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Abstract 34 

Stroke causes approximately 1 in every 20 deaths in the United States. Most strokes are ischemic, 35 

caused by a blockage of blood flow to the brain. While neurologists agree on the delineation of ischemic 36 

stroke (IS) into the three most common subtypes (cardioembolic stroke (CES), large artery stroke 37 

(LAS), and small vessel stroke (SVS)), several different subtyping systems exist. The two most 38 

commonly-used clinical subtyping systems are TOAST (Trial of Org 10172 in Acute Stroke Treatment) 39 

and CCS (Causative Classification System for Stroke), but agreement between these two systems is 40 

only moderate. Here, we have compared two approaches to combining the existing subtyping systems 41 

for a phenotype suited for a genome-wide association study (GWAS). 42 

 43 

We used the NINDS Stroke Genetics Network dataset (SiGN, 13,390 cases and 28,026 controls), which 44 

includes cases with both CCS and TOAST subtypes. We defined two new phenotypes: 1) the intersect, 45 

for which an individual must be assigned the same subtype by CCS and TOAST; and 2) the union, for 46 

which an individual must be assigned a subtype by either CCS or TOAST. The union yields the largest 47 

sample size while the intersect may yield a phenotype with less potential misclassification.  48 

 49 

We performed GWAS for all subtypes, using the original subtyping systems, the intersect, and the union 50 

as phenotypes. In each subtype, heritability was higher for the intersect phenotype compared to the 51 

union, CCS (alone), and TOAST (alone) phenotypes. We observed stronger effects at known IS variants 52 

with the intersect compared to the other phenotype definitions. In GWAS of the intersect, we identify 53 

rs10029218 as an associated variant with small vessel stroke. We conclude that in the absence of a 54 

golden standard for phenotyping, taking this alternate approach yields more power to detect genetic 55 

associations in ischemic stroke.  56 
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Author summary 57 

 58 

Around one in five people will have a stroke at some point in their life. Most strokes (~80%) are 59 

ischemic, caused by a blockage of blood supply to the brain. Ischemic stroke risk is partly influenced 60 

by lifestyle, and partly by genetics. There are different ischemic stroke subtypes, and genome-wide 61 

association studies (GWAS) indicate that the genetic risk for these subtypes is influenced by different 62 

genetic factors. Genetic studies of ischemic stroke are therefore typically performed by analyzing each 63 

subtype separately. There are several methods to determine someone’s subtype based on clinical 64 

features. To find more genetic factors that influence ischemic stroke risk, we aimed to find a group of 65 

patients that are phenotypically similar by using information from all subtyping methods. We compared 66 

a group of patients assigned the same subtype by all subtyping methods (the intersect) to a group of 67 

patients assigned that subtype by at least one subtyping method (the union). Even though the intersect 68 

sample size is smaller, we find genetic factors in the intersect GWAS have stronger genetic effects, 69 

likely explained by the fact that we are more certain of the subtype in the intersect. Using the intersect, 70 

we find new risk-associated genetic factors. 71 

  72 
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Introduction 73 

Stroke is one of the primary causes of death worldwide and causes ~1 in every 20 deaths in the United 74 

States [1]. Eighty-seven percent of all strokes are ischemic, caused by a blockage of blood flow to the 75 

brain [1]. Ischemic stroke (IS) tends to affect those older than 65 years old and has several known risk 76 

factors, including type 2 diabetes, hypertension, and smoking. However, the affected population is 77 

extremely heterogeneous in terms of age, sex, ancestral background, and socioeconomic status. 78 

 79 

Ischemic strokes themselves are also heterogeneous in terms of clinical features and presumed 80 

mechanism. The majority of IS are typically grouped into three subtypes: cardioembolic stroke (CES), 81 

typically occurring in people with atrial fibrillation; large artery stroke (LAS), caused by eroded or 82 

ruptured atherosclerotic plaques in arteries; and small vessel stroke (SVS), caused by a blockage of one 83 

of the small vessels in the brain. These subtypes also seem to be genetically distinct: genome-wide 84 

association studies (GWAS) in ischemic stroke have identified single-nucleotide polymorphisms 85 

(SNPs) that primarily associate with a specific IS subtype [2]. To date, GWAS have identified 20 loci 86 

associated with ischemic stroke, of which 9 appear to be specific to an IS subtype [2]. Furthermore, the 87 

subtypes also have varying SNP-based heritabilities (estimated at 16%, 12% and 18% for CES, LAS 88 

and SVS respectively [3]), indicating that the phenotypic variation captured by genetic factors varies 89 

across the subtypes. Improved genetic discovery can help further elucidate the underlying biology of 90 

ischemic stroke as well as potentially help identify genetically high-risk patients who could be 91 

candidates for earlier clinical interventions. 92 

 93 

While neurologists and researchers agree on the delineation of ischemic stroke into these three primary 94 

categories (CES, LAS and SVS), several subtyping systems are currently used to assign a subtype to an 95 

ischemic stroke patient. The most commonly used approach is a questionnaire based on clinical 96 

knowledge that was originally developed for the Trial of Org 10172 in Acute Stroke Treatment 97 

