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Abstract

Stroke causes approximately 1 in every 20 deaths in the United States. Most strokes are ischemic,
caused by a blockage of blood flow to the brain. While neurologists agree on the delineation of ischemic
stroke (IS) into the three most common subtypes (cardioembolic stroke (CES), large artery stroke
(LAS), and small vessel stroke (SVS)), several different subtyping systems exist. The two most
commonly-used clinical subtyping systems are TOAST (Trial of Org 10172 in Acute Stroke Treatment)
and CCS (Causative Classification System for Stroke), but agreement between these two systems is
only moderate. Here, we have compared two approaches to combining the existing subtyping systems

for a phenotype suited for a genome-wide association study (GWAS).

We used the NINDS Stroke Genetics Network dataset (SiGN, 13,390 cases and 28,026 controls), which
includes cases with both CCS and TOAST subtypes. We defined two new phenotypes: 1) the intersect,
for which an individual must be assigned the same subtype by CCS and TOAST; and 2) the union, for
which an individual must be assigned a subtype by either CCS or TOAST. The union yields the largest

sample size while the intersect may yield a phenotype with less potential misclassification.

We performed GWAS for all subtypes, using the original subtyping systems, the intersect, and the union
as phenotypes. In each subtype, heritability was higher for the intersect phenotype compared to the
union, CCS (alone), and TOAST (alone) phenotypes. We observed stronger effects at known IS variants
with the intersect compared to the other phenotype definitions. In GWAS of the intersect, we identify
rs10029218 as an associated variant with small vessel stroke. We conclude that in the absence of a
golden standard for phenotyping, taking this alternate approach yields more power to detect genetic

associations in ischemic stroke.
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Author summary

Around one in five people will have a stroke at some point in their life. Most strokes (~80%) are
ischemic, caused by a blockage of blood supply to the brain. Ischemic stroke risk is partly influenced
by lifestyle, and partly by genetics. There are different ischemic stroke subtypes, and genome-wide
association studies (GWAS) indicate that the genetic risk for these subtypes is influenced by different
genetic factors. Genetic studies of ischemic stroke are therefore typically performed by analyzing each
subtype separately. There are several methods to determine someone’s subtype based on clinical
features. To find more genetic factors that influence ischemic stroke risk, we aimed to find a group of
patients that are phenotypically similar by using information from all subtyping methods. We compared
a group of patients assigned the same subtype by all subtyping methods (the intersect) to a group of
patients assigned that subtype by at least one subtyping method (the union). Even though the intersect
sample size is smaller, we find genetic factors in the intersect GWAS have stronger genetic effects,
likely explained by the fact that we are more certain of the subtype in the intersect. Using the intersect,

we find new risk-associated genetic factors.
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73  Introduction

74 Stroke is one of the primary causes of death worldwide and causes ~1 in every 20 deaths in the United
75  States [1]. Eighty-seven percent of all strokes are ischemic, caused by a blockage of blood flow to the
76  brain [1]. Ischemic stroke (IS) tends to affect those older than 65 years old and has several known risk
77  factors, including type 2 diabetes, hypertension, and smoking. However, the affected population is
78 extremely heterogeneous in terms of age, sex, ancestral background, and socioeconomic status.

79

80  Ischemic strokes themselves are also heterogeneous in terms of clinical features and presumed
81 mechanism. The majority of IS are typically grouped into three subtypes: cardioembolic stroke (CES),
82  typically occurring in people with atrial fibrillation; large artery stroke (LAS), caused by eroded or
83  ruptured atherosclerotic plaques in arteries; and small vessel stroke (SVS), caused by a blockage of one
84  of the small vessels in the brain. These subtypes also seem to be genetically distinct: genome-wide
85  association studies (GWAS) in ischemic stroke have identified single-nucleotide polymorphisms
86  (SNPs) that primarily associate with a specific IS subtype [2]. To date, GWAS have identified 20 loci
87  associated with ischemic stroke, of which 9 appear to be specific to an IS subtype [2]. Furthermore, the
88  subtypes also have varying SNP-based heritabilities (estimated at 16%, 12% and 18% for CES, LAS
89  and SVS respectively [3]), indicating that the phenotypic variation captured by genetic factors varies
90 across the subtypes. Improved genetic discovery can help further elucidate the underlying biology of
91 ischemic stroke as well as potentially help identify genetically high-risk patients who could be
92  candidates for earlier clinical interventions.

