

1 **A novel mosaic tetracycline resistance gene *tet*(S/M) detected in a multidrug-resistant
2 pneumococcal CC230 lineage that underwent capsular switching in South Africa**

3 Stephanie W. Lo,^{a#} Rebecca A. Gladstone,^a Andries J. van Tonder,^a Mignon du Plessis,^{b,c}
4 Jennifer E. Cornick,^{d,e} Paulina A. Hawkins,^f Shabir A. Madhi,^{h,i} Susan A. Nzenze,^{h,i} Rama
5 Kandasamy,^j KL Ravikumar,^k Naima Elmdaghri,^{l,m} Brenda Kwambana-Adams,^{n,o} Samanta
6 Cristine Grassi Almeida,^p Anna Skoczynska,^q Ekaterina Egorova,^r Leonid Titov,^s Samir K.
7 Saha,^t Metka Paragi,^u Dean B. Everett,^{d,v} Martin Antonio,^o Keith P. Klugman,^{b,c,f,h} Yuan Li,^g
8 Benjamin J Metcalf,^g Bernard Beall,^g Lesley McGee,^g Robert F. Breiman,^{f,w} Stephen D.
9 Bentley,^{a#} Anne von Gottberg,^{b,c#}, on behalf of The Global Pneumococcal Sequencing
10 Consortium †

11

12 ^aParasites and Microbes programme, The Wellcome Sanger Institute, Wellcome Genome
13 Campus, Hinxton, Cambridge, CB10 1SA, UK

14 ^bCentre for Respiratory Disease and Meningitis, National Institute for Communicable
15 Diseases, Johannesburg, South Africa

16 ^cSchool of Pathology, University of the Witwatersrand, Johannesburg, South Africa

17 ^dMalawi Liverpool Wellcome Trust Clinical Research Programme, P.O. Box 30096, Blantyre,
18 Malawi

19 ^eInstitute of Infection & Global Health, University of Liverpool, Liverpool, L69 7BE, UK

20 ^fHubert Department of Global Health, Rollins School of Public Health, Emory University,
21 Atlanta, GA 30322, USA

22 ^gRespiratory Diseases Branch, Centers for Disease Control and Prevention, Atlanta, GA 30333,
23 USA

24 ^hMedical Research Council: Respiratory and Meningeal Pathogens Research Unit, University
25 of the Witwatersrand, Johannesburg, South Africa

26 ⁱDepartment of Science and Technology/National Research Foundation: Vaccine Preventable
27 Diseases, University of the Witwatersrand, Johannesburg, South Africa
28 ^jOxford Vaccine Group, Department of Paediatrics, University of Oxford, and the NIHR
29 Oxford Biomedical Research Centre, Oxford, OX3 9DU, UK
30 ^kDepartment of Microbiology, Kempegowda Institute of Medical Sciences Hospital &
31 Research Centre, Bangalore, India
32 ^lDepartment of Microbiology, Faculty of Medicine and Pharmacy, B.P. 9154, Hassan II
33 University of Casablanca, Morocco
34 ^mBacteriology-Virology and Hospital Hygiene Laboratory, University Hospital Centre Ibn
35 Rochd, 1, Rue des, Casablanca, Morocco
36 ⁿNIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and
37 Immunity, University College London, London, United Kingdom.
38 ^oWHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit
39 The Gambia at The London School of Hygiene and Tropical Medicine, Fajara, The Gambia.
40 ^pNational Laboratory for Meningitis and Pneumococcal Infections, Center of Bacteriology,
41 Institute Adolfo Lutz (IAL), São Paulo, Brazil
42 ^qDepartment of Epidemiology and Clinical Microbiology, National Medicines Institute,
43 Warsaw, Poland.
44 ^rLaboratory of Clinical Microbiology and Biotechnology, Moscow Research Institute for
45 Epidemiology and Microbiology, Moscow, Russia Federation
46 ^sLaboratory of Clinical and Experimental Microbiology, the Republican research and
47 practical center of Epidemiology and Microbiology, Minsk, Belarus
48 ^tDepartment of Microbiology, Dhaka Shishu (Children) Hospital, Child Health Research
49 Foundation, Dhaka, Bangladesh

50 "Department for Public Health Microbiology, National Laboratory of Health, Environment
51 and Food, Maribor, Slovenia

52 ^vUniversity of Edinburgh, The Queens Medical Research Institute, Edinburgh, EH16 4TJ, UK

53 ^wEmory Global Health Institute, Emory University, Atlanta, GA 30322, USA

54 [†]Members are listed in the Acknowledgement section

55

56 #Anne von Gottberg annev@nicd.ac.za

57 Respiratory and Meningeal Pathogens Research Unit,

58 National Institute for Communicable Diseases,

59 Private Bag X4, Sandringham, 2131,

60 Gauteng, South Africa

61 Tel: +27 0117171000

62

63 Stephen D. Bentley sdb@sanger.ac.uk

64 D247, Sulston Building,

65 Wellcome Sanger Institute, Hinxton,

66 Cambridgeshire, CB10 1SA, United Kingdom

67 Tel: +44 01223494942

68

69 Stephanie W. Lo, sl28@sanger.ac.uk

70 D203-204, Sulston Building,

71 Wellcome Sanger Institute, Hinxton,

72 Cambridgeshire, CB10 1SA, United Kingdom

73 Tel: +44 01223497253

74

75 **Synopsis**

76 **Objective** We reported a novel tetracycline-resistant gene in *Streptococcus pneumoniae* and
77 investigated its temporal spread in relation to nationwide clinical interventions.

78 **Methods** We whole genome sequenced 12,254 pneumococcal isolates from twenty-nine
79 countries on an Illumina HiSeq Sequencer. Serotypes, sequence types and antibiotic resistance
80 were inferred from genomes. Phylogeny was built based on single-nucleotide variants.
81 Temporal changes of spread were reconstructed using a birth-death model.

82 **Results** We identified *tet*(S/M) in 131 pneumococcal isolates, 97 (74%) caused invasive
83 pneumococcal diseases among young children (59% HIV-positive, where HIV status was
84 available) in South Africa. A majority of *tet*(S/M)-positive isolates (129/131) belong to clonal
85 complex (CC)230. A global phylogeny of CC230 (n=389) revealed that *tet*(S/M)-positive
86 isolates formed a sub-lineage that exhibited multidrug-resistance. Using the genomic data and
87 a birth-death model, we detected an unrecognised outbreak of this sub-lineage in South Africa
88 between 2000 and 2004 with an expected secondary infections (R) of ~2.5. R declined to ~1.0
89 in 2005 and <1.0 in 2012. The declining epidemic coincided and could be related to the
90 nationwide implementation of anti-retroviral treatment (ART) for HIV-infected individuals in
91 2004 and PCVs in late 2000s. Capsular switching from vaccine serotype 14 to non-vaccine
92 serotype 23A was observed within the sub-lineage.

93 **Conclusions** The prevalence of *tet*(S/M) in pneumococci was low and its dissemination was
94 due to an unrecognised outbreak of CC230 in South Africa prior to ART and PCVs. However,
95 capsular switching in this multidrug-resistant sub-lineage highlighted its potential to continue
96 to cause disease in the post-PCV13 era.

97 **Running title:** Novel tetracycline resistant gene detected in pneumococcal CC230 in South
98 Africa

99

100 **Introduction**

101 *Streptococcus pneumoniae* is a major bacterial cause of disease in young children. Since 2000,
102 pneumococcal conjugate vaccines (PCVs) targeting up to 13 serotypes were gradually
103 introduced into childhood immunisation programmes in many countries and have significantly
104 reduced pneumococcal deaths globally by 51% and 75% in HIV-uninfected and HIV-infected
105 children aged <5 years, respectively, resulting in saving an estimated 375,000 lives annually
106 when compared with the estimated mortality rate in the pre-vaccine era ¹. However, increasing
107 invasive pneumococcal disease (IPD) caused by non-vaccine serotype pneumococci has been
108 observed in numerous locations including England and Wales ², France ³, Germany ⁴ and Israel
109 ⁵, a phenomenon known as serotype replacement. Serotype replacement could be mediated by
110 capsular switching, in which a *cps* locus encoding vaccine-type (VT) capsule is replaced by a
111 *cps* locus encoding non-vaccine-type (NVT) capsule through homologous recombination ⁶.
112 Capsular switching within multidrug-resistant lineages, especially those recognised by the
113 Pneumococcal Molecular Epidemiology Network (PMEN,
114 <http://spneumoniae.mlst.net/pmen/pmen.asp>), is of increasing concern, as these expansions can
115 reduce overall vaccine effectiveness in preventing IPD and temper the reduction in
116 antimicrobial-resistant pneumococcal infections associated with introduction of PCVs ⁷. The
117 persistence of the multidrug resistant lineage ST156 (Spain ^{9V-3}, PMEN3) in the USA
118 following the introduction of PCV13 provides a clear example of a historically successful
119 lineage that underwent a capsular switch from VT (serotype 9V, 14 and 19A) to NVT (serotype
120 35B) and continued to cause IPD in the post-vaccine era ⁷⁻⁹.

