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Transcriptional bursting is a major source of noise in gene expression. Motivated by recent exper-
iments, we study a model including slow burst initiation and termination, and fast RNA polymerase
recruitment and pause release. We show that the time-dependent distribution of mRNA numbers
is accurately approximated by a telegraph model with a Michaelis-Menten like dependence of the
e↵ective transcription rate on polymerase abundance. We also show that gene dosage compensation,
a common feature of mammalian gene expression, is an emergent property of our stochastic model.
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There is widespread evidence that mammalian genes
are expressed in bursts: infrequent periods of transcrip-
tional activity that produce a large number of messenger
RNA (mRNA) transcripts within a short period of time
[1–3]. This is in contrast to constitutive expression where
mRNAs are produced in random, uncorrelated events,
with a time-independent probability [4]. The size and
frequency of transcriptional bursts a↵ect the magnitude
of temporal fluctuations in mRNA and protein content
of a cell, and thus constitute an important source of in-
tracellular noise [5].

A large number of studies have sought to elucidate
the mechanisms leading to bursting and by constructing
simple stochastic models that can explain the data. The
simplest of these models is the telegraph model whereby
(i) a gene is in two states, an ON state where mRNA is
expressed and an OFF state where there is no expression.
(ii) mRNA degrades in the cytoplasm. These first-order
reactions are e↵ective since each encapsulates the e↵ect of
a large number of underlying biochemical reactions. The
chemical master equation of this model has been solved
exactly to obtain the probability distribution of mRNA
numbers as a function of time [6]. For parameter condi-
tions consistent with bursty expression, the steady-state
distribution is well approximated by a negative binomial
that fits some of the experimental data [7].

Recent studies have suggested modifications to the
telegraph model to include details of polymerase dynam-
ics including its recruitment and release from the paused
state [8, 9]. These changes are necessary to explain the
presence of multiple timescales in the bursty expression
of mammalian promoters. In this letter, we present the
first detailed study of this model. We derive an exact
steady-state solution and, by mapping it onto an e↵ec-
tive telegraph model, we obtain an approximate time-
dependent solution. The theory allows us to tease apart
the transcriptional and post-transcriptional mechanisms
that have the largest impact on mRNA fluctuations, and

provide an intuitive explanation for gene dosage compen-
sation in mammalian cells.
Model. We consider a stochastic multi-scale tran-

scriptional bursting model (recently introduced in [9] and
henceforth referred to as the multi-scale model; see Fig.
1A), whereby a gene fluctuates between three states: two
permissive states (D10 and D11) and a non-permissive
state (D0). The transition from D0 to D10 (burst initi-
ation) is mediated by transcription factor binding with
rate constant �u which is reversible with rate constant
�b (this transition may alternatively represent other pro-
cesses such as nucleosome remodeling). Subsequently the
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FIG. 1. (A) Schematic of the stochastic multi-scale transcrip-
tional bursting model. (B) Distribution for mRNA numbers
obtained from the generating function in Eq. (2) agrees with
SSA predictions. The kinetic parameters are ⇢ = 60, � = 40,
d = 1, and the rest of the parameters are indicated in each
panel.
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binding of RNA polymerase II (Pol II) to D10 with rate
constant � (which is proportional to Pol II abundance)
leads to D11. This represents a state in which Pol II
is paused. The polymerase is released from this state
with rate constant ⇢ leading to the production of an
mRNA molecule (denoted as M) and the unbinding of
polymerase which returns the gene to state D10. In the
paused state D11, both the polymerase and the tran-
scription factor can unbind from the gene and lead to
the non-permissive state D0 (burst termination). Both
reversible switches operate at di↵erent timescales (hours
versus minutes) with max{�b, �u} ⌧ min{⇢, �}, leading
to multi-scale transcriptional bursting [8, 9]. The mRNA
transcripts are translated into protein (denoted P ) with
rate constant k. Both the mRNA and proteins decay
with rate constants d and dp, respectively. All reactions
are first-order, characterized by exponentially distributed
waiting times between successive reactions.

The reaction D11 ! D10 + M is an e↵ective descrip-
tion of the reactions: D11 ! D10 + N , N ! M where
N is nascent mRNA, i.e pre-spliced mRNA. The reaction
N ! M is often modeled with a deterministic time delay
[10, 11] but theory shows that it can be modeled with a
stochastic exponential time delay provided the timescale
of nascent mRNA production (⇢�1) is much smaller than
the timescale governing the transitions between permis-
sive and non-permissive states ((�u + �b)�1) [10]. Also,
no explicit nascent mRNA description is needed provided
that it is short lived compared to mature mRNA. Since
these two conditions are physiologically realistic in many
cases, we choose to ignore detailed modeling of nascent
mRNA dynamics and model the direct production of ma-
ture mRNA with an exponentially distributed time delay.
Exact solution. Let P✓(n, t) (✓ = 0, 10, 11) denote the

probability of a cell being in state D✓ with n mRNAs
at time t (arguments n and t are hereafter omitted for
brevity). The dynamics of probability P✓ are described
by the set of coupled master equations

