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Abstract: Researchers stand to gain insight into complex biological systems by assembling 

multiple single-cell RNA-sequencing (scRNA-seq) studies to reveal a panoramic view of 

overarching biological structure. Unfortunately, many existing scRNA-seq analyses are limited 

by sensitivity to study-specific noise patterns, by lack of scalability to large datasets, or by 

integrative transformations that obscure biological relevance. We therefore introduce a novel 

algorithmic framework that analyzes groups of cells in coexpression space across multiple 

resolutions, rather than individual cells in gene expression space, to enable multi-study analysis 

with enhanced biological interpretation. We show that our approach reveals the biological 

structure spanning multiple, large-scale studies even in the presence of batch effects while 

facilitating biological interpretation via network and latent factor analysis. Our coexpression-

based analysis enables an unprecedented view into two complex and dynamic processes—

neuronal development and hematopoiesis—by leveraging a total of seven studies containing 
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1,460,527 cells from laboratories spanning three continents, yielding systems-level insight 

unattainable by any individual experiment. Our work demonstrates a path toward probing highly 

complex biological systems from emerging consortium-scale single-cell transcriptomics.  
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Introduction 1 

 Fundamental biological processes, like neuronal development or hematopoiesis, are of 2 

broad importance but are also highly complex. While researchers can now functionally 3 

interrogate such processes at a high resolution with single cell RNA-sequencing (scRNA-seq)1–7, 4 

the underlying biology is often more dynamic and multi-faceted than what can be captured by a 5 

single experiment. Instead, multiple laboratories assay different parts and stages of the process 6 

using many separate scRNA-seq experiments. A major computational and analytic challenge is 7 

to provide researchers with insight into the full biological landscape of interest (for example, 8 

across the full range of development or differentiation) not previously accessible by any 9 

individual experiment8. 10 

Multi-study scRNA-seq analysis, however, remains challenging for a number of reasons. 11 

Such analysis involves extracting overarching, systems-level insight, but it must do so within a 12 

practical amount of computation. Moreover, biological signal in multi-study analysis is 13 

confounded by study-specific noise patterns. This problem has motivated techniques for 14 

computational batch effect correction9–15, but existing approaches integrate experiments using 15 

transformations that obscure the biological relevance of individual data values, making it 16 

difficult for downstream analyses to interpret the transformed result. Existing integrative 17 

algorithms also aim to minimize inter-study variation, thus removing relevant differences that 18 

would otherwise be useful to biological researchers.  19 

 To enable robust, consortium-scale scRNA-seq analysis, we reasoned that scRNA-seq 20 

analysis of groups of cells in the gene coexpression space (captures the similarity of gene 21 

expression changes between pairs of genes), rather than single cells in the gene expression space 22 

(focuses on the expression patterns of individual genes), would be a more favorable paradigm. 23 

Coexpression is more robust to experiment-specific noise patterns than gene expression 24 
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measurements; not only are many coexpression measures (for example, Pearson correlation) 25 

robust to affine transformation, some evidence suggests that gene coexpression and information 26 

redundancy underlie cross-study replicability of single-cell experiments16–18. Coexpression also 27 

provides a rich feature space with directly meaningful values that capture pairwise dependencies 28 

among genes, allowing for graph-theoretic analysis of gene coexpression networks. There is a 29 

wealth of existing literature, developed in both single-cell and bulk settings19–23, for inferring a 30 

coexpression network and determining gene modules within a network. Previous work, however, 31 

has not focused on analyzing the meaningful variation across multiple coexpression networks 32 

over a large biological landscape. 33 

  Here we demonstrate that coexpression is a valuable paradigm for consortium-scale 34 

scRNA-seq analysis. We develop a novel algorithmic framework, which we call Coscape, that 35 

constructs a landscape of coexpression variation by piecing together information across multiple 36 

studies and resolutions to capture meaningful changes in complex biological systems. We 37 

leverage our coexpression paradigm to conduct unprecedented meta-analyses of large-scale 38 

scRNA-seq datasets profiling mouse neuronal development and human hematopoiesis. We focus 39 

on these biological systems because they have been extensively profiled across many large-scale 40 

scRNA-seq studies1–7 which have meaningful developmental differences that we do not wish to 41 

completely remove. We analyze data from laboratories spanning three continents and containing 42 

a total of 1,460,527 high quality cells and uncover rich, systems-level insight into the genes 43 

involved in functions as diverse as neuronal activation, synaptic development, neuronal cell 44 

division, lymphocyte activation, and coagulation. We obtain additional biological validation 45 

from existing literature and from other data modalities including in situ hybridization and protein 46 

interaction networks. We envision that the techniques and ideas outlined here will help enable 47 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/719088doi: bioRxiv preprint 

https://doi.org/10.1101/719088
http://creativecommons.org/licenses/by/4.0/


Preprint. Work in progress. 

analyses that take advantage of a wealth of scRNA-seq data generated across diverse biological 48 

systems.  49 
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Results 50 

Coexpression-based analysis using pan-resolution clustering 51 

 Our coexpression-based analysis is fundamentally based on statistics computed over 52 

groups of cells, rather than individual cells. Coexpression is typically measured by computing a 53 

gene-by-gene correlation matrix over a cluster of cells. Coexpression measurements, however, 54 

may change with clustering resolution16,24 and single cell datasets often have meaningful 55 

multiresolution structure25. We therefore introduce a strategy that repeatedly clusters a dataset at 56 

multiple resolutions and considers all clusters for downstream analysis (Figure 1a ; Methods); 57 

we refer to this strategy as pan-resolution clustering (panclustering). Panclustering ensures that 58 

our algorithm captures coexpression patterns across multiple resolutions, which, as we 59 

demonstrate below, can increase the discovery of gene interactions corroborated by other 60 

biological networks. 61 

Our implementation of panclustering is based on the Louvain community detection 62 

algorithm26, a common clustering method for scRNA-seq data. Louvain clustering iteratively 63 

merges cells into cluster “communities” until convergence, which is controlled by a resolution 64 

parameter27 (higher resolutions tend to increase the number of communities). We obtain many 65 

possible realizations of a Louvain clustering by repeating the algorithm with multiple resolution 66 

parameters and, importantly, also keeping cluster information from each agglomerative iteration 67 

