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Abstract

Motivation: Much effort has been invested in the identification of protein-protein
interactions using text mining and machine learning methods. The extraction of
functional relationships between chemical compounds and proteins from literature has
received much less attention, and no ready-to-use open-source software is so far
available for this task.

Method: We created a new benchmark dataset of 2,753 sentences from abstracts
containing annotations of proteins, small molecules, and their relationships. Two kernel
methods were applied to classify these relationships as functional or non-functional,
named shallow linguistic and all-paths graph kernel. Furthermore, the benefit of
interaction verbs in sentences was evaluated.

Results: The cross-validation of the all-paths graph kernel (AUC value: 84.2%, F1
score: 81.8%) shows slightly better results than the shallow linguistic kernel (AUC
value: 81.6%, F1 score: 79.7%) on our benchmark dataset. Both models achieve
state-of-the-art performance in the research area of relation extraction. Furthermore,
the combination of shallow linguistic and all-paths graph kernel could further increase
the overall performance. We used each of the two kernels to identify functional
relationships in all PubMed abstracts (28 million) and provide the results, including
recorded processing time.

Availability: The software for the tested kernels, the benchmark, the processed 28
million PubMed abstracts, all evaluation scripts, as well as the scripts for processing the
complete PubMed database are freely available at
https://github.com/KerstenDoering/CPI-Pipeline.

Author summary

Text mining aims at organizing large sets of unstructured text data to provide efficient
information extraction. Particularly in the area of drug discovery, the knowledge about
small molecules and their interactions with proteins is of crucial importance to
understand the drug effects on cells, tissues, and organisms. This data is normally
hidden in written articles, which are published in journals with a focus on life sciences.
In this publication, we show how text mining methods can be used to extract data
about functional interactions between small molecules and proteins from texts. We
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created a new dataset with annotated sentences of scientific abstracts for the purpose of
training two diverse machine learning methods (kernels), and successfully classified
compound-protein pairs as functional and non-functional relations, i.e. no interactions.
Our newly developed benchmark dataset and the pipeline for information extraction are
freely available for download. Furthermore, we show that the software can be easily
up-scaled to process large datasets by applying the approach to 28 million abstracts.

Introduction

Interactions of biomolecules are substantial for most cellular processes, involving
metabolism, signaling, regulation, and proliferation [1]. Small molecules (compounds)
can serve as substrates by interacting with enzymes, as signal mediators by binding to
receptor proteins, or as drugs by interacting with specific target proteins [2].

Detailed information about compound-protein interactions is provided in several
databases. ChEMBL annotates binding affinity and activity data of small molecules
derived from diverse experiments [3]. PDBbind describes binding kinetics of ligands
that have been co-crystallized with proteins [4]. DrumPID focuses on drugs and their
addressed molecular networks including main and side-targets [5]. DrugBank,
SuperTarget, and Matador host information mainly on FDA approved but also
experimental drugs and related interacting proteins [6,7]. However, most of this data
was extracted from scientific articles. Given that more than 10,000 new articles are
added in the literature database PubMed each week, it is obvious that it requires much
effort to extract and annotate these information manually to generate comprehensive

datasets. Automatic text mining methods may support this process significantly [1,8].

Today, only a few approaches exist for this specific task. One of them is the Search Tool
Interacting Chemicals (STITCH), developed in its 5th version in 2016, which connects
several information sources of compound-protein interactions [2]. This includes
experimental data and data derived from text mining methods based on co-occurrences
and natural language processing [9,10]. Similar methods have been applied for
developing the STRING 11.0 database, which contains mainly protein-protein
interactions [11]. OntoGene is a text mining web service for the detection of proteins,
genes, drugs, diseases, chemicals, and their relationships [12]. The identification
methods contain rule-based and machine learning approaches, which were successfully
applied in the BioCreative challenges, e.g. in the triage task in 2012 [13].

Although STITCH and OntoGene deliver broadly beneficial text mining results, it is
difficult to compare their approaches, because no exact statistical measures of their
protein-compound interaction prediction methods are reported. Furthermore, no
published gold standard corpus of annotated compound-protein interactions could be
found to evaluate text mining methods for their detection.

Tikk et al. compared 13 kernel methods for protein-protein interaction extraction on
several text corpora. Out of these methods, the SL kernel and APG kernel consistently
achieved very good results [14]. To detect binary relationships, the APG kernel
considers all weighted syntactic relationships in a sentence based on a dependency graph
structure. In contrast, the SL kernel considers only surface tokens before, between, and
after the candidate interaction partners.