93

94  While neurologists and researchers agree on the delineation of ischemic stroke into these three primary
95  categories (CES, LAS and SVS), several subtyping systems are currently used to assign a subtype to an
96  ischemic stroke patient. The most commonly used approach is a questionnaire based on clinical
97  knowledge that was originally developed for the Trial of Org 10172 in Acute Stroke Treatment
98 (TOAST) [4]. TOAST was designed for implementation in the clinic and has also been used as
99  subtyping system in the majority of stroke GWAS. More recently, researchers have developed a second

100  subtyping system: the Causative Classification System for Stroke (CCS) [5], a decision model based on
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101 clinical knowledge that also incorporates imaging data. There are two outputs of CCS: CCS Causative
102  (CCSc), which assigns one subtype to each patient based on the presumed cause of the stroke; and CCS
103  phenotypic (CCSp), which allows for multiple subtype assignments and incorporates the confidence of
104  the assignment. Previous work indicates that TOAST and CCS have moderate, but not high,
105  concordance in assigning subtypes in patients: agreement is lowest in SVS (k = 0.56) and highest in
106  LAS (x=0.71) [6]. Notably, both subtyping systems still place more than one third of all samples into
107  aheterogeneous ‘undetermined’ category. [6]

108

109  Determining a patient’s subtype is difficult and prone to misclassification [7], but critical to genetic
110  discovery in ischemic stroke, as demonstrated by the prevalence of subtype-specific association signals.
111 If a group of cases is comprised of phenotypically heterogeneous samples with different underlying
112 genetic risk, power to detect a statistically significant association at a truly associated SNP is reduced
113  (Fig 1). In contrast, a case definition that captures a more phenotypically homogenous group of cases
114 would improve the chances of detecting genetic variants that associate with disease. Therefore, we used
115  the TOAST, CCSc and CCSp subtype assignments to define two new phenotypes per subtype: the
116  intersect, for which an individual must be assigned the same subtype across all three subtyping systems;
117  and the union, for which an individual must be assigned that subtype by at least one of the subtyping
118  systems. Analyzing the union potentially improves power for locus discovery due to its larger sample
119  size, but at the cost of more potential misclassification. In contrast, analyzing the intersect may improve
120  power for genetic discovery by generating a phenotype that is less prone to mis-classification, despite
121 asmaller sample size.

122

123  Here, we perform GWAS with the union and intersect phenotypes for each primary IS subtype to
124  investigate whether these newly-defined phenotypes indeed improve our ability to detect genetic risk
125  factors for ischemic stroke. We find heritability estimates to be highest in the intersect phenotype for
126  all subtypes. We also find stronger effects at known associations for the intersect compared to the union,
127  and we validate a previously suspected association in small vessel stroke through GWAS of the

128  intersect phenotype.
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Fig 1. Hypothesized benefit of using the intersect, at a SNP associated with ischemic stroke. Circles

indicate the protective allele, and crosses the risk allele. Using a chi-square test (visualized with contingency

tables), the measured effect is stronger with a group of cases that is more homogeneous but smaller (intersect,

purple) than with a group of cases that is less strictly defined but is larger (union, teal).
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135  Results

136

137  Genome-wide association study data processing

138  To investigate how redefining stroke phenotypes improves our ability to detect SNPs associated with
139  ischemic stroke, we employed the SiGN dataset. Data processing of the SiGN dataset, including quality
140 control and imputation, has been described in detail elsewhere [8]. Briefly, the dataset includes 13,930
141 IS cases and 28,026 controls of primarily European descent. Cases and controls were genotyped
142  separately (with the exception of a small number of cohorts) and on various Illumina arrays and then
143  merged together into case-control groups matched for genotyping array and sample ancestry (via
144  principal component analysis). For the cases, phenotype definitions based on one or more of the CCSc,
145  CCSp and TOAST subtyping systems are available (Table 1).

146

147  We began our analyses by running genome-wide association studies for all phenotype definitions,
148  including our intersect and union definitions, in all subtypes. We ran all GWAS using a linear mixed
149  model implemented in BOLT-LMM (Supplemental Figure 2) [9]. To take into account any residual
150  population stratification and other batch effects, we included the first 10 principal components and sex
151 as covariates in these analyses (Table S2).

152

153  Because the intersect by definition is contained in the union, one additional GWAS for each subtype
154  was run to enable a truly independent comparison of intersect with the symmetric difference (the union
155  minus the intersect). This study focuses on the balance in statistical power between a high sample size
156  and more strictly defined phenotype. Therefore, this sensitivity analysis was only done for the

157  comparison between the two most extreme case definitions.