(Figure 1a; Methods). Each cluster defines a single gene-by-gene correlation matrix, on which 68 

we perform an additional sparsification step that sets low correlations to zero to both reduce the 69 

influence of noisy associations and improve computational efficiency (Methods). We choose 70 

Louvain clustering due to its asymptotic efficiency, since its runtime and space usage scales with 71 

the size of the k-nearest neighbor (KNN) graph of cells (i.e., each cell is a node in the graph), 72 

rather than quadratically in the number of cells as in other hierarchical clustering algorithms. 73 
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Each datapoint in the downstream analysis therefore represents a cluster of cells 74 

featurized by coexpression. Importantly, we can then perform analyses like visualizing the KNN 75 

graph of coexpression matrices (which we refer to as the “coexpression landscape”), arranging 76 

the coexpression matrices into a trajectory, and finding common patterns within groups of 77 

similar coexpression matrices via dictionary learning (Figure 1a). We call our overall algorithm 78 

Coscape since it constructs and analyzes the coexpression landscape. Many of the parts of 79 

Coscape have analogous versions within typical analyses of single cells in gene expression space 80 

(Figure 1b), but here we demonstrate that similar lines of thinking can be transferred to pan-81 

resolution clusters of cells in gene coexpression space. Unlike traditional scRNA-seq analysis, in 82 

which information is largely separated according to study, Coscape pieces together information 83 

across multiple studies to form a naturally unified landscape (Figure 1c). Such a landscape 84 

becomes especially valuable when researchers seek to understand the meaningful biological 85 

changes among different studies (for example, studies assaying different stages of development), 86 

which would be difficult to preserve using traditional integrative methods9–15 that attempt to 87 

minimize any inter-study variation (Figure 1c). 88 

Unified trajectory of neuronal development across five studies containing 932,301 cells 89 

 Given a wealth of scRNA-seq datasets that profile the mouse brain, we first sought to 90 

determine if coexpression would be robust to combining data across diverse studies to construct 91 

a picture of neuronal development at an unprecedented scale. We applied Coscape to five large-92 

scale, published scRNA-seq studies of mouse neurons spanning multiple timepoints during 93 

development from embryo to adult. The first study1 used sci-RNA-seq3 to profile 562,272 cells 94 

representing the neural tube and notochord collected at day-length intervals from a 9.5-day-old 95 

embryo (E9.5) through E13.5; the second3 used Drop-seq and 10x Chromium v2 to profile 96 

50,363 cortical neurons from late embryonic (E13.5 - E14.5) and P10; the third2 used Microwell 97 
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Seq to profile 10,796 cells across three developmental timepoints representing embryonic 98 

(E14.5), neonatal (1-day-postnatal, or P1), and adult (P56); the fourth4 used 10x Chromium v1 to 99 

profile 101,213 neurons from multiple adolescent timepoints from P12 through P27 and from a 100 

P60 adult; and the fifth5 used Drop-seq to profile 207,657 neurons from P60 through P70 adults. 101 

This data was generated by laboratories spanning both United States coasts and three continents 102 

using diverse scRNA-seq platforms and in total profiled more than 150 individual mice. 103 

 When we visualize the coexpression landscape formed by the KNN graph in which each 104 

node is a pan-resolution cluster, the graphical topology naturally arranges according to biological 105 

age (Figure 2a,b) rather than study-specific structure. Our visualization method is based on the 106 

ForceAtlas2 algorithm28, which learns a force-directed embedding of the KNN graph. Then, 107 

analogous to assigning pseudotimes to cells in gene expression space, we can likewise run a 108 

diffusion-based pseudotime (DPT) algorithm29 within the coexpression landscape. We quantify 109 

the clear visual age-dependent structure by running a DPT algorithm using the cluster with the 110 

lowest average age as the root of the diffusion process (Figure 2c,d). Pseudotimes assigned to 111 

pan-resolution clusters in coexpression space were substantially more correlated with biological 112 

age than to clusters in gene expression space with or without integration (Figure 2c; 113 

Supplementary Fig. 1). 114 

If instead we use gene expression to learn two-dimensional visualizations of these 115 

datasets, either by plotting the cells themselves or by plotting pan-resolution clusters using 116 

average gene expression, the datapoints show large amounts of structure corresponding to both 117 

study of origin and neuronal subclusters, without conveying any continuous developmental 118 

structure (Supplementary Fig. 1). Study-specific and subcluster-specific structure is also present 119 

after applying existing integrative algorithms based on mutual nearest neighbors matching9 120 

(Scanorama) or on learning a latent space parameterized by a variational autoencoder14 (scVI) 121 
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(Supplementary Fig. 1); these methods are representative of many others also based on nearest 122 

neighbors matching10–12 or on learning a joint latent space13,15. Visualization and analysis that 123 

conveys such structure is not necessarily undesirable and may be useful in many cases, 124 

especially when analysis is limited to a single scRNA-seq experiment. However, in cases when 125 

we seek higher order, systems-level patterns spanning multiple datasets, such as those generated 126 

across a consortium of institutions, we find that coexpression provides a naturally unified and 127 

much more advantageous space. 128 

Interpretation of coexpression landscape yields insight into neuronal development 129 

 A notable advantage of analysis in coexpression space is our ability to gain systems-level 130 

insight into processes occurring throughout neuronal development from embryo to adult. Like 131 

methods for clustering cells in the gene expression setting, we can facilitate interpretation by 132 

clustering coexpression matrices that share similar structure and analyzing each cluster’s unique, 133 

representative patterns. We leverage a technique known as dictionary learning to discover 134 

consistent patterns across many coexpression networks. Dictionary learning across covariance 135 

matrices has been successfully applied to diverse problems, including information retrieval30 and 136 

functional brain profiling31, and can be naturally extended to single cell coexpression. Dictionary 137 

learning is distinct from but analogous to methods like nonnegative matrix factorization (NMF) 138 

for finding the components underlying a set of gene expression profiles. In our dictionary 139 

learning setup, we represent each pan-resolution cluster as a sparse weighted sum of a few 140 

underlying coexpression matrices, or “dictionary entries,” each of which represents important 141 

patterns reproduced across many coexpression matrices. We found that only six basis 142 

coexpression matrices were required to achieve good reconstruction error of the full set of pan-143 

resolution coexpression matrices (Methods). These basis coexpression matrices can also be 144 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/719088doi: bioRxiv preprint 

https://doi.org/10.1101/719088
http://creativecommons.org/licenses/by/4.0/


Preprint. Work in progress. 

