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Abstract

Motivation: Much effort has been invested in the identification of protein-protein
interactions using text mining and machine learning methods. The extraction of
functional relationships between chemical compounds and proteins from literature has
received much less attention, and no ready-to-use open-source software is so far
available for this task.
Method: We created a new benchmark dataset of 2,753 sentences from abstracts
containing annotations of proteins, small molecules, and their relationships. Two kernel
methods were applied to classify these relationships as functional or non-functional,
named shallow linguistic and all-paths graph kernel. Furthermore, the benefit of
interaction verbs in sentences was evaluated.
Results: The cross-validation of the all-paths graph kernel (AUC value: 84.2%, F1
score: 81.8%) shows slightly better results than the shallow linguistic kernel (AUC
value: 81.6%, F1 score: 79.7%) on our benchmark dataset. Both models achieve
state-of-the-art performance in the research area of relation extraction. Furthermore,
the combination of shallow linguistic and all-paths graph kernel could further increase
the overall performance. We used each of the two kernels to identify functional
relationships in all PubMed abstracts (28 million) and provide the results, including
recorded processing time.
Availability: The software for the tested kernels, the benchmark, the processed 28
million PubMed abstracts, all evaluation scripts, as well as the scripts for processing the
complete PubMed database are freely available at
https://github.com/KerstenDoering/CPI-Pipeline.

Author summary

Text mining aims at organizing large sets of unstructured text data to provide efficient
information extraction. Particularly in the area of drug discovery, the knowledge about
small molecules and their interactions with proteins is of crucial importance to
understand the drug effects on cells, tissues, and organisms. This data is normally
hidden in written articles, which are published in journals with a focus on life sciences.
In this publication, we show how text mining methods can be used to extract data
about functional interactions between small molecules and proteins from texts. We
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created a new dataset with annotated sentences of scientific abstracts for the purpose of
training two diverse machine learning methods (kernels), and successfully classified
compound-protein pairs as functional and non-functional relations, i.e. no interactions.
Our newly developed benchmark dataset and the pipeline for information extraction are
freely available for download. Furthermore, we show that the software can be easily
up-scaled to process large datasets by applying the approach to 28 million abstracts.

Introduction 1

Interactions of biomolecules are substantial for most cellular processes, involving 2

metabolism, signaling, regulation, and proliferation [1]. Small molecules (compounds) 3

can serve as substrates by interacting with enzymes, as signal mediators by binding to 4

receptor proteins, or as drugs by interacting with specific target proteins [2]. 5

Detailed information about compound-protein interactions is provided in several 6

databases. ChEMBL annotates binding affinity and activity data of small molecules 7

derived from diverse experiments [3]. PDBbind describes binding kinetics of ligands 8

that have been co-crystallized with proteins [4]. DrumPID focuses on drugs and their 9

addressed molecular networks including main and side-targets [5]. DrugBank, 10

SuperTarget, and Matador host information mainly on FDA approved but also 11

experimental drugs and related interacting proteins [6, 7]. However, most of this data 12

was extracted from scientific articles. Given that more than 10,000 new articles are 13

added in the literature database PubMed each week, it is obvious that it requires much 14

effort to extract and annotate these information manually to generate comprehensive 15

datasets. Automatic text mining methods may support this process significantly [1, 8]. 16

Today, only a few approaches exist for this specific task. One of them is the Search Tool 17

Interacting Chemicals (STITCH), developed in its 5th version in 2016, which connects 18

several information sources of compound-protein interactions [2]. This includes 19

experimental data and data derived from text mining methods based on co-occurrences 20

and natural language processing [9, 10]. Similar methods have been applied for 21

developing the STRING 11.0 database, which contains mainly protein-protein 22

interactions [11]. OntoGene is a text mining web service for the detection of proteins, 23

genes, drugs, diseases, chemicals, and their relationships [12]. The identification 24

methods contain rule-based and machine learning approaches, which were successfully 25

applied in the BioCreative challenges, e.g. in the triage task in 2012 [13]. 26

Although STITCH and OntoGene deliver broadly beneficial text mining results, it is 27

