’
357 or other kinds of tensor decomposition®®. Other considerations include exploring alternative

358 methods for measuring coexpression®, learning coexpression modules instead of full networks,
359 inferring causal gene regulatory networks, integrating multimodal interaction data, or exploring
s60  different clustering strategies, pan-resolution or otherwise. A larger question is whether other

361 feature spaces exist that can take advantage of the large amount of biological data measured at

362 single-cell resolution. While we demonstrate that coexpression as an analytic space has many
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363 useful properties including interpretability, robustness, and scalability, other spaces may exist
364 that may work well according to the same criteria.

365 Coscape can also be used to newly probe many other biological systems, including

366 pancreatic islet cells® or lung cells®, that have been or will be deeply profiled using single cell
367 technologies. Reasoning about the relationship between coexpression and other functional

368 measurements of single cells, such as chromatin accessibility or methylation, also remains an
369 important future direction. We believe the algorithms and ideas presented here provide a

370 complementary and highly-informative way for researchers to study biological processes at

s71 single-cell resolution and at multi-institution scale. We make our analysis pipelines and data

372 available at http://coscape.csail.mit.edu.
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373 Methods

374 Mouse neuronal development dataset preprocessing

375 We obtained publicly available datasets from five large-scale, published sScCRNA-seq

376 studies of the mouse brain at different developmental timepoints*=. We used only the cells that
377 passed the filtering steps of each respective study and additionally removed low-complexity or
378 quiescent cells with less than 500 unique genes. For the embryonic dataset from Cao et al., we
379 only considered cells that the study authors had assigned to the “neural tube and notochord”

330 trajectory. For the datasets from Zeisel et al.* and Saunders et al.> we only considered cells that
31 the study authors had labeled as neuronal. We then intersected the genes with the highest

382 variance-to-mean ratio (i.e., dispersion) within each study to obtain a total of around 2000 genes
sg3  that were highly variable across all studies. All studies provided data as digital gene expression
ss4  (DGE) counts, which we further log transform after adding a pseudo-count of 1.

385 Human hematopoiesis dataset preprocessing

386 We obtained publicly available datasets of cord blood and bone marrow cells from the

337 Human Cell Atlas’ (https:/preview.data.humancellatlas.org/) and PBMCs from Zheng et al.®

388 (https://support.10xgenomics.com/single-cell-gene-expression/datasets). We removed cells with

39 less than 500 unique genes; we also noticed a large number of cells with high percentages of
390  ribosomal transcripts, which may indicate nontrivial amounts of ambient ribosomal RNA

391 contamination during the ScRNA-seq experiment, so we only included cells with less than 50%
392 ribosomal transcripts in further analysis. As in the mouse neuronal dataset, we intersected the
393 genes with the highest dispersions within each study to obtain a total of around 2000 genes that
394 were highly variable across all studies. All studies provided data as digital gene expression

395 (DGE) counts, which we further log transform after adding a pseudo-count of 1.

396 Pan-resolution clustering
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397 We modify the Louvain clustering algorithm?®2? (implemented at

398 https://github.com/vtraag/louvain-igraph) to store community information at each iteration. To

399 capture a range of potential clustering results, we rerun the Louvain clustering algorithm at a

400 diverse range of clustering resolutions (0.1, 1, and 10), storing the hierarchical cluster

401 information for each run. The three runs of Louvain clustering are done in parallel and we cluster
402 each study individually. To reduce the effect of noisy correlations, we consider clusters with a
403 minimum of 500 cells, which, combined with highly variable gene filtering (described below),
404 reduces the chance that a strong correlation is due to a few outlier cells.