interpreted as networks with genes as nodes and edges between genes with nonzero 145 

coexpression. 146 

As a first interpretative step, we looked at genes involved in edges unique to each of the 147 

six basis networks; analogous to “marker gene” analysis in expression space, we can refer to this 148 

as “marker edge” analysis in coexpression space. We then looked for significant gene ontology 149 

(GO) process enrichments32 within the set of genes involved in marker edges for a particular 150 

dictionary entry, using a background set of all genes considered in our coexpression analysis 151 

(around two thousand highly variable genes; Methods). Within the embryonic portion of the 152 

coexpression landscape (Figure 2e), we observe differentiation and developmental processes 153 

like synapse organization (GO:0050808, hypergeometric test P = 9.2e-7), regulation of nervous 154 

system development (GO:0051960, P = 5.5e-6), and cell fate determination (GO:0001709, P = 155 

1.6e-4). Late-fetal and early-postnatal development (Figure 2f,g) includes more growth-related 156 

processes including neuron projection development (GO:0031175, P = 3.4e-6) and mitotic cell 157 

cycle (GO:0000278, P = 4.5e-4). The adolescent and adult stages (Figure 2h; Supplementary 158 

Fig. 2) are enriched for a more diverse set of processes relative to the earlier stages, which 159 

includes cellular homeostasis (GO:0048878, P = 1.7e-5) and regulation of amyloid-β formation 160 

(GO:1902003, P = 3.9e-5). 161 

We sought to further characterize our coexpression networks by scoring genes on their 162 

betweenness centrality, which is a general measure of node importance based on the number of 163 

shortest paths containing a particular node, in each of the basis coexpression networks33 164 

(Methods). High betweenness genes of note include Bmp4 (dictionary entry 1, fetal), an 165 

important neural stem cell morphogen34; Cbln1 (dictionary entry 1, fetal), an important gene in 166 

synaptic formation35; Coro1a (dictionary entry 2, fetal/neonatal) and Snhg11 (dictionary entry 3, 167 

fetal/neonatal), both involved in axon growth36,37; and Htr2c (dictionary entry 4, 168 
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adolescent/adult), which encodes the serotonin receptor (Figure 2e-h). These high-betweenness 169 

genes are more likely to be centrally located within the coexpression network or be involved in 170 

multiple gene modules; we also note that many other possible node and edge centrality measures 171 

can be applied to these networks to yield additional insights. We can also look at gene expression 172 

that is strongly associated with diffusion pseudotime in the coexpression landscape. The gene 173 

with the strongest positive correlation between expression and development is Fos (Spearman 174 

correlation of 0.75; n = 2,380 pan-resolution clusters), which encodes a well-known marker of 175 

neuronal activity38; the gene with the strongest negative correlation is Eomes (Spearman 176 

correlation of -0.51; n = 2,380 pan-resolution clusters), which encodes an important transcription 177 

factor in early neurogenesis39 (Figure 3; Supplementary Data). 178 

We found additional validation for the genes that had the strongest correlation with 179 

developmental pseudotime by using the Allen Developing Mouse Brain Atlas (ADMBA)40, 180 

which spatially locates the expression of around 2000 genes using in situ hybridization (ISH) 181 

experiments. Genes with the strongest associations with developmental pseudotime in our 182 

unified coexpression landscape also showed strong developmental changes in ISH-quantified 183 

transcriptional intensity in the expected direction, i.e., increasing or decreasing with development 184 

(Figure 3). Interestingly, for genes with increased expression over development, we observed 185 

earlier developmental expression in our scRNA-seq-based analysis than in the ISH data; 186 

conversely, for genes that decrease, we observed more persistent expression later in development 187 

in the scRNA-seq data than in the ISH data. Our analysis also reveals genes strongly associated 188 

with development, such as Thrsp, Isg15, and Top2a (Spearman correlation of 0.65, 0.55, and -189 

0.42, respectively; n = 2,380 pan-resolution clusters), that the ADMBA did not include in their 190 

list of assayed genes but may be important to include in future developmental studies. We make 191 
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these correlations available as Supplementary Data, which may be of further interest to 192 

developmental biologists. 193 

Two important parameters control the amount of information considered in our analysis 194 

and can be thought of as “smoothing” parameters. The first is the correlation cutoff parameter 195 

that controls the amount of sparsity in the underlying correlation matrices; lower values include 196 

more information in the analysis but may also introduce noisy associations and can greatly 197 

increase the computational burden. The second is the number of nearest neighbors to consider 198 

when building the graph representing the coexpression landscape, which impacts both 199 

visualization and diffusion pseudotime; considering more nearest neighbors results in a smoother 200 

trajectory. While we do introduce some smoothing into our analysis, the studies are consistently 201 

arranged according to their developmental order even as these parameters vary (Supplementary 202 

Fig. 3). We also observed that neither the sparsity nor size of the pan-resolution clusters was 203 

strongly correlated with coexpression landscape structure, as quantified by diffusion pseudotime 204 

(Spearman correlation of 0.38 and 0.19, respectively, compared to 0.80 for developmental age; n 205 

= 2,380 pan-resolution clusters), and changes to sparsity did not substantially affect the structure 206 

of our developmental landscape (Supplementary Fig. 3). 207 

Coexpression-based developmental trajectories yields insight into hematopoiesis 208 

We next sought to demonstrate the broad applicability of Coscape to other complex 209 

biological phenomena besides neuronal development. To this end, we analyzed the coexpression 210 

landscape of three large-scale hematopoietic datasets: 240,898 cells from bone marrow and 211 

158,639 cells from cord blood, both generated by the Human Cell Atlas7, and 128,689 peripheral 212 

blood mononuclear cells (PBMCs)6. From these tissues, we expect to observe cells at most stages 213 

of hematopoiesis41 including hematopoietic stem cells and erythroid progenitors, mostly in the 214 

bone marrow and cord blood, to more mature lymphocytes and myeloid cells, mostly as PBMCs. 215 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/719088doi: bioRxiv preprint 

https://doi.org/10.1101/719088
http://creativecommons.org/licenses/by/4.0/


Preprint. Work in progress. 