Both kernels have been successfully applied in different domains, including drug-drug
interaction extraction [15], the extraction of neuroanatomical connectivity

statements [16], and the 12B2 relation extraction challenge [17].

If two biomolecules appear together in a text or a sentence, they are referred to as
co-occurring. A comparably high number of such pairs of biomolecules can be used as a
prediction method for functional relationship detection, e.g. between proteins or
proteins and chemical compounds [9]. This concept can be refined by requiring

July 24, 2019

2/13

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44


https://doi.org/10.1101/718205
http://creativecommons.org/licenses/by/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/718205; this version posted July 29, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under

aCC-BY 4.0 International license.

interaction words such as specific verbs in a sentence [1,18].

So far, it was unclear whether machine learning outperforms a rather naive baseline
relying on co-occurrences (with or without interaction words) for the detection of
functional compound-protein relations in texts. Especially for the identification of newly
described interactions in texts, that were not described in any other data source, the
annotation of a functional relation is challenging.

In this publication, we evaluated the usability of two diverse state-of-the-art machine
learning kernels for the detection of functional and non-functional compound-protein
relationships in texts, independent of additional descriptors, such as the frequency of
co-occurrences of specific pairs. To achieve the goal of benchmarking, we annotated a
corpus of protein and compound names in 2,753 sentences and manually classified their
relations as functional and non-functional, i.e. no interaction. Furthermore, the kernels
were applied to the large-scale text dataset of PubMed with 28 million abstracts. The
approaches have been implemented in an easy-to-use open source software available via
GitHub.

Both kernels achieved a better performance on the benchmark dataset than simply
using the concept of co-occurrences. These findings imply that a relatively high
classification threshold can be used to automatically identify and extract functional
compound-protein interactions from publicly available literature with high precision.

Dataset and methods

Generation of the benchmark dataset

Chemical compounds are referred to as small molecules up to a molecular weight of
about 1,000 Da, for which a synonym and a related ID are contained in the PubChem
database [19]. Similarly, genes and proteins must have UniProt synonyms and were
assigned to related UniProt IDs [20].

PubChem synonyms were automatically annotated with the approach described in the
manuscripts about the web services CIL [21] and prolific [22], by applying the rules
described by Hettne et al. [23]. Proteins were annotated using the web service Whatizit
[24]. Synonyms that were assigned wrongly by the automatic named entity recognition
approach were manually removed.

The complete compound-protein-interaction benchmark dataset (CPI-DS) was
generated from the first 40,000 abstracts of all PubMed articles published in 2009, using
PubMedPortable [25].

All pairs of proteins and compounds co-occurring in a sentence are considered as
potential functionally related or putative positive instances. Pairs with no functional
relation were subsequently annotated as negative instances. If a named entity exists as
a long-form synonym and an abbreviated form in brackets, both terms are considered as
individual entities. The result is a corpus of 2,753 sentences containing at least one
compound and protein name (CPI-pair).

For further manual annotation, all sentences were transferred to an HTML form. Verbs
that belong to a list of defined interaction verbs, defined by Senger et al. [22] and
which are enclosed by a protein-compound pair, were annotated, too. All detected
CPI-pairs were manually classified as functionally related (positive instances) and
non-functionally related CPI-pairs (negative instances).

Interaction verbs

To analyze how much specific verbs, enclosed by a compound and protein name, affect
the precision of functional relationships, we further differentiated between sentences
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with or without this structure. Fig 1 shows detailed examples.

Fig 1. a) Direct functional relation with interaction verb. The orange-coloured
verb is enclosed by the compound 7-ketocholesterol, shown in blue, and the protein
interleukin-6, shown in green. The pair was annotated as functional. b) Indirect
functional relation with interaction verb. Diallyl sulfide is influencing
cyclooxygenase 2 indirectly by inhibiting its expression. The pair was annotated as
functional. The compound diallyl sulfide and the protein IL-1beta enclose an interaction
verb, but do not describe a functional relation. ¢) Direct functional relation
without interaction verb. The molecule cholesterol is metabolised to pregnenolone
by CYP11A. This is indicated by the word conversion. The pair was annotated as
functional.

