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Abstract  20 

The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions 21 

contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal 22 

aINS contributes to cognitive processes through frontal and parietal connections. Open questions 23 

remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach 24 

combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to 25 

assess time-varying functional connectivity of aINS subregions. We studied three independent large 26 

samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and 27 

related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four 28 

robust aINS time-varying functional connectivity modes that displayed both “state” and “trait” 29 

characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure, 30 

modes featuring connectivity to higher cognitive and emotional processing regions were stable over 31 

time and related to empathy measures. 32 

 33 

  34 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/716720doi: bioRxiv preprint 

https://doi.org/10.1101/716720
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pasquini et al. 

3 

 

Introduction 35 

The human anterior insula (aINS) is a functionally heterogeneous region implicated in functions ranging 36 

from interoceptive awareness and emotion processing to time perception and cognitive control (1). In 37 

humans, neuroimaging studies have begun to parcellate the aINS, based on its patterns of functional 38 

and structural connectivity. For example, task-free fMRI (tf-fMRI) studies, which measure the brain-wide 39 

correlation structure in slow (< 0.1 Hz), spontaneous blood oxygen level dependent (BOLD) signal 40 

fluctuations (2, 3), have shown that the ventral, agranular aINS is functionally connected to limbic and 41 

autonomic processing regions that include the pregenual anterior cingulate cortex, the amygdala, and 42 

subcortical structures such as the thalamus and periaqueductal gray (4–8). These regions make up the 43 

“salience network”, a large-scale distributed system that represents the homeostatic significance of 44 

prevailing stimuli and conditions (9–13). In contrast, the dorsal, dysgranular aINS is connected to a 45 

cingulo-opercular “task-control network” whose nodes include dorsolateral and opercular prefrontal, 46 

anterior midcingulate, and anterior parietal areas involved in cognitive control processes such as task-47 

set initiation and maintenance (4, 7, 8, 14). Under task-free conditions, both aINS subregions, but 48 

perhaps especially the dorsal aINS (8, 15), show activity that is anticorrelated with the “default mode 49 

network”, a system including the posterior cingulate cortex, inferior parietal lobules, and precuneus 50 

(16). In addition to the dorsal-ventral axis, hemispheric lateralization of the aINS is proposed to help 51 

maintain bodily homeostasis by adjusting and balancing autonomic outflow based on bioenergetics 52 

demands (1, 10, 11). Recent evidence suggests that while the left-sided (dominant hemisphere) aINS 53 

controls parasympathetic tone, the homotopic right (non-dominant) aINS is more closely linked to 54 

sympathetic tone and responses (1, 10, 11). Structural and functional changes in aINS subregions have 55 

been reported in a variety of neuropsychiatric conditions, ranging from mood and anxiety disorders to 56 

schizophrenia, autism, and frontotemporal dementia (13, 17–20).  57 

Standard tf-fMRI has helped to reveal the functional organization of the human aINS and other brain 58 

areas by providing a snapshot of functional connectivity as averaged across the duration of a scanning 59 

session. Although long-range structural connections are assumed to be relatively stable in the adult 60 

brain (21), coordinated functional activity is dynamic, with the brain continuously reshaping network 61 

configurations in response to prevailing conditions or task demands (22–24). Approaches that capture 62 

time-varying connectivity bring the potential to clarify how brain dynamics are organized and relate to 63 

function. We reasoned that this approach could help clarify how the aINS may change its network 64 

partners in response to salient internal and external stimuli and possibly contribute to the development 65 

of more granular and personalized fingerprints of brain function in health and disease. Such time-varying 66 

functional connectivity has been shown to relate to clinical outcomes (25–27); task performance (28); 67 

and behaviorally relevant measures of cognitive (29–31), emotional (32, 33), and attentional processing 68 

(34, 35). One of the few studies applying time-varying functional connectivity analyses to the insula 69 

parcellated it into posterior, middle, and dorsal and ventral anterior components, revealing partially 70 

overlapping time-varying connectivity profiles for ventral and dorsal aINS subregions. Ventral and dorsal 71 

profiles diverged based on distinct contributions from limbic/emotional processing and cingulo-72 

opercular/cognitive regions mirroring findings from static tf-fMRI studies (15).  73 

Despite this body of research, it remains unclear how distinct aINS subregions dynamically engage the 74 

salience and task-control networks over time. Moreover, it is largely unknown whether time-varying 75 

functional connectivity of the aINS — or any region for that matter — is  modulated by externally-driven 76 
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states or instead displays trait characteristics such as within-subject temporal stability and relationships 77 

to behavioral or dispositional measures. To gain a deeper understanding of these issues, we 78 

implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity 79 

and k-means clustering to derive time-varying functional connectivity profiles of aINS subregions across 80 

three large, independent samples of healthy participants, including eyes open vs. eyes closed conditions 81 

and longitudinal datasets. Across methods and samples, we found that aINS subregions display shared 82 

and distinct time-varying connectivity “modes” that bind together cognitive and/or emotional 83 

processing areas versus upstream sensory and motor cortices. Overall, the findings suggest that short-84 

term temporal variability in aINS connectivity reflects both state and trait characteristics, revealing a 85 

path toward use of such data for assessing psychopharmacological treatment efficacy as well as long-86 

term therapeutic disease modification in neuropsychiatric conditions. 87 

Materials and Methods 88 

Participants. All participants were healthy, cognitively normal adults, recruited from two different 89 

centers (Table 1, Supplementary Figure S1). Elderly participants were retrospectively selected from the 90 