158
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159  Table 1. Case counts for the different phenotype definitions in the three subtypes

CES LAS | SVS undetermined (‘other’ for CCSp) total
C (CCSc) 3,000 | 1,565 | 2,262 | 4,574 11,401
P (CCSp) 3,608 ]2449 | 2,419 | 718 9,194
T (TOAST) 3,333 | 2,318 | 2,631 | 3,479 11,761
I (intersect) 2,219 1,328 | 1,548 | not tested 5,095
U (union) 4,502 3,495 | 3,480 | not tested 11,477
S (symmetric difference) 2,283 2,167 | 1,932 | not tested 6,382

160  The control group is always the same group of 28,026 individuals

161

162  Genetic variance in a strictly defined case group explains a higher proportion of phenotypic variance

163  To estimate how much of the variation in a particular phenotype can be explained by genetic variation,
164  we calculated the heritability (/%) of each phenotype using BOLT-REML, assuming an additive model
165  ofeffect sizes over all SNPs. We estimated heritability in each of the available phenotypes: the subtypes
166  as defined by TOAST, CCSc, CCSp, the union, and the intersect. We found that the intersect yields a
167  higher /4’ estimate than the union in all ischemic stroke subtypes (Fig 2, Table S3). For instance, in CES,
168  h2 of union is 0.139 £ 0.009 and h2 of intersect is 0.275 + 0.017. We additionally found that the second
169  highest heritability in large artery and small vessel stroke was in CCSc (h2-LAS = 0.258 + 0.023 and
170  h2-SVS = 0.315 £ 0.029), which assigns only one subtype to each case. The heritabilities for CCSc,
171 CCSp and TOAST were not significantly different from one another in cardioembolic stroke (Table
172  S4), indicating that each original subtyping system is capturing approximately the same proportion of
173  genetic risk.

174
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175

176  Fig 2. Intersect is the most heritable phenotype. Heritabilities on the liability scale for the six case definitions.
177 int = intersect, symdif = symmetric difference. Bars indicate the 95% confidence interval. (A) In cardioembolic
178 stroke, intersect is significantly more heritable than all other phenotype definitions (p-values for the difference
179 between intersect and all others 3.6e-03 or lower). (B) In large artery stroke and (C) small vessel stroke, intersect
180 is significantly more heritable than all other phenotype definitions except CCSc (p-values for the difference
181 between intersect and all others except CCSc, 2.7e-03 or lower in LAS, 6.1¢-07 or lower in SVS). P-values for
182 heritability differences determined by t-test (see Table S5). See Table S4 for numerical values of heritabilities and
183  standard errors.

184

185  Different phenotype definitions represent genetically distinct phenotypes

186  While heritability gives an estimation of how much variation in a phenotype can be attributed to genetic
187  factors, it does not show how different two phenotypes are from one another (i.e., two phenotypes can
188  have the same heritability and yet be genetically distinct from each other). We therefore evaluated the
189  overlap in significant SNPs for all pairwise combinations of phenotypes for which we performed a
190  GWAS, where high proportions of shared SNPs between two phenotypes indicate genetic similarity. At
191 multiple significance cutoffs, we assessed overlap of significant SNP sets using two complementary
192  similarity measures: the Jaccard index, which measures the ratio of overlapping SNPs (those are
193  significant in both analyses) in the total set of SNPs that are significant in either analysis; and the
194  Pearson correlation of the z-scores of the overlapping SNPs in both analyses (Fig 3). Significance is
195  defined here as an absolute z-score that is higher than the selected z-score threshold (where SNPs can
196  have an effect size < -Z or > +Z7). A high Jaccard index indicates that two phenotypes share many of
197  their associated SNPs, while a low Jaccard index means that the phenotypes have distinct genetic
198  architecture. Correlation pertains only to the shared SNPs and indicates if they have similar

199  directionality and magnitude of effect in both analyses.
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202  Fig 3. Graphical explanation of overlap analysis. (A) At a certain absolute z-score threshold Z, all SNPs that
203 have a z-score lower than -Z or higher than +Z in analysis I are determined (SNPs 1-8 and 9-12). Next, all SNPs
204 that have a z-score lower than -Z or higher than +Z in analysis II are determined (SNPs 1-8 and 13-16). The
205 number of shared significant SNPs is divided by the union of significant SNPs to calculate the Jaccard index. (B)

206  We also calculate the Pearson correlation of the z-scores of the shared SNPs.

207

208  In order to assess the results of the overlap analyses and their meaning with respect to the ischemic
209  stroke phenotypes, we also performed these analyses between the phenotype definitions and an
210  unrelated GWAS of educational attainment to obtain a null reference (Fig S3).