121 Resistance to tetracycline has been frequently observed in *S. pneumoniae* ¹⁰. The genetic basis
122 was shown to be the *tet*(M), less commonly *tet*(O), which encode for a ribosomal protection
123 protein that prevents tetracycline binding to the bacterial 30S ribosome subunit ^{10, 11}. Eleven
124 other classes of ribosomal protection proteins such as *tet*(S) and twelve mosaic structure of *tet*

125 genes such as *tet*(S/M) have not been found previously in pneumococci
126 (<http://faculty.washington.edu/marilynr/>). The *tet*(S), originally discovered in *Listeria*
127 *monocytogenes* strain BM4210¹², was occasionally found in a variety of streptococci,
128 including *S. suis* (NCBI accession number KX077886)¹³, *S. infantis* (NCBI accession number
129 JX275965), and *S. dysgalactiae* (NCBI accession number EF682210)¹⁴ and is associated with
130 a transposase-containing element IS1216, which potentially mediates chromosomal
131 rearrangement. The mosaic *tet*(S/M) was observed on a Tn916 element in *S. intermedius*¹⁵ and
132 an IS1216 composite in *S. bovis*¹⁶. Using a dataset of 12,254 pneumococcal genomes from
133 The Global Pneumococcal Sequencing (GPS) project (<https://www.pneumogen.net/gps/>), we
134 identified a novel genetic basis for tetracycline resistance *tet*(S/M) in *S. pneumoniae* and
135 characterised its genetic background in relation to nationwide clinical interventions.

136

137 **Material and Methods**

138 **Isolate collection**

139 In the GPS project, each participating country randomly selected disease isolates collected via
140 laboratory-based surveillance and carriage isolates via cohort-studies using the following
141 criteria: ~50% isolates were from children \leq 2 years, 25% from children 3-5 years, and 25%
142 from individuals >5 years. By May 2017 (last accessed to the GPS database for this study),
143 12,254 isolates, representing 29 countries, in Africa (65%), North America (14%), Asia (9%),
144 South America (8%), and Europe (4%), were sequenced, passed quality control and included
145 in this study. The collection spanned 26 years between 1991 and 2016 and included both
146 carriage (n=4,863) and disease isolates (n=7,391). We compiled the metadata including age,
147 year of collection, sample source, HIV status and phenotypic antimicrobial susceptibility
148 testing results, where available, from each participating site. In children < 18 months of age,
149 HIV status was confirmed by PCR assay. MIC results were interpreted according to Clinical

150 Laboratory Standards Institute M100-S24 ¹⁷. When MIC was analysed as “>X”, MIC was
151 approximated as value 2X for median and interquartile range calculations.

152 **Genome sequencing and analyses**

153 The pneumococcal isolates were whole genome sequenced on an Illumina HiSeq platform and
154 raw data were deposited in the European Nucleotide Archive (ENA) (Supplementary
155 metadata). We inferred serotype, multilocus sequence types (MLSTs) and resistance profile for
156 penicillin, chloramphenicol, cotrimoxazole, erythromycin and tetracycline from the genomic
157 data as previously described ¹⁸. The *tet*(S/M) gene was identified with a *tet*(S/M) reference
158 sequence (NCBI accession number AY534326) using ARIBA ¹⁹.

159 To reconstruct a global phylogeny, an additional collection of CC230 isolates (n=130) from
160 previous studies ²⁰⁻²⁴, together with the CC230 collection (n=259) in the GPS dataset were
161 included. The phylogeny was built as previously described ¹⁸. Based on the international
162 genomic definition of pneumococcal lineages, all CC230 isolates in this study belong to Global
163 Pneumococcal Sequence Cluster (GPSC)10 ¹⁸. The metadata and analysis results of CC230 can
164 be interactively visualized online using the Microreact tool at
165 https://microreact.org/project/GPS_tetSM.

166 **Temporal changes of *tet*(S/M) CC230 sub-lineage**

167 Coalescent analysis was performed on *tet*(S/M) CC230 sub-lineage (n=129) to date the most
168 recent common ancestor (MRCA) and reconstruct the population demographic history. First,
169 we tested the presence of temporal signal by a linear regression of root-to-tip distances against
170 year of collection using TempEst v1.5 ²⁵. Next, a timed phylogeny was constructed using
171 BEAST v2.4.1 ²⁶. The Markov chain Monte Carlo (MCMC) chain was run for 100 million
172 generations, sampled every 1000 states using the general time-reversible (GTR) model of
173 nucleotide substitution and the discrete gamma model of heterogeneity among sites. Finally,
174 the population demographic history was reconstructed using a birth-death model ²⁷ to examine

175 the temporal changes with the *tet*(S/M) CC230 sub-lineage invasive isolates (n=105) but not
176 carriage isolates (n=24), because the model assumes that once an individual is diagnosed with
177 IPD, the individual is no longer transmitting due to treatment and recovery, death, or being
178 socially removed from susceptible individuals. Thus, it appeared to be logical to apply this
179 model to the disease but not carriage isolates. This model overcomes the limitations of the
180 coalescent-based skyline plot and is able to examine whether introduction of an intervention
181 had an impact on the epidemiological dynamics in a bacterial population ²⁸. The birth-death
182 skyline plot shows the effective reproductive number (R) over time. R is defined as the number
183 of expected secondary infections of an infected individual. R>1 indicates a growing epidemic,
184 whereas R<1 indicates a declining epidemic. Notably, R \geq 1 can be reflected in the coalescent-
185 based skyline plot analysis, whereas R<1 cannot. Therefore, we expected the birth-death
186 skyline model would be a better fit for our data. Other Bayesian population size models
187 (coalescent constant, coalescent exponential and Bayesian skyline) in combination with strict
188 and lognormal-relaxed molecular clocks were also applied for comparisons using BEAST.

189 **Integrative and conjugative element (ICE)**

190 The ICE was extracted from the *de novo* assemblies of CC230 isolates and compared using
191 EasyFig version 2.2.2. The NCBI accession numbers for the representative ICE sequences in
192 Figure 5 were FM211187 [ICESp23FST81], MH283017 [ICESp14ST230 with *tet*(M)],
193 MH283012 [ICESp14ST230 with *tet*(S/M) and omega cassettes], MH283013 [ICESp14ST230
194 with *tet*(M) and Omega], MH283012 [ICESp14ST230 with *tet*(M) and Tn917], MH283016
195 [ICESp19AST2013], MH283015 [ICESp17FST8812], and MH283014 [ICESp14ST156].

196

197 **Results**

198 **Prevalence of *tet*(S/M) in a global collection of *S. pneumoniae***

199 A novel tetracycline-resistant gene *tet*(S/M) was identified in 131 pneumococcal isolates (1%,
200 131/12,254) from South Africa (n=123), Malawi (n=5), and one each from Brazil,
201 Mozambique, and the USA. They were isolated from sterile body sites (invasive isolates):
202 blood (n=73), cerebrospinal fluid (n=30), pleural fluid (n=4), and from the nasopharynx
203 (carriage isolates) (n=24). In South Africa, *tet*(S/M) was found in 3.5% (103/2920) of the
204 invasive isolates that were submitted to the GPS project from 2005-2014 and 1.2% (20/1701)
205 carriage isolates that were collected in Agincourt and Soweto between 2009 and 2013. Of the
206 103 invasive isolates, 94% (97/103) were from children with IPD aged \leq 5 years (Fig. S1).
207 HIV status was known in only 44% (54/123) of individuals with *tet*(S/M)-positive
208 pneumococci; 59% (32/54) were HIV-positive, in which 94% (30/32) were children aged \leq 5
209 years.

210 Among the *tet*(S/M)-positive isolates, the minimum inhibitory concentration (MIC) to
211 tetracycline was determined by either E-test (n=56) or broth dilution (n=48). E-test showed a
212 median MIC of 8 mg/L with an interquartile range of 6-9 mg/L and 16 mg/L by broth dilution.
213 Based on the CLSI guideline, 99% (103/104) and 1% (1/104) were fully and intermediately
214 resistant to tetracycline, respectively. The *tet*(S/M) in this study showed 100% nucleotide
215 identity, except for one isolate (GPS_ZA_1982) from South Africa which varied from the
216 others at G1769A and resulted in a substitution R590Q. This isolate remained resistant to
217 tetracycline with a MIC of >8 mg/L when measured by broth dilution. Unlike the two
218 previously reported *tet*(S/M) alleles from *S. intermedius*¹⁵ and *S. bovis*¹⁶, the amino acid
219 sequence of *tet*(S/M) in this study showed 100% identity to Tet(S) (NCBI accession number
220 FN555436) across the first 613 amino acids, with the final 32 amino acids at the C-terminus
221 end being identical to Tet(M) (NCBI accession number EFU09422) (Figure 1). Examining the
222 promoter regions revealed that the -10 (TATTAT) and -35 (TTTACA) promoter sequence was
223 of *tet*(M) origin, rather than *tet*(S) origin. Between the promoter region and start codon of

224 *tet*(S/M), a 38-bp stem loop which is potentially involved in transcriptional regulation²⁹ was
225 found in all *tet*(S/M) genes (Figure 1), apart from one disease isolate (GPS_ZA_1926) from
226 South Africa. The deletion did not affect the tetracycline resistance level, as the MIC remained
227 at >8 mg/L when measured by the broth dilution method.