difficult to compare their approaches, because no exact statistical measures of their 28

protein-compound interaction prediction methods are reported. Furthermore, no 29

published gold standard corpus of annotated compound-protein interactions could be 30

found to evaluate text mining methods for their detection. 31

Tikk et al. compared 13 kernel methods for protein-protein interaction extraction on 32

several text corpora. Out of these methods, the SL kernel and APG kernel consistently 33

achieved very good results [14]. To detect binary relationships, the APG kernel 34

considers all weighted syntactic relationships in a sentence based on a dependency graph 35

structure. In contrast, the SL kernel considers only surface tokens before, between, and 36

after the candidate interaction partners. 37

Both kernels have been successfully applied in different domains, including drug-drug 38

interaction extraction [15], the extraction of neuroanatomical connectivity 39

statements [16], and the I2B2 relation extraction challenge [17]. 40

If two biomolecules appear together in a text or a sentence, they are referred to as 41

co-occurring. A comparably high number of such pairs of biomolecules can be used as a 42

prediction method for functional relationship detection, e.g. between proteins or 43

proteins and chemical compounds [9]. This concept can be refined by requiring 44
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interaction words such as specific verbs in a sentence [1, 18]. 45

So far, it was unclear whether machine learning outperforms a rather naive baseline 46

relying on co-occurrences (with or without interaction words) for the detection of 47

functional compound-protein relations in texts. Especially for the identification of newly 48

described interactions in texts, that were not described in any other data source, the 49

annotation of a functional relation is challenging. 50

In this publication, we evaluated the usability of two diverse state-of-the-art machine 51

learning kernels for the detection of functional and non-functional compound-protein 52

relationships in texts, independent of additional descriptors, such as the frequency of 53

co-occurrences of specific pairs. To achieve the goal of benchmarking, we annotated a 54

corpus of protein and compound names in 2,753 sentences and manually classified their 55

relations as functional and non-functional, i.e. no interaction. Furthermore, the kernels 56

were applied to the large-scale text dataset of PubMed with 28 million abstracts. The 57

approaches have been implemented in an easy-to-use open source software available via 58

GitHub. 59

Both kernels achieved a better performance on the benchmark dataset than simply 60

using the concept of co-occurrences. These findings imply that a relatively high 61

classification threshold can be used to automatically identify and extract functional 62

compound-protein interactions from publicly available literature with high precision. 63

Dataset and methods 64

Generation of the benchmark dataset 65

Chemical compounds are referred to as small molecules up to a molecular weight of 66

about 1,000 Da, for which a synonym and a related ID are contained in the PubChem 67

database [19]. Similarly, genes and proteins must have UniProt synonyms and were 68

assigned to related UniProt IDs [20]. 69

PubChem synonyms were automatically annotated with the approach described in the 70

manuscripts about the web services CIL [21] and prolific [22], by applying the rules 71

described by Hettne et al. [23]. Proteins were annotated using the web service Whatizit 72

[24]. Synonyms that were assigned wrongly by the automatic named entity recognition 73

approach were manually removed. 74

The complete compound-protein-interaction benchmark dataset (CPI-DS) was 75

generated from the first 40,000 abstracts of all PubMed articles published in 2009, using 76

PubMedPortable [25]. 77

All pairs of proteins and compounds co-occurring in a sentence are considered as 78

potential functionally related or putative positive instances. Pairs with no functional 79

relation were subsequently annotated as negative instances. If a named entity exists as 80

a long-form synonym and an abbreviated form in brackets, both terms are considered as 81

individual entities. The result is a corpus of 2,753 sentences containing at least one 82

compound and protein name (CPI-pair). 83

For further manual annotation, all sentences were transferred to an HTML form. Verbs 84

that belong to a list of defined interaction verbs, defined by Senger et al. [22] and 85

which are enclosed by a protein-compound pair, were annotated, too. All detected 86