211

212 In cardioembolic stroke (Fig 4, first panel), the Jaccard index for all combinations with intersect
213  decreases with more extreme z-scores to J=~0.2-0.3 while the correlation increases quickly to approach
214 r’=1 at Z=2.5, indicating that a relatively small group of SNPs is significant in both analyses with
215  correlating z-scores, that gets increasingly smaller and stronger correlating. These findings indicate that
216 the stricter the significance threshold is, the fewer shared SNPs there are between any two phenotypes,
217  but that those shared SNPs have more concordant effect sizes. In large artery stroke (Fig S4) and small
218  vessel stroke (Fig S5) the trend is similar, albeit with lower Jaccard indices and correlations, suggesting
219  that there is a set of associated SNPs for each subtype that is found by all phenotype definitions. In all
220  subtypes, when compared to symmetric difference, the intersect is the most genetically distinct

221  phenotype. This confirms that if we combine symmetric difference and intersect, as in the union, we
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222  increase phenotypic heterogeneity and thereby decrease the likelihood of detecting a genome-wide

223  significant signal.

224
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226  Fig 4. Different phenotype definitions capture different genetic risk factors. Overlap analysis in
227 cardioembolic stroke. Similarity on the y-axis denotes either correlation (circles) or Jaccard index (triangles). The
228  absolute z-score threshold is plotted on the x-axis. Numbers indicate the number of shared SNPs at Z = 3. (A)
229 pairwise comparisons with intersect (B) pairwise comparisons with union (C) pairwise comparisons with
230  symmetric difference.

231

232  Fig 4 shows pairwise comparisons only; to investigate if there is one group of SNPs that is significant
233  in all analyses, we also calculated overall Jaccard index: the size of the intersect of SNPs that are
234  significant in all 5 phenotypes (excluding symmetric difference, which we use for sensitivity testing
235  only), divided by the size of their union. The overall Jaccard index (Fig 5) confirms what was suggested
236 by the pairwise overlap analyses: there is a small set of SNPs that is shared across all phenotype
237  definitions, albeit slightly smaller than the pairwise overlapping sets. The Jaccard index is relatively
238  low at higher significance thresholds, indicating that there is also a substantial set of SNPs that is unique
239  to each phenotype definition. Thus, we do find different associated SNPs to ischemic stroke subtypes
240  depending on how exactly the subtype status is defined, but there are some concordant SNPs that are
241 found by all case definitions, regardless of sample size or phenotype homogeneity.

242
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244  Fig5. A small set of SNPs is shared between all phenotype definitions. To complement the pairwise overlap
245 analyses, overall Jaccard index was calculated. Jaccard index is plotted on the y-axis, the absolute z-score
246  threshold is plotted on the x-axis. The number of shared SNPs at z = 3 is indicated in the boxes.

247

248  Intersect shows the largest effect at previously known associations

249 A recent GWAS (MEGASTROKE) in 67,162 TOAST-subtyped cases and 454,450 controls identified
250 32 loci (22 novel) associated to stroke (either ischemic stroke or intracerebral hemorrhage) and its
251  subtypes [2]. Four of the 32 loci associate to CES, five to LAS, and none to SVS. We investigated the
252  potential to find stroke-associated loci in our redefined phenotypes, with a sample that is 4 to 7 times
253  smaller than MEGASTROKE. To this end, we compared the odds ratios for the 9 known subtype-
254  specific loci in our five phenotype definitions, see Fig 6. In cardioembolic stroke, the intersect
255  phenotype consistently shows the strongest effect. In large artery stroke, intersect shows the strongest
256  effect as well, except at the LINC01492 locus.

257

258  Besides comparing the ORs at subtype-specific signals, we also compared ORs at all stroke-associated
259  loci (including any stroke, any ischemic stroke, cardioembolic stroke and large artery stroke), see Fig
260  S1. We found that intersect shows the strongest odds ratio 30 times out of 96, (binomial p = 0.010),
261 indicating that odds ratios derived from the intersect phenotype are indeed stronger than the ORs in the

262  other phenotypes more often than expected by chance.

263
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Fig 6. Intersect shows the largest effect at previously identified associations. Odds ratios for (A) the 4 CES-
associated SNPs in the five phenotype definitions (B) the 5 LAS-associated SNPs in the five phenotype
definitions. U = union, T = TOAST, P = CCSp, C = CCSc. The OR in intersect, with the 95% confidence interval,
is indicated with a purple bar and light-purple box. The dotted line indicates an OR of 1 (no effect). Colored points

indicate the OR in the corresponding phenotype definition, with error bars indicating the 95 % confidence interval.
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270  Table 2. Summary statistics for the new genome-wide significant SNPs

Locus SNP Chr | A1 | A2 | Analysis P-value Freql | OR | Beta SE
CAMK2D rs10029218 4 A G SVS-intersect 1.20E-08 0.12 1.27 | 0.02 0.00
SVS-rep-EUR 2.46E-02 0.11 1.11 | 0.10 0.05