228 **Phylogeny and characteristics of *tet*(S/M) CC230 sub-lineage**

229 All 131 *tet*(S/M)-positive isolates belonged to CC230, except for one Brazilian and one
230 Malawian isolate belonging to CC156 and ST5359 (a singleton not belonging to any CC),
231 respectively. The global CC230 phylogeny showed that all *tet*(S/M)-positive isolates formed a
232 sub-lineage which predicted to be resistance to penicillin, erythromycin, tetracycline and
233 cotrimoxazole (Figure 2). The *tet*(S/M) sub-lineage was associated predominantly with VT 14
234 (98%, 127/129) but was also found in two NVT 23A isolates. The two serotype 23A isolates,
235 which both belonged to ST11106 (a single-locus variant of ST230), were recovered from
236 infants after the introduction of PCV13. One was isolated from a nasopharyngeal sample in
237 Soweto in 2012 and the other from blood culture in Johannesburg in 2014. The serotype 23A
238 *cps* locus sequences of these two isolates were identical, and their *cps*-flanking *pbp* loci (*pbp*1A
239 and *pbp*2X) were also identical to the majority of the serotype 14 isolates within the *tet*(S/M)
240 sub-lineage, exhibiting resistance to penicillin with MIC of 2 mg/L. To identify the potential
241 donor of the serotype 23A *cps* locus, a phylogenetic tree was built using the *cps* sequences
242 from all serotype 23A (n=130, belong to eight lineages) pneumococci in the GPS database.
243 This analysis showed that the serotype 23A *cps* loci of these two CC230 isolates clustered with
244 those originating from a serogroup 23 lineage GPSC7, which is predominantly (99%, 145/146)
245 represented by CC439 (Figure S2), with pairwise nucleotide similarity of 99.97%
246 (24,818/24,825) and 100% coverage. The seven nucleotide variations were found within the
247 IS630 transposase downstream of *dexB*.

248 **Temporal spread of the *tet*(S/M) CC230 sub-lineage**

249 The sub-lineage showed a temporal signal in terms of SNP accumulation against time ($R^2 =$
250 0.4094, p value = 0.001; Figure S3). Using a birth-death model in BEAST, the *tet*(S/M) sub-
251 lineage was estimated to emerge around 1994 (95% highest posterior density [HPD]: 1991-
252 1996); the MRCA for the African clade was 1998 (95% HPD: 1996-2000) and for the two
253 serotype 23A isolates was 2009 (95% HPD: 2007-2011) (Figure 3). The temporal changes of
254 spread were reconstructed based on a birth-death skyline plot and coalescent-based skyline plot
255 (Figure 4). Both skyline plots showed that the *tet*(S/M) sub-lineage expanded at the beginning
256 of the year 2000 and growth continued until around 2004. The decline of the *tet*(S/M) sub-
257 lineage was only captured by the birth-death skyline plot in or around 2005, from expected
258 secondary infections (R) of ~2.5 to ~1, and steadily declined until 2012 when the median and
259 HPD of R were below one, indicating a declining epidemic. The coalescent-based skyline plot
260 failed to detect the impact of the epidemic decline as described in a previous study²⁷.

261 **ICE carrying tet(S/M)**

262 The acquisition of tetracycline and erythromycin resistance determinants by CC230 was the
263 result of the insertion of a Tn5253-type ICE, which shared a similar structure to
264 ICESp23FST81 identified in PMEN1 (Figure 5). Both the *tet*(M) or *tet*(S/M) genes detected in
265 this study were carried on a conserved conjugative Tn916 transposon (Figure S4). Of the 172
266 macrolide-resistant isolates, insertions of either the 'omega' element (n=165) or Tn917 (n=7)
267 harbouring *erm*(B) were found up- or downstream of the *tet* gene, respectively (Figure 5). The
268 insertion of the 'omega' element truncated the gene encoding the replication initiation factor,
269 creating an 8-bp direct repeat, CAAAAAAA. The insertion of Tn917 disrupted the gene *orf*⁹
270 which encodes a putative conjugative transposon regulator. No direct repeats were found.

271

272 **Discussion**

273 We used WGS to identify a novel mosaic structure of *tet*(S/M) in *S. pneumoniae*. This approach
274 overcame the limitation of PCR that requires specific primers to detect known antibiotic
275 resistance genes. Compared with *tet*(M), the prevalence of *tet*(S/M) was low. They were mainly
276 found in a CC230 sub-lineage that predominantly expressed VT 14 and exhibited multidrug
277 resistance in South Africa. Together with its conserved nucleotide sequence and genomic
278 location, our finding strongly suggested a clonal expansion of *tet*(S/M)-positive CC230 isolates
279 within South Africa prior to the introduction of PCVs.

280 The convergence of antimicrobial resistance and virulence in the CC230 sub-lineage probably
281 contributed to its expansion in disease-causing populations prior to the introduction of PCVs.
282 Unlike what was observed in other countries, CC230 in South Africa predominantly expressed
283 a highly invasive serotype 14 capsule ¹⁸ and was the clone that represented most of the serotype
284 14 isolates (43%) in the pre-vaccine era, when serotype 14 was the most prevalent serotype
285 causing IPD in South Africa ³⁰. Any controlling measure to decrease this lineage would not
286 only result in a reduction in the IPD burden but also multidrug-resistant IPD incidence.

287 The birth-death model estimated that the decline of the *tet*(S/M) CC230 sub-lineage started
288 around 2005, one year after the national ART programme was launched to treat HIV-infected
289 individuals in South Africa ³¹. The prediction was consistent with a 41% reduction of IPD
290 incidence among HIV-infected children after the introduction of ART ³¹. Among the IPD
291 caused by *tet*(S/M) CC230 isolates, almost 60% occurred in HIV-positive children. This
292 observational evidence strengthened that ART was likely to contribute to the decline before
293 PCV introduction. In contrast, the large-scale use of cotrimoxazole as prophylaxis to prevent
294 bacterial infections among HIV-positive individuals was unlikely to be responsible for the
295 decline, as the sub-lineage was resistant to cotrimoxazole. The further decline in 2012 predicted
296 by the model echoed the epidemiological finding that IPD caused by VT pneumococci
297 significantly decreased among children in 2012 ³². Our finding demonstrated that we could

298 effectively reconstruct the temporal spread of an epidemic using genomic data and highlighted
299 the possible use of routine genomic surveillance to identify outbreaks as they occur in the
300 future.

301 The MRCA of two CC230 isolates expressing NVT 23A was dated to emerge around 2009,
302 the year when PCV7 was introduced. However, the long branch leading to the MRCA from the
303 internal node that shared with the closely related serotype 14 isolates indicated that the window
304 of time for capsular switching could be between 2002 and 2011. Although the invasive disease
305 potential for serotype 23A is low ¹⁸, a significant increase of this serotype in IPD cases was
306 reported from England ^{2, 33}, Stockholm ³⁴ and Taiwan ³⁵ after the implementation of PCV13.
307 Serotype 23A is primarily associated with CC338 (GPSC5, PMEN26) and CC439 (GPSC7),
308 and is thus rarely found in a CC230 genetic background. Such serotype and genotype
309 combination were only identified in two ST9396 isolates (single locus variant of ST230) from
310 China in 2013 and one ST10921 isolate (double locus variant of ST230) from Poland in 2013
311 in the MLST database. In South Africa, CC439 accounted for 62% of serotype 23A (both
312 carriage and disease) isolates ¹⁸ is the potential donor of the serotype 23A *cps* to the *tet*(S/M)
313 CC230 sub-lineage, highlighting that capsular switching with the prevalent NVT lineage could
314 enable a VT lineage to evade the vaccine. Capsular switching is usually a result of homologous
315 recombination. When compared with other 620 GPSCs, GPSC10 which included 98%
316 (258/262) of CC230 isolates is a very recombinogenic lineage which had a significantly high
317 recombination rate [GPSC10 r/m: 10.9 vs median of 35 dominant GPSCs: 8.3 (1st – 3rd quartile,
318 5.7-10.7) p value < 0.0001, Wilcoxon signed-rank test] ¹⁸. Given this recombinogenic nature,
319 together with the established multidrug resistant genotypes, it is of concern that any further
320 capsular switching may increase the chance of this multidrug-resistant lineage surviving and
321 continuing to cause invasive disease.