A large number of the PBMCs underwent fluorescence activated cell sorting (FACS) 216 

prior to scRNA-seq, giving us experimentally-determined proteomic labels for a subset of the 217 

data. We therefore labeled some clusters as containing a substantial amount of progenitor-218 

associated (CD34+), myeloid-associated (CD14+), and lymphoid-associated (CD4+, CD8+, 219 

CD19+, CD56+) cell-surface marker expression (Figure 4, Supplementary Fig. 4); these labels 220 

allowed us to see which parts of the coexpression landscape were more associated with 221 

progenitor, myeloid, or lymphoid states. We applied the same dictionary-learning procedure 222 

(Methods) to the hematopoietic coexpression landscape, yielding four main dictionary entries. 223 

The first dictionary entry, which we call the progenitor coexpression network, corresponds to all 224 

of the CD34+-labeled clusters and also has high betweenness centrality scores for genes that have 225 

been previously implicated in early hematopoiesis including KIAA010142, APOE43,44, and 226 

TIMP345. Among the progenitor network-specific genes, the strongest GO enrichments are for 227 

processes like regulation of signaling receptor activity (GO:0010469, P = 5.9e-12), extracellular 228 

matrix organization (GO:0030198, P = 6.1e-7), and morphogenesis (GO:0048646, P = 3.9e-5). 229 

The second dictionary entry, which we call erythropoietic, includes high betweenness genes 230 

associated with erythrocytes like HBB46 and some genes associated with megakaryocyte-231 

erythroid progenitors like FCER1A47 and F13A148. GO process enrichments related to this 232 

dictionary entry include negative regulation of hemostasis (GO:1900047, P = 1.1e-8), platelet 233 

degranulation (GO:0002576, P = 1.1e-4), and cell cycle (GO:0044843, P = 1.4e-4). The third 234 

dictionary entry, which we call lymphopoietic, includes all lymphoid-specific (CD4+, CD8+, 235 

CD19+, CD56+) clusters and is significantly enriched for GO processes related to lymphoid 236 

activation (GO:0051249, P = 2.4e-5), cell maturation (GO:0048469, P = 6.9e-7), and immunity 237 

(GO:006955, P = 9.1e-13). The fourth dictionary entry, which we call myelopoietic, includes the 238 

CD14+ clusters. High betweenness genes in this entry include the myeloid-specific gene LYZ49 239 
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and significant GO enrichments include immunity (GO:0006955, P = 3.0e-9), coagulation 240 

(GO:0050817, P = 1.8e-5), and response to bacterium (GO:0009617, P = 3.8e-4). We make the 241 

full set of dictionary entry gene sets and GO process enrichments available as Supplementary 242 

Data. 243 

Visualizing the coexpression landscape of the pan-resolution clusters reveals an 244 

organization consistent with the three main branches of hematopoiesis corresponding to 245 

erythropoiesis, myelopoiesis, and lymphopoiesis (Figure 4). Such organization has been 246 

similarly observed in the gene expression space25 and in the chromatin accessibility space50 of 247 

single studies in single tissues, but, importantly, here we instead show a unified hematopoietic 248 

landscape across three separate tissues generated by multiple laboratories. When we visualize 249 

either pan-resolution clusters or individual cells in gene expression space, we again observe 250 

much more substantial study-specific and tissue-specific structure (Supplementary Fig. 5). In 251 

contrast, coexpression finds the high-level, cross-dataset structure consistent with cellular 252 

differentiation. 253 

We also note that we observed lower amounts of erythroid and myeloid cells within the 254 

PBMC dataset due to transcriptional quiescence and that, in general, the number of clusters does 255 

not necessarily reflect the “true” in vivo proportion of the various cell lineages. However, by 256 

combining information across multiple tissues and hundreds of thousands of cells, we are able to 257 

obtain a more complete view of the hematopoietic coexpression landscape. 258 

Coexpression across pan-resolution clusters has greater correspondence with other known gene-259 

gene associations 260 

 While coexpression dictionary learning across many pan-resolution clusters highlighted a 261 

wealth of biologically relevant genes, we looked to assess if the interactions captured by our 262 

analysis also had any additional biological support, as well as if our particular pan-resolution 263 
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clustering strategy provided any advantage in uncovering biologically important interactions 264 

over simpler baseline techniques. More specifically, because pan-resolution clustering discovers 265 

associations across many resolutions which may not be discovered otherwise, we reasoned that 266 

our coexpression networks might also have greater overlap with real gene-gene associations. 267 

We therefore leveraged an existing strategy23 for determining the functional quality of a 268 

coexpression network based on the intuition that a coexpression network with high 269 

correspondence to other functional interaction networks also captures more biologically relevant 270 

information. We obtained four networks representing protein-protein interactions (PPIs), cellular 271 

signaling networks, metabolic pathways, and text-mining cooccurrence (Methods) from 272 

Skinnider et al.23. We assessed overlap significance using a standard permutation-based 273 

procedure in which the four interaction networks were randomized (while controlling for the 274 

degree distribution) to construct the respective null distributions of overlap. We used the union 275 

of the dictionary entries learned across pan-resolution clusters as the coexpression network 276 

representative of our approach since we wanted to consider any evidence of a real gene-gene 277 

interaction throughout our entire analysis. As baselines, we computed (1) the coexpression 278 

network from the union of dictionary entries learned across single-resolution clusters and (2) the 279 

coexpression network learned by concatenating all cells across all studies (Methods). In all 280 

networks, an edge was added if and only if a gene pair had nonzero coexpression. 281 