Hillblom Aging Network, an extensively characterized longitudinal cohort assessed at the University of 91 

California, San Francisco (UCSF) Memory and Aging Center. Subjects were required to have a Clinical 92 

Dementia Rating Scale score (36) of 0 (range 0-3) and a Mini-Mental State Examination score (37) of 28 93 

(range 0-30) or higher. Secondary inclusion criteria were based on availability of the Interpersonal 94 

Reactivity Index, a widely used questionnaire measuring emotional and cognitive empathy. Out of 224 95 

elderly subjects with a tf-fMRI scan and at least one Interpersonal Reactivity Index available, a cross-96 

sectional cohort of 121 elderly adults was selected based on availability of the Interpersonal Reactivity 97 

Index within three months of the tf-fMRI scan. A second sample was built based on availability of 98 

longitudinal tf-fMRI scans. Out of total 184 older adults with longitudinally assessed tf-fMRI, 68 were 99 

excluded because they overlapped with the cross-sectional sample (N = 121, described above) and 72 100 

were excluded since they did not meet our selection criteria of being scanned twice within a 5-13 month 101 

interval. This procedure resulted in a final selection of 44 participants having longitudinal data and that 102 

did not overlap with the cross-sectional sample. All visits included neuropsychological testing and a 103 

neurologic exam in addition to a structural MRI and tf-fMRI scan. Exclusion criteria included a history of 104 

drug abuse, psychiatric or neurological conditions, and current use of psychoactive medications. 105 

Twenty additional younger participants were recruited from a simultaneous FDG-PET/tf-fMRI study at 106 

the Klinikum rechts der Isar, Technische Universität München (38). Neuroimaging data was assessed 107 

twice within an interval of one month, during task-free conditions with either eyes closed or eyes open. 108 

Participants were randomly assigned to one of the two conditions, resulting in eight participants 109 

assessed with eyes closed at the first and with eyes open at the second scan, and 12 participants 110 

assessed with eyes open at the first and eyes closed at the second scan. Exclusion criteria included a 111 

history of psychiatric or neurological conditions, use of psychoactive medications, pregnancy, and renal 112 

failure.  113 

For all samples, written informed consent was obtained from all involved participants and the study was 114 

approved by the institutional review board where the data was acquired (UCSF/Klinikum rechts der Isar). 115 

Empathy Assessment. The Interpersonal Reactivity Index (39) was completed by the participant’s 116 

informant within three months of tf-fMRI scan. This questionnaire is composed by four subscales, each 117 
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one consisting of 7 questions that can comprehensively reach a maximum score of 35. While empathic 118 

concern and personal distress measure emotional aspects of empathy, perspective taking and the 119 

fantasy score are designed to assess cognitive aspects of empathy. The Interpersonal Reactivity Index 120 

was chosen since it has been widely used to assess different aspects of empathy in healthy and 121 

neuropsychiatric conditions (39, 40). For example, studies in frontotemporal dementia, a 122 

neurodegenerative diseases of socioemotional dysfunction, have shown that deficits in subscales of the 123 

Interpersonal Reactivity Index are linked to structural deterioration of the aINS and regions connected to 124 

the aINS such as the anterior cingulate and orbitofrontal cortices (40, 41).  125 

Neuroimaging data acquisition. The cross-sectional and longitudinal cohorts from the Hillblom Aging 126 

Network were scanned at the UCSF Neuroscience Imaging Center on a Siemens Trio 3T scanner. A T1-127 

weighted MP-RAGE structural scan was acquired with acquisition time=8 min 53 sec, sagittal orientation, 128 

a field of view of 160 x 240 x 256 mm with an isotropic voxel resolution of 1 mm
3
, TR=2300 ms, TE=2.98 129 

ms, TI=900 ms, flip angle=9˚. Task-free T2*-weighted echoplanar fMRI scans were acquired with an 130 

acquisition time=8 min 6 sec, axial orientation with interleaved ordering, field of view=230 x 230 x 129 131 

mm, matrix size=92 x 92, effective voxel resolution=2.5 x 2.5 x 3.0 mm, TR=2000 ms, TE=27 ms, for a 132 

total of 240 volumes. During the 8-minute tf-fMRI acquisition protocol, participants were asked to close 133 

their eyes and concentrate on their breathing. 134 

Data from the Klinikum rechts der Isar was acquired on an integrated Siemens Biograph scanner capable 135 

of simultaneously acquiring PET and MRI data (3T). FDG-PET activity and tf-fMRI was simultaneously 136 

measured during the initial 10 min immediately after bolus injection of the FDG tracer. Scanning was 137 

performed in a dimmed environment obtained by switching off all lights, including those in the scanner 138 

bore. Subjects were instructed to keep their eyes closed or open, to relax, to not think of anything in 139 

particular, and to not fall asleep. MRI data were acquired using the following scanning parameters: Task-140 

free echoplanar fMRI scans: TR, 2.000 ms; TE, 30 ms/angle, 90°; 35 slices (gap, 0.6 mm) aligned to AC/PC 141 

covering the whole brain; sFOV, 192 mm; matrix size, 64 x 64; voxel size, 3.0 x 3.0 x 3.0 mm
3
 (each 142 

measurement consists of 300 acquisitions in interleaved mode with a total scan time of 10 min and 8 s); 143 

