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Transcriptional bursting is a major source of noise in gene expression. Motivated by recent exper-
iments, we study a model including slow burst initiation and termination, and fast RNA polymerase
recruitment and pause release. We show that the time-dependent distribution of mRNA numbers
is accurately approximated by a telegraph model with a Michaelis-Menten like dependence of the
effective transcription rate on polymerase abundance. We also show that gene dosage compensation,
a common feature of mammalian gene expression, is an emergent property of our stochastic model.
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There is widespread evidence that mammalian genes
are expressed in bursts: infrequent periods of transcrip-
tional activity that produce a large number of messenger
RNA (mRNA) transcripts within a short period of time
[1-3]. This is in contrast to constitutive expression where
mRNAs are produced in random, uncorrelated events,
with a time-independent probability [4]. The size and
frequency of transcriptional bursts affect the magnitude
of temporal fluctuations in mRNA and protein content
of a cell, and thus constitute an important source of in-
tracellular noise [5].

A large number of studies have sought to elucidate
the mechanisms leading to bursting and by constructing
simple stochastic models that can explain the data. The
simplest of these models is the telegraph model whereby
(i) a gene is in two states, an ON state where mRNA is
expressed and an OFF state where there is no expression.
(ii) mRNA degrades in the cytoplasm. These first-order
reactions are effective since each encapsulates the effect of
a large number of underlying biochemical reactions. The
chemical master equation of this model has been solved
exactly to obtain the probability distribution of mRNA
numbers as a function of time [6]. For parameter condi-
tions consistent with bursty expression, the steady-state
distribution is well approximated by a negative binomial
that fits some of the experimental data [7].

Recent studies have suggested modifications to the
telegraph model to include details of polymerase dynam-
ics including its recruitment and release from the paused
state [8, 9]. These changes are necessary to explain the
presence of multiple timescales in the bursty expression
of mammalian promoters. In this letter, we present the
first detailed study of this model. We derive an exact
steady-state solution and, by mapping it onto an effec-
tive telegraph model, we obtain an approximate time-
dependent solution. The theory allows us to tease apart
the transcriptional and post-transcriptional mechanisms
that have the largest impact on mRNA fluctuations, and

provide an intuitive explanation for gene dosage compen-
sation in mammalian cells.

Model. We consider a stochastic multi-scale tran-
scriptional bursting model (recently introduced in [9] and
henceforth referred to as the multi-scale model; see Fig.
1A), whereby a gene fluctuates between three states: two
permissive states (Do and Dp;) and a non-permissive
state (Dg). The transition from Dy to Dyo (burst initi-
ation) is mediated by transcription factor binding with
rate constant o, which is reversible with rate constant
o1, (this transition may alternatively represent other pro-
cesses such as nucleosome remodeling). Subsequently the
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FIG. 1. (A) Schematic of the stochastic multi-scale transcrip-
tional bursting model. (B) Distribution for mRNA numbers
obtained from the generating function in Eq. (2) agrees with
SSA predictions. The kinetic parameters are p = 60, A = 40,
d = 1, and the rest of the parameters are indicated in each
panel.
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binding of RNA polymerase II (Pol IT) to Dy with rate
constant A (which is proportional to Pol II abundance)
leads to Dyy. This represents a state in which Pol II
is paused. The polymerase is released from this state
with rate constant p leading to the production of an
mRNA molecule (denoted as M) and the unbinding of
polymerase which returns the gene to state Dig. In the
paused state Di1, both the polymerase and the tran-
scription factor can unbind from the gene and lead to
the non-permissive state Dy (burst termination). Both
reversible switches operate at different timescales (hours
versus minutes) with max{oy,,0,} < min{p, A}, leading
to multi-scale transcriptional bursting [8, 9]. The mRNA
transcripts are translated into protein (denoted P) with
rate constant k. Both the mRNA and proteins decay
with rate constants d and d,, respectively. All reactions
are first-order, characterized by exponentially distributed
waiting times between successive reactions.

The reaction D13 — Dy + M is an effective descrip-
tion of the reactions: Diy — D19 + N, N — M where
N is nascent mRNA, i.e pre-spliced mRNA. The reaction
N — M is often modeled with a deterministic time delay
[10, 11] but theory shows that it can be modeled with a
stochastic exponential time delay provided the timescale
of nascent mRNA production (p~1) is much smaller than
the timescale governing the transitions between permis-
sive and non-permissive states ((on + op,) ') [10]. Also,
no explicit nascent mRNA description is needed provided
that it is short lived compared to mature mRNA. Since
these two conditions are physiologically realistic in many
cases, we choose to ignore detailed modeling of nascent
mRNA dynamics and model the direct production of ma-
ture mRNA with an exponentially distributed time delay.