@tP0 =(E1 � 1)dnP0 � �uP0 + �b(P10 + P11),

@tP10 =(E1 � 1)dnP10 � (�b + �)P10 + �uP0 + ⇢E�1
P11,

@tP11 =(E1 � 1)dnP11 � (⇢ + �b)P11 + �P10,

(1)

where the step operator Ei acts on a general function g(n)
as Ei

g(n) = g(n + i) [12]. Defining G(u) =
P

✓

P
n(u +

1)n
P✓(n) and using the generating function method, we

solve Eq. (1), yielding the exact steady-state solution for
G(u) in terms of the generalized hypergeometric function

G(u) = 1F2

✓
�u

d
;
�1

d
,
�2

d
;
⇢�

d2
u

◆
, (2)

with �1 = �b + �u and �2 = �b + ⇢ + �. The exact
distribution of mRNA numbers at steady state is then
given by P (n) =

P
✓ P✓(n) = 1

n!
dn

dun G(u)|u=�1 (See [13]
for a closed-form expression). In Fig. 1B we show that
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FIG. 2. Relative sensitivity analysis of the coe�cient varia-
tion CV of mRNA noise over 5 kinetic parameters for 3575
genes of CAST allele data for mouse fibroblast cells. (A)
Shows distributions of the 5 kinetic parameters in the dataset
(obtained from [3]), where values of ⇢ or � are calculated us-
ing Eq. (4). (B) Box plots indicate the median (whose values
are also shown at bottom), the 25%, 75% quantiles, and mean
and outliers of relative sensitivity ⇤p for each parameter. (C)
Joint distribution (lower panel) and Pearson correlation (up-
per panel) of ⇤p for each pair of kinetic parameters suggest
that the pairs (�b,�u) and (�u, d) are the least dependent
pairings.

distributions obtained from Eq. (2) as well as the cor-
responding modality (a phenotypic signature [14]) are
indistinguishable from distributions produced using the
stochastic simulation algorithm (SSA) [15]. It can be
further shown by perturbation theory [13] that the exact
solution Eq. (2) reduces to the generating function of
the negative binomial distribution P (n) = NB(�u

d ,
⇢

⇢+↵ )

with ↵ = �b�2/�, when ⇢, � and �b are much greater
than the rest of the parameters.
Sensitivity analysis. The exact solution in Eq. (2)

allows us to examine the stochastic properties of the
multi-scale model over large swathes of parameter space.
We investigate the relative sensitivity of the coe�cient
of variation of mRNA fluctautions, CV =

p
Var(n)/hni,

which is typically employed as a measure of the mag-
nitude of transcriptional noise. To this end, we calcu-
late the first two central moments, (hni and Var(n)),
from Eq. (2) using hni = @uG|u=0 and Var(n) =
@

2
uG|u=0 + hni � hni2. The mean and CV are then given

by

hni =
�u�⇢

d�1�2
, (3a)

CV2 =
1

hni +
d

�u
· �1

�1 + d
· �2

�2 + d
. (3b)

Note that since the parameters ⇢ and � appear sym-
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metrically in Eq. (3) and also due to the unavailabil-
ity of experimental data, for simplicity we enforce the
constraint ⇢ = �. Hence, the relative sensitivity of the
quantity CV = CV|⇢=�, which can serve as a gauge of
transcriptional noise, is insightful to study and defined as
⇤p = (p/CV)@CV/@p for a model parameter p, meaning
that 1% change in p leads to a ⇤p% change in CV. The
parameter values for the sensitivity analysis were sam-
pled from experimental distributions recently inferred for
3575 genes of CAST allele in mouse fibroblasts [3], using
the telegraph model. To obtain values for ⇢ and �, we
equate the mean of the telegraph model (with ON switch-
ing rate �b, OFF switching rate �u, transcription rate ⇢u

and degradation rate d) hnitel = �u⇢u/�1d with the mean
of the multi-scale model (Eq. (3a)) under the constraint
⇢ = �, giving

⇢ = ⇢u

✓
1 +

r
1 +

�b

⇢u

◆
. (4)

Distributions for each parameter in the dataset are pre-
sented in Fig. 2A and the box plots in Fig. 2B show the
relative sensitivity for each parameter. The parameters
in order of most sensitive first are �u, d, �b and ⇢ = �.
This order is the same as obtained by ranking parameters
according to the inverse of their mean experimental val-
ues (the mean of the distributions in Fig. 2A) implying
that changes to the CV are most easily accomplished by
perturbations to the slowest reactions. Given the vectors
⇤p1 and ⇤p2 for any pair p1 6= p2 and p1, p2 in the set
{⇢, �, �b, �u, d} where each entry is a di↵erent gene, in
Fig. 2C we calculate the Pearson correlation coe�cient
between the vectors and the corresponding joint distri-
butions. This shows that (�u, d) is the least dependent
pairing and hence they constitute a quasi-orthogonal de-
composition of the sensitivity.
E↵ective telegraph model. The generalized hypergeo-

metric function in Eq. (2), though exact, does not give
much biological intuition. Its connection to the conven-
tional telegraph model, which is commonly used for infer-
ence of single cell RNA sequencing data [3], is somewhat
elusive because it has only a single timescale whereas
our model has two. Next we use the first passage time
method to reduce our model into an e↵ective telegraph
model. To this end, we consider the transcription motif

of the multi-scale model, D10
��! D11

⇢�! D10 +M , whose
corresponding master equations for producing newborn
mRNA starting from state D10 are