MP-RAGE: TR, 2.300 ms; TE, 2.98 ms; angle, 9°; 160 slices (gap, 0.5 mm) covering the whole brain; FOV, 144 

256 mm; matrix size, 256 x 256; voxel size, 1.0 x 1.0 x 1.0 mm
3
; total length of 5 min and 3 s.  145 

Neuroimaging data preprocessing. Before preprocessing, all images were visually inspected for quality 146 

control. Images with excessive motion or image artifact were excluded. T1-weighted images underwent 147 

segmentation using SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/). For each tf-fMRI scan, 148 

the first five volumes were discarded. SPM12 and FSL (http://fsl.fmrib.ox.ac.uk/fsl) software were used 149 

for subsequent tf-fMRI preprocessing. The remaining volumes were slice-time corrected, realigned to 150 

the mean functional image and assessed for rotational and translational head motion. Volumes were 151 

next co-registered to the MP-RAGE image, then normalized to the standard MNI-152 healthy adult brain 152 

template using SPM segment, producing MNI-registered volumes with 2 mm
3
 isotropic resolution. These 153 

volumes were spatially smoothed with a 6 mm radius Gaussian kernel and temporally bandpass filtered 154 

in the 0.008-0.15 Hz frequency range using fslmaths. Nuisance parameters in the preprocessed data 155 

were estimated for the CSF using a mask in the central portion of the lateral ventricles and for the white 156 

matter using a highest probability cortical white matter mask as labeled in the FSL tissue prior mask. 157 

Additional nuisance parameters included the 3 translational and 3 rotational motion parameters, the 158 
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temporal derivatives of the previous 8 terms (white matter/CSF/6 motion), and the squares of the 159 

previous 16 terms (42). Subjects were included only if they met all of the following criteria: no inter-160 

frame head translations greater than 3 mm, no inter-frame head rotations greater than 3 degrees, and 161 

less than 24 motion spikes (defined as inter-frame head displacements > 1 mm), less than 10% of the 162 

total  number of frames. Nuisance parameters were regressed out from the filtered data using fslmaths, 163 

and masked with a binarized, skullstripped MNI-152 brain mask. The WM/CSF/head movement 164 

denoised data was used for the subsequent time-varying functional connectivity analysis. Findings with 165 

global signal regression are not presented in the main body of the manuscript but were generated for 166 

the longitudinal dataset and are reported as sensitivity analysis in the Supplement. 167 

Time-varying functional connectivity analysis. For each individual, average blood oxygen level dependent 168 

signal time courses were extracted from the right and left ventral and dorsal aINS using four regions-of-169 

interest from the Brainnetome Atlas (http://atlas.brainnetome.org/). In order to assess the impact of 170 

seed region selection, in the cross-sectional dataset activity time courses were also extracted from a 171 

language-relevant region centered on the left inferior frontal gyrus (IFG), using a region-of-interest 172 

defined in a previous study (43). Using in-house custom scripts based on Python 173 

(https://www.python.org/) and FSL, a sliding-window approach was implemented to generate time-174 

varying seed-to-whole-brain connectivity maps (Figure 1A). The derived time series from the aINS and 175 

the entire tf-fMRI scan of each subject were divided into sliding-windows of 18 TRs (36 s) in steps of 1 TR 176 

creating 218 (275 for eyes closed/open) untapered, rectangular windows. At each window, linear 177 

regression was used to derive seed-to-whole-brain time-varying functional connectivity maps for each 178 

aINS seed (Figure 1B). A window size of 36 seconds was chosen based on previous research showing that 179 

window sizes between 30 and 60 seconds capture additional variations in functional connectivity not 180 

found in larger window sizes (24, 25, 44). Ideal sliding-window size has been explored by additional 181 

methodological work assessing the relationship between window length and cut-off frequencies, 182 

supporting the use of sliding-windows between lengths of 30–60 seconds for tf-fMRI data preprocessed 183 

using a low-pass filter set at 0.15 Hz (45). These studies are further supported by empirical findings 184 

showing that cognitive states can be discerned within such window lengths (46, 47). Nevertheless, in 185 

order to assess the impact of sliding-window length, control analyses were performed with window 186 

lengths of 72 TR (144 s). The resulting findings did not significantly differ from the reported findings with 187 

windows of 36 s (Supplementary Results and Figure S2); therefore 36 s windows were used throughout. 188 

The code used to derive time-varying functional connectivity maps is provided in the Appendix of the 189 

Supplement and in GitLab (https://gitlab.com/juglans/sliding-window-analysis/tree/master). The 190 

derived time-varying functional connectivity maps were finally standardized to z-scores (see Video 1 for 191 

left ventral aINS time-varying functional connectivity maps of a typical study participant), masked with a 192 

binarized gray matter mask, vectorized, and concatenated across subjects resulting in windows x voxels 193 

matrices for each aINS seed. K-means clustering was then applied to the concatenated window matrices 194 

using a k = 4 to produce four clusters representing four time-varying functional connectivity modes of 195 

aINS subregions present across the course of the functional scan (Figure 1C). The k-means algorithm 196 

used Euclidean distance, and an optimal solution was selected after 100 iterations and 10 replications. 197 