Consistently, across all four networks and both of our large-scale data collections, pan-282 

resolution clustering had higher overlap with other biological networks than the two baselines 283 

(Figure 5a,b). We reasoned that this result is due to more discoverable gene-gene interactions 284 

(as captured by coexpression) within the pan-resolution setting because coexpression changes in 285 

strength with clustering resolution16,24. We also note that this result is not limited to the multi-286 

study integration setting but can, in principle, also increase discovery of coexpressed genes 287 
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within a single study. Many gene-gene interactions are discovered via pan-resolution clustering 288 

but not by lower resolution methods (Figure 5c,d). For example, in the neuronal development 289 

datasets, a coexpression association between Fzd1 and Wnt7b is uniquely found by panclustering 290 

with additional support from all four other biological interaction networks; this pair of genes is a 291 

part of the canonical Wnt pathway and the particular interaction has been implicated in both 292 

neuronal differentiation and amyotrophic lateral sclerosis in mice by previous studies51,52. 293 

Coscape is practical for datasets with millions of cells 294 

 To enable consortium-scale analysis, we designed our algorithm for scalability to large 295 

numbers of cells. When designing our pipeline, our algorithmic choices are meant to balance 296 

model complexity and scalability. For example, we choose to sparsify our coexpression matrices 297 

using a nominal cutoff rather than the memory intensive strategy of preserving dense correlation 298 

matrices or the runtime intensive strategy of learning sparse covariance matrices via 299 

regularization53 (Supplementary Table 1, also see Discussion). 300 

We performed all of our analyses in a practical amount of computational time and 301 

resources. Our entire coexpression-based procedure, which includes pan-resolution clustering 302 

through downstream analysis of the coexpression landscape, analyzes almost a million cells in a 303 

little over an hour on a standard cloud instance with 16 cores and a peak memory usage of 93.1 304 

gigabytes (GB) (Supplementary Table 2; Methods). Our pipeline has a runtime and memory 305 

usage with a close-to-linear asymptotic scaling in the number of cells and a worst-case quadratic 306 

asymptotic scaling in the number of features (i.e., genes), but which is efficient in practice by 307 

taking advantage of sparsity (Supplementary Table 1). Once the data has been summarized as 308 

pan-resolution clusters, further downstream analysis including visualization, pseudotime 309 

assignment, and dictionary learning becomes extremely efficient due to the greatly reduced 310 

number of datapoints; in the case of mouse neuronal development, analysis is done on just 2,380 311 
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pan-resolution clusters instead of 932,301 single-cells. The resource requirements for different 312 

stages of our analytic pipeline on the mouse neuronal development analysis are provided in 313 

Supplementary Table 2.  314 
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Discussion 315 

 Our work shows that researchers can analyze an unprecedented amount of information 316 

across scRNA-seq studies by focusing on the coexpression matrix of a group of cells as the 317 

fundamental unit of analysis. Within this coexpression-based paradigm, Coscape introduces 318 

several key procedures: panclustering, which enables us to compute coexpression at multiple 319 

resolutions and reduces the amount of datapoints involved in the analysis; dictionary learning for 320 

identifying common patterns across many coexpression networks; and visualization of the 321 

coexpression landscape via a force-directed embedding of the coexpression matrix nearest-322 

neighbors graph. Moreover, Coscape favors strong associations reproduced across many 323 

clustering realizations and studies, reducing the influence of noisy outliers. 324 

While a large amount of recent work has focused on techniques for integrating 325 

information across multiple datasets9,10,12–15, these methods produce embeddings with values that 326 

are not directly interpretable but either only have relative meaning (for example, relative 327 

similarity to other cells in the dataset)9,10,12,13 or require a nonlinear decoder that transforms the 328 

integrated embedding into some useful statistic14,15. While these embeddings and their associated 329 

properties are useful in many contexts, reasoning about particular integrative decisions made by 330 

these algorithms, in particular in the case of over- or under-correction8, is very difficult when the 331 

final embedding values are not intrinsically meaningful. In contrast, the value of each dimension 332 

in the coexpression space is simply a bivariate correlation, a fundamental interpretive concept in 333 

biological data analysis. Distant points in coexpression space have fewer gene associations in 334 

common; closer points in coexpression space share more associations. 335 

Another advantage of Coscape is that it naturally summarizes information over groups of 336 

cells and reduces the number of data points to consider (instead of considering all cells in 337 

expression space, analyses need only consider a smaller number of groups of cells in 338 
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coexpression space). While the coexpression space may seem cumbersomely quadratic in the 339 

number of possible genes (which is usually in the tens of thousands), scRNA-seq experiments 340 

typically measure only around one or two thousand genes with nontrivial variability54; moreover, 341 

the number of meaningful correlations is sparse and usually within the same order of magnitude 342 

as the number of highly variable genes. Therefore, like data sketching55 or summarization25,56 343 

algorithms that aim to improve scalability by capturing only the most salient features of a 344 

dataset, downstream analysis of coexpression matrices is very efficient, even on millions of cells, 345 

because a single coexpression matrix summarizes information across many cells. 346 

 Our results suggest many directions for future work. Our coexpression matrices are not 347 

positive semidefinite (PSD) for practical reasons, but efficiently learning large numbers of 348 

nontrivially sparse PSD matrices with many features is an important direction to consider. If all 349 

coexpression matrices are PSD, it may be possible to leverage the distance along the manifold 350 

represented by all PSD matrices to get more natural dictionary learning-based decompositions30 351 

and nearest-neighbor queries (which would also involve designing new techniques for efficient 352 

nearest-neighbor search). Scalability to large coexpression matrices also remains a challenge for 353 

many approaches. This includes methods that enforce additional constraints within the dictionary 354 

learning objective (e.g., basis matrices that are PSD or valid correlation matrices) or methods for 355 

analyzing large numbers of coexpression matrices like common principal components analysis57 356 

or other kinds of tensor decomposition58. Other considerations include exploring alternative 357 

methods for measuring coexpression23, learning coexpression modules instead of full networks, 358 

inferring causal gene regulatory networks, integrating multimodal interaction data, or exploring 359 

different clustering strategies, pan-resolution or otherwise. A larger question is whether other 360 

feature spaces exist that can take advantage of the large amount of biological data measured at 361 

single-cell resolution. While we demonstrate that coexpression as an analytic space has many 362 
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useful properties including interpretability, robustness, and scalability, other spaces may exist 363 

that may work well according to the same criteria. 364 

 Coscape can also be used to newly probe many other biological systems, including 365 

pancreatic islet cells59 or lung cells60, that have been or will be deeply profiled using single cell 366 

technologies. Reasoning about the relationship between coexpression and other functional 367 

measurements of single cells, such as chromatin accessibility or methylation, also remains an 368 

important future direction. We believe the algorithms and ideas presented here provide a 369 

complementary and highly-informative way for researchers to study biological processes at 370 

single-cell resolution and at multi-institution scale. We make our analysis pipelines and data 371 

available at http://coscape.csail.mit.edu.  372 
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Methods 373 