CPI-pairs were manually classified as functionally related (positive instances) and 87

non-functionally related CPI-pairs (negative instances). 88

Interaction verbs 89

To analyze how much specific verbs, enclosed by a compound and protein name, affect 90

the precision of functional relationships, we further differentiated between sentences 91

July 24, 2019 3/13

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 29, 2019. ; https://doi.org/10.1101/718205doi: bioRxiv preprint 

https://doi.org/10.1101/718205
http://creativecommons.org/licenses/by/4.0/


with or without this structure. Fig 1 shows detailed examples. 92

Fig 1. a) Direct functional relation with interaction verb. The orange-coloured
verb is enclosed by the compound 7-ketocholesterol, shown in blue, and the protein
interleukin-6, shown in green. The pair was annotated as functional. b) Indirect
functional relation with interaction verb. Diallyl sulfide is influencing
cyclooxygenase 2 indirectly by inhibiting its expression. The pair was annotated as
functional. The compound diallyl sulfide and the protein IL-1beta enclose an interaction
verb, but do not describe a functional relation. c) Direct functional relation
without interaction verb. The molecule cholesterol is metabolised to pregnenolone
by CYP11A. This is indicated by the word conversion. The pair was annotated as
functional.

Kernel methods 93

Shallow linguistic kernel 94

Giuliano et al. developed this kernel to perform relation extraction from biomedical 95

literature [26]. It is defined as the sum of a global and local context kernel. These 96

customized kernels were implemented with the LIBSVM framework [27]. Tikk et al. 97

adapted the LIBSVM package to compute the distance to the hyperplane, which 98

allowed us to calculate an area under the curve value. 99

The global context kernel works on unsorted patterns of words up to a length of n=3. 100

These n-grams are implemented using the bag-of-words approach. The method counts 101

the number of occurrences of every word in a sentence including punctuation, but 102

excludes the candidate entities. The patterns are computed regarding the phrase 103

structures before-between, between, and between-after the considered entities. 104

The local context kernel considers tokens with their part-of-speech tags, capitalisation, 105

punctuation, and numerals [1, 26]. The left and right ordered word neighborhoods up 106

to window size of w=3 are considered in two separated kernels, which are summed up 107

for each relationship instance. 108

All-paths graph kernel 109

The APG kernel is based on dependency graph representations of sentences, which are 110

gained from dependency trees [28]. In general, the nodes in the dependency graph are 111

the text tokens in the text (including the part-of-speech tag). The edges represent typed 112

dependencies, showing the syntax of a sentence. The highest emphasis is given to edges 113

which are part of the shortest path connecting the compound-protein pair in question. 114

A graph can be represented in an adjacency matrix. The entries in this matrix 115

determine the weights of the connecting edges. A multiplication of the matrix with itself 116

returns a new matrix with all summed weights of path length two. 117

All possible paths of all lengths can be calculated by computing the powers of the 118

matrix. Matrix addition of all these matrices results in a final adjacency matrix, which 119

consists of the summed weights of all possible paths [30]. Paths of length zero are 120

removed by subtracting the identity matrix. 121

All labels are represented as a feature vector. The feature vector is encoded for every 122

vertex, containing the value 1 for labels that are presented within this particular node. 123

This results in a label allocation matrix. 124

A feature matrix as defined by Gärtner et al. sums up all weighted paths with all 125

presented labels [29]. This calculation combines the strength of the connection between 126

two nodes with the encoding of their labels. In general, it can be stated that the 127

dependency weights are higher the shorter their distance to the shortest path between 128
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the candidate entities is [1]. The similarity of two feature matrix representations can be 129

computed by summing up the products of all their entries [30]. 130

In the implementation used here [1, 30], the regularized least squares classifier 131

algorithm is applied to classify compound-protein interactions with the APG kernel. 132

This classifier is similar to a standard support vector machine, but the underlying 133

mathematical problem does not need to be solved with quadratic programming [30,31]. 134