322 Like *tet*(M), *tet*(S/M) was also carried by a highly mobile conjugative transposon, Tn916, with
323 a broad host range. Conserved genetic environment of *tet*(M) and *tet*(S/M) indicates that the
324 recombination resulting in the mosaic structure of *tet*(S/M) probably occurred after the
325 acquisition of the gene by Tn916. Comparison of *tet*(M) sequences in the current collection
326 also revealed a high degree of allelic variations that were probably due to homologous
327 recombination³⁶. This finding is consistent with previous studies which suggest that the *tet*
328 evolved separately from Tn916^{10, 36}. However, the driving force behind the evolution of *tet*
329 genes remains unclear, given that tetracycline is not used as a first-line antibiotic to treat
330 pneumococcal disease and was seldom used in young children³⁷. The allelic diversity of *tet*
331 gene may be maintained by 1) frequent recombination among *S. pneumoniae* and with closely
332 related species such as normal nasopharyngeal resident *S. mitis*³⁸ and zoonotic pathogen *S.*
333 *suis*³⁹; 2) antibiotic-selective pressure via food chain, as tetracycline is widely used in
334 agriculture⁴⁰ and its residue is detected in milk⁴¹. Future studies that investigate the driving
335 force behind will improve our understanding to develop preventive measure to reduce
336 tetracycline resistance in *S. pneumoniae*.

337 In conclusion, we identified a novel tetracycline-resistant determinant *tet*(S/M) in
338 *S. pneumoniae* and showed that its dissemination is due to a clonal expansion of the multidrug-
339 resistant lineage CC230 in South Africa where the HIV burden is high. With genomic data, we
340 successfully detected the declines in transmission of this multidrug-resistant lineage using a
341 birth-death model, and the fall of this lineage may correlate to the improved treatment of HIV-
342 infected individuals and the implementation of PCVs. Capsular switching within this lineage
343 is potentially of public health importance and may erode the beneficial effect brought about by
344 the implementation of PCVs. The capacity for continuous genomic surveillance in the post-
345 vaccine era provides critical opportunities for monitoring and forecasting the rise of multidrug-

346 resistant pneumococcal lineages that may also undergo vaccine evasion through capsular
347 switching events.

348

349 **Acknowledgements**

350 We deeply appreciate all members of the GPS consortium for their collaborative spirit and
351 determination for the monumental task of sampling, extracting data, and for their intellectual
352 input to this manuscript. We extend our special thanks to Linda De Gouveia from National
353 Institute for Communicable Diseases of the National Health Laboratory Service, South Africa
354 who helped us with the antimicrobial susceptibility testing. We appreciated critiques and
355 suggestions from all team members in the Genomics of Pneumonia and Meningitis (and
356 neonatal sepsis) group and technical support from the Pathogen Informatic Team in the
357 Parasites and Microbe Programme at the Wellcome Sanger Institute.

358 Members of The Global Pneumococcal Sequencing Consortium:

359 Abdullah W Brooks, Alejandra Corso, Alexander Davydov, Andrew J Pollard, Anna
360 Skoczynska, Betuel Sigauque, Deborah Lehmann, Diego Faccone, Elena Voropaeva, Eric
361 Sampane-Donkor, Ewa Sadowy, Godfrey Bigogo, Helio Mucavele, Houria Belabbès, Idrissa
362 Diawara, Jennifer Moïsi, Jennifer Verani, Jeremy Keenan, Khalid Zerouali, Maria-Cristina de
363 Cunto Brändileone, Margaret Ip, Md Hasanuzzaman, Nicole Wolter, Noga Givon-Lavi, Özgen
364 Köseoglu Eser, Pak Leung Ho, Patrick E Akpaka, Paul Turner, Paula Gagetti, Peggy-Estelle
365 Tientcheu, Philip E. Carter, Pierra Law, Rachel Benisty, Rebecca Ford, Ron Dagan, Sadia
366 Shakoor, Sanjay Doiphode, Shamala Devi Sekaran, Somporn Sribuengfung, Stephen Obaro,
367 Stuart C Clarke, Tamara Kastrin, Theresa J. Ochoa, Waleria Hryniwicz, Veeraraghavan Balaji
368 and Yulia Urban.

369

370 **Funding**

371 This study was co-funded by the Bill and Melinda Gates Foundation (grant code OPP1034556),
372 the Wellcome Sanger Institute (core Wellcome grants 098051 and 206194) and the US Centers
373 for Disease Control and Prevention.

374

375 **Transparency Declaration**

376 Dr. Gladstone reports PhD studentship from Pfizer, outside the submitted work; Dr. Lees
377 reports grants from Pfizer, outside the submitted work. Dr. von Gottberg reports grants and
378 other from Pfizer, during the conduct of the study and grants and other from Sanofi, outside
379 the submitted work; Dr. Bentley reports personal fees from Pfizer, personal fees from Merck,
380 outside the submitted work. Professor A. Skoczynska reports grants from Pfizer, assistance to
381 attend scientific meetings and honoraria for lecturing funded from GlaxoSmithKline and
382 Pfizer, and participation in Advisory Board of GlaxoSmithKline and Pfizer, outside the
383 submitted work.

384

385 **Disclaimer**

386 The findings and conclusions in this report are those of the authors and do not necessarily
387 represent the official position of the Centers for Disease Control and Prevention.

388

389 **References**

- 390 1. Wahl B, O'Brien KL, Greenbaum A et al. Burden of *Streptococcus pneumoniae* and
391 *Haemophilus influenzae* type b disease in children in the era of conjugate vaccines: global,
392 regional, and national estimates for 2000-15. *Lancet Glob Health* 2018; **6**: e744-e57.
- 393 2. Ladhani SN, Collins S, Djennad A et al. Rapid increase in non-vaccine serotypes
394 causing invasive pneumococcal disease in England and Wales, 2000-17: a prospective
395 national observational cohort study. *Lancet Infect Dis* 2018; **18**: 441-51.

396 3. Ouldali N, Levy C, Varon E et al. Incidence of paediatric pneumococcal meningitis and
397 emergence of new serotypes: a time-series analysis of a 16-year French national survey.
398 *Lancet Infect Dis* 2018; **18**: 983-91.

399 4. Weinberger R, von Kries R, van der Linden M et al. Invasive pneumococcal disease in
400 children under 16years of age: Incomplete rebound in incidence after the maximum effect
401 of PCV13 in 2012/13 in Germany. *Vaccine* 2018; **36**: 572-7.

402 5. Rokney A, Ben-Shimol S, Korenman Z et al. Emergence of *Streptococcus pneumoniae*
403 Serotype 12F after Sequential Introduction of 7- and 13-VaLent Vaccines, Israel. *Emerg Infect*
404 *Dis* 2018; **24**: 453-61.

405 6. Wyres KL, Lambertsen LM, Croucher NJ et al. Pneumococcal capsular switching: a
406 historical perspective. *J Infect Dis* 2013; **207**: 439-49.

407 7. Metcalf BJ, Gertz RE, Jr., Gladstone RA et al. Strain features and distributions in
408 pneumococci from children with invasive disease before and after 13-valent conjugate
409 vaccine implementation in the USA. *Clin Microbiol Infect* 2016; **22**: 60 e9- e29.

410 8. Chochua S, Metcalf BJ, Li Z et al. Invasive Serotype 35B Pneumococci Including an
411 Expanding Serotype Switch Lineage, United States, 2015-2016. *Emerg Infect Dis* 2017; **23**:
412 922-30.

413 9. Olarte L, Kaplan SL, Barson WJ et al. Emergence of Multidrug-Resistant
414 Pneumococcal Serotype 35B among Children in the United States. *J Clin Microbiol* 2017; **55**:
415 724-34.

416 10. Wyres KL, van Tonder A, Lambertsen LM et al. Evidence of antimicrobial resistance-
417 conferring genetic elements among pneumococci isolated prior to 1974. *BMC Genomics*
418 2013; **14**: 500.

419 11. Widdowson CA, Klugman KP, Hanslo D. Identification of the tetracycline resistance
420 gene, tet(O), in *Streptococcus pneumoniae*. *Antimicrob Agents Chemother* 1996; **40**: 2891-3.

421 12. Charpentier E, Gerbaud G, Courvalin P. Characterization of a new class of
422 tetracycline-resistance gene tet(S) in *Listeria monocytogenes* BM4210. *Gene* 1993; **131**: 27-
423 34.

424 13. Huang J, Ma J, Shang K et al. Evolution and Diversity of the Antimicrobial Resistance
425 Associated Mobilome in *Streptococcus suis*: A Probable Mobile Genetic Elements Reservoir
426 for Other Streptococci. *Front Cell Infect Microbiol* 2016; **6**: 118.

427 14. Liu LC, Tsai JC, Hsueh PR et al. Identification of tet(S) gene area in tetracycline-
428 resistant *Streptococcus dysgalactiae* subsp. *equisimilis* clinical isolates. *J Antimicrob
429 Chemother* 2008; **61**: 453-5.

430 15. Lancaster H, Roberts AP, Bedi R et al. Characterization of Tn916S, a Tn916-like
431 element containing the tetracycline resistance determinant tet(S). *J Bacteriol* 2004; **186**:
432 4395-8.