Ezact solution. Let Py(n,t) (6 =0,10,11) denote the
probability of a cell being in state Dy with n mRNAs
at time ¢ (arguments n and ¢ are hereafter omitted for
brevity). The dynamics of probability Py are described
by the set of coupled master equations

atPO Z(El — 1)d7”LPO — O'uPO =+ O'b(P10 + Pll)7
8,5P10 :(El — 1)an10 — (O’b + )\)Pl() + UuPO + pEilpll, (1)
8tP11 Z(El — 1)dTLP11 — (p+ Ub)Pll —+ /\Plo,

where the step operator E? acts on a general function g(n)
as E'g(n) = g(n + i) [12]. Defining G(u) = >, >, (u+
1)"Py(n) and using the generating function method, we
solve Eq. (1), yielding the exact steady-state solution for
G(u) in terms of the generalized hypergeometric function

Glu) = 1 F (%.% W.Mu» @)

with 77 = op + 0y and v9 = o, + p + A. The exact
distribution of mRNA numbers at steady state is then
given by P(n) = 3y Pa(n) = 59 G(u)|u=—1 (See [13]

n! dun
for a closed-form expression). In Fig. 1B we show that

2

>
w
5

0.6

o
o
I

® Mean + Outlier
-2 1

|0§10P or |00910)‘ ? ?

Relative sensitivity
i

0.6 0.5 =+
100076 -0.076 0232 -0.505 0466
- T T T T T
P A Jb Ty d
[T
S 4 s 2 A 0 1 C
1091406 0.1
157 LXCSE -0.50 0 -0.229

/,
)
S
s
o
w
uole[eLI0)

40 35 -3 25 20
log;you

25 . I os®

-3.0 25 2.0
log,d

FIG. 2. Relative sensitivity analysis of the coefficient varia-
tion CV of mRNA noise over 5 kinetic parameters for 3575
genes of CAST allele data for mouse fibroblast cells. (A)
Shows distributions of the 5 kinetic parameters in the dataset
(obtained from [3]), where values of p or X are calculated us-
ing Eq. (4). (B) Box plots indicate the median (whose values
are also shown at bottom), the 25%, 75% quantiles, and mean
and outliers of relative sensitivity A, for each parameter. (C)
Joint distribution (lower panel) and Pearson correlation (up-
per panel) of A, for each pair of kinetic parameters suggest
that the pairs (ob,0u) and (ou,d) are the least dependent
pairings.

distributions obtained from Eq. (2) as well as the cor-
responding modality (a phenotypic signature [14]) are
indistinguishable from distributions produced using the
stochastic simulation algorithm (SSA) [15]. It can be
further shown by perturbation theory [13] that the exact
solution Eq. (2) reduces to the generating function of
the negative binomial distribution P(n) = NB(%, p_%a)
with @ = opy2/A, when p, A and o, are much greater
than the rest of the parameters.

Sensitivity analysis. The exact solution in Eq. (2)
allows us to examine the stochastic properties of the
multi-scale model over large swathes of parameter space.
We investigate the relative sensitivity of the coefficient
of variation of mRNA fluctautions, CV = /Var(n)/(n),
which is typically employed as a measure of the mag-
nitude of transcriptional noise. To this end, we calcu-
late the first two central moments, ((n) and Var(n)),
from Eq. (2) using (n) = 0,G|lu=0 and Var(n) =
02G|y=0 + (n) — (n)?. The mean and CV are then given
by

OuAp
n) = , 3a
(n) . (3a)
1 d

-+ —. . .
(n) oy Mm+d vn+d

Note that since the parameters p and \ appear sym-
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metrically in Eq. (3) and also due to the unavailabil-
ity of experimental data, for simplicity we enforce the
constraint p = A. Hence, the relative sensitivity of the
quantity CV = CV]| p=x, which can serve as a gauge of
transcriptional noise, is insightful to study and defined as
A, = (p/CV)ACV /dp for a model parameter p, meaning
that 1% change in p leads to a A,% change in CV. The
parameter values for the sensitivity analysis were sam-
pled from experimental distributions recently inferred for
3575 genes of CAST allele in mouse fibroblasts [3], using
the telegraph model. To obtain values for p and A, we
equate the mean of the telegraph model (with ON switch-
ing rate oy, OFF switching rate o, transcription rate p,
and degradation rate d) (n)el = 0upu/71d With the mean
of the multi-scale model (Eq. (3a)) under the constraint

p = A, giving
P=Pu<1+1/1+zb>. (4)