405 Computing coexpression matrices

406 We compute the Pearson correlation matrix R® € [—1,1]"*M for each of the pan-

207 resolution clusters obtained as described above, where i € [N] with N denoting the number of
408 pan-resolution clusters and M denoting the number of highly variable genes. The entry R(lb at

4209 row a and column b of R®, corresponding to the a™ and b™ genes, takes the value

—A\2
a® a(l)) >0and\/2 b bm) >0

. (L)
R = {7

410
0 otherwme,

41 where r® M, (aP-a®)(b9-50)

ab _ is the Pearson correlation coefficient, and a® =
\/Z (L) _g® \/ZM (l) b(‘))

412 %29”:1 aj(i) and p® = % M bj(i) are the respective mean expressions. 1 € [0, 1] is a

413 sparsification parameter that sets low correlations to zero and can be interpreted as a smoothing
414 parameter that preserves only the most important associations. Low values of this parameter can
415 introduce additional structure into the analysis, but may also introduce larger amounts of noise
416 (see Supplementary Fig. 3).

417 Visualization and diffusion pseudotime analysis of pan-resolution clusters
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418 To visualize the coexpression landscape defined by the pan-resolution clusters, the

49 symmetric correlation matrices R® € [—1, 1]M*M are treated as vectors r® € [—1, 1](2)* on
420 which we construct the k-nearest neighbors graph using the Euclidean distance in coexpression
421 space as the distance metric. This graph was visualized with a force-directed embedding using

422 the ForceAtlas2 algorithm (https://github.com/bhargavchippada/forceatlas2). For the mouse

223 neuronal development analysis, a diffusion pseudotime (DPT) algorithm?® was applied to this

424 graph using the pan-resolution cluster with the earlies average age as the root. Larger values of k
425 can also increase the amount of smoothing of the structure captured by the k-nearest-neighbors
426 graph and subsequent visualization and DPT analysis (see Supplementary Fig. 3). We used

227 implementation in Scanpy®® (https:/scanpy.readthedocs.io/en/stable/) for the k-nearest neighbors

428 graph construction and DPT analysis.

429 We also visualized pan-resolution clusters in gene expression space, Scanorama-

230 corrected expression space®, and scVI-integrated latent space'®. To summarize features across
431 multiple cells into a single feature vector for each pan-resolution cluster, we use a geometric

432 mean
433 a = exp {Cilzjc‘:l log (a]@ + 1)}/(0%2?21[%@] + 1)

234 of the aM gene in pan-resolution cluster i with C; cells, which is the same summarization strategy
235 used by the MetaCell algorithm®®. We similarly constructed the k-nearest-neighbors graph with
436 pan-resolution clusters as nodes and Euclidean distance between the summarized gene

437 expression values as the distance metric.

438 Coexpression matrix dictionary learning

439 We formulated the dictionary learning problem for coexpression matrices by optimizing
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440 argmin {Z”r(‘) — Vu(‘)” + a”u(‘)”
u® My
441 subject to ||v]||2 = 1forall j € []

12 where u® € R, is a sparse code of weights for pan-resolution cluster i, « is a sparsity-

M
423 controlling parameter, V = [v1 eV Vx] € Rgg)mw is a dictionary of k (vectorized)

424 coexpression matrices, and k is a user-defined parameter indicating the number of dictionary

425 entries to learn. We used an iterative optimization algorithm that alternatively estimated

246 dictionary weights and dictionary entries using a least angle regression-based procedure®? until
427 convergence. We tune k by plotting the objective function error versus values of k and manually
428 selecting a value after which there are relatively smaller drops in objective function values, a

449 parameter selection procedure often referred to as the “elbow method.”

450 Interpretation of dictionary entries

451 We can interpret each dictionary entry v; as a coexpression network in which genes are
452 nodes and elements of v; define edge weights between those genes. We identify important genes
453 using statistics such as betweenness centrality®®, which is the sum of the fraction of all-pairs

254 shortest paths that pass through some node. We use the networkx Python package®* to compute
455 various graph statistics. Using genes that are involved in edges that are unigue to a given

456 coexpression network, we look for gene ontology (GO) process enrichments using a background
457 set of all highly variable genes considered in the analysis, for which P-values can be computed
458 using a hypergeometric null model. We use the GOrilla webtool (http://cbl-

50 gorilla.cs.technion.ac.il/)®? with default parameters, which reports all enrichments more

460 significant than a nominal value of 1e-3. We use the REVIGO webtool (http://revigo.irb.hr/) with

461 default parameters, which consolidates similar GO terms and visualizes terms in a two-
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262 dimensional “semantic space” that places similar terms closer together®®. We limit analysis to

463 patterns that are reproducible across many clusters and only consider dictionary entries that have
464 nonzero weights in at least ten pan-resolution clusters.