(TOAST) [4]. TOAST was designed for implementation in the clinic and has also been used as 98 

subtyping system in the majority of stroke GWAS. More recently, researchers have developed a second 99 

subtyping system: the Causative Classification System for Stroke (CCS) [5], a decision model based on 100 
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clinical knowledge that also incorporates imaging data. There are two outputs of CCS: CCS Causative 101 

(CCSc), which assigns one subtype to each patient based on the presumed cause of the stroke; and CCS  102 

phenotypic (CCSp), which allows for multiple subtype assignments and incorporates the confidence of 103 

the assignment. Previous work indicates that TOAST and CCS have moderate, but not high, 104 

concordance in assigning subtypes in patients: agreement is lowest in SVS (κ = 0.56) and highest in 105 

LAS (κ = 0.71) [6]. Notably, both subtyping systems still place more than one third of all samples into 106 

a heterogeneous ‘undetermined’ category. [6] 107 

 108 

Determining a patient’s subtype is difficult and prone to misclassification [7], but critical to genetic 109 

discovery in ischemic stroke, as demonstrated by the prevalence of subtype-specific association signals. 110 

If a group of cases is comprised of phenotypically heterogeneous samples with different underlying 111 

genetic risk, power to detect a statistically significant association at a truly associated SNP is reduced 112 

(Fig 1). In contrast, a case definition that captures a more phenotypically homogenous group of cases 113 

would improve the chances of detecting genetic variants that associate with disease. Therefore, we used 114 

the TOAST, CCSc and CCSp subtype assignments to define two new phenotypes per subtype: the 115 

intersect, for which an individual must be assigned the same subtype across all three subtyping systems; 116 

and the union, for which an individual must be assigned that subtype by at least one of the subtyping 117 

systems. Analyzing the union potentially improves power for locus discovery due to its larger sample 118 

size, but at the cost of more potential misclassification. In contrast, analyzing the intersect may improve 119 

power for genetic discovery by generating a phenotype that is less prone to mis-classification, despite 120 

a smaller  sample size.  121 

 122 

Here, we perform GWAS with the union and intersect phenotypes for each primary IS subtype to 123 

investigate whether these newly-defined phenotypes indeed improve our ability to detect genetic risk 124 

factors for ischemic stroke. We find heritability estimates to be highest in the intersect phenotype for 125 

all subtypes. We also find stronger effects at known associations for the intersect compared to the union, 126 

and we validate a previously suspected association in small vessel stroke through GWAS of  the 127 

intersect phenotype. 128 
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 129 

Fig 1. Hypothesized benefit of using the intersect, at a SNP associated with ischemic stroke. Circles 130 

indicate the protective allele, and crosses the risk allele. Using a chi-square test (visualized with contingency 131 

tables), the measured effect is stronger with a group of cases that is more homogeneous but smaller (intersect, 132 

purple) than with a group of cases that is less strictly defined but is larger (union, teal). 133 

  134 
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Results 135 

 136 

Genome-wide association study data processing 137 

To investigate how redefining stroke phenotypes improves our ability to detect SNPs associated with 138 

ischemic stroke, we employed the SiGN dataset. Data processing of the SiGN dataset, including quality 139 

control and imputation, has been described in detail elsewhere [8]. Briefly, the dataset includes 13,930 140 

IS cases and 28,026 controls of primarily European descent. Cases and controls were genotyped 141 

separately (with the exception of a small number of cohorts) and on various Illumina arrays and then 142 

merged together into case-control groups matched for genotyping array and sample ancestry (via 143 

principal component analysis). For the cases, phenotype definitions based on one or more of the CCSc, 144 

CCSp and TOAST subtyping systems are available (Table 1). 145 

 146 

We began our analyses by running genome-wide association studies for all phenotype definitions, 147 

including our intersect and union definitions, in all subtypes. We ran all GWAS using a linear mixed 148 

model implemented in BOLT-LMM (Supplemental Figure 2) [9]. To take into account any residual 149 

population stratification and other batch effects, we included the first 10 principal components and sex 150 

as covariates in these analyses (Table S2). 151 

 152 

Because the intersect by definition is contained in the union, one additional GWAS for each subtype 153 

was run to enable a truly independent comparison of intersect with the symmetric difference (the union 154 

minus the intersect). This study focuses on the balance in statistical power between a high sample size 155 

and more strictly defined  phenotype. Therefore, this sensitivity analysis was only done for the 156 

comparison between the two most extreme case definitions. 157 

  158 
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Table 1. Case counts for the different phenotype definitions in the three subtypes 159 