The optimal number of clusters, referred to henceforward as modes, was determined using elbow and 198 

silhouette plots and by performing additional clustering solutions with k = 3, 5, and 6 (Supplementary 199 

Results and Figure S3). With lower k solutions, the identified modes merged, resulting in information 200 

loss. Using higher k solutions resulted in the generation of redundant sub-modes, exemplified by Mode 201 
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4 of the left ventral aINS that would split in anterior and posterior centered components 202 

(Supplementary Figure S3B). A total of three clustering analyses per aINS subregion were independently 203 

performed on time-varying functional connectivity windows: one on the cross-sectional dataset; one on 204 

the longitudinal dataset; and one on the eyes closed/open dataset (see Supplementary Figure S1 for a 205 

schematized summary of k-means clustering analyses performed).  206 

Group-averaged maps of the four identified modes were generated, for each seed region, using the 207 

mode-specific centroid maps rendered using k-means clustering. The spatial similarity of modes derived 208 

from distinct aINS subregions and distinct groups was assessed by vectorizing the mode’s template maps 209 

and performing Pearson’s correlation analyses. To assess the distinct spatial contribution of major large-210 

scale brain networks to time-varying connectivity modes, we used publicly available templates of major 211 

brain networks from a study investigating the functional network organization of the human brain 212 

(48)(https://www.jonathanpower.net/2011-neuron-bigbrain.html). Briefly, in this study subgraphs 213 

corresponding to major brain systems were derived from tf-fMRI data of > 300 healthy adults by 214 

retaining 2% of the strongest correlations. This procedure resulted in 12 binary templates spanning 215 

cognitive, primary sensory and subcortical systems: the salience, default, cingulo-opercular task-control, 216 

executive-control, ventral attention, dorsal attention, auditory, visual, ventral sensorimotor, dorsal 217 

sensorimotor, medial temporal lobe (“memory retrieval”) and subcortical networks (4, 48, 49) 218 

(Supplementary Figure S4). Subsequently, for each aINS subregion the averaged z-score value enclosed 219 

within these brain network templates was extracted from the mode-specific centroid maps generated in 220 

the cross-sectional dataset.  221 

Further, the assignment of each window to a specific mode was used to derive: (i) the number of 222 

transitions from one mode to another; (ii) a fractional occupancy metric for each mode, defined as the 223 

number of windows assigned to that mode divided by the total number of windows; and (iii) how often 224 

aINS subregions simultaneously occupy distinct mode configurations in time. To identify meta-profiles of 225 

aINS time-varying functional connectivity, individual subject fractional occupancy profiles, defined as a 226 

vector of 16 elements summarizing the time fraction separately spent by individual aINS subregions on 227 

the four identified modes, were derived from the cross-sectional dataset. Fractional occupancy profiles 228 

were subsequently clustered using k-means with a clustering solution of k = 4 based on a silhouette 229 

analysis (using Euclidean distance, 100 iterations, and 10 replication). On the cross-sectional sample, 230 

static functional connectivity maps were also generated through voxel-wise regression analyses of each 231 

aINS seed’s time-course for the duration of the entire scan, following previous established methods (50, 232 

51).  233 

Statistical analysis. Statistical analyses were carried out using R (https://www.r-project.org/) and 234 

Matlab-R2018 (https://www.mathworks.com/products/matlab.html). Pearson’s correlation was used to 235 

assess the spatial similarity of modes derived from different clustering analyses, using maps thresholded 236 

for z-values higher than 0.3 and lower than -0.3.  237 

In the cross-sectional dataset, the Shannon diversity index was used to analyze whether aINS subregions 238 

of an individual subject transitioned repeatedly between distinct modes or showed instead a stereotypic 239 

behavior spending most of the time only in a specific aINS mode:  240 

Shannon diversity index  � � ∑ ��������������  241 

wherein p is the fractional occupancy of an aINS subregion in a specific time-varying functional 242 

connectivity mode. A Shannon diversity index of 1.4 indicates that all modes are equally occupied by the 243 
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aINS, while the lower the Shannon diversity index, the higher the fractional occupancy of the aINS on 244 

one specific mode. 245 

In the cross-sectional dataset, one-way ANOVAs were used to investigate whether aINS subregions 246 

differed, within subjects, in terms of mode-specific fractional occupancy, number of transitions, and 247 

Shannon diversity index. For descriptive purposes, averages and standard deviations derived over all 248 

aINS subregions and modes are reported. Additionally, for each meta-profile cluster identified in the 249 

cross-sectional dataset, one-way ANOVAs were used to assess differences in mode-specific fractional 250 

occupancy averaged across aINS subregions. The assignment of participant to four meta-profiles of time-251 

varying aINS fractional occupancy was additionally used to test differences in aINS subregions’ static 252 

connectivity using ANOVA models and post-hoc t-tests implemented in SPM12 (height threshold 253 

p<0.005; extent threshold p<0.05 FWE corrected for multiple comparisons). 254 

Finally, in the cross-sectional dataset, four multiple linear regression models were used to test the 255 

association of mode-specific fractional occupancies with subscales of the Interpersonal Reactivity Index 256 