SVS-rep-TRANS 5.98E-03 0.13 1.12 | 0.11 0.04

SH2B3 - BRAP | 1511065979 12 T C SVS-CCSp 9.40E-09 0.42 1.13 | 0.01 0.00
- ALDH2 SVS-rep-EUR 7.62E-03 0.43 1.08 | 0.08 0.03

SVS-rep-TRANS 9.29E-03 0.41 1.08 | 0.07 0.03

PFH20 rs11697087 20 A G CES-intersect 3.20E-09 0.09 1.26 | 0.02 0.00
CES-rep-EUR 1.55E-02 0.09 1.10 | 0.10 0.04

CES-rep-TRANS 4.76E-02 0.09 1.07 | 0.07 0.03

5:114799266 rs2169955 5 T C CES-CCSc 3.90E-08 0.57 0.90 | -0.01 0.00

CES-rep-EUR 1.48E-02 0.56 0.95 |-0.05 0.02

CES-rep-TRANS 2.22E-02 0.56 0.96 | -0.04 0.02

GNAO1 rs3790099 16 C G | CES-CCSp 4.90E-08 0.85 0.87 | -0.02 0.00
CES-rep-EUR 2.97E-04 0.84 0.89 | -0.11 0.03

CES-rep-TRANS 1.10E-02 0.77 0.94 | -0.07 0.03

271 Per locus, the SiGN GWAS is in the first row, in the format ‘subtype-phenotype’. In the other rows, results in
272 MEGASTROKE are shown with ‘subtype-rep-EUR’ for the Europeans-only analysis, and with ‘subtype-rep-
273 TRANS’ for the trans-ancestry analysis. Al = Allele 1, A2 = Allele 2, Freql = frequency of allele 1, OR = odds
274  ratio, Beta = coefficient, SE = standard error. NB, Beta and SE of SiIGN GWAS and MEGASTROKE GWAS are
275 not comparable since they come from linear and logistic regression, respectively. The OR are comparable. We
276  did a Bonferroni correction: for SVS, a = 0.0125 and for CES, o = 0.00625. Replication p-values below the
277  threshold are indicated in bold. Two SNPs (rs2169955 and rs146508991, in CES-CCSc) that are relatively close
278 (260 kb) on chromosome 5 were in two different clumps, even though they are in LD (12 = 0.52, D’ = 0.87, in a
279  CEU population [10] ) because the distance is just above the threshold (250 kb). Because they are in LD, and just
280 a little farther apart than 250 kb, they were considered to be from the same locus and only the strongest association

281 was kept (rs2169955).
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282 A stricter phenotype definition finds a new associated locus to small vessel stroke

283  Our analyses revealed 5 new loci (2 for SVS and 3 for CES, Table 2) which we validated using data
284  from MEGASTROKE (based on the summary statistics of MEGASTROKE with the SiGN cohort
285  removed, to ensure independence), while correcting for multiple testing per stroke subtype.

286

287  For SVS one variant (rs10029218) in the CAMK2D locus (Table 2, Figure S5), was found in the intersect
288  analysis, and replicated in the trans-ancestry analysis of MEGASTROKE. The other SVS associated
289  variant (rs11065979) in the SH2B3-BRAP-ALDH? locus was found in the CCSp analysis, and replicated
290  in both the trans-ancestry analysis and the European analysis (Table 2, Figure S5). For the 3 CES loci,
291 only one variant (rs3790099, in the GNAOI gene, found in the CCSp analysis) was replicated in the
292  Europeans-only analysis (Table 2, Figure S5). In a meta-analysis of a) the MEGASTROKE GWAS
293  without the SiGN cohort and b) the SiGN GWAS for these three SNPs, we found consistent direction
294  ofeffect in both studies and a lower p-value (Table S5).

295

296  Previously, one other locus was reported to associate solely with SVS (16924 [11]). Here, by applying
297  an alternate phenotyping approach, we identify 4p12 as a novel SVS locus. In general, despite the low
298  sample size as compared to MEGASTROKE, we find stronger associations in the intersect GWAS,

299  likely due to the clearer separation of cases and controls.
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300  Discussion