 CES LAS SVS undetermined (‘other’ for CCSp) total 

C (CCSc) 3,000 1,565 2,262 4,574  11,401 

P (CCSp) 3,608 2,449 2,419 718 9,194 

T (TOAST) 3,333 2,318 2,631 3,479 11,761 

I (intersect) 2,219 1,328 1,548 not tested 5,095 

U (union) 4,502 3,495 3,480 not tested 11,477 

S (symmetric difference) 2,283 2,167 1,932 not tested 6,382 

The control group is always the same group of 28,026 individuals 160 

 161 

Genetic variance in a strictly defined case group explains a higher proportion of phenotypic variance 162 

To estimate how much of the variation in a particular phenotype can be explained by genetic variation, 163 

we calculated the heritability (h2) of each phenotype using BOLT-REML, assuming an additive model 164 

of effect sizes over all SNPs. We estimated heritability in each of the available phenotypes: the subtypes 165 

as defined by TOAST, CCSc, CCSp, the union, and the intersect. We found that the intersect yields a 166 

higher h2 estimate than the union in all ischemic stroke subtypes (Fig 2, Table S3). For instance, in CES, 167 

h2 of union is 0.139 ± 0.009 and h2 of intersect is 0.275 ± 0.017. We additionally found that the second 168 

highest heritability in large artery and small vessel stroke was in CCSc (h2-LAS = 0.258 ± 0.023 and 169 

h2-SVS = 0.315 ± 0.029), which assigns only one subtype to each case. The heritabilities for CCSc, 170 

CCSp and TOAST were not significantly different from one another in cardioembolic stroke (Table 171 

S4), indicating that each original subtyping system is capturing approximately the same proportion of 172 

genetic risk. 173 

 174 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 29, 2019. ; https://doi.org/10.1101/718221doi: bioRxiv preprint 

https://doi.org/10.1101/718221
http://creativecommons.org/licenses/by/4.0/


 175 

Fig 2. Intersect is the most heritable phenotype. Heritabilities on the liability scale for the six case definitions. 176 

int = intersect, symdif = symmetric difference. Bars indicate the 95% confidence interval. (A) In cardioembolic 177 

stroke, intersect is significantly more heritable than all other phenotype definitions (p-values for the difference 178 

between intersect and all others 3.6e-03 or lower). (B) In large artery stroke and (C) small vessel stroke, intersect 179 

is significantly more heritable than all other phenotype definitions except CCSc (p-values for the difference 180 

between intersect and all others except CCSc, 2.7e-03 or lower in LAS, 6.1e-07 or lower in SVS). P-values for 181 

heritability differences determined by t-test (see Table S5). See Table S4 for numerical values of heritabilities and 182 

standard errors. 183 

 184 

Different phenotype definitions represent genetically distinct phenotypes 185 

While heritability gives an estimation of how much variation in a phenotype can be attributed to genetic 186 

factors, it does not show how different two phenotypes are from one another (i.e., two phenotypes can 187 

have the same heritability and yet be genetically distinct from each other). We therefore evaluated the 188 

overlap in significant SNPs for all pairwise combinations of phenotypes for which we performed a 189 

GWAS, where high proportions of shared SNPs between two phenotypes indicate genetic similarity. At 190 

multiple significance cutoffs, we assessed overlap of significant SNP sets using two complementary 191 

similarity measures: the Jaccard index, which measures the ratio of overlapping SNPs (those are 192 

significant in both analyses) in the total set of SNPs that are significant in either analysis; and the 193 

Pearson correlation of the z-scores of the overlapping SNPs in both analyses (Fig 3). Significance is 194 

defined here as an absolute z-score that is higher than the selected z-score threshold (where SNPs can 195 

have an effect size < -Z or > +Z). A high Jaccard index indicates that two phenotypes share many of 196 

their associated SNPs, while a low Jaccard index means that the phenotypes have distinct genetic 197 

architecture. Correlation pertains only to the shared SNPs and indicates if they have similar 198 

directionality and magnitude of effect in both analyses. 199 
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 200 

 201 

Fig 3. Graphical explanation of overlap analysis. (A) At a certain absolute z-score threshold Z, all SNPs that 202 

have a z-score lower than -Z or higher than +Z in analysis I are determined (SNPs 1-8 and 9-12). Next, all SNPs 203 

that have a z-score lower than -Z or higher than +Z in analysis II are determined (SNPs 1-8 and 13-16). The 204 

number of shared significant SNPs is divided by the union of significant SNPs to calculate the Jaccard index. (B) 205 

We also calculate the Pearson correlation of the z-scores of the  shared SNPs. 206 

 207 

In order to assess the results of the overlap analyses and their meaning with respect to the ischemic 208 

stroke phenotypes, we also performed these analyses between the phenotype definitions and an 209 

unrelated GWAS of educational attainment to obtain a null reference (Fig S3). 210 