Distributions for each parameter in the dataset are pre-
sented in Fig. 2A and the box plots in Fig. 2B show the
relative sensitivity for each parameter. The parameters
in order of most sensitive first are o, d, o, and p = A.
This order is the same as obtained by ranking parameters
according to the inverse of their mean experimental val-
ues (the mean of the distributions in Fig. 2A) implying
that changes to the CV are most easily accomplished by
perturbations to the slowest reactions. Given the vectors
A, and Ay, for any pair p; # p2 and pq,p2 in the set
{p, A\, ob, 0u,d} where each entry is a different gene, in
Fig. 2C we calculate the Pearson correlation coefficient
between the vectors and the corresponding joint distri-
butions. This shows that (oy,d) is the least dependent
pairing and hence they constitute a quasi-orthogonal de-
composition of the sensitivity.

Effective telegraph model. The generalized hypergeo-
metric function in Eq. (2), though exact, does not give
much biological intuition. Its connection to the conven-
tional telegraph model, which is commonly used for infer-
ence of single cell RNA sequencing data [3], is somewhat
elusive because it has only a single timescale whereas
our model has two. Next we use the first passage time
method to reduce our model into an effective telegraph
model. To this end, we consider the transcription motif

of the multi-scale model, D1g i> Dy LN D1g+ M, whose
corresponding master equations for producing newborn
mRNA starting from state Dig are

0;P1o = — APy,
O P11 =APyy — pPr1, (5)
0tPv =pPry,

where Pyg, P11 and Py represent the probability of stay-
ing in states Dyg, D11 or producing a new mRNA respec-
tively. We remark that the reaction D17 — Dy is absent
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FIG. 3. Effective telegraph model approximation for the dis-
tribution of mRNA numbers of the multi-scale model. (A)
Heatmap of the Hellinger distance between steady-state dis-
tributions of mRNA numbers for the effective telegraph model
and the multi-scale model as a function of p and A with pa-
rameters o, = 0.2, op, = 0.1 and d = 1. The dashed line cor-
responds to the contour line p = A. The discrepancy between
the two distributions becomes larger as p and A\ approaches
the line p = A. (B) Shows the time-dependent distributions
for Point I'in (A) (the point with the largest HD) predicted by
the effective model compared to those computed by the SSA
for the multi-scale model. (C) Heatmap of HD between the
two steady-state distributions as a function of o}, and o, with
p=A=23and d = 1. (D) Shows a stochastic bifurcation
diagram for the number of modes of the steady-state distribu-
tions predicted by the two models. The miniscule dark blue
region is where modality predictions of both models disagree
thus corroborating the high accuracy of the effective telegraph
model approximation. Insets show distributions correspond-
ing to the points marked in (C,D).

from the motif due to its relatively small reaction rate oy},
compared to p and A. The initial conditions for Eq. (5)
are PlOlt:O = 1, P11|t:0 = PM|t:O = 0. SOIViIlg for PM
in Eq. (5), we can calculate the mean first passage time
for mRNA production

> + A
) = [ eppar= L2 ©

where Py = 0,Py is the first-passage time distribution
[16]. Since the effective transcription rate is the inverse of
the mean first passage time, it immediately follows that
the effective telegraph model is

—2Ap
Do 22 Dy 0 Do+ M, M-S 2. (7)

Ob
Alternatively, one can obtain this result by equating the
means of our model Eq. (3a) and of the telegraph model
(n)tel = puou/71d and solving for the effective production
o

rate py, giving py, = Ap/vy2 ~ A/\T-p since typically p, A >
Op.
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In Fig. 3, we show the high accuracy of the effective
telegraph model approximation from Eq. (7). In partic-
ular, Fig. 3A shows a heatmap of the distance between
the distributions of mRNA numbers predicted by the ef-
fective telegraph model and the multi-scale model. As
a distance measure, we use the Hellinger distance (HD),
a Euclidean distance based metric normalized to the in-
terval between 0 and 1. The effective telegraph model is
naturally a more accurate description to the multi-scale
model when there is one rate limiting step (large differ-
ence between p and A) rather than when there are two
rate limiting steps (p = A). Indeed it can be shown using
perturbation theory that in the limit of large p or large
A, the time-dependent solution of the multi-scale model
converges to that of the telegraph model [13].