@tP10 = � �P10,

@tP11 =�P10 � ⇢P11,

@tPM =⇢P11,

(5)

where P10, P11 and PM represent the probability of stay-
ing in states D10, D11 or producing a new mRNA respec-
tively. We remark that the reaction D11 ! D0 is absent
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FIG. 3. E↵ective telegraph model approximation for the dis-
tribution of mRNA numbers of the multi-scale model. (A)
Heatmap of the Hellinger distance between steady-state dis-
tributions of mRNA numbers for the e↵ective telegraph model
and the multi-scale model as a function of ⇢ and � with pa-
rameters �u = 0.2, �b = 0.1 and d = 1. The dashed line cor-
responds to the contour line ⇢ = �. The discrepancy between
the two distributions becomes larger as ⇢ and � approaches
the line ⇢ = �. (B) Shows the time-dependent distributions
for Point I in (A) (the point with the largest HD) predicted by
the e↵ective model compared to those computed by the SSA
for the multi-scale model. (C) Heatmap of HD between the
two steady-state distributions as a function of �b and �u with
⇢ = � = 23 and d = 1. (D) Shows a stochastic bifurcation
diagram for the number of modes of the steady-state distribu-
tions predicted by the two models. The miniscule dark blue
region is where modality predictions of both models disagree
thus corroborating the high accuracy of the e↵ective telegraph
model approximation. Insets show distributions correspond-
ing to the points marked in (C,D).

from the motif due to its relatively small reaction rate �b

compared to ⇢ and �. The initial conditions for Eq. (5)
are P10|t=0 = 1, P11|t=0 = PM|t=0 = 0. Solving for PM

in Eq. (5), we can calculate the mean first passage time
for mRNA production

htfi =

Z 1

0
tPfdt =

⇢ + �

�⇢
, (6)

where Pf = @tPM is the first-passage time distribution
[16]. Since the e↵ective transcription rate is the inverse of
the mean first passage time, it immediately follows that
the e↵ective telegraph model is

D0
�u�*)�
�b

D10

⇢u= �⇢
�+⇢�����! D10 + M, M

d�! ?. (7)

Alternatively, one can obtain this result by equating the
means of our model Eq. (3a) and of the telegraph model
hnitel = ⇢u�u/�1d and solving for the e↵ective production
rate ⇢u, giving ⇢u = �⇢/�2 ' �⇢

�+⇢ since typically ⇢, � �
�b.
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In Fig. 3, we show the high accuracy of the e↵ective
telegraph model approximation from Eq. (7). In partic-
ular, Fig. 3A shows a heatmap of the distance between
the distributions of mRNA numbers predicted by the ef-
fective telegraph model and the multi-scale model. As
a distance measure, we use the Hellinger distance (HD),
a Euclidean distance based metric normalized to the in-
terval between 0 and 1. The e↵ective telegraph model is
naturally a more accurate description to the multi-scale
model when there is one rate limiting step (large di↵er-
ence between ⇢ and �) rather than when there are two
rate limiting steps (⇢ = �). Indeed it can be shown using
perturbation theory that in the limit of large ⇢ or large
�, the time-dependent solution of the multi-scale model
converges to that of the telegraph model [13].

Since the time-dependent distribution of the telegraph
model is known in closed-form [6, 17], it follows that by
the e↵ective model in Eq. (7) we have an approxima-
tion for the time-dependent distribution of the multi-
scale model too. The accuracy of this approximation
is shown in Fig. 3B where it is compared to the time-
dependent distributions computed using the SSA for the
multi-scale model. The parameters here correspond to
those of Point I in Fig. 3A (the largest HD). Di↵erences
between the distributions of the two models are negligi-
ble except near time t = 0. We further investigate how
burst initiation and termination rates (�u, �b) a↵ect the
approximation error with a heatmap of HD as a func-
tion of �u and �b (Fig. 3C), and a stochastic bifurcation
diagram for the number of modes of the e↵ective tele-
graph and multi-scale model distributions (Fig. 3D) at
steady state. The point of maximum HD in Fig. 3C
(Point II) displays distributions that are not that di↵er-
ent from each other – see upper right inset of Fig. 3D.
The two models display the same number of modes in
all regions of parameter space except for a narrow region
where modality detection is challenging because the dis-
tributions have a broad plateau – see lower right inset
of Fig. 3D (Point III). This again confirms the high ac-
curacy of the e↵ective telegraph model approximation.

Connection to refractory model. Besides the tele-
graph model, another prevalent stochastic transcriptional
model is the refractory model [2] (a three-state model, see
Fig. 4A left), wherein the burst initiation requires two
steps instead of one. To understand the connection be-
tween our model and the refractory model, we exactly
solve the refractory model for the steady-state distribu-
tion of mRNA numbers [13] and similarly map the refrac-
tory model onto an e↵ective telegraph model by matching
the mean mRNA numbers

hniref =
��u⇢u

d(��u + ��b + �u�b)
, hnitel =

⇢u�̄u

d(�b + �̄u)
.

leading to an e↵ective burst initiation rate �̄u = �u�
�u+�

and the corresponding e↵ective model shown in Fig. 4A

right.