(39). Subscales of the Interpersonal Reactivity Index were used as dependent variables, and each model 257 

contained the mode-specific fractional occupancies averaged across aINS subregions. Each model was 258 

corrected for age, sex, and sum frame-wise head displacement (p < 0.05 uncorrected for multiple 259 

comparisons). To assess specificity of the aINS results, four additional models were estimated, using 260 

subscales of the Interpersonal Reactivity Index as dependent variables and fractional occupancy of time-261 

varying functional connectivity modes derived from the left IFG as predictors. 262 

For the longitudinal datasets, cosine similarity was used to assess the similarity of fractional occupancy 263 

profiles across distinct scanning dates.  264 

Cosine similarity  � 1 � 
 ∑ 	�
��

���

�∑ 	
�

��

���
�∑ 


�

��

���

� 265 

Where A and B are the vectorized fractional occupancy profiles of all aINS subregions at two different 266 

scanning dates. Cosine similarity varies between 1 and 0, with 1 indicating identical fractional occupancy 267 

profiles. Paired t-tests were performed to assess differences in fractional occupancy in the longitudinal 268 

and in the eyes closed/open datasets. All statistical findings are reported at p < 0.03, two-tailed, 269 

uncorrected for multiple comparisons except where specified otherwise.  270 

 271 

Results 272 

Bilateral ventral and dorsal aINS occupy four overlapping but distinct time-varying functional 273 

connectivity modes 274 

By combining seed-to-whole-brain functional connectivity, sliding-window analysis, and k-means 275 

clustering, we found that aINS subregions adopt four overlapping but distinct large-scale configurations 276 

or “modes” of time-varying functional connectivity (Figure 2A). All modes were characterized by 277 

bilateral connectivity between the aINS and anterior cingulate cortices. Modes could be distinguished 278 

from each other, however, by specific patterns of connectivity to other brain regions (Figure 2A and 279 

Supplementary Table S1). In Mode 1, all four aINS subregions showed connectivity to the anterior 280 
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midcingulate/pre-supplementary motor area, right frontal operculum, and dorsal parietal and 281 

dorsolateral prefrontal areas that together make up the task-control network.  Mode 2 was 282 

characterized by negative connectivity to primary visual and sensorimotor areas and prominent 283 

connectivity to the ventral striatum and thalamus. Mode 3 showed inverted connectivity patterns to the 284 

same regions. Finally, Mode 4 showed connectivity patterns aligned with more ventral salience network 285 

regions, including pre- and sub-genual anterior cingulate and orbitofrontal cortices, with additional 286 

connectivity to the temporal poles for the right ventral aINS. All four modes were identified in each aINS 287 

subregion, as shown by the correlation matrix highlighting the spatial correspondence of equivalent 288 

modes (Figure 2B). Important distinctions were found, however, when comparing dorsal and ventral 289 

aINS connectivity patterns within modes. In Mode 1, the dorsal aINS showed prominent anti-290 

correlations to the precuneus, angular gyrus, and medial prefrontal cortex regions that make up the 291 

default mode network (16). In Mode 4, the ventral aINS showed a more ventral connectivity pattern that 292 

encompassed subgenual anterior cingulate cortex and temporal poles, when compared to the dorsal 293 

aINS (Figure 2C, Supplementary Figure S6A). Modes derived from homologous left and right aINS regions 294 

differed from each other mainly with regard to the extent of ipsilateral connectivity to neighboring 295 

regions (Supplementary Figure S6B-C). Importantly, similar aINS time-varying functional connectivity 296 

modes were identified using longer sliding-window lengths (Supplementary Figure S2), lower and higher 297 

clustering solutions (Supplementary Figure S3), and data preprocessed using global signal regression 298 

(Supplementary Figure S7).  299 

aINS subregions coherently transition between time-varying functional connectivity modes 300 

Average fractional occupancy, i.e. the proportion of time spent by aINS subregions in the four time-301 

varying functional connectivity modes ranged from 0.18 (left ventral aINS in Mode 2) to 0.30 (right 302 

ventral aINS in Mode 1), with an overall average of 0.25 +/- 0.20 (Figure 3A). Importantly, no significant 303 

differences in mode-specific fractional occupancy were found across the four aINS subregions (Mode 1: 304 

F = 0.2, p = 0.82; Mode 2: F = 0.7, p = 0.56; Mode 3: F = 0.4, p = 0.77; Mode 4: F = 0.5, p = 0.71). In only a 305 

few participants did aINS subregions spend disproportionate time in only one mode. The number of 306 

transitions was also comparable across aINS subregions (F = 0.4, p = 0.759; Figure 3B), with an overall 307 

average of 18.0 +/- 6.6 transitions over the task-free acquisition. In particular, our data shows that there 308 

were no direct transitions between the primary sensory anticorrelated Mode 2 and the primary sensory 309 

correlated Mode 3 (Supplementary Figure S8), suggesting that aINS subregions need to transition to 310 

modes rooted in cognitive networks before occupying primary sensory-centered modes characterized by 311 

opposing connectivity patterns. The Shannon diversity index was used to quantify the diversity of 312 

fractional occupancy and to compare this diversity across subregions. On average, aINS subregions 313 

showed high Shannon diversity, suggesting that each subregion moved between modes in most 314 

subjects, rather than stacking on a single mode. The overall average Shannon diversity index of 315 

fractional occupancy across aINS subregions was 1.0 +/- 0.2 and did not significantly differ between 316 

subregions (F = 0.8; p = 0.503; Figure 3C). Subject-level fractional occupancy profiles are illustrated in 317 