Kernel methods
Shallow linguistic kernel

Giuliano et al. developed this kernel to perform relation extraction from biomedical
literature [26]. It is defined as the sum of a global and local context kernel. These
customized kernels were implemented with the LIBSVM framework [27]. Tikk et al.
adapted the LIBSVM package to compute the distance to the hyperplane, which
allowed us to calculate an area under the curve value.

The global context kernel works on unsorted patterns of words up to a length of n=3.
These n-grams are implemented using the bag-of-words approach. The method counts
the number of occurrences of every word in a sentence including punctuation, but
excludes the candidate entities. The patterns are computed regarding the phrase
structures before-between, between, and between-after the considered entities.

The local context kernel considers tokens with their part-of-speech tags, capitalisation,
punctuation, and numerals [1,26]. The left and right ordered word neighborhoods up
to window size of w=3 are considered in two separated kernels, which are summed up
for each relationship instance.

All-paths graph kernel

The APG kernel is based on dependency graph representations of sentences, which are
gained from dependency trees [28]. In general, the nodes in the dependency graph are
the text tokens in the text (including the part-of-speech tag). The edges represent typed
dependencies, showing the syntax of a sentence. The highest emphasis is given to edges
which are part of the shortest path connecting the compound-protein pair in question.
A graph can be represented in an adjacency matrix. The entries in this matrix
determine the weights of the connecting edges. A multiplication of the matrix with itself
returns a new matrix with all summed weights of path length two.

All possible paths of all lengths can be calculated by computing the powers of the
matrix. Matrix addition of all these matrices results in a final adjacency matrix, which
consists of the summed weights of all possible paths [30]. Paths of length zero are
removed by subtracting the identity matrix.

All labels are represented as a feature vector. The feature vector is encoded for every
vertex, containing the value 1 for labels that are presented within this particular node.
This results in a label allocation matrix.

A feature matrix as defined by Gértner et al. sums up all weighted paths with all
presented labels [29]. This calculation combines the strength of the connection between
two nodes with the encoding of their labels. In general, it can be stated that the
dependency weights are higher the shorter their distance to the shortest path between
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the candidate entities is [1]. The similarity of two feature matrix representations can be
computed by summing up the products of all their entries [30].

In the implementation used here [1,30], the regularized least squares classifier
algorithm is applied to classify compound-protein interactions with the APG kernel.
This classifier is similar to a standard support vector machine, but the underlying

mathematical problem does not need to be solved with quadratic programming [30,31].

Analysis of predictive models
Baseline of the kernel models

We considered co-occurrences as a simple approach to calculate the baseline in the way
that every appearance of a compound and a protein in a sentence is classified as a
functional relationship (recall 100%, specificity 0%), taking into account the number of
all true functional relationships.

Benchmark dataset-based analysis

The evaluation was calculated by document-wise 10-fold cross-validation, as an
instance-wise cross-validation leads to overoptimistic performance estimates [32]. Each
compound-protein pair was classified as functionally related or not related using the
previously described kernel methods and resulting in an overall recall, precision, F1
score, and AUC value for a range of kernel parameters.

Subsequently, the kernels were applied solely to sentences which contain an interaction
verb and sentences containing no interaction verb. The analyses compare each of the
three baselines with the kernel method results.

Combination of the APG and SL kernel

To analyze if the combination of both kernels yields a higher precision and F1 score
than each individual kernel, we combined them by applying a jury decision rule, with
the definition that only those relations were classified as functional for which both
kernels predicted a functional relation. As we are considering the benchmark dataset,
the values for recall, specificity, precision, accuracy, and F1 score could be calculated for
the new jury outcome. Based on what is known from the AUC analysis, we can identify
the classification threshold for which each of the two kernels reaches the same precision
as resulting from the jury decision with default thresholds. By recalculating the above
mentioned parameters for each kernel with the new classification threshold, we can
compare the single kernel performance with the jury decision outcome.

Large-scale dataset analysis

We applied both kernels on all PubMed abstracts before 2018, including titles. For the
annotation of proteins and small molecules the PubTator web service was applied
[33,34]. The web server annotates genes, proteins, compounds, diseases, and species in
uploaded texts. Furthermore, it provides all PubMed abstracts and titles as
preprocessed data.