Mouse neuronal development dataset preprocessing 374 

 We obtained publicly available datasets from five large-scale, published scRNA-seq 375 

studies of the mouse brain at different developmental timepoints1–5. We used only the cells that 376 

passed the filtering steps of each respective study and additionally removed low-complexity or 377 

quiescent cells with less than 500 unique genes. For the embryonic dataset from Cao et al.1, we 378 

only considered cells that the study authors had assigned to the “neural tube and notochord” 379 

trajectory. For the datasets from Zeisel et al.4 and Saunders et al.5 we only considered cells that 380 

the study authors had labeled as neuronal. We then intersected the genes with the highest 381 

variance-to-mean ratio (i.e., dispersion) within each study to obtain a total of around 2000 genes 382 

that were highly variable across all studies. All studies provided data as digital gene expression 383 

(DGE) counts, which we further log transform after adding a pseudo-count of 1. 384 

Human hematopoiesis dataset preprocessing 385 

 We obtained publicly available datasets of cord blood and bone marrow cells from the 386 

Human Cell Atlas7 (https://preview.data.humancellatlas.org/) and PBMCs from Zheng et al.6 387 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets). We removed cells with 388 

less than 500 unique genes; we also noticed a large number of cells with high percentages of 389 

ribosomal transcripts, which may indicate nontrivial amounts of ambient ribosomal RNA 390 

contamination during the scRNA-seq experiment, so we only included cells with less than 50% 391 

ribosomal transcripts in further analysis. As in the mouse neuronal dataset, we intersected the 392 

genes with the highest dispersions within each study to obtain a total of around 2000 genes that 393 

were highly variable across all studies. All studies provided data as digital gene expression 394 

(DGE) counts, which we further log transform after adding a pseudo-count of 1. 395 

Pan-resolution clustering 396 
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 We modify the Louvain clustering algorithm26,27 (implemented at 397 

https://github.com/vtraag/louvain-igraph) to store community information at each iteration. To 398 

capture a range of potential clustering results, we rerun the Louvain clustering algorithm at a 399 

diverse range of clustering resolutions (0.1, 1, and 10), storing the hierarchical cluster 400 

information for each run. The three runs of Louvain clustering are done in parallel and we cluster 401 

each study individually. To reduce the effect of noisy correlations, we consider clusters with a 402 

minimum of 500 cells, which, combined with highly variable gene filtering (described below), 403 

reduces the chance that a strong correlation is due to a few outlier cells. 404 

Computing coexpression matrices 405 

 We compute the Pearson correlation matrix 𝐑(𝑖) ∈ [−1,1]𝑀×𝑀 for each of the pan-406 

resolution clusters obtained as described above, where 𝑖 ∈ [𝑁] with 𝑁 denoting the number of 407 

pan-resolution clusters and 𝑀 denoting the number of highly variable genes. The entry 𝐑𝑎𝑏
(𝑖)

 at 408 

row 𝑎 and column 𝑏 of 𝐑(𝑖), corresponding to the 𝑎th and 𝑏th genes, takes the value 409 

𝐑𝑎𝑏
(𝑖)

= {𝑟𝑎𝑏
(𝑖)

       if |𝑟𝑎𝑏
(𝑖)

| > 𝜂 and √∑ (𝑎𝑗
(𝑖)

− 𝑎̅(𝑖))
2

𝑀
𝑗=1 > 0 and √∑ (𝑏𝑗

(𝑖)
− 𝑏̅(𝑖))

2
𝑀
𝑗=1 > 0

  0         otherwise,                                                                                                                  

  410 

where 𝑟𝑎𝑏
(𝑖)

 
∑ (𝑎𝑗

(𝑖)
−𝑎̅(𝑖))(𝑏𝑗

(𝑖)
−𝑏̅(𝑖))𝑀

𝑗=1

√∑ (𝑎
𝑗
(𝑖)

−𝑎̅(𝑖))
2

𝑀
𝑗=1

√∑ (𝑏
𝑗
(𝑖)

−𝑏̅(𝑖))
2

𝑀
𝑗=1

 is the Pearson correlation coefficient, and 𝑎̅(𝑖) =411 

1

𝑀
∑ 𝑎𝑗

(𝑖)𝑀
𝑗=1  and  𝑏̅(𝑖) =

1

𝑀
∑ 𝑏𝑗

(𝑖)𝑀
𝑗=1  are the respective mean expressions. 𝜂 ∈ [0, 1] is a 412 

sparsification parameter that sets low correlations to zero and can be interpreted as a smoothing 413 

parameter that preserves only the most important associations. Low values of this parameter can 414 

introduce additional structure into the analysis, but may also introduce larger amounts of noise 415 