Figure 3D, which shows two subjects with contrasting signatures. We finally sought to assess whether 318 

aINS subregions coherently occupy the same modes at the same time, or for instance, how often the 319 

right ventral and dorsal aINS are simultaneously connected to Mode 1. For each subject and each aINS 320 

subregion, we assessed how often possible mode configurations were jointly occupied in time. This 321 

analysis revealed a tendency across aINS subregions to occupy the same modes in time (Figure 3E). On 322 

average, the right ventral and dorsal aINS occupied the same modes 50% of the time, the left ventral 323 
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and dorsal aINS 53% of the time, the right and left ventral aINS in 51% of the time, and the right and left 324 

dorsal aINS 61% of the time. These findings suggest an overall tendency for aINS subregions to 325 

cohesively engage the same modes over time under task-free scanning conditions. 326 

Individual aINS connectivity mode occupancy profiles are reproducible across samples and within 327 

subjects over time 328 

To assess the generalizability and reproducibility of our findings, we next turned to a longitudinal 329 

healthy aging dataset, which consisted of 44 participants who were scanned twice over an interval 330 

between 5-13 months. Clustering of time-varying connectivity windows identified modes that strongly 331 

resembled the four modes derived from the larger (and non-overlapping) cross-sectional dataset (Figure 332 

4A-D and Supplementary Figure S5 panels A, C and E). Average fractional occupancies of aINS subregions 333 

in the four modes were comparable with the cross-sectional sample (comparing Figure 3A to 4A-D). 334 

Across aINS subregions and modes, paired t-tests revealed no significant differences in fractional 335 

occupancy when comparing the first scanning date with the second (p < 0.05 uncorrected for multiple 336 

comparisons, for details on paired t-test statistics see Supplementary Table S2). Within subjects, cosine 337 

similarity analysis showed that most participants had relatively stable fractional occupancy profiles over 338 

time (mean cosine similarity = 0.70 +/- 0.19 s.d.), as further supported by the inverted bell-shaped 339 

distribution of cosine similarity (Figure 5A). Stable fractional occupancies are exemplified in Subjects 10 340 

(first scanning date in red; second scanning date in blue; cosine similarity = 0.98) and 41 (cosine 341 

similarity = 0.92) (Figure 5B-C). A few participants, however, showed very different fractional occupancy 342 

profiles when comparing the two scanning dates, as exemplified by Subjects 21 (cosine similarity = 0.46)  343 

and 26 (cosine similarity = 0.24) (Figure 5D-E). Overall, however, the temporal stability of the individual 344 

profiles suggests a major contribution from trait-level factors. 345 

Eye opening decreases the time aINS spends anticorrelated with visual cortices  346 

Independently performed clustering of time-varying connectivity data from the eyes closed/open 347 

dataset revealed similar aINS modes to those identified in the cross-sectional and longitudinal aging 348 

datasets (Figure 6A-B and Supplementary Figure S5 panels B, D and E). For all subregions except the 349 

right ventral aINS, participants showed higher fractional occupancies in the anti-correlated primary 350 

sensory/motor Mode 2 with eyes closed and higher fractional occupancies in the task-control Mode 1 351 

with eyes open (p < 0.05 uncorrected, for details on paired t-test statistics see Supplementary Table S2).  352 

Time-varying functional connectivity meta-profiles show that aINS subregions cohesively occupy the 353 

same modes  354 

Individual subjects were clustered into meta-profiles (see Methods “Time-varying functional connectivity 355 

analysis”), based on the tendency of their aINS subregions to occupy specific time-varying functional 356 

connectivity modes. Individual fractional occupancy profiles of the cross-sectional sample (n = 121) were 357 

clustered into four clusters using k-means. Silhouette plots were used to choose the ideal number of 358 

clusters, k = 4 (Supplementary Figure S9). This analysis revealed four meta-profiles, characterized by 359 

preferred fractional occupancy in one of the four time-varying functional connectivity modes (Figure 360 

7A). Meta-profile 1 (in green, 26 subjects) was characterized by a tendency to spend time in the task-361 

control Mode 1 (see Subject 22, Figure 7A); Meta-profile 2 (in blue, 31 subjects) was characterized by a 362 

tendency to spend time in the sensory anticorrelated Mode 2 (see Subject 79, Figure 7A); Meta-profile 3 363 

(in violet, 44 subjects) was characterized by a tendency to spend time in the sensory connected Mode 3 364 
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(see Subject 80, Figure 7A); while Meta-profile 4 (in red, 20 subjects) was characterized by a tendency to 365 

spend time in the salience network Mode 4 (see Subject 88, Figure 7A). To evaluate statistical 366 

differences in mode occupancy across meta-profiles, we averaged the time spent in each mode across 367 

aINS subregions and used one-way ANOVAs to test for significant group differences in mode-specific 368 

fractional occupancy across the distinct aINS meta-profiles (Meta-profiles 1, F = 50.1, p < 0.0001; Meta-369 

profile 2, F = 39.8, p < 0.0001; Meta-profile 3, F = 79.6, p < 0.0001; Meta-profile 4, F = 46.1, p < 0.0001, 370 

see also Figure 7B). These differences were further statistically assessed via post-hoc t-tests. In 371 

summary, these analyses revealed a preference for aINS subregions to collectively spend similar 372 

fractions of time in a given mode, whereas distinct modes were primarily occupied by subjects in 373 

different meta-profiles.  374 

Next, we asked whether the constituents of a given meta-profile would show group-level differences in 375 

terms of their static functional connectivity patterns. We therefore compared groups based on static 376 

functional connectivity of aINS subregions across the four meta-profiles described above. This analysis 377 

revealed that participants in Meta-profile 1 showed prominent static anticorrelation of the dorsal aINS 378 

to the default mode network when compared to participants clustered on other meta-profiles. 379 