Since the time-dependent distribution of the telegraph
model is known in closed-form [6, 17], it follows that by
the effective model in Eq. (7) we have an approxima-
tion for the time-dependent distribution of the multi-
scale model too. The accuracy of this approximation
is shown in Fig. 3B where it is compared to the time-
dependent distributions computed using the SSA for the
multi-scale model. The parameters here correspond to
those of Point I in Fig. 3A (the largest HD). Differences
between the distributions of the two models are negligi-
ble except near time t = 0. We further investigate how
burst initiation and termination rates (o, op) affect the
approximation error with a heatmap of HD as a func-
tion of o, and o}, (Fig. 3C), and a stochastic bifurcation
diagram for the number of modes of the effective tele-
graph and multi-scale model distributions (Fig. 3D) at
steady state. The point of maximum HD in Fig. 3C
(Point IT) displays distributions that are not that differ-
ent from each other — see upper right inset of Fig. 3D.
The two models display the same number of modes in
all regions of parameter space except for a narrow region
where modality detection is challenging because the dis-
tributions have a broad plateau — see lower right inset
of Fig. 3D (Point IIT). This again confirms the high ac-
curacy of the effective telegraph model approximation.

Connection to refractory model. Besides the tele-
graph model, another prevalent stochastic transcriptional
model is the refractory model [2] (a three-state model, see
Fig. 4A left), wherein the burst initiation requires two
steps instead of one. To understand the connection be-
tween our model and the refractory model, we exactly
solve the refractory model for the steady-state distribu-
tion of mMRNA numbers [13] and similarly map the refrac-
tory model onto an effective telegraph model by matching
the mean mRNA numbers

(M) re = Adupu YL
e d(Aoy + Aoy, + owop)’ te d(oy + 74)
leading to an effective burst initiation rate &, = U”‘fA

and the corresponding effective model shown in Fig. 4A

4

right.

We then compare the steady-state distributions of the
refractory model and its effective telegraph model. A
heatmap of HD quantifying their distributional difference
and a modality diagram (marked as black lines) of the
two distributions are illustrated in Fig. 4B. Both the
regions of high HD and Region 2 where only the tele-
graph model predicts bimodality are significantly large;
also Region 1 where both predict bimodality is small.
This shows that the refractory model, in general, is not
well approximated by the telegraph model, particularly
the latter’s probability for low mRNA numbers is not
accurate — see Fig. 4C. Given the telegraph model’s ex-
cellent approximation to the multi-scale model, it is clear
that the multi-scale model and refractory model can be
distinguished.

Gene dosage compensation. 1t has been observed that
after replication some genes do not exhibit a two-fold
increase in mRNA numbers, a counter-intuitive phe-
nomenon known as gene dosage compensation [10]. Here
we show that this property naturally follows from our
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FIG. 4. Effective telegraph model approximation for the re-
fractory model. (A) Schematics illustrating the refractory
model and the corresponding effective telegraph model. (B)
Shows a heatmap of HD between the steady-state distribu-
tions of mRNA numbers predicted by the refractory model
and its effective telegraph model, and a bifurcation diagram
of the number of modes thereof (marked as black lines) as a
function of o, and A with parameters o, = 0.8, py, = 30 and
d = 1. (C) Plots of the distributions for Points I and II in
(B), showing significant disagreement in the height of the zero
mode of the mRNA number distribution (insets show a zoom
at the mode at zero).
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multi-scale model and does not require the postulation
of new mechanisms. According to the effective telegraph
model, the mean of the number of mRNAs is approxi-
mately proportional to the effective production rate, i.e.
(n) < pu(A) = p’%\ which has a Michaelis-Menten like de-
pendency on the polymerase Pol IT abundance comprised
in the parameter A\. Assuming that the amount of Pol 11
protein remains constant right after replication, e.g. in
cases where replication occurs on a timescale faster than
protein turnover, replication causes gene copy number
to double but the amount of Pol II per gene is halved.
We thus have that the mean number of mRNA before
replication is (n)~ o pyu(A) while after replication it is
(n)* o 2pu(1/2). Tt follows that the fold change upon
replication is

w200+ N)
n= (n)y=  2p+ A <2

and therefore our model displays the property of gene
dosage compensation. Furthermore assuming that p =
A, our model predicts that the fold change is n = %,
a value consistent with experimental measurements for
genes OCT4 and Nanog in mouse embryonic stem cells
(see Fig. 2B in [18]).