465 Gene interaction network overlap analysis

466 We obtained four “target” gene-gene interaction networks from Skinnider et al. (2019)%3,
467 who processed interaction data from databases of PPIs, cellular signaling networks, metabolic
468 pathways, and text mining cooccurrences. We computed the significance of overlap with

469 coexpression networks as described in Skinnider et al. Each of the four networks was permuted
470 to form a random graph using edge swaps to preserve the degree distribution. The number of

471 edge swaps was ten-times the number of edges in each network. We obtained 100 random graphs
472 for each of the four target interaction networks. We constructed four coexpression networks: the
473 first was computed by intersecting the dictionary entries learned across pan-resolution clusters,
474 as described above; the second and third were computed by intersecting dictionary entries

475 learned across a single-resolution clustering (Louvain resolution parameter of 10 or 1) of the

476 underlying data, using the same number of dictionary entries as in the panclustering analysis; and
477 the fourth was computed as the gene-gene Pearson correlation matrix across all cells in the full
478 dataset. For comparison with our method, all correlations that had an absolute value under 0.7
479 were set to zero. The number of overlapping edges between a coexpression network and a target
480 graph was compared to a null distribution over the random graphs, which we use to compute a Z
481 score for each coexpression network.

482 Runtime and memory profiling

483 We used Python’s time module to obtain runtime measurements and used the top

484 program in Linux (Ubuntu 17.04) to make periodic memory measurements. We made use of

485 default scientific Python parallelism. We benchmarked our pipelines on a Google Cloud
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486 Enterprise instance with 16 logical cores and 104 gigabytes of memory and, for memory-
ag7  Inefficient alternative algorithms (Supplementary Table 1), on a local 2.30 GHz Intel Xeon E5-
a8 2650v3 with 48 logical cores and 384 GB of RAM. scVI was trained on a Nvidia Tesla VV100-

489 SXM2 with 16 GB of RAM
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Data Availability

We used the following publicly available datasets:

e Notochord and neural plate cells from Cao et al.> (GSE119945)
e Neurons from Mayer et al.? (GSE104158)

e Neurons from Han et al.? (https://figshare.com/articless MCA DGE Data/5435866)

e Neurons from Zeisel et al.* (http://mousebrain.org/)

e Neurons from Saunders et al.®> (GSE116470)
e Bone marrow and cord blood cells from the Human Cell Atlas

(https://preview.data.humancellatlas.org/)

e PBMCs from Zheng et al.® (https://support.10xgenomics.com/single-cell-gene-

expression/datasets)
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Figure 1. Overview of coexpression-based single-cell transcriptomic analysis and
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(a) Our algorithm for coexpression-based analysis of SCRNA-seq data, which we refer to as
Coscape. Cells are clustered at multiple resolutions, with groups of cells colored individually,
resulting in an ensemble of clusters in which each cluster in each resolution defines a single
gene-gene correlation matrix. These matrices are sparsified with a winner-take-all strategy in
which weak correlations are set to zero. We use these sparsified correlation matrices as our
coexpression features, where each datapoint in subsequent downstream analysis is a cluster of
cells. The KNN graph of coexpression matrices forms the “coexpression landscape” that captures
the topological relationships between pan-resolution clusters. Many downstream analyses are
then possible, including trajectory learning and pseudotime assignment. Coexpression matrices
are expressed as a combination of a few basis matrices, or “dictionary entries”; pairs of genes
unique to a dictionary entry can be thought of as “marker edges,” for which we can look at
enriched gene ontology (GO) processes. (b) Many of these analyses take inspiration from
analogs in gene expression space. For example, rather than visualizing pan-resolution clusters in
coexpression space, standard analyses visualize single cells in expression space; rather than
decomposing coexpression matrices via dictionary learning, the expression matrix is
decomposed via algorithms such as nonnegative matrix factorization. Coexpression space,
however, enjoys enhanced interpretability, multi-study robustness, and scalability to large-scale
studies. (c) A conceptual illustration of the difference between attempting to extract biological
information from single-studies, each profiling different parts of a larger biological system
(“Traditional single-cell expression analysis™); integrative algorithms that attempt to minimize
inter-study variation but may also remove overarching biological structure (“Traditional single-