433 16. Barile S, Devirgiliis C, Perozzi G. Molecular characterization of a novel mosaic
434 tet(S/M) gene encoding tetracycline resistance in foodborne strains of *Streptococcus bovis*.
435 *Microbiology* 2012; **158**: 2353-62.

436 17. Wayne P. *CLSI. Performance Standards for Antimicrobial Susceptibility Testing:
437 Twenty-Fourth Information Supplement*: Clinical and Laboratory Standards Institute, 2014.

438 18. Gladstone RA, Lo SW, Lees JA et al. International genomic definition of
439 pneumococcal lineages, to contextualise disease, antibiotic resistance and vaccine impact.
440 *EBioMedicine* 2019.

441 19. Hunt M, Mather AE, Sanchez-Buso L et al. ARIBA: rapid antimicrobial resistance
442 genotyping directly from sequencing reads. *Microb Genom* 2017; **3**: e000131.

443 20. Chewapreecha C, Harris SR, Croucher NJ et al. Dense genomic sampling identifies
444 highways of pneumococcal recombination. *Nat Genet* 2014; **46**: 305-9.

445 21. Quirk SJ, Haraldsson G, Erlendsdottir H et al. Effect of Vaccination on Pneumococci
446 Isolated from the Nasopharynx of Healthy Children and the Middle Ear of Children with
447 Otitis Media in Iceland. *J Clin Microbiol* 2018; **56**.

448 22. Chaguza C, Cornick JE, Andam CP et al. Population genetic structure, antibiotic
449 resistance, capsule switching and evolution of invasive pneumococci before conjugate
450 vaccination in Malawi. *Vaccine* 2017.

451 23. Cremers AJ, Mobegi FM, de Jonge MI et al. The post-vaccine microevolution of
452 invasive *Streptococcus pneumoniae*. *Sci Rep* 2015; **5**: 14952.

453 24. Gladstone RA, Devine V, Jones J et al. Pre-vaccine serotype composition within a
454 lineage signposts its serotype replacement – a carriage study over 7 years following
455 pneumococcal conjugate vaccine use in the UK. *Microbial Genomics* 2017; **3**.

456 25. Rambaut A, Lam TT, Max Carvalho L et al. Exploring the temporal structure of
457 heterochronous sequences using TempEst (formerly Path-O-Gen). *Virus Evol* 2016; **2**:
458 vew007.

459 26. Bouckaert R, Heled J, Kuhnert D et al. BEAST 2: a software platform for Bayesian
460 evolutionary analysis. *PLoS Comput Biol* 2014; **10**: e1003537.

461 27. Stadler T, Kuhnert D, Bonhoeffer S et al. Birth-death skyline plot reveals temporal
462 changes of epidemic spread in HIV and hepatitis C virus (HCV). *Proc Natl Acad Sci U S A*
463 2013; **110**: 228-33.

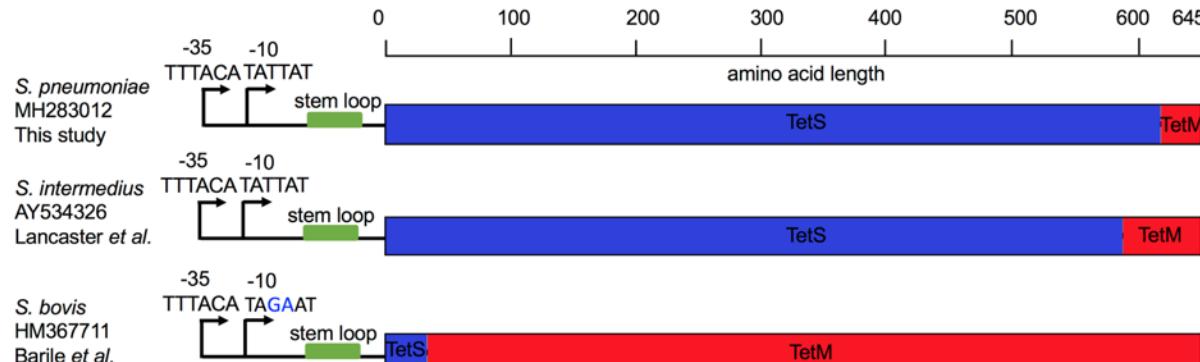
464 28. Kuhnert D, Coscolla M, Brites D et al. Tuberculosis outbreak investigation using
465 phylodynamic analysis. *Epidemics* 2018; **25**: 47-53.

466 29. Chopra I, Roberts M. Tetracycline Antibiotics: Mode of Action, Applications,
467 Molecular Biology, and Epidemiology of Bacterial Resistance. *Microbiology and Molecular
468 Biology Reviews* 2001; **65**: 232-60.

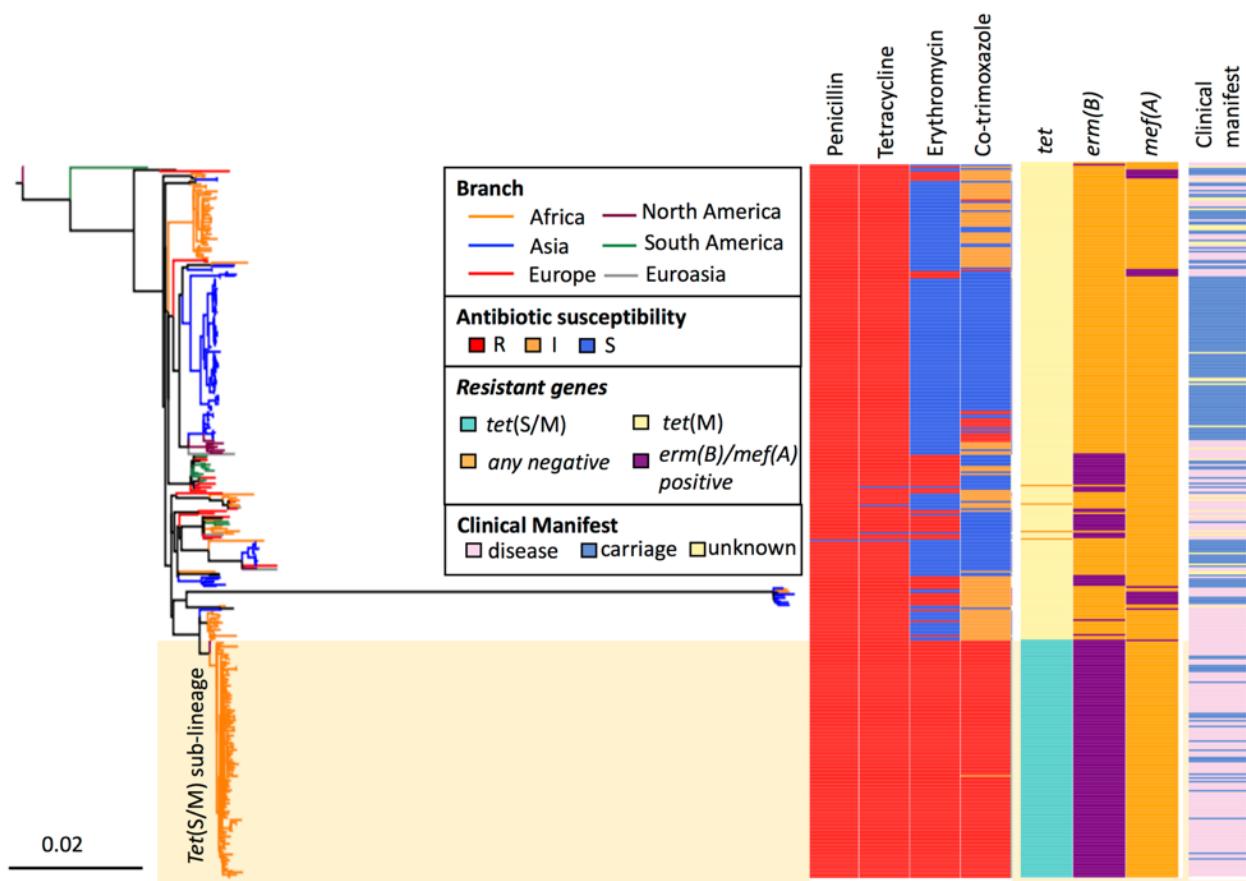
469 30. Ndlangisa KM, du Plessis M, Wolter N et al. Population snapshot of *Streptococcus*
470 *pneumoniae* causing invasive disease in South Africa prior to introduction of pneumococcal
471 conjugate vaccines. *PLoS One* 2014; **9**: e107666.

472 31. Nunes MC, von Gottberg A, de Gouveia L et al. The impact of antiretroviral
473 treatment on the burden of invasive pneumococcal disease in South African children: a time
474 series analysis. *AIDS* 2011; **25**: 453-62.