Processing these annotations with PubMedPortable [25] in combination with the CPI
pipeline, as explained in the GitHub project documentation, allows for a complete
automatic annotation of functional compound-protein relations in texts.
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Results and discussion

Baseline analysis

Within all sentences, a total number of 5,963 CPI-pairs was curated and separated into
3,496 functionally related (positive instances) and 2,467 non-functionally related
CPI-pairs (negative instances). Considering the prediction approach of co-occurrences,
this results in a precision (equal to accuracy in this case) of 58.6% and an F1 score of
73.9% (Table 1).

Table 1. Analysis of the CPI benchmark dataset.
DS ‘ #Sent. #CPIs #No-CPIs Total Rec. Spec. Prec. F;
CPI-DS ‘ 2753 3496 2467 5963 100.0 0.0 58.6  73.9

Baseline results for precision, recall, and F1 score based on simple co-occurrences.
Results are shown in percent (DS - dataset, Sent. - sentences, Rec. - recall, Spec. -
specificity, Prec. - precision, F1 - F1 score).

Shallow Linguistic Kernel

All parameter combinations in the range 1-3 for n-gram and window size of the SL
kernel were evaluated. The selection of n-gram 3 and window size 1 shows the best
AUC value and the highest precision in comparison to all other models. In general, a
lower value of window size leads to a higher precision and a lower recall (Table 2).

Table 2. Shallow linguistic kernel results on the datasets CPI-DS.

n w ‘ Rec. Spec. Prec. F1 AUC
1 1|73 690 781 77.7 79.2
1 2|81 620 757 792 78.6
1 3 |876 528 726 792 78.0
2 1172 699 79.1 79.1 809
2 2841 624 762 799 80.2
2 31879 550 736 80.0 79.9
3 1|80.3 697 792 797 816
3 2|84.0 635 767 801 810
3 3 |87.8 56.0 740 802 808

The first parameter shows the n-gram value, the second represents the window size.
Values in percent: Rec. - recall, Spec. - specificity, Prec. - precision, F1 - F1 score,
AUC - area under the curve.

All-paths graph kernel

We evaluated the APG kernel using the same cross-validation splits as for the SL kernel.

Results shown in Table 3 indicate that experiments achieve similar performance
independent of the hyperplane optimization parameter c. Mathematically, a larger
generalization parameter ¢ represents a lower risk of overfitting [30,31].
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Table 3. APG kernel results on the datasets CPI-DS.
c Rec. Spec. Prec. F1 AUC

0.25 848 681 793 81.8 842
0.50 853 66.5 787 81.8 84.2
1.00 84.6 66.7 785 813 839
200 8.6 649 779 8L5 835

¢ is hyperplane optimization parameter. Values in percent: Rec. - recall, Spec. -
specificity, Prec. - precision, F1 - F1 score, AUC - area under the curve.

Both kernels in comparison

In general, the APG kernel achieved slightly better results than the SL kernel in terms

of the resulting AUC value, which is inline with previous findings for other domains, e.g.

drug-drug interactions [15] and protein-protein interactions [1](Fig 2). Considering the
models with the highest precision values for SL (n=3, w=1), and APG (c=0.25) kernel,
the results clearly outperform the baseline approach of simple co-occurrences.

Fig 2. SL and APG kernel comparison. Area under the curve (AUC) of SL kernel
(n=3, w=1) and APG kernel (c=0.25).

The complete cross-validation procedure for all parameter settings (including linguistic
preprocessing) required almost 5.5 h for the APG kernel and about 35 min for the SL
kernel on an Intel Core i5-3570 (4x 3.40GHz). For the APG kernel, a substantial
amount of the time is required for dependency parsing. This aspect has to be
considered within the scenario of applying a selected model to all PubMed articles (see
section Large-scale dataset application).

Both kernels in combination

The combination of both kernels by a jury decision rule yielded a precision of 83.9% and
an F1 score of 78.3%. As described in the methods section, the precision was set to the
same value (83.9%) for each individual kernel and the appropriate classification
threshold was extracted from the AUC analysis. The resulting F1 score was slightly
lower for the APG kernel (75.2%) and considerably lower for the SL kernel (70.1%).
This indicates that the combination of both kernels by a jury decision leads to a slightly
better classification performance(Table 4).

Table 4. Comparison of the combined kernels to each individual kernel. The
precision of each kernel was set to the same level as in the combination by jury decision.