Analysis of predictive models 135

Baseline of the kernel models 136

We considered co-occurrences as a simple approach to calculate the baseline in the way 137

that every appearance of a compound and a protein in a sentence is classified as a 138

functional relationship (recall 100%, specificity 0%), taking into account the number of 139

all true functional relationships. 140

Benchmark dataset-based analysis 141

The evaluation was calculated by document-wise 10-fold cross-validation, as an 142

instance-wise cross-validation leads to overoptimistic performance estimates [32]. Each 143

compound-protein pair was classified as functionally related or not related using the 144

previously described kernel methods and resulting in an overall recall, precision, F1 145

score, and AUC value for a range of kernel parameters. 146

Subsequently, the kernels were applied solely to sentences which contain an interaction 147

verb and sentences containing no interaction verb. The analyses compare each of the 148

three baselines with the kernel method results. 149

Combination of the APG and SL kernel 150

To analyze if the combination of both kernels yields a higher precision and F1 score 151

than each individual kernel, we combined them by applying a jury decision rule, with 152

the definition that only those relations were classified as functional for which both 153

kernels predicted a functional relation. As we are considering the benchmark dataset, 154

the values for recall, specificity, precision, accuracy, and F1 score could be calculated for 155

the new jury outcome. Based on what is known from the AUC analysis, we can identify 156

the classification threshold for which each of the two kernels reaches the same precision 157

as resulting from the jury decision with default thresholds. By recalculating the above 158

mentioned parameters for each kernel with the new classification threshold, we can 159

compare the single kernel performance with the jury decision outcome. 160

Large-scale dataset analysis 161

We applied both kernels on all PubMed abstracts before 2018, including titles. For the 162

annotation of proteins and small molecules the PubTator web service was applied 163

[33, 34]. The web server annotates genes, proteins, compounds, diseases, and species in 164

uploaded texts. Furthermore, it provides all PubMed abstracts and titles as 165

preprocessed data. 166

Processing these annotations with PubMedPortable [25] in combination with the CPI 167

pipeline, as explained in the GitHub project documentation, allows for a complete 168

automatic annotation of functional compound-protein relations in texts. 169
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Results and discussion 170

Baseline analysis 171

Within all sentences, a total number of 5,963 CPI-pairs was curated and separated into 172

3,496 functionally related (positive instances) and 2,467 non-functionally related 173

CPI-pairs (negative instances). Considering the prediction approach of co-occurrences, 174

this results in a precision (equal to accuracy in this case) of 58.6% and an F1 score of 175

73.9% (Table 1). 176

Table 1. Analysis of the CPI benchmark dataset.

DS #Sent. #CPIs #No-CPIs Total Rec. Spec. Prec. F1

CPI-DS 2753 3496 2467 5963 100.0 0.0 58.6 73.9

Baseline results for precision, recall, and F1 score based on simple co-occurrences.
Results are shown in percent (DS - dataset, Sent. - sentences, Rec. - recall, Spec. -
specificity, Prec. - precision, F1 - F1 score).

Shallow Linguistic Kernel 177

All parameter combinations in the range 1-3 for n-gram and window size of the SL 178

kernel were evaluated. The selection of n-gram 3 and window size 1 shows the best 179

AUC value and the highest precision in comparison to all other models. In general, a 180

lower value of window size leads to a higher precision and a lower recall (Table 2). 181

Table 2. Shallow linguistic kernel results on the datasets CPI-DS.

n w Rec. Spec. Prec. F1 AUC

1 1 77.3 69.0 78.1 77.7 79.2
1 2 83.1 62.0 75.7 79.2 78.6
1 3 87.6 52.8 72.6 79.2 78.0
2 1 79.2 69.9 79.1 79.1 80.9
2 2 84.1 62.4 76.2 79.9 80.2
2 3 87.9 55.0 73.6 80.0 79.9
3 1 80.3 69.7 79.2 79.7 81.6
3 2 84.0 63.5 76.7 80.1 81.0
3 3 87.8 56.0 74.0 80.2 80.8

The first parameter shows the n-gram value, the second represents the window size.
Values in percent: Rec. - recall, Spec. - specificity, Prec. - precision, F1 - F1 score,
AUC - area under the curve.