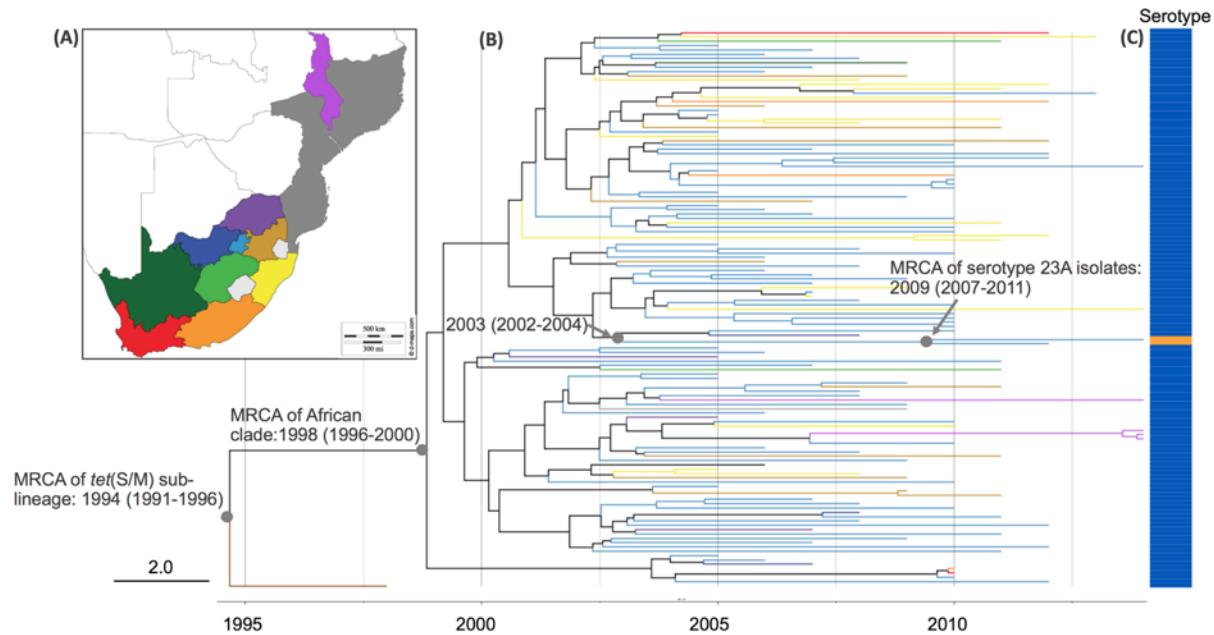
475 32. von Gottberg A, de Gouveia L, Tempia S et al. Effects of Vaccination on Invasive
476 Pneumococcal Disease in South Africa. *New England Journal of Medicine* 2014; **371**: 1889-
477 99.

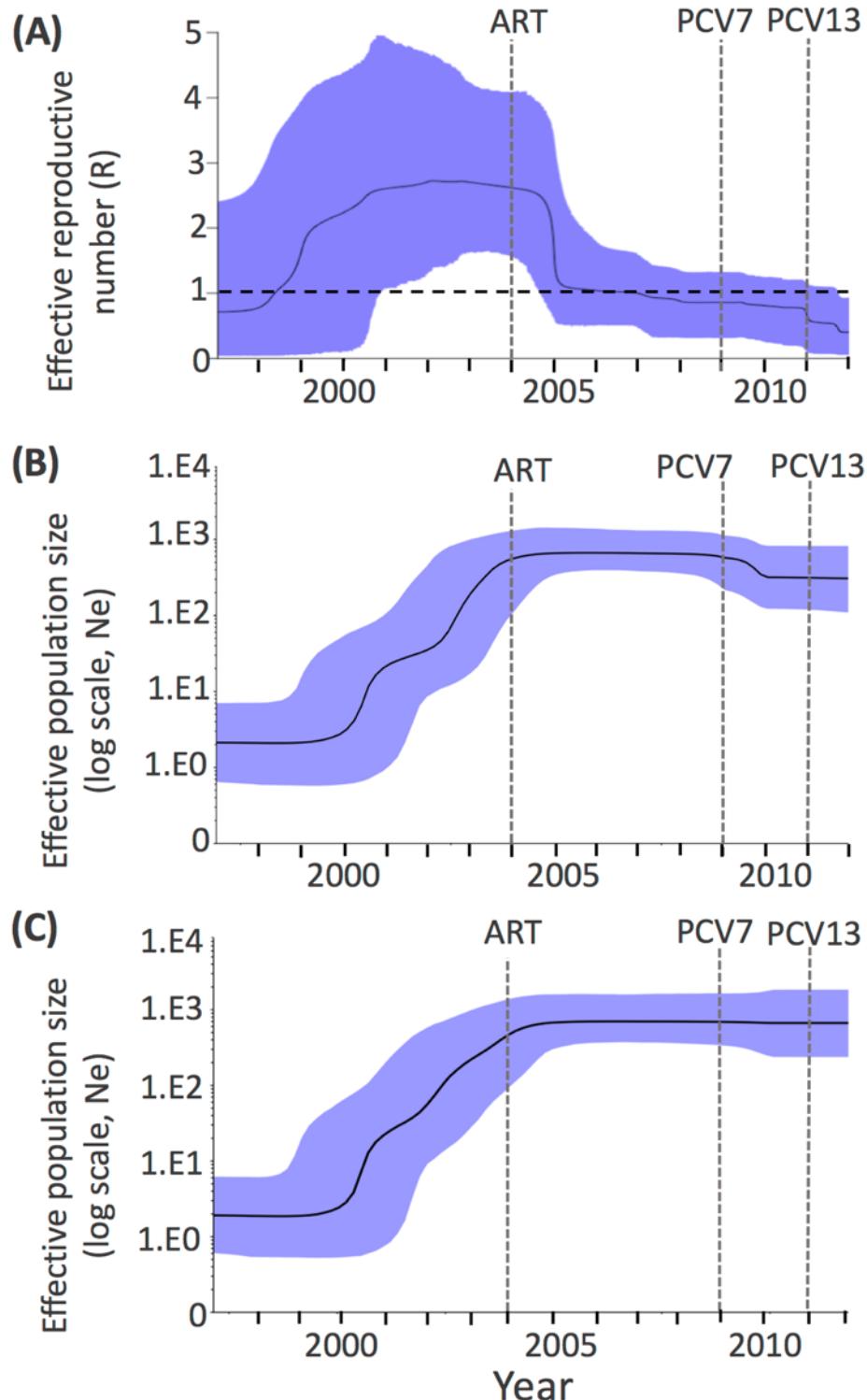

478 33. Moore CE, Paul J, Foster D et al. Reduction of invasive pneumococcal disease 3 years
479 after the introduction of the 13-valent conjugate vaccine in the Oxfordshire region of
480 England. *J Infect Dis* 2014; **210**: 1001-11.

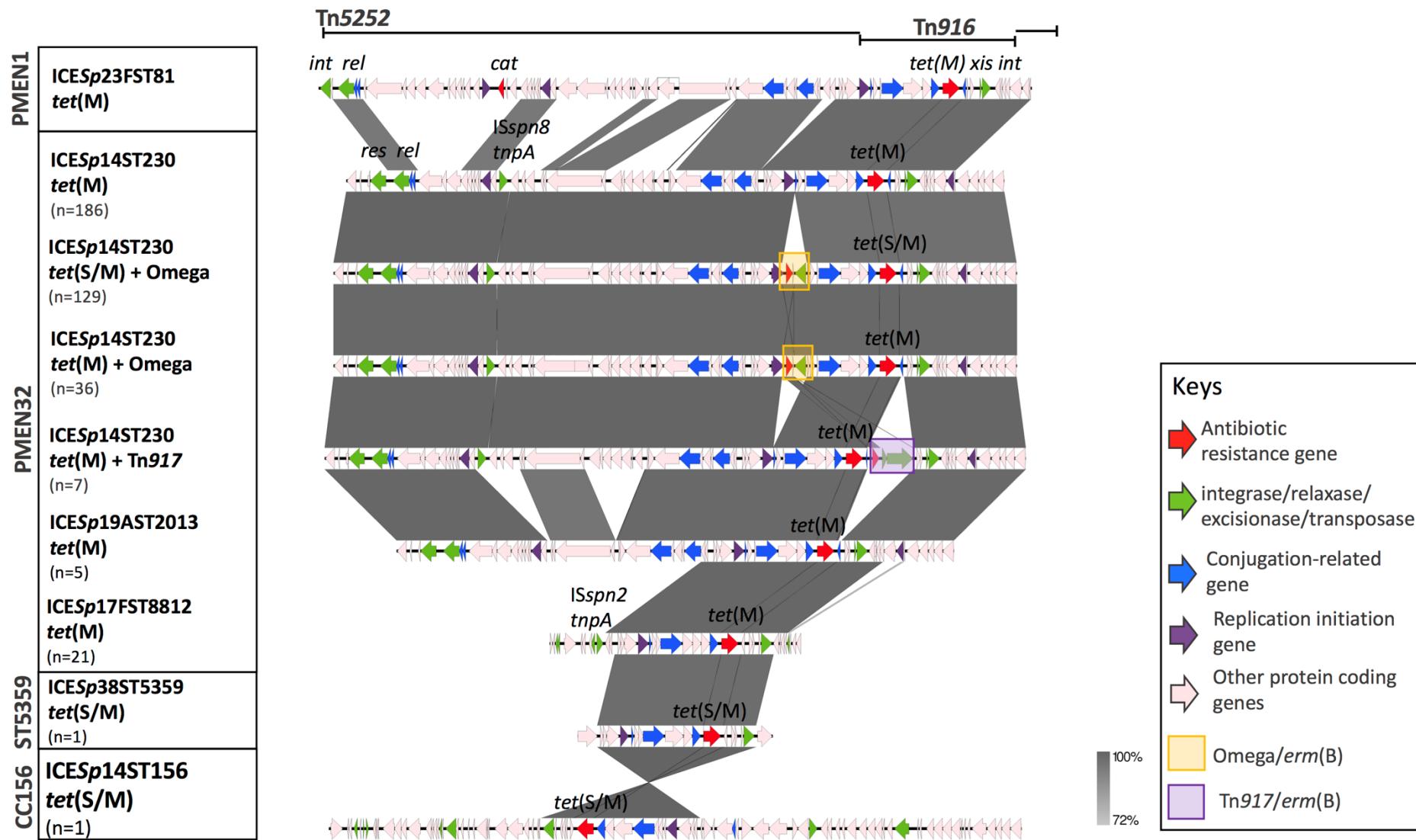
481 34. Galanis I, Lindstrand A, Darenberg J et al. Effects of PCV7 and PCV13 on invasive
482 pneumococcal disease and carriage in Stockholm, Sweden. *Eur Respir J* 2016; **47**: 1208-18.