We then compare the steady-state distributions of the
refractory model and its e↵ective telegraph model. A
heatmap of HD quantifying their distributional di↵erence
and a modality diagram (marked as black lines) of the
two distributions are illustrated in Fig. 4B. Both the
regions of high HD and Region 2 where only the tele-
graph model predicts bimodality are significantly large;
also Region 1 where both predict bimodality is small.
This shows that the refractory model, in general, is not
well approximated by the telegraph model, particularly
the latter’s probability for low mRNA numbers is not
accurate – see Fig. 4C. Given the telegraph model’s ex-
cellent approximation to the multi-scale model, it is clear
that the multi-scale model and refractory model can be
distinguished.

Gene dosage compensation. It has been observed that
after replication some genes do not exhibit a two-fold
increase in mRNA numbers, a counter-intuitive phe-
nomenon known as gene dosage compensation [10]. Here
we show that this property naturally follows from our
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FIG. 4. E↵ective telegraph model approximation for the re-
fractory model. (A) Schematics illustrating the refractory
model and the corresponding e↵ective telegraph model. (B)
Shows a heatmap of HD between the steady-state distribu-
tions of mRNA numbers predicted by the refractory model
and its e↵ective telegraph model, and a bifurcation diagram
of the number of modes thereof (marked as black lines) as a
function of �u and � with parameters �b = 0.8, ⇢u = 30 and
d = 1. (C) Plots of the distributions for Points I and II in
(B), showing significant disagreement in the height of the zero
mode of the mRNA number distribution (insets show a zoom
at the mode at zero).
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multi-scale model and does not require the postulation
of new mechanisms. According to the e↵ective telegraph
model, the mean of the number of mRNAs is approxi-
mately proportional to the e↵ective production rate, i.e.
hni / ⇢u(�) = ⇢�

⇢+� which has a Michaelis-Menten like de-
pendency on the polymerase Pol II abundance comprised
in the parameter �. Assuming that the amount of Pol II
protein remains constant right after replication, e.g. in
cases where replication occurs on a timescale faster than
protein turnover, replication causes gene copy number
to double but the amount of Pol II per gene is halved.
We thus have that the mean number of mRNA before
replication is hni� / ⇢u(�) while after replication it is
hni+ / 2⇢u(�/2). It follows that the fold change upon
replication is

⌘ =
hni+

hni� =
2(⇢ + �)

2⇢ + �
< 2,

and therefore our model displays the property of gene
dosage compensation. Furthermore assuming that ⇢ =
�, our model predicts that the fold change is ⌘ = 4

3 ,
a value consistent with experimental measurements for
genes OCT4 and Nanog in mouse embryonic stem cells
(see Fig. 2B in [18]).
Protein dynamics. Finally we extend the multi-scale

model to provide analytic distributions for protein num-
bers. This allows interpretations of single-cell data of
protein expression under the classic short-lived mRNA
assumption (d � dp) [19]. Given the network in Fig.
1A, it can be shown [13] that the generating function
corresponding to the steady-state distribution of protein
numbers is given by

G(v) = 3F2(a1, a2, a3; b1, b2; bv), (8)

with b1 = (�b + �u)/dp, b2 = (�b + � + ⇢)/dp, the mean
translational burst size b = k/d, and the parameters a1,
a2 and a3 being solutions of

a1a2a3 = �u�⇢/d
3
p,

a1 + a2 + a3 = b1 + b2,

a1a2 + a1a3 + a2a3 = b1b2 + �⇢/d
2
p.

In the limit of large � or ⇢, we show in [13] that Eq. (8)
reduces to the Gaussian hypergeometric function (2F1),
which was reported in Ref. [19] for the three-stage model
of gene expression.
Summary and Discussion. In this letter, we have per-

formed a detailed study of a multi-scale model of bursty
gene expression based on recent experimental data from
mammalian cells. We have derived simple closed-form
expressions for the approximate time evolution of this
model and used the theory (i) to understand which reac-
tions contribute mostly to fluctuations, (ii) to show how

gene dosage compensation emerges from the special con-
nectivity of the gene states in our model. The simplicity
of the moment equations allow the easy inference of rate
parameters from single-cell data using maximum likeli-
hood methods [20]. Potential extensions include the im-
pact of cell cycle e↵ects such as binomial partitioning and
variability in the cell cycle duration. Use of the recently
developed linear mapping approximation [21] appears to
be a promising means to extend the analytical solution of
the present model to include DNA-protein interactions.
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[14] P. Thomas, N. Popović, and R. Grima, Proc. Natl. Acad.

Sci. USA 111, 6994 (2014).
[15] D. T. Gillespie, J. Phys. Chem. 81, 2340 (1977).
[16] S. Redner, A guide to first-passage processes (Cambridge

University Press, 2001).
[17] S. Iyer-Biswas, F. Hayot, and C. Jayaprakash, Phys. Rev.