All-paths graph kernel 182

We evaluated the APG kernel using the same cross-validation splits as for the SL kernel. 183

Results shown in Table 3 indicate that experiments achieve similar performance 184

independent of the hyperplane optimization parameter c. Mathematically, a larger 185

generalization parameter c represents a lower risk of overfitting [30,31]. 186
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Table 3. APG kernel results on the datasets CPI-DS.

c Rec. Spec. Prec. F1 AUC

0.25 84.8 68.1 79.3 81.8 84.2
0.50 85.3 66.5 78.7 81.8 84.2
1.00 84.6 66.7 78.5 81.3 83.9
2.00 85.6 64.9 77.9 81.5 83.5

c is hyperplane optimization parameter. Values in percent: Rec. - recall, Spec. -
specificity, Prec. - precision, F1 - F1 score, AUC - area under the curve.

Both kernels in comparison 187

In general, the APG kernel achieved slightly better results than the SL kernel in terms 188

of the resulting AUC value, which is inline with previous findings for other domains, e.g. 189

drug-drug interactions [15] and protein-protein interactions [1](Fig 2). Considering the 190

models with the highest precision values for SL (n=3, w=1), and APG (c=0.25) kernel, 191

the results clearly outperform the baseline approach of simple co-occurrences. 192

Fig 2. SL and APG kernel comparison. Area under the curve (AUC) of SL kernel
(n=3, w=1) and APG kernel (c=0.25).

The complete cross-validation procedure for all parameter settings (including linguistic 193

preprocessing) required almost 5.5 h for the APG kernel and about 35 min for the SL 194

kernel on an Intel Core i5-3570 (4x 3.40GHz). For the APG kernel, a substantial 195

amount of the time is required for dependency parsing. This aspect has to be 196

considered within the scenario of applying a selected model to all PubMed articles (see 197

section Large-scale dataset application). 198

Both kernels in combination 199

The combination of both kernels by a jury decision rule yielded a precision of 83.9% and 200

an F1 score of 78.3%. As described in the methods section, the precision was set to the 201

same value (83.9%) for each individual kernel and the appropriate classification 202

threshold was extracted from the AUC analysis. The resulting F1 score was slightly 203

lower for the APG kernel (75.2%) and considerably lower for the SL kernel (70.1%). 204

This indicates that the combination of both kernels by a jury decision leads to a slightly 205

better classification performance(Table 4). 206

Table 4. Comparison of the combined kernels to each individual kernel. The
precision of each kernel was set to the same level as in the combination by jury decision.

Kernel Rec. Spec. Prec. Acc. F1

SL 60.2 83.7 83.9 69.9 70.1
APG 68.2 81.5 83.9 73.7 75.2
Jury decision 73.4 80.1 83.9 76.2 78.3

Values in percent: Rec. - recall, Spec. - specificity, Prec. - precision, F1 - F1 score.
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Functional relationships with and without an enclosed 207

interaction verb 208

Subsequently, we analyzed the impact of interaction words on the classification of both 209

kernels. The independence of functional relationships and the existence of an interaction 210

verb was tested with a chi-squared test. Both characteristic features are not independent 211

from each other (p<0.01). The fraction of sentences containing an interaction verb is 212

higher in the functionally related CPI-pairs (Fig 3). 213

Fig 3. Ratios of CPI-pairs in sentences with and without interaction verbs.

To see if and how the two different kernel functions make use of this correlation, we 214

divided the CPI-DS into two groups, considering compound-protein pairs which contain 215

an interaction verb (CPI-DS IV) and pairs of compounds and proteins that do not show 216

this structure, i.e. no interaction verb enclosed (CPI-DS NIV). Table 5 shows the 217

baseline results by using simple co-occurrences. In both datasets, the baseline achieves 218

an F1 score above 70%. Regarding the analyses of the kernels, we recalculated the 219

results from the complete CPI-DS cross-validation run on CPI-DS IV and CPI-DS NIV. 220

Table 5. Basic statistic of the two compound-protein interaction corpora.