Protein dynamics. Finally we extend the multi-scale
model to provide analytic distributions for protein num-
bers. This allows interpretations of single-cell data of
protein expression under the classic short-lived mRNA
assumption (d > d,) [19]. Given the network in Fig.
1A, it can be shown [13] that the generating function
corresponding to the steady-state distribution of protein
numbers is given by

G(v) = 3Fs(a1, az,as; by, ba; bv), (8)

with by = (o, + 0u)/dp, ba = (o, + A+ p)/d,, the mean
translational burst size b = k/d, and the parameters aq,
as and a3 being solutions of

ajasas = au)\p/di’)7
ai +ag +az = by + be,
aias + aijas + asas = bi1by + )\p/di

In the limit of large A or p, we show in [13] that Eq. (8)
reduces to the Gaussian hypergeometric function (2F7),
which was reported in Ref. [19] for the three-stage model
of gene expression.

Summary and Discussion. In this letter, we have per-
formed a detailed study of a multi-scale model of bursty
gene expression based on recent experimental data from
mammalian cells. We have derived simple closed-form
expressions for the approximate time evolution of this
model and used the theory (i) to understand which reac-
tions contribute mostly to fluctuations, (ii) to show how

5

gene dosage compensation emerges from the special con-
nectivity of the gene states in our model. The simplicity
of the moment equations allow the easy inference of rate
parameters from single-cell data using maximum likeli-
hood methods [20]. Potential extensions include the im-
pact of cell cycle effects such as binomial partitioning and
variability in the cell cycle duration. Use of the recently
developed linear mapping approximation [21] appears to
be a promising means to extend the analytical solution of
the present model to include DNA-protein interactions.
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EXACT STEADY-STATE SOLUTION FOR THE MARGINAL mRNA DISTRIBUTION OF THE
MULTI-SCALE MODEL

To solve Eq. (1) in the main text, we use the generating function method and define Gy(z) = >, 2" Py(n) for
6 =0,10,11 so that Eq. (1) in the main text can be recast as a set of coupled partial differential equations

0,Go +d(z —1)0.Go = —0,Go + op,G 10 + 0b,G11, (Sla)
8tG10 + d(Z — 1)8ZG10 = pZG11 — (Jb + )\)Glo =+ Cquo, (Slb)
0:G11 + d(z — 1)0.G11 = —pG11 — 0,G11 + AGo, (S1c)

wherein the variable z is dropped for brevity. In order to solve Eq. (S1) in the limit of long times, we set 9;Gy = 0,
solve Gy from Eq. (Slc) as a function of G711, and combine the yielded result to solve G from Eq. (S1b) as a function
of G11 so that Eq. (Sla) consequently becomes a differential equation with G1; being the only variable

PuP3G11+(3d + 71 + 2)d*udiGry + [(d+ 1) (d +72) — pAu)dO, Gy — (d + 04)pAG1y = 0, (S2)

with u = 2 — 1, 91 = 0, + 0y and 42 = p + A + 01,. By defining a new variable x = pAu/d?, Eq. (S2) can be further
simplified to

ouw+d
d

M +dy+d
d d

71+d+72+d

203
x@an—l—(l—&- ] ]

)J;&iGn + ( - JC>61G11 - Gi11 =0,

which is in the canonical form of the differential equation for the generalized hypergeometric function
w203 f (x) + (1+ b1 + b2)0L f (x) + (brbz — )02 f (2) — arf(x) =0,

admitting the solution f(x) = C1F5(a1;0b1,bs;2) with C being an integration constant. Hence, the solution for G1; is

(S3)

wtd d d pA
G11C’~1F2<0 tamtd yt .p)

d ' d T d a"

On the other hand, summing Egs. (S1a)-(Slc) and denoting G =), Gy, one can get 0,G = pG11/d, which together
with Eq. (S3) leads to

G(u) =Cq -1 Fy (%'0b+au T +p+A PA )

a4 a4 a2t

Note that in the last step we made use of the general relation 0, 1Fs(a;b,c;2) = 15 - 1F2(a+ 1504+ 1,¢ + 1;2). The
integration constant Cs is found to be 1 by using the normalization condition G(0) = 1. Furthermore, the marginal
probability of finding n» mRNAs in a cell is

1 d"G(u)
n!  du”

a0 [ i )

P(n) =

L (2)
T\ (), 25,

where (+),, is the Pochhammer symbol.