E 79, 031911 (2009).
[18] S. O. Skinner et al., Elife 5, e12175 (2016).
[19] V. Shahrezaei and P. S. Swain, Proc. Natl. Acad. Sci.

USA 105, 17256 (2008).
[20] Z. Cao and R. Grima, J. Royal Soc. Interface 16,

20180967 (2019).
[21] Z. Cao and R. Grima, Nat. Commun. 9, 3305 (2018).

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 28, 2019. ; https://doi.org/10.1101/717199doi: bioRxiv preprint 

https://doi.org/10.1101/717199
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Information for:
Multi-scale bursting in stochastic gene expression

Zhixing Cao,1, 2, ⇤ Tatiana Filatova,2, 3 Diego A. Oyarzún,2, 4 and Ramon Grima2, †

1
The Key Laboratory of Advanced Control and Optimization for Chemical Processes,

Ministry of Education, East China University of Science and Technology, Shanghai 200237, PR China
2
School of Biological Sciences, the University of Edinburgh, United Kingdom

3
School of Mathematics, the University of Edinburgh, United Kingdom
4
School of Informatics, the University of Edinburgh, United Kingdom

(Dated: July 27, 2019)

EXACT STEADY-STATE SOLUTION FOR THE MARGINAL mRNA DISTRIBUTION OF THE
MULTI-SCALE MODEL

To solve Eq. (1) in the main text, we use the generating function method and define G✓(z) =
P

n z
nP✓(n) for

✓ = 0, 10, 11 so that Eq. (1) in the main text can be recast as a set of coupled partial di↵erential equations

@tG0 + d(z � 1)@zG0 = ��uG0 + �bG10 + �bG11, (S1a)

@tG10 + d(z � 1)@zG10 = ⇢zG11 � (�b + �)G10 + �uG0, (S1b)

@tG11 + d(z � 1)@zG11 = �⇢G11 � �bG11 + �G10, (S1c)

wherein the variable z is dropped for brevity. In order to solve Eq. (S1) in the limit of long times, we set @tG✓ = 0,
solve G10 from Eq. (S1c) as a function of G11, and combine the yielded result to solve G0 from Eq. (S1b) as a function
of G11 so that Eq. (S1a) consequently becomes a di↵erential equation with G11 being the only variable

d3u2@3
uG11+(3d+ �1 + �2)d

2u@2
uG11 + [(d+ �1)(d+ �2)� ⇢�u]d@uG11 � (d+ �u)⇢�G11 = 0, (S2)

with u = z � 1, �1 = �b + �u and �2 = ⇢+ �+ �b. By defining a new variable x = ⇢�u/d2, Eq. (S2) can be further
simplified to

x2@3
xG11 +

⇣
1 +

�1 + d

d
+

�2 + d

d

⌘
x@2

xG11 +
⇣�1 + d

d

�2 + d

d
� x

⌘
@xG11 �

�u + d

d
G11 = 0,

which is in the canonical form of the di↵erential equation for the generalized hypergeometric function

x2@3
xf(x) + (1 + b1 + b2)x@

2
xf(x) + (b1b2 � x)@xf(x)� a1f(x) = 0,

admitting the solution f(x) = C1F2(a1; b1, b2;x) with C being an integration constant. Hence, the solution for G11 is

G11 = C · 1F2

✓
�u + d

d
;
�1 + d

d
,
�2 + d

d
;
⇢�

d2
u

◆
. (S3)

On the other hand, summing Eqs. (S1a)-(S1c) and denoting G =
P

✓ G✓, one can get @uG = ⇢G11/d, which together
with Eq. (S3) leads to

G(u) = C2 · 1F2

✓
�u

d
;
�b + �u

d
,
�b + ⇢+ �

d
;
⇢�

d2
u

◆
.

Note that in the last step we made use of the general relation @z 1F2(a; b, c; z) =
a
bc · 1F2(a + 1; b + 1, c + 1; z). The

integration constant C2 is found to be 1 by using the normalization condition G(0) = 1. Furthermore, the marginal
probability of finding n mRNAs in a cell is

P (n) =
1

n!

dnG(u)

dun

����
u=�1

=
1

n!

✓
⇢�

d2

◆
(�u

d )n

(�b+�u
d )n(

�b+⇢+�
d )n

1F2

✓
�u

d
+ n;

�b + �u

d
+ n,

�b + ⇢+ �

d
+ n;�

⇢�

d2

◆
,

where (·)n is the Pochhammer symbol.
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2

ANALYTIC DISTRIBUTION FOR mRNA NUMBERS WHEN ⇢, � AND �b ARE LARGE

Given the large values of ⇢, � and �b, we implement the following parametrization

�b 7! �b�, ⇢ 7! ⇢�, � 7! ��,

where � is a large real number.
By means of the method of characteristics, solving Eq. (S1) is tantamount to seeking a solution to the ODE system

@st = 1 ) t = s

@sz = d(z � 1) ) z � 1 = reds

@sG = ⇢�(z � 1)G11, (S4a)

@sG10 = ⇢�zG11 � �b�G10 � ��G10 + �u(G�G10 �G11), (S4b)