DS #Sent. #CPIs #No-CPIs Total Rec. Spec. Prec. F1

CPI-DS IV 1259 1884 1166 3050 100.0 0.0 61.8 76.4
CPI-DS NIV 1494 1612 1301 2913 100.0 0.0 55.3 71.2

Baseline results for precision, recall, and F1 score are derived by using co-occurrences. Values
in percent (DS - dataset, Sent. - sentences, Rec. - recall, Spec. - specificity, Prec. - precision,
F1 - F1 score).

Shallow linguistic kernel 221

For both datasets (CPI-DS IV and CPI-DS NIV), the parameter selection n-gram 3 and 222

window size 1 shows the highest area under the curve value (Table 6). Again, a lower 223

value of window size leads to a higher precision and a lower recall. The area under the 224

curve values show the same tendency as the precision, but the differences are not that 225

pronounced. Furthermore, the area under the curve values on the dataset CPI-DS NIV 226

are about 4-6% higher than on dataset CPI-DS IV and the specificity about 6-11%. 227

Precision, recall, and F1 score are relatively similar across the two datasets. Therefore, 228

the SL kernel shows a better performance in distinguishing between functional and 229

non-functional relations on dataset CPI-DS NIV. 230
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Table 6. SL kernel results on the datasets CPI-DS IV and CPI-DS NIV.

Param. CPI-DS IV CPI-DS NIV

n w Rec. Spec. Prec. F1 AUC Rec. Spec. Prec. F1 AUC

1 1 79.0 63.2 78.1 78.4 76.7 75.4 73.9 78.3 76.6 81.4
1 2 84.2 57.7 76.9 80.2 76.2 81.8 65.5 74.7 77.9 80.6
1 3 87.6 48.4 73.7 79.8 75.8 87.4 56.4 71.5 78.5 79.9
2 1 79.9 63.8 78.6 79.1 78.3 78.4 75.3 79.9 79.0 83.3
2 2 83.9 57.0 76.4 79.8 77.5 84.5 67.0 76.3 80.1 82.7
2 3 87.7 49.7 74.2 80.2 77.1 88.2 59.4 73.1 79.8 82.3
3 1 80.7 64.1 78.9 79.7 78.8 79.9 74.6 79.8 79.7 84.3
3 2 83.8 58.0 76.8 80.0 78.1 84.2 68.3 76.8 80.2 83.7
3 3 87.7 50.0 74.4 80.3 78.0 87.9 60.8 73.6 80.0 83.2

The first parameter shows the n-gram value, and the second number represents the window
size. Values in percent: Rec. - recall, Spec. - specificity, Prec. - precision, F1 - F1 score, AUC -
area under the curve.

All-paths graph kernel 231

Table 7 shows that experiments within the same dataset achieve similar performances, 232

independent of the hyperplane optimization parameter c. For both datasets, the AUC 233

values do not differ by more than 0.8%, indicating a high robustness of the classifier. 234

Furthermore, the AUC values of dataset CPI-DS NIV are about 3% better than on 235

dataset CPI-DS IV, due to a clearly higher specificity. Therefore, the APG kernel also 236

shows a better performance in distinguishing between functional and non-functional 237

relations on dataset CPI-DS NIV. 238

Table 7. CPI-DS IV and CPI-DS NIV results for the APG kernel pipeline.

Param. CPI-DS IV CPI-DS NIV

c Rec. Spec. Prec. F1 AUC Rec. Spec. Prec. F1 AUC

0.25 85.5 63.5 79.9 82.5 82.6 84.0 71.7 78.8 81.0 85.7
0.50 85.7 61.3 79.2 82.3 82.6 84.8 70.6 78.3 81.2 85.6
1.00 85.2 61.0 78.9 81.8 82.3 83.9 71.1 78.4 80.7 85.3
2.00 86.0 59.4 78.5 81.9 81.8 85.2 69.2 77.6 81.0 85.0

Values in percent: Rec. - recall, Prec. - precision, F1 - F1 score, AUC - area under the curve.