Ou op + 0y op+p+A A
( T L ot ,_P))
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ANALYTIC DISTRIBUTION FOR mRNA NUMBERS WHEN p, A AND o, ARE LARGE

Given the large values of p, A and oy,, we implement the following parametrization
op — o0, p = pd, A= A,

where ¢ is a large real number.
By means of the method of characteristics, solving Eq. (S1) is tantamount to seeking a solution to the ODE system

Ost =1 = t=s

Dz =d(z—1) = z—1=re®

9:G = pé(z — 1)G11, (Sda)
0sG1o = pdzG11 — 0,0G 10 — AdG1o + 0w (G — Gio — G11), (S4b)
0sG11 = —pdG11 — opdG11 + A6Gag. (S4c)

Dividing § on both sides of Egs. (S4a)—(S4c), one obtains a singular system consisting of

€0:G = p(z — 1)G11,
€0:G1o = pZGu —o0pG10 — AGro + EUu(G -G — G11)7 (55)
€0:G11 = —pG11 — 0bG11 + AGho,

with e = 1/6 ~ 0. Expanding G, G1p and G11 in Eq. (S5) as a series in powers of e,
G =G0 1M +0(?), G = G§0 + eG(l) + O(6), Gi1 = Gﬁ) + eGﬁ) +0O(e),
and matching the orders of €, we have

p(z—1)GY =0 = G =

Order of €° :
{ p2G0) — G0 — G =0 = % =0

and

8,G = p(z — NG
Order of €' : 830%) = sz§ . UbG(l) )\G(I%)) + 0 (GO — (0) (0)) = sz(lll) - obG(l) - )\G%) +0,GO =0
0,G\% = —pGtY — 5p,G Y + AGLY = oGV — o, 4 aG) =

Then, we have

PUTY

as(;(o) e (o)

pu—a

where o = op72/X and u = z — 1 = re?®. Its solution immediately follows as

Ju

GO = C(r)(pre®® — o)~ (S6)

with C(r) being a function of r to be determined from the initial condition. Suppose that the initial condition for this
process is g(u) = 0)|t 0, which is known a priori. For instance, say the initial distribution of n mRNA molecules
is P(n) = pn, then g(u) = > pp(u+ 1)". Letting s be equal to 0 (or equivalently ¢t = 0), it follows u = r and
g(u) = g(r), and we can establish the following relation

from which we can solve C(r) as
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Substituting the latter back into Eq. (S6) and replacing r = ue™%

from (S6) as

, we can calculate the leading-order solution of G

—dt s
G(u) = —dty (PUC @ ) g7
(1) = gtue) (25 (s7)
At steady state, the leading-order solution in (S7) becomes
o @
Giz) = ——F—
® <a —p(z— 1))
and the corresponding distribution of mRNA numbers is a negative binomial distribution NB(%, -2-).
CONVERGENCE TO TELEGRAPH MODEL FOR LARGE p
To this end, we parametrize p as p — pd, where J is a large real number. As such, Eq. (S1) can be recast as
0:Go + d(Z — 1)32G0 = —0,Go + op,G10 + 01,G11, (SSa)
01G1o +d(z — 1)9.G1o + (01 + A)G1o — 0uGo = pdzGhr, (S8b)
0G11 +d(z —1)0,G11 + obG11 — AG1p = —pdGry. (S8c)
Dividing both sides of Egs. (S8b)-(S8c¢) by ¢ and setting e = §~!, we have that
€<8tG1() + d(Z — 1)8ZG10 =+ ((Tb =+ )\)GIO — O’uGo) = pZGn, (SQa)
E(@tGH + d(Z — 1)8zG11 + opG11 — >\G10> = *PGll' (Sgb)

Again using the same method as before, we expand Gy, G19 and G1; in Egs. (S8a) and (S9) as a series in powers of
¢, collect the terms for €® and €' and obtain

8,GY +d(z - 1)0.G = —0,G + 0,GY) + 7, G,
Order of ¢ : szg? =0, (510)
pGY =0,
and
G + d(z — 1)0.G\% + (o, + NG — 5,GP) = p2GY,

(S11)
8GY +d(z — 1)0.G + 0,6\ — AG) = —pGtY.