Participants clustered on Meta-profile 2 and 3 showed marked visual and sensorimotor cortex static 380 

hypoconnectivity and hyperconnectivity, across all aINS subregions, when compared to participants of 381 

other meta-profiles; while participants in Meta-profile 4 showed prominent static connectivity of all 382 

aINS subregions to more ventral frontal regions (Supplementary Figure S10). In summary, key 383 

components of the time-varying connectivity modes were reflected in static connectivity differences 384 

between meta-profile-based groups.  385 

Comparison of aINS and left IFG time-varying functional connectivity 386 

To control for the location of the seed, we derived time-varying functional connectivity modes by 387 

seeding the left IFG. Time-varying functional connectivity modes of the left IFG shared some common 388 

themes with modes identified using aINS subregions (Supplementary Figure S11A). The four identified 389 

modes showed similar connectivity to regions of the language network, such as the left IFG, pre-390 

supplementary motor area, and superior parietal lobule (43, 52). This contrasts with the modes 391 

identified in aINS subregions that showed overlapping time-varying functional connectivity to typical 392 

task-control and salience network regions (Supplementary Figure S11B). Modes derived from both the 393 

aINS and left IFG, however, showed similar patterns of default mode network anticorrelation (Mode 1), 394 

primary sensory anticorrelation (Mode 2), and primary sensory hypercorrelation (Mode 3). A fourth 395 

mode was identified using the left IFG, showing time-varying functional connectivity to regions of the 396 

dorsal attention network (49) (Mode 4).  397 

Time spent by the aINS in the task-control and salience networks correlates with metrics related to 398 

dispositional empathy  399 

A key question of this work concerns whether individual differences in aINS time-varying connectivity 400 

relate to differences in aINS-associated traits and functions. Among the many tasks that activate and 401 

depend on the anterior insula, empathy is one of the best documented (1, 18). The Interpersonal 402 

Reactivity Index is an informant-based questionnaire widely used to assess distinct aspects of empathy 403 

(39). Emotional aspects of empathy are covered by the empathic concern and personal distress 404 

measures, with the first assessing another-centered emotional response, while the second reflects 405 

general anxiety and self-oriented emotional reactivity. Perspective taking and fantasy scores measure 406 
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cognitive aspects of empathy, with the first assessing the tendency to spontaneously imagine the 407 

cognitive perspective of another person, while the second measures the tendency to project oneself 408 

into the experiences of fictional characters. Mode-specific fractional occupancies were averaged across 409 

aINS subregions and used as regressors in four models using subscales of the Interpersonal Reactivity 410 

Index as dependent variables. These multiple linear regression models were corrected for age, sex, and 411 

sum frame-wise head displacement and identified two significant positive associations with time-varying 412 

connectivity metrics. First, fractional occupancy in the task-control Mode 1 predicted higher levels of 413 

personal distress, reflecting self-oriented feelings of personal anxiety and unease in tense interpersonal 414 

settings (β = 7.1; p < 0.05 uncorrected for multiple comparisons; Supplementary Table S3). Second, 415 

fractional occupancy in the salience Mode 4 correlated with higher scores on the fantasy subscale, 416 

reflecting greater ability to transpose one’s self imaginatively into the feelings and actions of fictitious 417 

characters in books, movies, and plays (β = 9.2; p < 0.05 uncorrected for multiple comparisons; 418 

Supplementary Table S3). These results remained significant when removing outliers (Mode 1 and 419 

personal distress β = 6.9, p < 0.05 uncorrected for multiple comparisons; Mode 4 and fantasy score β = 420 

9.2, p < 0.05 uncorrected for multiple comparisons). No significant associations were found between 421 

fractional occupancy in any mode and the empathic concern or perspective taking subscales. As 422 

hypothesized, fractional occupancy of left IFG time-varying connectivity modes was not significantly 423 

associated with any measure of dispositional empathy (p < 0.05 uncorrected for multiple comparisons, 424 

see Supplementary Table S3). 425 

Discussion 426 

To date, most efforts to relate large-scale networks to individual differences have relied on metrics that 427 

capture the topology or strength of node-to-node static functional (or “intrinsic”) connections. Here, we 428 

developed a novel approach combining seed-to-whole-brain functional connectivity, sliding-window 429 

analysis, and k-means clustering on tf-fMRI data to identify distinct time-varying functional connectivity 430 

modes of the aINS, a brain region critical for many human socio-emotional functions (1, 18). These 431 

robust modes were identified across methods and samples, showing both “state” and “trait” 432 

characteristics. In particular, while aINS modes related to sensory processing were modulated by visual 433 

input (eyes closed vs. open conditions during scanning), modes featuring connectivity to cognitive and 434 

emotion processing regions were stable over time and related to measures of dispositional empathy. 435 