(see Supplementary Fig. 3). 416 

Visualization and diffusion pseudotime analysis of pan-resolution clusters 417 
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 To visualize the coexpression landscape defined by the pan-resolution clusters, the 418 

symmetric correlation matrices 𝐑(𝑖) ∈ [−1, 1]𝑀×𝑀 are treated as vectors 𝐫(𝑖) ∈ [−1, 1](𝑀
2 )+𝑀 on 419 

which we construct the 𝑘-nearest neighbors graph using the Euclidean distance in coexpression 420 

space as the distance metric. This graph was visualized with a force-directed embedding using 421 

the ForceAtlas2 algorithm (https://github.com/bhargavchippada/forceatlas2). For the mouse 422 

neuronal development analysis, a diffusion pseudotime (DPT) algorithm29 was applied to this 423 

graph using the pan-resolution cluster with the earlies average age as the root. Larger values of 𝑘 424 

can also increase the amount of smoothing of the structure captured by the 𝑘-nearest-neighbors 425 

graph and subsequent visualization and DPT analysis (see Supplementary Fig. 3). We used 426 

implementation in Scanpy61 (https://scanpy.readthedocs.io/en/stable/) for the 𝑘-nearest neighbors 427 

graph construction and DPT analysis. 428 

 We also visualized pan-resolution clusters in gene expression space, Scanorama-429 

corrected expression space9, and scVI-integrated latent space14. To summarize features across 430 

multiple cells into a single feature vector for each pan-resolution cluster, we use a geometric 431 

mean  432 

𝑎̂(𝑖) = exp {
1

𝐶𝑖
∑ log (𝑎𝑗

(𝑖)
+ 1)

𝐶𝑖
𝑗=1 } (

1

𝐶𝑖
∑ [𝑎𝑗

(𝑖)
]

𝐶𝑖
𝑗=1 + 1)⁄   433 

of the 𝑎th gene in pan-resolution cluster 𝑖 with 𝐶𝑖 cells, which is the same summarization strategy 434 

used by the MetaCell algorithm56. We similarly constructed the 𝑘-nearest-neighbors graph with 435 

pan-resolution clusters as nodes and Euclidean distance between the summarized gene 436 

expression values as the distance metric. 437 

Coexpression matrix dictionary learning 438 

 We formulated the dictionary learning problem for coexpression matrices by optimizing 439 
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argmin
𝐮(1),…,𝐮(𝑁),𝐕

{∑‖𝐫(𝑖) − 𝐕𝐮(𝑖)‖
2

2
𝑁

𝑖=1

+ 𝛼‖𝐮(𝑖)‖
1

} 440 

subject to ‖𝐯𝑗‖
2

= 1 for all 𝑗 ∈ [𝜅] 441 

where 𝐮(𝑖) ∈ ℝ≥0
𝜅  is a sparse code of weights for pan-resolution cluster 𝑖, 𝛼 is a sparsity-442 

controlling parameter, 𝐕 = [𝐯1 ⋯ 𝐯𝑗 ⋯ 𝐯𝜅] ∈ ℝ≥0

(𝑀
2 )+𝑀×𝜅

 is a dictionary of 𝜅 (vectorized) 443 

coexpression matrices, and 𝜅 is a user-defined parameter indicating the number of dictionary 444 

entries to learn. We used an iterative optimization algorithm that alternatively estimated 445 

dictionary weights and dictionary entries using a least angle regression-based procedure62 until 446 

convergence. We tune 𝜅 by plotting the objective function error versus values of 𝜅 and manually 447 

selecting a value after which there are relatively smaller drops in objective function values, a 448 

parameter selection procedure often referred to as the “elbow method.”  449 

Interpretation of dictionary entries 450 

 We can interpret each dictionary entry 𝐯𝑗 as a coexpression network in which genes are 451 

nodes and elements of 𝐯𝑗 define edge weights between those genes. We identify important genes 452 

using statistics such as betweenness centrality63, which is the sum of the fraction of all-pairs 453 

shortest paths that pass through some node. We use the networkx Python package64 to compute 454 

various graph statistics. Using genes that are involved in edges that are unique to a given 455 

coexpression network, we look for gene ontology (GO) process enrichments using a background 456 

set of all highly variable genes considered in the analysis, for which P-values can be computed 457 

using a hypergeometric null model. We use the GOrilla webtool (http://cbl-458 

gorilla.cs.technion.ac.il/)32 with default parameters, which reports all enrichments more 459 

significant than a nominal value of 1e-3. We use the REVIGO webtool (http://revigo.irb.hr/) with 460 

default parameters, which consolidates similar GO terms and visualizes terms in a two-461 
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dimensional “semantic space” that places similar terms closer together65. We limit analysis to 462 

patterns that are reproducible across many clusters and only consider dictionary entries that have 463 

nonzero weights in at least ten pan-resolution clusters.  464 

Gene interaction network overlap analysis 465 

 We obtained four “target” gene-gene interaction networks from Skinnider et al. (2019)23, 466 

who processed interaction data from databases of PPIs, cellular signaling networks, metabolic 467 

pathways, and text mining cooccurrences. We computed the significance of overlap with 468 

coexpression networks as described in Skinnider et al. Each of the four networks was permuted 469 

to form a random graph using edge swaps to preserve the degree distribution. The number of 470 

edge swaps was ten-times the number of edges in each network. We obtained 100 random graphs 471 

for each of the four target interaction networks. We constructed four coexpression networks: the 472 

first was computed by intersecting the dictionary entries learned across pan-resolution clusters, 473 

as described above; the second and third were computed by intersecting dictionary entries 474 

learned across a single-resolution clustering (Louvain resolution parameter of 10 or 1) of the 475 

underlying data, using the same number of dictionary entries as in the panclustering analysis; and 476 

the fourth was computed as the gene-gene Pearson correlation matrix across all cells in the full 477 

dataset. For comparison with our method, all correlations that had an absolute value under 0.7 478 

were set to zero. The number of overlapping edges between a coexpression network and a target 479 

graph was compared to a null distribution over the random graphs, which we use to compute a Z 480 

score for each coexpression network. 481 

Runtime and memory profiling 482 

We used Python’s time module to obtain runtime measurements and used the top 483 

program in Linux (Ubuntu 17.04) to make periodic memory measurements. We made use of 484 

default scientific Python parallelism. We benchmarked our pipelines on a Google Cloud 485 
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Enterprise instance with 16 logical cores and 104 gigabytes of memory and, for memory-486 

inefficient alternative algorithms (Supplementary Table 1), on a local 2.30 GHz Intel Xeon E5-487 