Large-scale dataset application 239

The kernels have been successfully applied to all PubMed titles and abstracts that were 240

published before 2018, comprising about 28M references to biomedical articles. The 241

dataset consists of more than 120M sentences, with around 16M containing at least one 242

compound-protein pair. Table 8 shows that the APG kernel predicts 65.0% of the 243

potential candidate pairs to be functionally related, while the SL kernel predicts only 244

59.4% as functional. On an Intel Core i5-3570 (4x 3.40GHz), the total run-time of the 245

SL kernel was moderately less than the one of the APG kernel. 246
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Table 8. Application of CPI-Pipeline on PubMed dataset.

Kernel APG SL

PubMed articles 28M
Number of sentences 120M
Number of sentences with candidate pairs 5.6M
Number of candidate pairs 16M
Functional relations 10.4M = 65.0% 9.5M = 59.4%
Non-functional relations 5.6M = 35.0% 6.5M = 40.6%

Number of identical predictions
12M = 75%

(50% functional, 25% non-functional)
Number of predicted
distinct functional relations 2.3M
Pre-processing elapsed time 20.5 days 14 days
Kernel elapsed time 4 days 1.5 days
Total elapsed time 24.5 days 15.5 days

PubMed dataset statistics for the selected APG (c=1) and SL (n=3, w=1) models.

Conclusion 247

The SL and APG kernels were already applied in different domains, e.g. protein-protein 248

interactions, drug-drug interactions, and neuroanatomical statements. The approach 249

presented herein is focusing on the extraction of functional compound-protein 250

relationships from literature. A benchmark dataset was developed to evaluate both 251

kernels with a range of parameters. This corpus consists of 2,753 sentences, manually 252

annotated with 5,963 compound-protein relationships after automatic named entity 253

recognition. Both kernels are dependent on successfully recognizing protein and 254

compound names in texts. Considering PubMed articles, reliable annotations of these 255

entities are provided by PubTator [33], and publications can be locally processed with 256

PubMedPortable [25]. 257

Cross-validation results with an AUC value of around 81% for the SL kernel and 84% 258

for the APG kernel represent a remarkable performance within the research area of 259

relation extraction. 260

Considering the filtering of specific interaction verbs, both kernels show the same 261

tendency. The AUC values are considerably higher for the sentences that do not contain 262

interaction verbs. This tendency is not reflected by the F1 score, because this 263

evaluation metric does not include the true negatives. To clarify this outcome, we 264

included the specificity values in our results section. Therefore, the presence of an 265

interaction verb makes it more difficult for the classifier to distinguish between 266

functionally and non-functionally related CPI-pairs. Since the filtering by interaction 267

verbs does not yield a clearly better precision for both datasets and kernels, this 268

approach can be ignored for the development of an automatic classification method. 269

The combination of both kernels could slightly increase the overall performance of the 270

classification compared to the single APG kernel. Since both kernels are quite different 271

regarding their classification approach, their combination is supposed to result in a high 272

robustness of the predictions. For fully automatic methods the classification threshold 273

for both kernels can be adjusted to a relatively high precision. The models for 274

predicting functional relationships between compounds and proteins can then be 275

considered e.g. as a filter to decrease the number of sentences a user has to read for the 276

identification of specific relationships. 277
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The selected procedure of training a model with the SL and APG kernels might also 278

come into question for the identification of other types of relationships, such as 279

gene-disease or compound-compound relationships. 280
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Mining and evaluation of molecular relationships in literature. Bioinformatics.
2012;28(5):709-14.

23. Hettne KM, Stierum RH, Schuemie MJ, Hendriksen PJ, Schijvenaars BJ,
Mulligen EM, et al. A dictionary to identify small molecules and drugs in free
text. Bioinformatics. 2009;25(22):2983-91.

24. Rebholz-Schuhmann D, Arregui M, Gaudan S, Kirsch H, Jimeno A. Text
processing through Web services: calling Whatizit. Bioinformatics.
2008;24(2):296-8.
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