301 To help uncover genetic associations with ischemic stroke that as yet have gone undetected, we defined
302  new ischemic stroke phenotypes based on three existing subtyping systems (CCSc, CCSp, and TOAST).
303  Specifically, we studied the intersect and union of these subtyping systems, for all ischemic stroke
304  subtypes. The intersect results in a smaller number of available cases but potentially results in less
305  misclassification due to agreement between subtyping systems. The union is potentially more
306  heterogeneous, but results in a larger available group of cases. We find that the largest proportion of
307  phenotypic variance explained by SNPs is in the intersect phenotype. Further, our overlap analyses
308  show that, for each subtype, the phenotype definitions each have a unique set of significantly associated
309  SNPs, but that there is also a small set of SNPs that is shared among all definitions, with concordant
310  direction of effect and similar trend in magnitude of effect. We also show that the cases that are in the
311 union but not in the intersect, are genetically distinct from the intersect-cases, implying that the union
312  is a combination of phenotypically heterogeneous cases. With an effective sample size that is 4 to 7
313  times as small as in MEGASTROKE, we find stronger associations (i.e., higher ORs and lower p-
314  values) at known loci by using the intersect (compared to the other phenotype definitions studied here).
315  This indicates that the intersect yields more net power to detect associations due to its stricter definition,
316 despite its lower sample size, and is thus better suited as a phenotype in GWAS.

317

318  We identify a previously sub-threshold association with a SNP in an intron of the CAMK2D locus in
319  small vessel stroke by using the intersect, further demonstrating the utility of this phenotype in GWAS.
320 CAMK?2D expresses a calcium/calmodulin-dependent protein kinase [12]; out of all tissues tested in
321 GTEXx, the two tissues with the highest expression are both in brain [13]. The CAMK2D locus was found
322  to also associate with P-wave [14], an electrocardiographic property that is implicated in atrial
323  fibrillation, a trait that is associated with cardioembolic stroke [3]. Given that the association replicates
324  inan independent dataset, and the protein is expressed in brain, further fine-mapping in this region may
325  give more insight into the biological mechanisms that contribute to stroke. Additionally, we find the
326  SH2B3 - BRAP - ALDH? locus to be associated with small vessel stroke. rs11065979 is an eQTL of

327  ALDH? (aldehyde dehydrogenase 2) [13]. ALDH? is involved in ethanol metabolism; it converts one
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328  of the products, ethanal, into acetic acid. The allele that is associated with higher expression of this
329  enzyme is associated with lower incidence of small vessel stroke. ALDH?2 is mainly expressed in liver,
330  butitis also expressed in brain. [13] Previous work has shown an association between higher expression
331 of ALDH2 and lower incidence of stroke in rats [15]. SH2B3 and BRAP are minimally expressed in
332  brain, compared to the other tissues [13]. We also show an association between the GNAO! locus and
333  cardioembolic stroke. The protein product of this locus constitutes the alpha subunit of the Go
334  heterotrimeric G-protein signal-transducing complex [12]. It is highly expressed in brain, and while its
335  function is not completely clear, defects in the protein are associated with brain abnormalities [16].
336  Although this alternate approach to phenotyping has resulted in new associations with two ischemic
337  stroke subtypes, the causality of these loci remains uncertain and warrants further study.

338

339  Phenotype definition is an oft-encountered issue in complex trait genetics, as diagnosing and subtyping
340  methodologies can vary and even be contentious within disease areas. Further, phenotype labels are
341 often broad definitions for cases that can be highly heterogeneous when their underlying genetic risk is
342  examined. For example, most psychiatric diseases are also complex and phenotypically heterogeneous,
343  lacking clear and robust diagnostic criteria. In an editorial, the Cross-Disorder Phenotype Group of the
344  Psychiatric GWAS Consortium states: “We anticipate that genetic findings will not map cleanly onto
345  current diagnostic categories and that genetic associations may point to more useful and valid
346  nosological entities”. Our findings here further support this statement, showing that while the original
347  subtyping systems might be useful for diagnosing individual patients, alternative phenotyping
348  approaches and criteria are needed for future genetic studies aimed at unraveling the underlying biology

349 of disease.
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350  Methods

351

352  The SiGN dataset

353  The Stroke Genetics Network (SiGN) Consortium composed a dataset consisting of 14,549 ischemic
354  stroke cases. [17] The control group consists primarily of publicly available controls drawn from three
355  large multi-ancestry cohorts. Descriptions of the contributing case and control cohorts have been
356  published previously. [18] Cases and controls have been genotyped on a variety of [llumina arrays, and
357  nearly all cases (~90%) have been subtyped using both TOAST [4] and CCS [19]. All newly-genotyped
358  cases for the latest GWAS are available on dbGAP (accession number phs000615.v1.p1). A previous
359  genome-wide association study has been done on the separate TOAST and CCS subtypes. [18] In this
360  work, we use the same 28,026 controls from this previous GWAS, as well as the 13,930 ischemic stroke
361 cases of European and African ancestry. A third group of cases and controls, primarily comprised of
362  individuals who identify as Hispanic and residing in the United States, has been excluded due to data
363  sharing restrictions. All data processing has been previously described. [18] All genotyping data was
364  generated using human genome build hg19.