 211 

In cardioembolic stroke (Fig 4, first panel), the Jaccard index for all combinations with intersect 212 

decreases with more extreme z-scores to J≈0.2-0.3 while the correlation increases quickly to approach 213 

r2=1 at Z≈2.5, indicating that a relatively small group of SNPs is significant in both analyses with 214 

correlating z-scores, that gets increasingly smaller and stronger correlating. These findings indicate that 215 

the stricter the significance threshold is, the fewer shared SNPs there are between any two phenotypes, 216 

but that those shared SNPs have more concordant effect sizes. In large artery stroke (Fig S4) and small 217 

vessel stroke (Fig S5) the trend is similar, albeit with lower Jaccard indices and correlations, suggesting 218 

that there is a set of associated SNPs for each subtype that is found by all phenotype definitions. In all 219 

subtypes, when compared to symmetric difference, the intersect is the most genetically distinct 220 

phenotype. This confirms that if we combine symmetric difference and intersect, as in the union, we 221 
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increase phenotypic heterogeneity and thereby decrease the likelihood of detecting a genome-wide 222 

significant signal. 223 

 224 

 225 

Fig 4. Different phenotype definitions capture different genetic risk factors. Overlap analysis in 226 

cardioembolic stroke. Similarity on the y-axis denotes either correlation (circles) or Jaccard index (triangles). The 227 

absolute z-score threshold is plotted on the x-axis. Numbers indicate the number of shared SNPs at Z = 3. (A) 228 

pairwise comparisons with intersect (B) pairwise comparisons with union (C) pairwise comparisons with 229 

symmetric difference. 230 

 231 

Fig 4 shows pairwise comparisons only; to investigate if there is one group of SNPs that is significant 232 

in all analyses, we also calculated overall Jaccard index: the size of the intersect of SNPs that are 233 

significant in all 5 phenotypes (excluding symmetric difference, which we use for sensitivity testing 234 

only), divided by the size of their union. The overall Jaccard index (Fig 5) confirms what was suggested 235 

by the pairwise overlap analyses: there is a small set of SNPs that is shared across all phenotype 236 

definitions, albeit slightly smaller than the pairwise overlapping sets. The Jaccard index is relatively 237 

low at higher significance thresholds, indicating that there is also a substantial set of SNPs that is unique 238 

to each phenotype definition. Thus, we do find different associated SNPs to ischemic stroke subtypes 239 

depending on how exactly the subtype status is defined, but there are some concordant SNPs that are 240 

found by all case definitions, regardless of sample size or phenotype homogeneity. 241 

 242 
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 243 

Fig 5. A small set of SNPs is shared between all phenotype definitions. To complement the pairwise overlap 244 

analyses, overall Jaccard index was calculated. Jaccard index is plotted on the y-axis, the absolute z-score 245 

threshold is plotted on the x-axis. The number of shared SNPs at z = 3 is indicated in the boxes. 246 

 247 

Intersect shows the largest effect at previously known associations 248 

A recent GWAS (MEGASTROKE) in 67,162 TOAST-subtyped cases and 454,450 controls identified 249 

32 loci (22 novel) associated to stroke (either ischemic stroke or intracerebral hemorrhage) and its 250 

subtypes [2]. Four of the 32 loci associate to CES, five to LAS, and none to SVS. We investigated the 251 

potential to find stroke-associated loci in our redefined phenotypes, with a sample that is 4 to 7 times 252 

smaller than MEGASTROKE. To this end, we compared the odds ratios for the 9 known subtype-253 

specific loci in our five phenotype definitions, see Fig 6. In cardioembolic stroke, the intersect 254 

phenotype consistently shows the strongest effect. In large artery stroke, intersect shows the strongest 255 

effect as well, except at the LINC01492 locus. 256 

 257 

Besides comparing the ORs at subtype-specific signals, we also compared ORs at all stroke-associated 258 

loci (including any stroke, any ischemic stroke, cardioembolic stroke and large artery stroke), see Fig 259 

S1. We found that intersect shows the strongest odds ratio 30 times out of 96, (binomial p =  0.010), 260 

indicating that odds ratios derived from the intersect phenotype are indeed stronger than the ORs in the 261 

other phenotypes more often than expected by chance. 262 

 263 
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 264 

Fig 6. Intersect shows the largest effect at previously identified associations. Odds ratios for (A) the 4 CES-265 

associated SNPs in the five phenotype definitions (B) the 5 LAS-associated SNPs in the five phenotype 266 

definitions. U = union, T = TOAST, P = CCSp, C = CCSc. The OR in intersect, with the 95% confidence interval, 267 

is indicated with a purple bar and light-purple box. The dotted line indicates an OR of 1 (no effect). Colored points 268 

indicate the OR in the corresponding phenotype definition, with error bars indicating the 95 % confidence interval.  269 
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Table 2. Summary statistics for the new genome-wide significant SNPs 270 