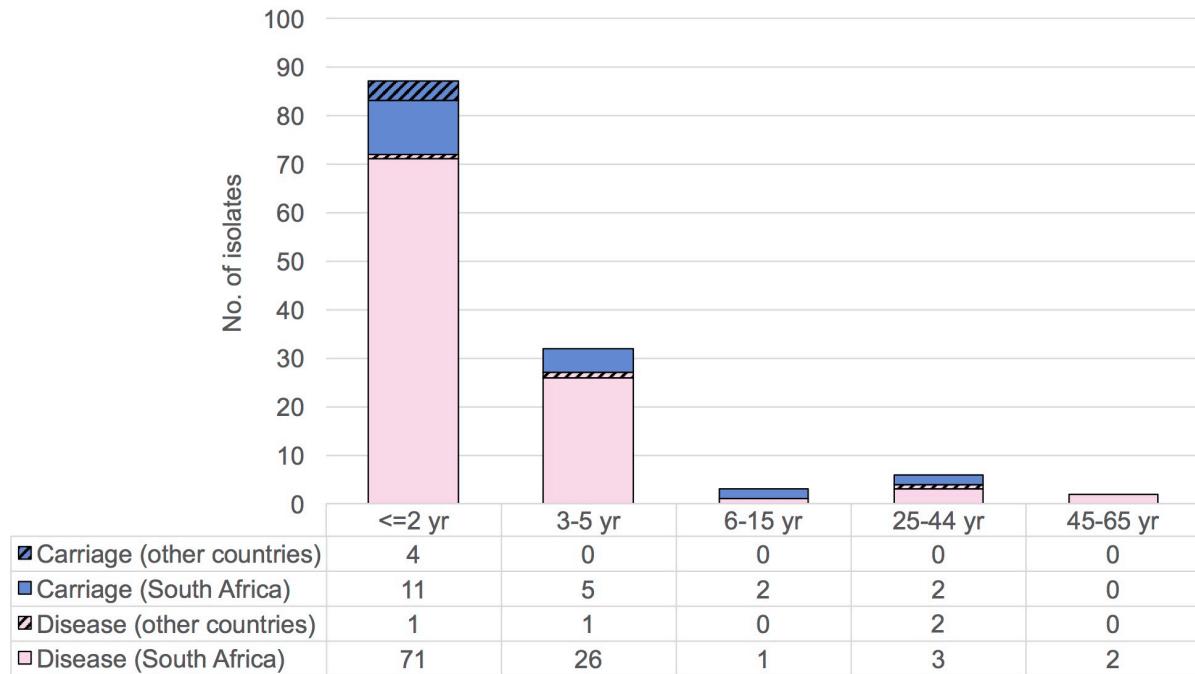

483 35. Su LH, Kuo AJ, Chia JH et al. Evolving pneumococcal serotypes and sequence types in
484 relation to high antibiotic stress and conditional pneumococcal immunization. *Sci Rep* 2015;
485 **5**: 15843.

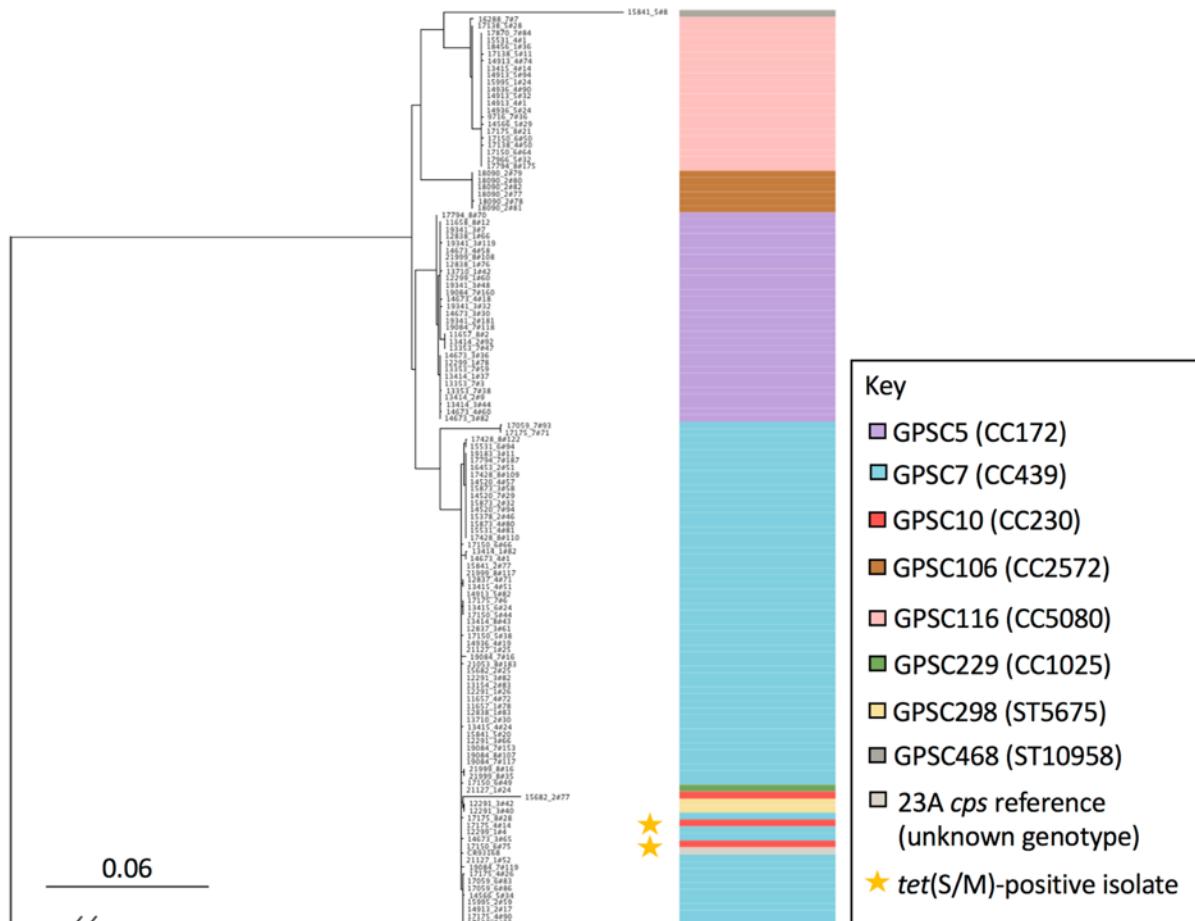
486 36. Oggioni MR, Dowson CG, Smith JM et al. The tetracycline resistance gene *tet(M)*
487 exhibits mosaic structure. *Plasmid* 1996; **35**: 156-63.