365

366  Genome-wide association studies in BOLT-LMM

367  Weran all GWAS in BOLT-LMM [9], which implements a linear mixed model (LMM). BOLT-LMM
368  implements a Leave-One-Chromosome-Out (LOCO) scheme, so that the genetic relationship matrix
369  (GRM) is built on all chromosomes except the chromosome of the variant being tested. Linear mixed
370  models have been demonstrated to improve power in GWAS while correcting for structure in the data
371 [20]. In addition to the GRM, we included the first 10 principal components as fixed effects. We used

372  the following approximation to convert the effect estimates from BOLT-LMM (on the observed scale)
373  to effect estimates on the liability scale: log(OR) = B / (e (1—pw) where p is the case fraction. [21]

374  For each subtype, the intersect, union and symmetric difference of the original subtyping systems were
375  used as phenotypes in separate GWAS. The original subtyping systems were also used as a phenotype

376  in three additional GWAS per subtype to serve as a point of reference. All ischemic stroke cases that


https://doi.org/10.1101/718221
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/718221; this version posted July 29, 2019. The copyright holder for this preprint (which was
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made
available under aCC-BY 4.0 International license.

377  donot belong to the case definition under study were left out of the analysis. The same group of controls
378  isused in all analyses. Association testing was done on all imputed SNPs with a minimum minor allele
379  frequency of 1%. See Supplementary Table 8 in [22] for simulations of type 1 error inflation of BOLT-
380 LMM in datasets with unbalanced case-control ratios. In the GWAS discussed here, case fractions range
381 from 0.05 to 0.14 which means that at variants with MAF >1%, there is no significant inflation of type
382 1 errorrates. Those SNPs that show a large frequency difference (>15%) across the populations in 1000
383  Genomes were removed (see the methods in [18] for details on how this list of SNPs was compiled).
384  See Fig S2 for QQ-plots (stratified by imputation quality (INFO-score) and by minor allele frequency)
385 and Manhattan-plots. The genomic inflation factor (lambda) varies between 1.0 and 1.1 for
386  cardioembolic stroke and large artery stroke, and between 1.0 and 1.2 for small vessel stroke. We
387  observed arelatively high inflation factor of 1.2 in only the imputed SNPs with a minor allele frequency
388  lower than 5%. Therefore, summary statistics for these SNPs were removed from downstream analyses.
389

390  Heritability estimation in BOLT-REML

391  To estimate the heritability of the six phenotype definitions for each subtype, we used BOLT-REML
392  [23]. BOLT-REML calculates heritability from the SNPs included in the GRM, and these SNPs must
393  be genotyped (and not imputation dosages). We therefore based our estimates on only genotyped SNPs.
394 Furthermore, we excluded the MHC on chromosome 6, and chromosomal inversions on chromosomes
395  8and 17 using PLINK 1.9 [24]. See Table 3 for more information. We filtered on various quality control
396  measures, by passing the following flags to PLINK: --mind 0.05 --maf 0.10 --geno 0.01 --hwe 0.001.
397  Additionally we pruned SNPs at an LD (1*) threshold of 0.2 (--indep-pairwise 100 50 0.2). We used the
398  first 10 principal components and sex (determined by presence of XX or XY chromosomes) as
399  covariates. To convert the heritabilities from the observed scale (as if the binary data, coded as 0-1,
400  were continuous) to the liability scale (converting the heritabilities of the observed binary trait to the
401 heritabilities of the underlying, unobserved, continuous liability of the trait), Dempster et al derived a
402  formula that takes into account the prevalence of the disease in the population [25]. In the case of
403  ascertained case-control traits, where the population prevalence is not equal to the study prevalence,

404  this has to be taken into account as well [26]:
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201 — K2
406  Where h? is the heritability on the liability scale, K is the population prevalence, P is the study
407  prevalence, ¢ is the liability threshold, and A2 is the heritability on the observed scale. To test for
408  significant difference between the estimated heritabilities, we performed an independent t-test.