Locus SNP Chr A1 A2 Analysis P-value Freq1 OR Beta SE 

CAMK2D rs10029218 4 A G SVS-intersect 1.20E-08 0.12 1.27 0.02 0.00 

SVS-rep-EUR 2.46E-02 0.11 1.11 0.10 0.05 

SVS-rep-TRANS 5.98E-03 0.13 1.12 0.11 0.04 

SH2B3 - BRAP 

- ALDH2 

rs11065979 12 T C SVS-CCSp 9.40E-09 0.42 1.13 0.01 0.00 

SVS-rep-EUR 7.62E-03 0.43 1.08 0.08 0.03 

SVS-rep-TRANS 9.29E-03 0.41 1.08 0.07 0.03 

PFH20 rs11697087 20 A G CES-intersect 3.20E-09 0.09 1.26 0.02 0.00 

CES-rep-EUR 1.55E-02 0.09 1.10 0.10 0.04 

CES-rep-TRANS 4.76E-02 0.09 1.07 0.07 0.03 

5:114799266 rs2169955 5 T C CES-CCSc 3.90E-08 0.57 0.90 -0.01 0.00 

CES-rep-EUR 1.48E-02 0.56 0.95 -0.05 0.02 

CES-rep-TRANS 2.22E-02 0.56 0.96 -0.04 0.02 

GNAO1 rs3790099 16 C G CES-CCSp 4.90E-08 0.85 0.87 -0.02 0.00 

CES-rep-EUR 2.97E-04 0.84 0.89 -0.11 0.03 

CES-rep-TRANS 1.10E-02 0.77 0.94 -0.07 0.03 

Per locus, the SiGN GWAS is in the first row, in the format ‘subtype-phenotype’. In the other rows, results in 271 

MEGASTROKE are shown with ‘subtype-rep-EUR’ for the Europeans-only analysis, and with ‘subtype-rep-272 

TRANS’ for the trans-ancestry analysis. A1 = Allele 1, A2 = Allele 2, Freq1 = frequency of allele 1, OR = odds 273 

ratio, Beta = coefficient, SE = standard error. NB, Beta and SE of SiGN GWAS and MEGASTROKE GWAS are 274 

not comparable since they come from linear and logistic regression, respectively. The OR are comparable. We 275 

did a Bonferroni correction: for SVS, α = 0.0125 and for CES, α = 0.00625. Replication p-values below the 276 

threshold are indicated in bold. Two SNPs (rs2169955 and rs146508991, in CES-CCSc) that are relatively close 277 

(260 kb) on chromosome 5 were in two different clumps, even though they are in LD (r2 = 0.52, D’ = 0.87, in a 278 

CEU population [10] ) because the distance is just above the threshold (250 kb). Because they are in LD, and just 279 

a little farther apart than 250 kb, they were considered to be from the same locus and only the strongest association 280 

was kept (rs2169955).  281 
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A stricter phenotype definition finds a new associated locus to small vessel stroke 282 

Our analyses revealed 5 new loci (2 for SVS and 3 for CES, Table 2) which we validated using data 283 

from MEGASTROKE (based on the summary statistics of MEGASTROKE with the SiGN cohort 284 

removed, to ensure independence), while correcting for multiple testing per stroke subtype.  285 

 286 

For SVS one variant (rs10029218) in the CAMK2D locus (Table 2, Figure S5), was found in the intersect 287 

analysis, and replicated in the trans-ancestry analysis of MEGASTROKE. The other SVS associated 288 

variant (rs11065979) in the SH2B3-BRAP-ALDH2 locus was found in the CCSp analysis, and replicated 289 

in both the trans-ancestry analysis and the European analysis (Table 2, Figure S5). For the 3 CES loci, 290 

only one variant (rs3790099, in the GNAO1 gene, found in the CCSp analysis) was replicated in the 291 

Europeans-only analysis (Table 2, Figure S5). In a meta-analysis of a) the MEGASTROKE GWAS 292 

without the SiGN cohort and b) the SiGN GWAS for these three SNPs, we found consistent direction 293 

of effect in both studies and a lower p-value (Table S5). 294 

 295 

Previously, one other locus was reported to associate solely with SVS (16q24 [11]). Here, by applying 296 

an alternate phenotyping approach, we identify 4p12 as a novel SVS locus. In general, despite the low 297 

sample size as compared to MEGASTROKE, we find stronger associations in the intersect GWAS, 298 

likely due to the clearer separation of cases and controls.  299 
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Discussion 300 

To help uncover genetic associations with ischemic stroke that as yet have gone undetected, we defined 301 

new ischemic stroke phenotypes based on three existing subtyping systems (CCSc, CCSp, and TOAST). 302 