cell integration”); and piecing together structure across multiple studies of complex and dynamic
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biological systems, which we accomplish with single-cell coexpression (“Desired unified

transcriptomic landscape”).
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Figure 2. Coexpression landscape of mouse neuronal development.
(a) A force-directed layout of the k-nearest-neighbors graph of pan-resolution clusters in

coexpression space, which we refer to as the “coexpression landscape,” reveals a temporal
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trajectory consistent with biological age. (b, ¢) Diffusion pseudotime starting from the lowest-
age node is strongly associated (Spearman p = 0.8; n = 2,380 pan-resolution clusters) with
biological age. (e-h) Coexpression matrix dictionary learning of all pan-resolution clusters yields
dictionary entries that are specific to different developmental stages. Each dictionary entry can
be interpreted as a graph; for each dictionary entry we visualize the ten genes with highest
betweenness centrality. Genes involved in edges specific to each dictionary entry are enriched
for different GO processes consistent with their respective stages of development. Two
additional dictionary entries found in fewer pan-resolution clusters are shown in Supplementary

Fig. 2.
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Figure 3. Agreement between coexpression landscape and developmental changes

measured by in-situ hybridization.
Integrating SCRNA-seq data across development enables a unified landscape over which we can

compute correlations between gene expression and developmental pseudotime. We observe
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positive correlations between diffusion pseudotime, corresponding to development, with the
expression of genes such as Fos and Bcan (Spearman correlation of 0.75 and 0.59, respectively;
n = 2,380 pan-resolution clusters) and negative correlations with the expression of genes such as
Eomes and Cxcr4 (Spearman correlation of -0.51 and -0.43, respectively; n = 2,380 pan-
resolution clusters). Changes in expression of these genes over development are validated and
spatially located by the Allen Developing Mouse Brain Atlas*’. Images show locations and levels
of gene expression intensity measured by in situ hybridization (ISH); blue-green is low, yellow-

orange is medium, and red is high.
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Figure 4. Coexpression landscape of human hematopoiesis.

The coexpression landscape of immune cells from bone marrow, cord blood, and peripheral
blood organizes largely according to erythropoietic, lymphopoietic, and myelopoietic lineages.
Some of the PBMCs have FACS-derived labels, enabling us to place clusters with known surface
markers in various regions of the coexpression landscape (also see Supplementary Fig. 3).
Dictionary learning of the coexpression matrices separates the coexpression landscape into four
main regions; looking at high-betweenness genes and GO process enrichments suggests that

these dictionary entries correspond to the different, main stages of hematopoiesis.
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Figure 5. Coexpression network correspondence to other biological networks.

(a, b) A coexpression network learned across pan-resolution clusters has greater correspondence

with other biological networks compared to that of coexpression networks learned across single-

resolution clusters with a Louvain resolution parameter of 10 (“high resolution”), a Louvain

resolution of 1 (“middle resolution”), or across a single “cluster” containing all cells in the
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dataset (“low resolution”). Z scores are computed using the number of overlapping edges
between the coexpression network and a target biological network, with a null distribution of 100
random networks generated by degree distribution-preserving permutations of each of the target
networks. (c, d) Rows contain coexpressed pairs of genes unique to the pan-resolution cluster
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setting and undiscovered by the “high resolution,” “middle resolution,” or “low resolution”
methods. The pairs of genes confirmed by two or more interactions from other data modalities
are shown for the neuronal development study (c) and pairs of genes confirmed by three or more

interactions are shown for the hematopoiesis study (d).
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