2650v3 with 48 logical cores and 384 GB of RAM. scVI was trained on a Nvidia Tesla V100-488 

SXM2 with 16 GB of RAM489 
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Data Availability 

We used the following publicly available datasets: 

• Notochord and neural plate cells from Cao et al.1 (GSE119945) 

• Neurons from Mayer et al.2 (GSE104158) 

• Neurons from Han et al.3 (https://figshare.com/articles/MCA_DGE_Data/5435866) 

• Neurons from Zeisel et al.4 (http://mousebrain.org/) 

• Neurons from Saunders et al.5 (GSE116470) 

• Bone marrow and cord blood cells from the Human Cell Atlas 

(https://preview.data.humancellatlas.org/) 

• PBMCs from Zheng et al.6 (https://support.10xgenomics.com/single-cell-gene-

expression/datasets) 
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Figure 1. Overview of coexpression-based single-cell transcriptomic analysis and 

comparison with standard approaches. 
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(a) Our algorithm for coexpression-based analysis of scRNA-seq data, which we refer to as 

Coscape. Cells are clustered at multiple resolutions, with groups of cells colored individually, 

resulting in an ensemble of clusters in which each cluster in each resolution defines a single 

gene-gene correlation matrix. These matrices are sparsified with a winner-take-all strategy in 

which weak correlations are set to zero. We use these sparsified correlation matrices as our 

coexpression features, where each datapoint in subsequent downstream analysis is a cluster of 

cells. The KNN graph of coexpression matrices forms the “coexpression landscape” that captures 

the topological relationships between pan-resolution clusters. Many downstream analyses are 

then possible, including trajectory learning and pseudotime assignment. Coexpression matrices 

are expressed as a combination of a few basis matrices, or “dictionary entries”; pairs of genes 

unique to a dictionary entry can be thought of as “marker edges,” for which we can look at 

enriched gene ontology (GO) processes. (b) Many of these analyses take inspiration from 

analogs in gene expression space. For example, rather than visualizing pan-resolution clusters in 

coexpression space, standard analyses visualize single cells in expression space; rather than 

decomposing coexpression matrices via dictionary learning, the expression matrix is 

decomposed via algorithms such as nonnegative matrix factorization. Coexpression space, 

however, enjoys enhanced interpretability, multi-study robustness, and scalability to large-scale 

studies. (c) A conceptual illustration of the difference between attempting to extract biological 

information from single-studies, each profiling different parts of a larger biological system 

(“Traditional single-cell expression analysis”); integrative algorithms that attempt to minimize 

inter-study variation but may also remove overarching biological structure (“Traditional single-

cell integration”); and piecing together structure across multiple studies of complex and dynamic 
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biological systems, which we accomplish with single-cell coexpression (“Desired unified 

transcriptomic landscape”).  
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Figure 2. Coexpression landscape of mouse neuronal development. 

(a) A force-directed layout of the k-nearest-neighbors graph of pan-resolution clusters in 

coexpression space, which we refer to as the “coexpression landscape,” reveals a temporal 
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trajectory consistent with biological age. (b, c) Diffusion pseudotime starting from the lowest-

age node is strongly associated (Spearman ρ = 0.8; n = 2,380 pan-resolution clusters) with 

biological age. (e-h) Coexpression matrix dictionary learning of all pan-resolution clusters yields 

dictionary entries that are specific to different developmental stages. Each dictionary entry can 

be interpreted as a graph; for each dictionary entry we visualize the ten genes with highest 

betweenness centrality. Genes involved in edges specific to each dictionary entry are enriched 

for different GO processes consistent with their respective stages of development. Two 

additional dictionary entries found in fewer pan-resolution clusters are shown in Supplementary 

Fig. 2.  
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Figure 3. Agreement between coexpression landscape and developmental changes 

measured by in-situ hybridization. 

Integrating scRNA-seq data across development enables a unified landscape over which we can 

compute correlations between gene expression and developmental pseudotime. We observe 
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positive correlations between diffusion pseudotime, corresponding to development, with the 

expression of genes such as Fos and Bcan (Spearman correlation of 0.75 and 0.59, respectively; 

n = 2,380 pan-resolution clusters) and negative correlations with the expression of genes such as 

Eomes and Cxcr4 (Spearman correlation of -0.51 and -0.43, respectively; n = 2,380 pan-

resolution clusters). Changes in expression of these genes over development are validated and 

spatially located by the Allen Developing Mouse Brain Atlas40. Images show locations and levels 

of gene expression intensity measured by in situ hybridization (ISH); blue-green is low, yellow-

orange is medium, and red is high.  
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Figure 4. Coexpression landscape of human hematopoiesis. 

The coexpression landscape of immune cells from bone marrow, cord blood, and peripheral 

blood organizes largely according to erythropoietic, lymphopoietic, and myelopoietic lineages. 

Some of the PBMCs have FACS-derived labels, enabling us to place clusters with known surface 

markers in various regions of the coexpression landscape (also see Supplementary Fig. 3). 

Dictionary learning of the coexpression matrices separates the coexpression landscape into four 

main regions; looking at high-betweenness genes and GO process enrichments suggests that 

these dictionary entries correspond to the different, main stages of hematopoiesis. 
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Figure 5. Coexpression network correspondence to other biological networks. 

(a, b) A coexpression network learned across pan-resolution clusters has greater correspondence 

with other biological networks compared to that of coexpression networks learned across single-

resolution clusters with a Louvain resolution parameter of 10 (“high resolution”), a Louvain 

resolution of 1 (“middle resolution”), or across a single “cluster” containing all cells in the 
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dataset (“low resolution”). Z scores are computed using the number of overlapping edges 

between the coexpression network and a target biological network, with a null distribution of 100 

random networks generated by degree distribution-preserving permutations of each of the target 

networks. (c, d) Rows contain coexpressed pairs of genes unique to the pan-resolution cluster 

setting and undiscovered by the “high resolution,” “middle resolution,” or “low resolution” 

methods. The pairs of genes confirmed by two or more interactions from other data modalities 

are shown for the neuronal development study (c) and pairs of genes confirmed by three or more 

interactions are shown for the hematopoiesis study (d). 
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