Kernel ‘ Rec. Spec. Prec. Acc. F1
SL 60.2 83.7 83.9 699 70.1
APG 68.2 815 83.9 737 752

Jury decision | 73.4  80.1 83.9 762 783

Values in percent: Rec. - recall, Spec. - specificity, Prec. - precision, F1 - F1 score.
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Functional relationships with and without an enclosed
interaction verb

Subsequently, we analyzed the impact of interaction words on the classification of both
kernels. The independence of functional relationships and the existence of an interaction
verb was tested with a chi-squared test. Both characteristic features are not independent
from each other (p<0.01). The fraction of sentences containing an interaction verb is
higher in the functionally related CPI-pairs (Fig 3).

Fig 3. Ratios of CPI-pairs in sentences with and without interaction verbs.

To see if and how the two different kernel functions make use of this correlation, we
divided the CPI-DS into two groups, considering compound-protein pairs which contain
an interaction verb (CPI-DS_IV) and pairs of compounds and proteins that do not show
this structure, i.e. no interaction verb enclosed (CPI-DS_NIV). Table 5 shows the
baseline results by using simple co-occurrences. In both datasets, the baseline achieves
an F1 score above 70%. Regarding the analyses of the kernels, we recalculated the
results from the complete CPI-DS cross-validation run on CPI-DS_IV and CPI-DS_NIV.

Table 5. Basic statistic of the two compound-protein interaction corpora.
DS ‘#Sent. #CPIs #No-CPIs Total Rec. Spec. Prec. F;

CPI-DS.IV 1259 1884 1166 3050 100.0 0.0 61.8 76.4
CPI-DS_NIV| 1494 1612 1301 2913 100.0 0.0 55.3 71.2

Baseline results for precision, recall, and F1 score are derived by using co-occurrences. Values
in percent (DS - dataset, Sent. - sentences, Rec. - recall, Spec. - specificity, Prec. - precision,
F1 - F1 score).

Shallow linguistic kernel

For both datasets (CPI-DS_IV and CPI-DS_NIV), the parameter selection n-gram 3 and
window size 1 shows the highest area under the curve value (Table 6). Again, a lower
value of window size leads to a higher precision and a lower recall. The area under the
curve values show the same tendency as the precision, but the differences are not that
pronounced. Furthermore, the area under the curve values on the dataset CPI-DS_NIV
are about 4-6% higher than on dataset CPI-DS_IV and the specificity about 6-11%.
Precision, recall, and F1 score are relatively similar across the two datasets. Therefore,
the SL kernel shows a better performance in distinguishing between functional and
non-functional relations on dataset CPI-DS_NIV.
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Table 6. SL kernel results on the datasets CPI-DS_IV and CPI-DS_NIV.
Param. CPI-DS_IV CPI-DS_NIV

n w ‘ Rec. Spec. Prec. F, AUC ‘ Rec. Spec. Prec. F, AUC
1 1790 632 781 784 76.7| 754 739 783 76.6 814
1 2| 84.2 57.7 769 80.2 76.2| 81.8 655 747 779 80.6
1 3| 87.6 484 73.7 79.8 758 | 874 56.4 715 785 79.9
2 11799 638 786 79.1 783 | 784 753 T79.9 79.0 83.3
2 2|89 570 764 798 775|845 67.0 76.3 80.1 82.7
2 3| 8.7 49.7 742 80.2 771|882 594 731 79.8 823
3 1| 80.7 64.1 789 79.7 788 | 799 746 T79.8 79.7 84.3
3 2| 8.8 580 76.8 80.0 781 | 84.2 683 76.8 80.2 83.7
3 31| 877 50.0 744 803 7801|879 60.8 73.6 80.0 832

The first parameter shows the n-gram value, and the second number represents the window
size. Values in percent: Rec. - recall, Spec. - specificity, Prec. - precision, F1 - F1 score, AUC -
area under the curve.

All-paths graph kernel

Table 7 shows that experiments within the same dataset achieve similar performances,
independent of the hyperplane optimization parameter c. For both datasets, the AUC
values do not differ by more than 0.8%, indicating a high robustness of the classifier.
Furthermore, the AUC values of dataset CPI-DS_NIV are about 3% better than on
dataset CPI-DS_IV, due to a clearly higher specificity. Therefore, the APG kernel also
shows a better performance in distinguishing between functional and non-functional
relations on dataset CPI-DS_NIV.