Specifically, we studied the intersect and union of these subtyping systems, for all ischemic stroke 303 

subtypes. The intersect results in a smaller number of available cases but potentially results in less 304 

misclassification due to agreement between subtyping systems. The union is potentially more 305 

heterogeneous, but results in a larger available group of cases. We find that the largest proportion of 306 

phenotypic variance explained by SNPs is in the intersect phenotype. Further, our overlap analyses 307 

show that, for each subtype, the phenotype definitions each have a unique set of significantly associated 308 

SNPs, but that there is also a small set of SNPs that is shared among all definitions, with concordant 309 

direction of effect and similar trend in magnitude of effect. We also show that the cases that are in the 310 

union but not in the intersect, are genetically distinct from the intersect-cases, implying that the union 311 

is a combination of phenotypically heterogeneous cases. With an effective sample size that is 4 to 7 312 

times as small as in MEGASTROKE, we find stronger associations (i.e., higher ORs and lower p-313 

values) at known loci by using the intersect (compared to the other phenotype definitions studied here). 314 

This indicates that the intersect yields more net power to detect associations due to its stricter definition, 315 

despite its lower sample size, and is thus better suited as a phenotype in GWAS. 316 

 317 

We identify a previously sub-threshold association with a SNP in an intron of the CAMK2D locus in 318 

small vessel stroke by using the intersect, further demonstrating the utility of this phenotype in GWAS. 319 

CAMK2D expresses a calcium/calmodulin-dependent protein kinase [12]; out of all tissues tested in 320 

GTEx, the two tissues with the highest expression are both in brain [13]. The CAMK2D locus was found 321 

to also associate with P-wave [14], an electrocardiographic property that is implicated in atrial 322 

fibrillation, a trait that is associated with cardioembolic stroke [3]. Given that the association replicates 323 

in an independent dataset, and the protein is expressed in brain, further fine-mapping in this region may  324 

give more insight into the biological mechanisms that contribute to stroke. Additionally, we find the 325 

SH2B3 - BRAP - ALDH2 locus to be associated with small vessel stroke. rs11065979 is an eQTL of 326 

ALDH2 (aldehyde dehydrogenase 2) [13]. ALDH2 is involved in ethanol metabolism; it converts one 327 
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of the products, ethanal, into acetic acid. The allele that is associated with higher expression of this 328 

enzyme is associated with lower incidence of small vessel stroke. ALDH2 is mainly expressed in liver, 329 

but it is also expressed in brain. [13] Previous work has shown an association between higher expression 330 

of ALDH2 and lower incidence of stroke in rats [15]. SH2B3 and BRAP are minimally expressed in 331 

brain, compared to the other tissues [13]. We also show an association between the GNAO1 locus and 332 

cardioembolic stroke. The protein product of this locus constitutes the alpha subunit of the Go 333 

heterotrimeric G-protein signal-transducing complex [12]. It is highly expressed in brain, and while its 334 

function is not completely clear, defects in the protein are associated with brain abnormalities [16]. 335 

Although this alternate approach to phenotyping has resulted in new associations with two ischemic 336 

stroke subtypes, the causality of these loci remains uncertain and warrants further study. 337 

 338 

Phenotype definition is an oft-encountered issue in complex trait genetics, as diagnosing and subtyping 339 

methodologies can vary and even be contentious within disease areas. Further, phenotype labels are 340 

often broad definitions for cases that can be highly heterogeneous when their underlying genetic risk is 341 

examined. For example, most psychiatric diseases are also complex and phenotypically heterogeneous, 342 

lacking clear and robust diagnostic criteria. In an editorial, the Cross-Disorder Phenotype Group of the 343 

Psychiatric GWAS Consortium states: “We anticipate that genetic findings will not map cleanly onto 344 

current diagnostic categories and that genetic associations may point to more useful and valid 345 

nosological entities”. Our findings here further support this statement, showing that while the original 346 

subtyping systems might be useful for diagnosing individual patients, alternative phenotyping 347 

approaches and criteria are needed for future genetic studies aimed at unraveling the underlying biology 348 

of disease.  349 
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Methods 350 

 351 

The SiGN dataset 352 

The Stroke Genetics Network (SiGN) Consortium composed a dataset consisting of 14,549 ischemic 353 

stroke cases. [17] The control group consists primarily of publicly available controls drawn from three 354 

large multi-ancestry cohorts. Descriptions of the contributing case and control cohorts have been 355 

published previously. [18] Cases and controls have been genotyped on a variety of Illumina arrays, and 356 

nearly all cases (~90%) have been subtyped using both TOAST [4] and CCS [19]. All  newly-genotyped 357 

cases for the latest GWAS are available on dbGAP (accession number phs000615.v1.p1). A previous 358 

genome-wide association study has been done on the separate TOAST and CCS subtypes. [18] In this 359 

work, we use the same 28,026 controls from this previous GWAS, as well as the 13,930 ischemic stroke 360 

cases of European and African ancestry. A third group of cases and controls, primarily comprised of 361 

individuals who identify as Hispanic and residing in the United States, has been excluded due to data 362 

sharing restrictions. All data processing has been previously described. [18] All genotyping data was 363 

generated using human genome build hg19. 364 

 365 

Genome-wide association studies in BOLT-LMM 366 

We ran all GWAS in BOLT-LMM [9], which implements a linear mixed model (LMM). BOLT-LMM 367 

implements a Leave-One-Chromosome-Out (LOCO) scheme, so that the genetic relationship matrix 368 