409

410  Table 3. Genomic regions removed before heritability estimation

Chromosome Start (Mb) End (Mb) Name
6 25.8 36.0 MHC
8 6.0 16.0 inversion
17 40.0 45.0 inversion

411

412  Overlap analysis

413  We first calculated z-scores using the following formula: z = beta / se, where beta is the effect size of
414  the SNP and se is the standard error of the beta estimate. The z-scores thus have unit standard error, but
415  we did not standardize them to zero mean (as is the conventional method for calculating z-scores) to
416 maintain the original direction of effect. To assess overlap between two GWAS, we calculated the
417  Jaccard index [27], which is the ratio of a) the number of SNPs significant in both analyses, to b) the
418  number of SNPs significant in either analysis (i.e., the size of the intersect divided by the size of the
419  union of the sets of significant SNPs). The index is a number between 0 and 1: it is 0 if the two sets of
420  significant SNPs do not have any SNPs in common, and it is 1 if the two sets of significant SNPs
421 completely overlap. We additionally calculated, within the set of SNPs that are significant in both
422  analyses, the Pearson’s correlation of the z-scores in the two GWAS to check the concordance of
423  direction and size of effect in the two analyses being compared. Significance was defined as a z-score
424  that is more extreme than an absolute z-score threshold z (varied from 0 until 3, in increments of 0.1).
425 At the most extreme z-score threshold (z >3 or z < -3), the absolute number of SNPs that are significant

426  in both analyses is indicated in the plot. As a null comparator, these overlap analyses were also
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427  performed with GWAS results from a study of educational attainment in 1.1 million individuals [28]
428  downloaded from EMBL-EBI’s GWAS catalog. [29] The educational attainment study contains
429 10,098,325 SNPs, the SiGN study contains 10,156,805 SNPs. The overlap analysis was only done on
430 the SNPs that are present in both datasets: the size of this overlapping set is 7,822,831 SNPs. For the
431 overall comparisons per subtype, we considered all five GWAS. At each z-score threshold, we
432  calculated the overall Jaccard index: the ratio (range between 0 and 1) of the number of SNPs significant
433 in all five analyses to the number of SNPs significant in any analysis. See Fig 3 for a graphical
434  explanation of this method.

435

436  Look-up of Megastroke loci in the union and intersect GWAS

437  Recently, the MEGASTROKE consortium completed the largest GWAS in ischemic stroke and its
438  subtypes [2]. From this GWAS, we extracted the index SNPs of each genome-wide significant locus in
439  each subtype. We then looked up these SNPs in our GWAS to compare effect sizes, resulting in 15 ORs
440  per SNP (for each of the phenotype definitions in each of the subtypes). See Table S6 for the summary
441 statistics of these look-ups. If the reference allele in MEGASTROKE was not identical to the reference
442  allele in SiGN, the inverse of the odds ratio (1/OR) was taken. We counted how often the intersect
443  showed the most extreme odds ratio, out of all 96 ORs (15 ORs per SNP, for the 32 SNPs that were
444  reported in MEGASTROKE). To determine the probability of the number of times intersect was most
445  extreme, under the null hypothesis that all phenotype definitions are just as likely to show the most
446  extreme OR, we performed a binomial test in R[30].

447

448  Replication of new genome-wide hits in MEGASTROKE

449  To assess all genome-wide significant loci instead of the individual SNPs, we performed clumping in
450  PLINK 1.9 [24] (http://pngu.mgh.harvard.edu/purcell/plink/). We used all SNPs significant at a = 1x10"
451  ° asindex SNPs. We generated clumps for all other SNPs closer than 250 kb to the index SNP and in
452 LD with the index SNP (r* > 0.05). We kept clumps if the p-value of the index SNP was lower than
453  5x10®. From the genome-wide significant clumps, only the unique ones were kept (some clumps

454  significantly associated to multiple case definitions). In the case of duplicates, the summary statistics
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455  for the analysis with the lowest p-value were kept. Ambiguous SNPs were removed, and if the reference
456 allele in MEGASTROKE was not identical to the reference allele in SIGN, we calculated the inverse
457  ofthe odds ratio (1/OR). This resulted in a list of 14 unique SNPs. We checked for SNPs that are not in
458  alocus that had already been reported as an associated locus in MEGASTROKE, resulting in a list of 5
459  new SNPs (2 for SVS and 3 for CES), which we looked up for replication. To this end, we ran the
460 MEGASTROKE GWAS again (European and trans-ancestry analysis per subtype using TOAST [31])
461 without the SiGN cohort, to ensure summary statistics independent from the discovery GWAS. We set
462  Bonferroni p-value thresholds to adjust for the number of SNPs looked-up for the phenotype in question,
463  and for the number of GWAS it was looked up in (2, for the European and trans-ancestry analyses). We
464  did a meta-analysis of the MEGASTROKE GWAS without SiGN, and the SiGN GWAS, for the 3
465  replicating SNPs only (Table S5). We performed meta-analysis in METAL [32], with the inverse-
466  variance weighting scheme.

467

468  Ethics statement

469  Ethics statement for the original SiGN study can be found in https://doi.org/10.1016/S1474-
470  4422(15)00338-5

471
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