@sG11 = �⇢�G11 � �b�G11 + ��G10. (S4c)

Dividing � on both sides of Eqs. (S4a)–(S4c), one obtains a singular system consisting of

8
><

>:

✏@sG = ⇢(z � 1)G11,

✏@sG10 = ⇢zG11 � �bG10 � �G10 + ✏�u(G�G10 �G11),

✏@sG11 = �⇢G11 � �bG11 + �G10,

(S5)

with ✏ = 1/� ' 0. Expanding G, G10 and G11 in Eq. (S5) as a series in powers of ✏,

G = G(0) + ✏G(1) +O(✏2), G10 = G(0)
10 + ✏G(1)

10 +O(✏2), G11 = G(0)
11 + ✏G(1)

11 +O(✏2),

and matching the orders of ✏, we have

Order of ✏0 :

(
⇢(z � 1)G(0)

11 = 0 ) G(0)
11 = 0

⇢zG(0)
11 � �bG

(0)
10 � �G(0)

10 = 0 ) G(0)
10 = 0

and

Order of ✏1 :

8
>><

>>:

@sG
(0) = ⇢(z � 1)G(1)

11

@sG
(0)
10 = ⇢zG(1)

11 � �bG
(1)
10 � �G(1)

10 + �u(G
(0)

�G(0)
10 �G(0)

11 ) ) ⇢zG(1)
11 � �bG

(1)
10 � �G(1)

10 + �uG
(0) = 0

@sG
(0)
11 = �⇢G(1)

11 � �bG
(1)
11 + �G(1)

10 ) �⇢G(1)
11 � �bG

(1)
11 + �G(1)

10 = 0.

Then, we have

@sG
(0) = �

⇢u�u

⇢u� ↵
G(0)

where ↵ = �b�2/� and u = z � 1 = reds. Its solution immediately follows as

G(0) = C(r)(⇢reds � ↵)�
�u
d (S6)

with C(r) being a function of r to be determined from the initial condition. Suppose that the initial condition for this
process is g(u) = G(0)

|t=0, which is known a priori. For instance, say the initial distribution of n mRNA molecules
is P (n) = pn, then g(u) =

P
n pn(u + 1)n. Letting s be equal to 0 (or equivalently t = 0), it follows u = r and

g(u) = g(r), and we can establish the following relation

g(r) = C(r)(⇢r � ↵)�
�u
d ,

from which we can solve C(r) as

C(r) = g(r)(⇢r � ↵)
�u
d .
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Substituting the latter back into Eq. (S6) and replacing r = ue�dt, we can calculate the leading-order solution of G
from (S6) as

G(u) = g(ue�dt)

✓
⇢ue�dt

� ↵

⇢u� ↵

◆�u
d

. (S7)

At steady state, the leading-order solution in (S7) becomes

G(z) =

✓
↵

↵� ⇢(z � 1)

◆�u
d

and the corresponding distribution of mRNA numbers is a negative binomial distribution NB(�u
d , ⇢

⇢+↵ ).

CONVERGENCE TO TELEGRAPH MODEL FOR LARGE ⇢

To this end, we parametrize ⇢ as ⇢ 7! ⇢�, where � is a large real number. As such, Eq. (S1) can be recast as

@tG0 + d(z � 1)@zG0 = ��uG0 + �bG10 + �bG11, (S8a)

@tG10 + d(z � 1)@zG10 + (�b + �)G10 � �uG0 = ⇢�zG11, (S8b)

@tG11 + d(z � 1)@zG11 + �bG11 � �G10 = �⇢�G11. (S8c)

Dividing both sides of Eqs. (S8b)-(S8c) by � and setting ✏ = ��1, we have that

✏

✓
@tG10 + d(z � 1)@zG10 + (�b + �)G10 � �uG0

◆
= ⇢zG11, (S9a)

✏

✓
@tG11 + d(z � 1)@zG11 + �bG11 � �G10

◆
= �⇢G11. (S9b)

Again using the same method as before, we expand G0, G10 and G11 in Eqs. (S8a) and (S9) as a series in powers of
✏, collect the terms for ✏0 and ✏1 and obtain

Order of ✏0 :

8
>><

>>:

@tG
(0)
0 + d(z � 1)@zG

(0)
0 = ��uG

(0)
0 + �bG

(0)
10 + �bG

(0)
11 ,

⇢zG(0)
11 = 0,

⇢G(0)
11 = 0,

(S10)

and

Order of ✏1 :

(
@tG

(0)
10 + d(z � 1)@zG

(0)
10 + (�b + �)G(0)

10 � �uG
(0)
0 = ⇢zG(1)

11 ,

@tG
(0)
11 + d(z � 1)@zG

(0)
11 + �bG

(0)
11 � �G(0)

10 = �⇢G(1)
11 .