Table 7. CPI-DS_IV and CPI-DS_NIV results for the APG kernel pipeline.
Param. CPI-DS_1V CPI-DS_NIV

c ‘Rec. Spec. Prec. F, AUC ‘ Rec. Spec. Prec. F, AUC

0.25 85.5 635 799 825 826 | 84.0 717 788 81.0 857
0.50 86.7 613 79.2 823 826 | 84.8 706 783 812 856
1.00 852 61.0 789 81.8 823|839 711 784 80.7 853
2.00 8.0 594 785 819 81.8] 8.2 692 776 81.0 85.0

Values in percent: Rec. - recall, Prec. - precision, F1 - F1 score, AUC - area under the curve.

Large-scale dataset application

The kernels have been successfully applied to all PubMed titles and abstracts that were
published before 2018, comprising about 28M references to biomedical articles. The
dataset consists of more than 120M sentences, with around 16M containing at least one
compound-protein pair. Table 8 shows that the APG kernel predicts 65.0% of the
potential candidate pairs to be functionally related, while the SL kernel predicts only
59.4% as functional. On an Intel Core i5-3570 (4x 3.40GHz), the total run-time of the
SL kernel was moderately less than the one of the APG kernel.
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Table 8. Application of CPI-Pipeline on PubMed dataset.

Kernel APG SL
PubMed articles 28M

Number of sentences 120M

Number of sentences with candidate pairs 5.6M

Number of candidate pairs 16M

Functional relations 10.4M = 65.0% 9.5M = 59.4%
Non-functional relations 5.6M = 35.0% 6.5M = 40.6%

12M = 75%

Number of identical predictions (50% functional, 25% non-functional)

Number of predicted

distinct functional relations 2.3M

Pre-processing elapsed time 20.5 days 14 days
Kernel elapsed time 4 days 1.5 days
Total elapsed time 24.5 days 15.5 days

PubMed dataset statistics for the selected APG (c=1) and SL (n=3, w=1) models.

Conclusion

The SL and APG kernels were already applied in different domains, e.g. protein-protein
interactions, drug-drug interactions, and neuroanatomical statements. The approach
presented herein is focusing on the extraction of functional compound-protein
relationships from literature. A benchmark dataset was developed to evaluate both
kernels with a range of parameters. This corpus consists of 2,753 sentences, manually
annotated with 5,963 compound-protein relationships after automatic named entity
recognition. Both kernels are dependent on successfully recognizing protein and
compound names in texts. Considering PubMed articles, reliable annotations of these
entities are provided by PubTator [33], and publications can be locally processed with
PubMedPortable [25].

Cross-validation results with an AUC value of around 81% for the SL kernel and 84%
for the APG kernel represent a remarkable performance within the research area of
relation extraction.

Considering the filtering of specific interaction verbs, both kernels show the same
tendency. The AUC values are considerably higher for the sentences that do not contain
interaction verbs. This tendency is not reflected by the F1 score, because this
evaluation metric does not include the true negatives. To clarify this outcome, we
included the specificity values in our results section. Therefore, the presence of an
interaction verb makes it more difficult for the classifier to distinguish between
functionally and non-functionally related CPI-pairs. Since the filtering by interaction
verbs does not yield a clearly better precision for both datasets and kernels, this
approach can be ignored for the development of an automatic classification method.
The combination of both kernels could slightly increase the overall performance of the
classification compared to the single APG kernel. Since both kernels are quite different
regarding their classification approach, their combination is supposed to result in a high
robustness of the predictions. For fully automatic methods the classification threshold
for both kernels can be adjusted to a relatively high precision. The models for
predicting functional relationships between compounds and proteins can then be
considered e.g. as a filter to decrease the number of sentences a user has to read for the
identification of specific relationships.
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The selected procedure of training a model with the SL and APG kernels might also
come into question for the identification of other types of relationships, such as
gene-disease or compound-compound relationships.
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Figure

7-Ketocholesterol upregulates interleukin-6 via mechanisms that
are distinct from those of tumor necrosis factor -alpha, in
vascular smooth muscle cells.

Inhibition of cyclooxygenase 2 expression by diallyl
sulfide on joint inflammation induced by urate crystal
and IL-1beta .

catalyzed by P450-dependent enzymes, mainly the conversion of
cholesterol to pregnenolone by cholesterol side-chain cleavage
enzyme ( CYP11A ).
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