Order of €' : {

From Eq. (S10), we can solve that Gﬁ) = 0, with which we can further get )\Gg?)) = pGgll) from Eq. (S11). Given
both results, Egs. (510) and (S11) can be simplified to

{atag‘)) +d(z—1)0.G” = —0,G\” + 5,G1Y),
G +d(z—1)0.GY) = Az - NG — 7,GY) + 5,GV,

which are exactly the generating function equations of the telegraph model (See Eqs. (A2) and (A3) in [1]), thus
showing that the multi-scale transcriptional bursting model converges to the telegraph model when p — co. A similar
proof can be constructed to show that the telegraph model is also obtained in the limit A — oco.

EXACT STEADY-STATE DISTRIBUTION FOR THE REFRACTORY MODEL

Given the reaction scheme illustrated in Fig. 4A in the main text, it follows that the temporal evolution of
probability Py(n) of finding n mRNAs and gene state Dy (6 = 0, 1 or 2) can be described by the following master
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4
equations
OiPy(n) = (E* — 1)dnPy(n) + o, Pa(n) — 0w Po(n),
0:Pi(n) = (E' — 1)dnPy(n) + o0y Py(n) — AP1(n),
OtPy(n) = (B! — 1)dnPy(n) + (B~ — 1)pyPa(n) + APy (n) — opPa(n).
The corresponding generating function equations are given by
0;Go + d(z — 1)0,Go = 0p,G3 — 0, G, (S12a)
Gy +d(z — 1)0.G1 = 0,Go — AG1, (S12b)
0Ga +d(z — 1)0,Go = pu(z — 1)G2 + MGy — o,Go, (S12¢)

where Gy = ), 2" Py(n). We intend to solve Egs. (S12) at steady state and thus set 9,Go = 0. Then, we solve G
as a function of Gy from Eq. (S12c), subsequently substitute it into Eq. (S12b) and solve Gy as a function of G.

Following that, Eq. (S12a) becomes an ordinary differential equation with G being the only variable to be solved
203Gy + (34 A+ 61 + 64 — putt)ud2Gy + [1 + &b + 64 + 504 — pu(3+ F)u+ A1+ 61 + 64 — pute)]0uGa (s13)
—(1+N)(1+54)puG2 =0,

where py, A, 6, and &, are the kinetic parameters normalized with respect to d and u = z — 1. Eq. (S13) is the
canonical form of the differential equation for the generalized hypergeometric function 5 F5, admitting the solution

Ga(u) = C - 2Fa(A+ 1,60+ 1; 81 — B2+ 1, 81 + B2 + 1; puu) (S14)

where C' is an integration constant, and 5, and S, denote

Guton+ A
2

Summing Egs. (S12) leads to 0,G = 9,(3_, Gg¢) = puGa2, one can obtain G from Eq. (S14) in the form of the
generalized hypergeometric function:

G(U’) = 02 : 2F2 (5‘75-117 61 - ﬂ2>61 + BQvﬁuu) 9 (815)

and Cj is found to be 1 by the normalization condition G(0) = 1. Eq. (S15) together with P(n) = -<-G_|,__, defines

nldun
the distribution of mRNA numbers for the refractory model in steady-state conditions. A similar but more general

solution was reported in [2].

= - -
. 5\/A2 — 923Gy + 62 — 223Gy — 26,5 + 2.

ANALYTIC MARGINAL DISTRIBUTION FOR PROTEIN NUMBERS FOR THE MULTI-SCALE
MODEL IN THE LIMIT OF FAST mRNA DECAY

From the reaction scheme illustrated in Fig. 1A in the main text, one can write down the following master
equations describing the time evolution of the probability Py(n, m) of finding n mRNAs, m proteins and gene state
Dy (6 =0,10,11) in a cell:

OtPo(n,m) =d(n + 1)Py(n+ 1,m) — dnPy(n,m) + dp(m + 1) Py(n,m + 1) — dymPy(n, m)
+ knPy(n,m — 1) — knPy(n,m) — 0, Py(n,m) + o Pro(n, m) + op, Pro(n, m),
OtPio(n,m) =d(n+ 1)Pip(n + 1,m) — dnPig(n,m) + dp(m + 1) Pio(n,m + 1) — dymPig(n, m)
+ knPyo(n,m — 1) — knPig(n,m) + oy Po(n,m) — (o, + A)Pro(n,m) + pPi1(n — 1,m),
O Pri(n,m) =d(n+1)Pi11(n+1,m) — dnPi1(n,m) + dp(m + 1)Pii(n,m + 1) — dymPi1(n, m)
+ knPii(n,m — 1) — knPi1(n,m) + APig(n,m) — (p + op) P11(n, m).