(GRM) is built on all chromosomes except the chromosome of the variant being tested. Linear mixed 369 

models have been demonstrated to improve power in GWAS while correcting for structure in the data 370 

[20]. In addition to the GRM, we included the first 10 principal components as fixed effects. We used 371 

the following approximation to convert the effect estimates from BOLT-LMM (on the observed scale) 372 

to effect estimates on the liability scale: log(𝑂𝑅) = 	𝛽 (𝜇 ∗ (1 − 𝜇))/   where 𝜇 is the case fraction. [21] 373 

For each subtype, the intersect, union and symmetric difference of the original subtyping systems were 374 

used as phenotypes in separate GWAS. The original subtyping systems were also used as a phenotype 375 

in three additional GWAS per subtype to serve as a point of reference. All ischemic stroke cases that 376 
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do not belong to the case definition under study were left out of the analysis. The same group of controls 377 

is used in all analyses. Association testing was done on all imputed SNPs with a minimum minor allele 378 

frequency of 1%. See Supplementary Table 8 in [22] for simulations of type 1 error inflation of BOLT-379 

LMM in datasets with unbalanced case-control ratios. In the GWAS discussed here, case fractions range 380 

from 0.05 to 0.14 which means that at variants with MAF >1%, there is no significant inflation of type 381 

1 error rates. Those SNPs that show a large frequency difference (>15%) across the populations in 1000 382 

Genomes were removed (see the methods in [18] for details on how this list of SNPs was compiled).  383 

See Fig S2 for QQ-plots (stratified by imputation quality (INFO-score) and by minor allele frequency) 384 

and Manhattan-plots. The genomic inflation factor (lambda) varies between 1.0 and 1.1 for 385 

cardioembolic stroke and large artery stroke, and between 1.0 and 1.2 for small vessel stroke. We 386 

observed a relatively high inflation factor of 1.2 in only the imputed SNPs with a minor allele frequency 387 

lower than 5%. Therefore, summary statistics for these SNPs were removed from downstream analyses. 388 

 389 

Heritability estimation in BOLT-REML 390 

To estimate the heritability of the six phenotype definitions for each subtype, we used BOLT-REML 391 

[23]. BOLT-REML calculates heritability from the SNPs included in the GRM, and these SNPs must 392 

be genotyped (and not imputation dosages). We therefore based our estimates on only genotyped SNPs. 393 

Furthermore, we excluded the MHC on chromosome 6, and chromosomal inversions on chromosomes 394 

8 and 17 using PLINK 1.9 [24]. See Table 3 for more information. We filtered on various quality control 395 

measures, by passing the following flags to PLINK: --mind 0.05 --maf 0.10 --geno 0.01 --hwe 0.001. 396 

Additionally we pruned SNPs at an LD (r2) threshold of 0.2 (--indep-pairwise 100 50 0.2). We used the 397 

first 10 principal components and sex (determined by presence of XX or XY chromosomes) as 398 

covariates. To convert the heritabilities from the observed scale (as if the binary data, coded as 0-1, 399 

were continuous) to the liability scale (converting the heritabilities of the observed binary trait to the 400 

heritabilities of the underlying, unobserved, continuous liability of the trait), Dempster et al derived a 401 

formula that takes into account the prevalence of the disease in the population [25]. In the case of 402 

ascertained case-control traits, where the population prevalence is not equal to the study prevalence, 403 

this has to be taken into account as well [26]: 404 
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ℎ123 = 	
𝐾3(1 − 𝐾)3

𝑃(1 − 𝑃)𝜑(𝑡)3 ℎ
183 405 

Where ℎ123  is the heritability on the liability scale, K is the population prevalence, P is the study 406 

prevalence, t is the liability threshold, and ℎ183 is the heritability on the observed scale. To test for 407 

significant difference between the estimated heritabilities, we performed an independent t-test. 408 

 409 

Table 3. Genomic regions removed before heritability estimation 410 

Chromosome Start (Mb) End (Mb) Name 

6 25.8 36.0 MHC 

8 6.0 16.0 inversion 

17 40.0 45.0 inversion 

 411 

Overlap analysis 412 

We first calculated z-scores using the following formula: z = beta / se, where beta is the effect size of 413 

the SNP and se is the standard error of the beta estimate. The z-scores thus have unit standard error, but 414 

we did not standardize them to zero mean (as is the conventional method for calculating z-scores) to 415 

maintain the original direction of effect. To assess overlap between two GWAS, we calculated the 416 