(S11)

From Eq. (S10), we can solve that G(0)
11 = 0, with which we can further get �G(0)

10 = ⇢G(1)
11 from Eq. (S11). Given

both results, Eqs. (S10) and (S11) can be simplified to

(
@tG

(0)
0 + d(z � 1)@zG

(0)
0 = ��uG

(0)
0 + �bG

(0)
10 ,

@tG
(0)
10 + d(z � 1)@zG

(0)
10 = �(z � 1)G(0)

10 � �bG
(0)
10 + �uG

(0)
0 ,

which are exactly the generating function equations of the telegraph model (See Eqs. (A2) and (A3) in [1]), thus
showing that the multi-scale transcriptional bursting model converges to the telegraph model when ⇢ ! 1. A similar
proof can be constructed to show that the telegraph model is also obtained in the limit � ! 1.

EXACT STEADY-STATE DISTRIBUTION FOR THE REFRACTORY MODEL

Given the reaction scheme illustrated in Fig. 4A in the main text, it follows that the temporal evolution of
probability P✓(n) of finding n mRNAs and gene state D✓ (✓ = 0, 1 or 2) can be described by the following master
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equations
8
><

>:

@tP0(n) = (E1
� 1)dnP0(n) + �bP2(n)� �uP0(n),

@tP1(n) = (E1
� 1)dnP1(n) + �uP0(n)� �P1(n),

@tP2(n) = (E1
� 1)dnP2(n) + (E�1

� 1)⇢uP2(n) + �P1(n)� �bP2(n).

The corresponding generating function equations are given by

@tG0 + d(z � 1)@zG0 = �bG2 � �uG0, (S12a)

@tG1 + d(z � 1)@zG1 = �uG0 � �G1, (S12b)

@tG2 + d(z � 1)@zG2 = ⇢u(z � 1)G2 + �G1 � �bG2, (S12c)

where G✓ =
P

n z
nP✓(n). We intend to solve Eqs. (S12) at steady state and thus set @tG✓ = 0. Then, we solve G1

as a function of G2 from Eq. (S12c), subsequently substitute it into Eq. (S12b) and solve G0 as a function of G2.
Following that, Eq. (S12a) becomes an ordinary di↵erential equation with G2 being the only variable to be solved

u2@3
uG2 + (3 + �̃+ �̃b + �̃u � ⇢̃uu)u@

2
uG2 + [1 + �̃b + �̃u + �̃b�̃u � ⇢̃u(3 + �̃u)u+ �̃(1 + �̃b + �̃u � ⇢̃uu)]@uG2

�(1 + �̃)(1 + �̃u)⇢̃uG2 = 0,
(S13)

where ⇢̃u, �̃, �̃b and �̃u are the kinetic parameters normalized with respect to d and u = z � 1. Eq. (S13) is the
canonical form of the di↵erential equation for the generalized hypergeometric function 2F2, admitting the solution

G2(u) = C · 2F2(�̃+ 1, �̃u + 1;�1 � �2 + 1,�1 + �2 + 1; ⇢̃uu) (S14)

where C is an integration constant, and �1 and �2 denote

�1 =
�̃u + �̃b + �̃

2
, �2 =

1

2

q
�̃2 � 2�̃�̃b + �̃2

b � 2�̃�̃u � 2�̃b�̃u + �̃2
u.

Summing Eqs. (S12) leads to @uG = @u(
P

✓ G✓) = ⇢̃uG2, one can obtain G from Eq. (S14) in the form of the
generalized hypergeometric function:

G(u) = C2 · 2F2

⇣
�̃, �̃u;�1 � �2,�1 + �2; ⇢̃uu

⌘
, (S15)

and C2 is found to be 1 by the normalization condition G(0) = 1. Eq. (S15) together with P (n) = dnG
n!dun |u=�1 defines

the distribution of mRNA numbers for the refractory model in steady-state conditions. A similar but more general
solution was reported in [2].

ANALYTIC MARGINAL DISTRIBUTION FOR PROTEIN NUMBERS FOR THE MULTI-SCALE
MODEL IN THE LIMIT OF FAST mRNA DECAY

From the reaction scheme illustrated in Fig. 1A in the main text, one can write down the following master
equations describing the time evolution of the probability P✓(n,m) of finding n mRNAs, m proteins and gene state
D✓ (✓ = 0, 10, 11) in a cell:

8
>>>>>>>><

>>>>>>>>:

@tP0(n,m) =d(n+ 1)P0(n+ 1,m)� dnP0(n,m) + dp(m+ 1)P0(n,m+ 1)� dpmP0(n,m)

+ knP0(n,m� 1)� knP0(n,m)� �uP0(n,m) + �bP10(n,m) + �bP10(n,m),

@tP10(n,m) =d(n+ 1)P10(n+ 1,m)� dnP10(n,m) + dp(m+ 1)P10(n,m+ 1)� dpmP10(n,m)

+ knP10(n,m� 1)� knP10(n,m) + �uP0(n,m)� (�b + �)P10(n,m) + ⇢P11(n� 1,m),

@tP11(n,m) =d(n+ 1)P11(n+ 1,m)� dnP11(n,m) + dp(m+ 1)P11(n,m+ 1)� dpmP11(n,m)

+ knP11(n,m� 1)� knP11(n,m) + �P10(n,m)� (⇢+ �b)P11(n,m).