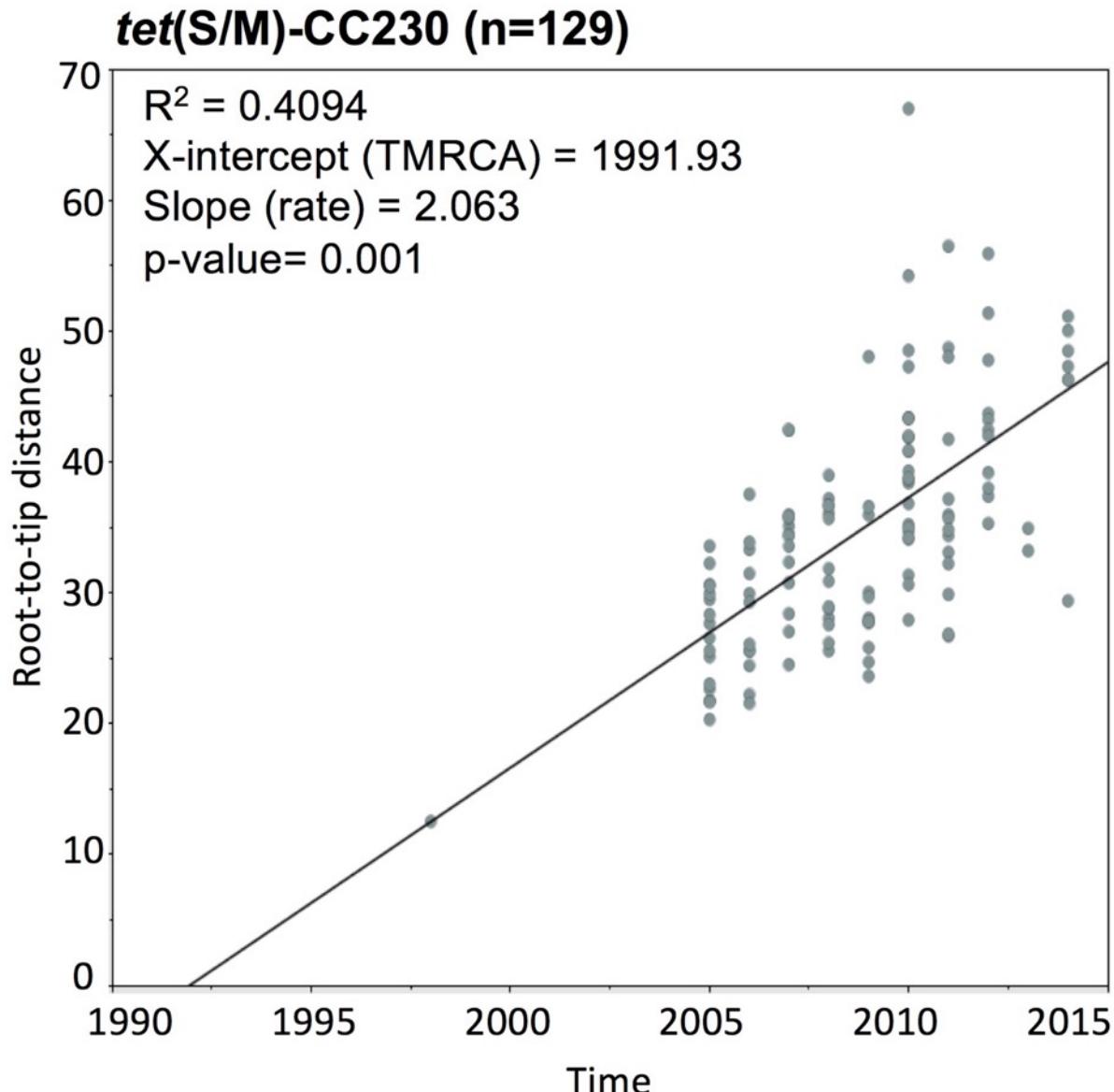

488 37. Organization WH. Revised WHO Classification and Treatment of Pneumonia in
489 Children at Health Facilities: Evidence Summaries. Geneva: World Health Organization.
490 *Scientific basis of WHO recommendations for treatment of pneumonia, 2014.*
491 38. Kilian M, Riley DR, Jensen A et al. Parallel evolution of *Streptococcus pneumoniae*
492 and *Streptococcus mitis* to pathogenic and mutualistic lifestyles. *MBio* 2014; **5**: e01490-14.
493 39. Ye C, Bai X, Zhang J et al. Spread of *Streptococcus suis* sequence type 7, China. *Emerg*
494 *Infect Dis* 2008; **14**: 787-91.
495 40. Granados-Chinchilla F, Rodriguez C. Tetracyclines in Food and Feedingstuffs: From
496 Regulation to Analytical Methods, Bacterial Resistance, and Environmental and Health
497 Implications. *J Anal Methods Chem* 2017; **2017**: 1315497.
498 41. de Albuquerque Fernandes SA, Magnavita AP, Ferrao SP et al. Daily ingestion of
499 tetracycline residue present in pasteurized milk: a public health problem. *Environ Sci Pollut*
500 *Res Int* 2014; **21**: 3427-34.
501
502


503 **Figure 1.** Schematic representation of the mosaic structure of *tet(S/M)* alleles of the current
504 and previous studies. The reference sequences for *tet(M)* and *tet(S)* were retrieved from
505 NCBI Genbank using accession number EFU09422 and FN555436, respectively.
506
507
508
509
510
511


Figure 2. A SNP tree constructed with CC230 *tet*(S/M)-positive isolates (n=129) and *tet*(S/M)-negative carriage/disease isolates (n=260) collected from twenty countries. The tree was built based on 13,405 SNPs extracted from an alignment outside recombination regions, created by mapping reads of each isolate to the sequence of a ST230 reference strain, PMEN global clone Denmark¹⁴⁻³², PMEN32 (ENA accession number ERS1706837). Penicillin resistance was predicted based on the *pbp1a*, *pbp2x*, *pbp2b* sequences (1, 2); tetracycline and erythromycin resistance were predicted based on the presence of *tet*(M) and *tet*(S/M), and *erm*(B) and *mef*(A), respectively. Cotrimoxazole resistance was predicted based on the presence of mutation I100L in *folA* and any indel within amino acid residue 56-67 in *folP* while presence of either mutation predicted to confer cotrimoxazole-intermediate phenotype.


Figure 3. (A) Malawi, Mozambique and administration regions of South Africa (B) Timed phylogeny for *S. pneumoniae* tet(S/M) CC230 sub-lineage (n=129) reconstructed using BEAST. Tree branches are coloured according to the geographical locations in (A), except for the branch for an isolate collected from the United States coloured in brown. (C) Vaccine serotype 14 is indicated in blue, whereas non-vaccine serotype 23A in orange.


Figure 4. (A) Birth-death skyline plot of inferred changes in effective reproductive number (R) of *S. pneumoniae* tet(S/M) CC230 sub-lineage using IPD isolates (n=105). (B) Coalescent-based skyline plot of inferred changes in the effective population size (Ne) of *S. pneumoniae* tet(S/M) CC230 sub-lineage using both IPD and carriage isolates (n=129) and (C) using only IPD isolates (n=105). The black solid line shows the median of R in (A) and Ne in (B) and (C), respectively. The background area represents the 95% highest posterior density intervals. R>1 indicates a growing epidemic, whereas R<1 indicates a declining epidemic. ART, antiretroviral treatment; PCV7, seven-valent pneumococcal conjugate vaccine; PCV13, thirteen-valent pneumococcal conjugate vaccine.


Figure 5. Comparison of integrative and conjugative element (ICE) identified in clonal complex (CC)230 with Spain^{23F-1} (PMEN1). Grey bands between the sequences indicate BLASTN matches.

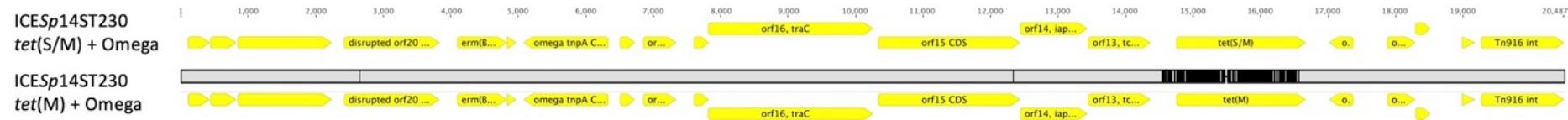

Figure S1. Number of *tet*(S/M)-positive isolates, by age and clinical manifest

Figure S2. Maximum likelihood phylogenetic tree was constructed using 2,178 SNPs extracted from a 21,296-bp alignment of serotype 23A *cps* locus sequences from the serotype 23A *S. pneumoniae* isolates (n=130) in the GPS curated dataset. This analysis used the serotype 23F *cps* locus reference sequence (accession number CR931685) as the outgroup on which to root the tree. The serotype 23A *cps* reference sequence (accession number CR931683) was included. The primary clonal complex (CC) or sequence type (ST) associated with Global Pneumococcal Sequence Cluster (GPSC) was indicated in parentheses.

Figure S3. Linear regression of root-to-tip distance against time on *tet(S/M)-CC230* lineage (n=129) using TempEST v1.5. TempEST detected a significant positive correlation of year of collection with its genetic distance from the root, indicating a signal of a ‘molecular clock’, with which isolates measurably diversifying from their last common ancestor over time.

Figure S4. Comparison of Integrative and conjugative element (ICE) carrying *tet(S/M)* and *tet(M)* in clonal complex (CC)230. The yellow arrows indicated protein coding region. The grey band between the sequence indicates BLASTN match and black vertical lines shows the unmatched nucleotide bases.