Jaccard index [27], which is the ratio of a) the number of SNPs significant in both analyses, to b) the 417 

number of SNPs significant in either analysis (i.e., the size of the intersect divided by the size of the 418 

union of the sets of significant SNPs). The index is a number between 0 and 1: it is 0 if the two sets of 419 

significant SNPs do not have any SNPs in common, and it is 1 if the two sets of significant SNPs 420 

completely overlap. We additionally calculated, within the set of SNPs that are significant in both 421 

analyses, the Pearson’s correlation of the z-scores in the two GWAS to check the concordance of 422 

direction and size of effect in the two analyses being compared. Significance was defined as a z-score 423 

that is more extreme than an absolute z-score threshold z (varied from 0 until 3, in increments of 0.1). 424 

At the most extreme z-score threshold (z >3 or z < -3), the absolute number of SNPs that are significant 425 

in both analyses is indicated in the plot. As a null comparator, these overlap analyses were also 426 
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performed with GWAS results from a study of educational attainment in 1.1 million individuals [28] 427 

downloaded from EMBL-EBI’s GWAS catalog. [29] The educational attainment study contains 428 

10,098,325 SNPs, the SiGN study contains 10,156,805 SNPs. The overlap analysis was only done on 429 

the SNPs that are present in both datasets: the size of this overlapping set is 7,822,831 SNPs. For the 430 

overall comparisons per subtype, we considered all five GWAS. At each z-score threshold, we 431 

calculated the overall Jaccard index: the ratio (range between 0 and 1) of the number of SNPs significant 432 

in all five analyses to the number of SNPs significant in any analysis. See Fig 3 for a graphical 433 

explanation of this method. 434 

 435 

Look-up of Megastroke loci in the union and intersect GWAS 436 

Recently, the MEGASTROKE consortium completed the largest GWAS in ischemic stroke and its 437 

subtypes [2]. From this GWAS, we extracted the index SNPs of each genome-wide significant locus in 438 

each subtype. We then looked up these SNPs in our GWAS to compare effect sizes, resulting in 15 ORs 439 

per SNP (for each of the phenotype definitions in each of the subtypes). See Table S6 for the summary 440 

statistics of these look-ups. If the reference allele in MEGASTROKE was not identical to the reference 441 

allele in SiGN, the inverse of the odds ratio (1/OR) was taken. We counted how often the intersect 442 

showed the most extreme odds ratio, out of all 96 ORs (15 ORs per SNP, for the 32 SNPs that were 443 

reported in MEGASTROKE). To determine the probability of the number of times intersect was most 444 

extreme, under the null hypothesis that all phenotype definitions are just as likely to show the most 445 

extreme OR, we performed a binomial test in R[30]. 446 

 447 

Replication of new genome-wide hits in MEGASTROKE 448 

To assess all genome-wide significant loci instead of the individual SNPs, we performed clumping in 449 

PLINK 1.9 [24] (http://pngu.mgh.harvard.edu/purcell/plink/). We used all SNPs significant at α = 1x10-450 

5 as index SNPs. We generated clumps for all other SNPs closer than 250 kb to the index SNP and in 451 

LD with the index SNP (r2 > 0.05). We kept clumps if the p-value of the index SNP was lower than 452 

5x10-8. From the genome-wide significant clumps, only the unique ones were kept (some clumps 453 

significantly associated to multiple case definitions). In the case of duplicates, the summary statistics 454 
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for the analysis with the lowest p-value were kept. Ambiguous SNPs were removed, and if the reference 455 

allele in MEGASTROKE was not identical to the reference allele in SiGN, we calculated the  inverse 456 

of the odds ratio (1/OR). This resulted in a list of 14 unique SNPs. We checked for SNPs that are not in 457 

a locus that had already been reported as an associated locus in MEGASTROKE, resulting in a list of 5 458 

new SNPs (2 for SVS and 3 for CES), which we looked up for replication. To this end, we ran the  459 

MEGASTROKE GWAS again (European and trans-ancestry analysis per subtype using TOAST [31]) 460 

without the SiGN cohort, to ensure summary statistics independent from the discovery GWAS. We set 461 

Bonferroni p-value thresholds to adjust for the number of SNPs looked-up for the phenotype in question, 462 

and for the number of GWAS it was looked up in (2, for the European and trans-ancestry analyses). We 463 

did a meta-analysis of the MEGASTROKE GWAS without SiGN, and the SiGN GWAS, for the 3 464 

replicating SNPs only (Table S5). We performed meta-analysis in METAL [32], with the inverse-465 

variance weighting scheme.  466 

 467 

Ethics statement 468 

Ethics statement for the original SiGN study can be found in https://doi.org/10.1016/S1474-469 

4422(15)00338-5 470 
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