(S16)

By defining G✓ =
P

n

P
m zmnzpmP✓(n,m), solving Eq. (S16) is tantamount to seeking solutions to the set of

di↵erential equations
8
><

>:

@tG0 + [d(zm � 1)� k(zp � 1)zm]@zmG0 + dp(zp � 1)@zpG0 = ��uG0 + �bG10 + �bG11,

@tG10 + [d(zm � 1)� k(zp � 1)zm]@zmG10 + dp(zp � 1)@zpG10 = �uG0 � (�b + �)G10 + ⇢zmG11,

@tG11 + [d(zm � 1)� k(zp � 1)zm]@zmG11 + dp(zp � 1)@zpG11 = �G10 � (⇢+ �b)G11.

(S17)
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By means of the method of characteristics, Eq. (S17) is equivalently represented as

@st = 1, @szm = d(zm � 1)� k(zp � 1)zm, @szp = dp(zp � 1),

and
8
><

>:

@sG0 = ��uG0 + �bG10 + �bG11,

@sG10 = �uG0 � (�b + �)G10 + ⇢zmG11,

@sG11 = �G10 � (⇢+ �b)G11.

Assuming that mRNA decays much faster than protein such that @szm ' 0 [3], we get that

zm =
1

1� bv
, and v = zp � 1, (S18)

and b = k/d is the mean translational burst size. Using Eq. (S18) we can reduce Eq. (S17) to

v@vG0 = ��̃uG0 + �̃bG10 + �̃bG11, (S19a)

v@vG10 = �̃uG0 � (�̃b + �̃)G10 +
⇢̃

1� bv
G11, (S19b)

v@vG11 = �̃G10 � (⇢̃+ �̃b)G11, (S19c)

where �̃b, �̃u, ⇢̃ and �̃ are kinetic parameters normalized with respect to protein degradation rate dp. It follows from
summing Eqs. (S19) that

G11 =
(1� bv)@vG

⇢̃b
.

Using the definitions b1 = �̃b + �̃u and b2 = �̃b + �̃+ ⇢̃, Eqs. (S19) can be simplified to

(1� bv)v2@3
vG+ [1 + b1 + b2 � bv(3 + b1 + b2)]v@

2
vG+ {b1b2 � bv[(1 + b1)(1 + b2) + �̃⇢̃]}@vG� b�̃u�̃⇢̃G = 0,

which admits a solution

G(v) = 3F2(a1, a2, a3; b1, b2; bv), (S20)

with a1, a2 and a3 being roots of

8
><

>:

a1a2a3 = �̃u�̃⇢̃,

a1 + a2 + a3 = b1 + b2,

a1a2 + a1a3 + a2a3 = b1b2 + �̃⇢̃.

Hence summarizing, Eq. (S20) and P (m) = dmG(v)
m!dvm |v=�1 define the steady-state distribution of protein numbers,

which is

P (m) =
bm

m!

(a1)n(a2)n(a3)n
(b1)n(b2)n

3F2(a1 + n, a2 + n, a3 + n; b1 + n, b2 + n;�b),

given that mRNA is short-lived.
Next we will show the solution Eq. (S20) converges to the Gaussian hypergeometric function (2F1) for the three-

stage gene expression model [3] when ⇢ is large. To this end, we parameterize ⇢̃ in Eqs. (S19b)-(S19c) as ⇢̃ 7! ⇢̃�
where � is a large number. Dividing both sides of Eqs. (S19b)-(S19c) by �, we have

✏
�
v@vG10 � �̃uG0 + (�̃b + �̃)G10

�
=

⇢̃

1� bv
G11, (S21a)

✏
�
v@vG11 � �̃G10 + �̃bG11

�
=� ⇢̃G11, (S21b)
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where ✏ = 1/� ' 0. Again similarly, we expand G0, G10 and G11 in Eqs. (S19a) and (S21) as a series in powers of ✏,
collect the terms for ✏0 and ✏1 and obtain

Order of ✏0 :

8
>>><

>>>:

v@vG
(0)
0 = ��̃uG

(0)
0 + �̃bG

(0)
10 + �̃bG

(0)
11 ,

⇢̃

1� bv
G(0)

11 = 0,

⇢̃G(0)
11 = 0,

(S22)

and

Order of ✏1 :

8
<

:
v@vG

(0)
10 � �̃uG

(0)
0 + (�̃b + �̃)G(0)

10 =
⇢̃

1� bv
G(1)

11 ,

v@vG
(0)
11 � �̃G(0)

10 + �̃bG
(0)
11 = �⇢̃G(1)

11 ,

(S23)

From Eqs. (S22), we get G(0)
11 = 0, which is used to reduce Eqs. (S23) and the first equation in Eq. (S22) to

8
><

>:

v@vG
(0)
0 =� �̃uG

(0)
0 + �̃bG

(0)
10 ,

v@vG
(0)
10 =�̃uG

(0)
0 � �̃bG

(0)
10 +

�̃bv

1� bv
G(0)

10 ,
(S24)

Note that Eq. (S24), which is the leading order of Eqs. (S19), is exactly the same as the generating functions of the
three-stage gene expression model reported in [3] (See Eqs. (68)-(69) in SI thereof). By means of similar arguments,
one can show the reduction of our model when � is large.
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