(S16)

By defining Gog = >, > ., #2m" 2" Po(n,m), solving Eq. (S16) is tantamount to seeking solutions to the set of
differential equations

0:Go + [ (Zm - 1) k(zp - 1)Zm]aszO + dp(zp - l)aszO = —0uGo + 0G0 + oG,

0:G1o + [d(z ) k’(Zp — 1)zm]6sz10 + dp(zp — 1)8sz10 =0,Go — (Ub + )\)Glo + ,OZmGll, (817)
0:G11 + [d(Zm ) k(Zp — 1)zm]8ZmG11 + dp(zp — ].)aszu = MG — (p —+ O’b)Gu.
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5
By means of the method of characteristics, Eq. (S17) is equivalently represented as
O0st =1, Oszm = d(zm — 1) — k(zp — 1) 2m, Os2p = dp(zp — 1),
and
0;Go = —0yGo + 01,G1o + 0bG11,
95G10 = 0uGo — (01 + A)G1o + p2mGi1,
0sG11 = AG1p — (p + o1)G11.
Assuming that mRNA decays much faster than protein such that dszy, ~ 0 [3], we get that
1
m = T and v=2zp,—1, (S18)
and b = k/d is the mean translational burst size. Using Eq. (S18) we can reduce Eq. (S17) to
v0,Go = —6.Go + 6,G10 + 0,G11, (S19a)
v9,G10 = 5uGo — (61 + A)G1o + ﬁc;m (S19b)
v8,G11 = AGig — (p + )Gt (S19c¢)

where oy, 7y, p and \ are kinetic parameters normalized with respect to protein degradation rate d. It follows from
summing Eqgs. (S19) that

Using the definitions b; = &1, + 64 and by = &y, + A+ p, Eqgs. (S19) can be simplified to
(1= bw)v202G + [L+ by + by — bu(3 4 by + b2)]vd2G + {bybg — bu[(1 + b1)(1 + b2) + A\p|}9, G — by MG = 0,
which admits a solution
G(v) = 3F2(a1, az, a3; b1, ba; bv), (S20)
with a1, az and az being roots of
aiasasz = &uj\ﬁ,
ap +as +az = by + by,

aias + araz + asasz = biby + S\ﬁ.

d"G(v)
mldv™

Hence summarizing, Eq. (S20) and P(m) =
which is

v=_1 define the steady-state distribution of protein numbers,

bm (@l)n(GQ)n(a3)n
= ———— = = s Fy(a1 +n,as +n,az +n; by +n,bs +n;—b),
il (b1)n(b2)m 3Fy(ay 2 3 1 2 )

given that mRNA is short-lived.
Next we will show the solution Eq. (520) converges to the Gaussian hypergeometric function (2F7) for the three-

stage gene expression model [3] when p is large. To this end, we parameterize p in Egs. (S19b)-(S19¢) as g — pd
where § is a large number. Dividing both sides of Egs. (S19b)-(S19¢) by 4, we have

P(m)

G(Ualeo — 0.Go + (5‘b + X)Glo) :ﬁGlla (SQla)

€(v9,G11 — AG1o + 6bG11) = — pG11, (S21b)


https://doi.org/10.1101/717199
http://creativecommons.org/licenses/by-nc-nd/4.0/

bioRxiv preprint doi: https://doi.org/10.1101/717199; this version posted July 28, 2019. The copyright holder for this preprint (which was not
certified by peer review) Is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under
aCC-BY-NC-ND 4.0 International license. 6

where e = 1/ ~ 0. Again similarly, we expand Gy, G1p and G1; in Egs. (S19a) and (S21) as a series in powers of e,
collect the terms for € and €' and obtain

v9,GY) = 5,6 + 5,6 + 5,617,

Order of € : T —pbv Ggq) =0, (S22)
pNGg(i) =0,

and

00, G =BGy + (6 + NG = T GHY,

Order of €' : 11— (S23)
v, G} = AGY + &Gl = —pGHY,
From Eqgs. (522), we get Ggq) = 0, which is used to reduce Eqgs. (S23) and the first equation in Eq. (S22) to
v0,GY) =~ 5,GY + 5,6y,
10,60 —5,09 _ 5,00 1 1%’2@05&?, (524)

Note that Eq. (S24), which is the leading order of Egs. (S19), is exactly the same as the generating functions of the
three-stage gene expression model reported in [3] (See Egs. (68)-(69) in SI thereof). By means of similar arguments,
one can show the reduction of our model when A is large.
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