Partially overlapping but distinct time-varying aINS functional connectivity modes 436 

Our pipeline reliably identified four time-varying functional connectivity modes of the aINS across 437 

different subregions, methods, and samples. These modes were characterized by common connectivity 438 

of aINS subregions to the contralateral insula and to the anterior cingulate cortex, but could be 439 

differentiated from each other based on recruitment of other brain regions.  Mode 1 was characterized 440 

by a more dorsal connectivity pattern that resembles previous characterizations of a cingulo-opercular 441 

task-control network (4, 14, 53) involving  the bilateral aINS and anterior cingulate cortex, with 442 

additional connectivity to dorsomedial parietal and dorsolateral frontal areas. Mode 2 was characterized 443 

by negative connectivity to primary sensory areas and increased connectivity to the thalamus while 444 

Mode 3 showed an inverted connectivity pattern to these regions. Finally, Mode 4 was characterized by 445 

fronto-insular connectivity to more rostral and ventral portions of the anterior cingulate cortex, 446 

resembling the salience network (4, 8), with additional connectivity to the temporal pole and medial 447 

orbitofrontal cortex, components of the “semantic-appraisal network” (18, 54). These findings are 448 
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consistent with those of a previous region-of-interest-based time-varying functional connectivity study 449 

focusing on the insula, which reported time-varying visual and sensorimotor hyperconnectivity of the 450 

ventral aINS. Our findings differ, however, in that we did not detect positive default mode network 451 

connectivity to the dorsal aINS and that patterns of hypoconnectivity to primary visual and sensorimotor 452 

areas were less apparent in the aforementioned study (15). While left and right aINS subregions 453 

primarily differed with respect to connectivity to regions in the ipsilateral hemisphere, consistent 454 

differences in time-varying functional connectivity at the system-level were identified when comparing 455 

ventral to dorsal aINS subregions. Mirroring static functional connectivity studies and the 456 

aforementioned time-varying connectivity study on the insula (7, 8, 15), the task-control Mode 1 of the 457 

dorsal aINS showed stronger anti-correlations to the default mode network than did its ventral 458 

counterpart. This observation is in line with salience network models proposing that the dorsal aINS 459 

receives ventral aINS input streams regarding the moment-to-moment condition of the body and then, 460 

based on these inputs, recruits task control (14) and executive control (4) network resources to maintain 461 

cognitive set and guide behavior while inhibiting the default mode network (13). The salience network 462 

Mode 4 showed stronger connectivity between ventral aINS and ventromedial prefrontal, orbitofrontal, 463 

and temporopolar cortices when compared to its dorsal aINS counterpart. This finding is in line with 464 

functional-anatomical models suggesting a close alliance between the salience and the semantic 465 

appraisal networks (13, 18, 54), whose main components (the temporal pole, ventral striatum, medial 466 

orbitofrontal cortex, and amygdala) have been proposed to interact with autonomic representations in 467 

the aINS to construct the meaning and significance of social and non-social stimuli under prevailing 468 

conditions (13, 18, 54). Importantly, we did not find any differences across aINS subregions in the 469 

number of transitions or in the diversity of fractional occupancy profiles. Moreover, our analyses 470 

exploring overlapping mode occupancy across aINS subregions revealed that distinct aINS subregions 471 

tend to occupy the same mode at the same time. Further support for this conclusion comes from the 472 

clustering analysis of individual fractional occupancy profiles, which led to the identification of four 473 

meta-profiles characterized by occupancy of a dominant mode. Although our findings are not conclusive 474 

on whether aINS subregions always engage the same mode in time, they comprehensively suggest a 475 

tendency for coherent mode occupancy that could potentially underpin specific trait characteristics or 476 

behavioral states. Future studies could leverage methods such as directed and effective connectivity to 477 

assess the temporal relationships between intrinsic time-varying activity of distinct aINS subregions, 478 

which could be lagged, phase-shifted, or anticorrelated over time. In order to assess the specificity of 479 

aINS time-varying functional connectivity modes, we assessed and compared time-varying functional 480 

connectivity of the left IFG, a region involved in language processing and syntax production (43, 52, 55). 481 

The left IFG showed region-specific contributions from language processing regions but also displayed 482 

pronounced anticorrelation to default mode network regions in Mode 1 and similar time-varying 483 

connectivity to the same sensory regions found in Modes 2 and 3 derived from the aINS. These findings 484 

suggest that distinct brain regions, although characterized by seed specific connectivity patterns, may 485 

cohesively transition between broader modes characterized by shared regional time-varying functional 486 

connectivity patterns, possibly revealing a fundamental property of functional brain organization. 487 

“State” characteristics of aINS time-varying functional connectivity modes 488 

Having determined that two of the four major modes of aINS connectivity involved varying connectivity 489 

to sensory, and, most notably, visual cortices, we chose to evaluate how sensory input modifies aINS 490 

connectivity dynamics. To this end, we studied the same participants under eyes closed and eyes open 491 
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scanning conditions. Compared to the eyes open condition, participants with eyes closed spent 492 

significantly less time in the task-control network Mode 1 but more time in the primary sensory anti-493 

correlated Mode 2. This finding is consistent with recent static connectivity studies revealing occipital 494 

and sensorimotor functional changes in eyes closed versus open scanning conditions (56, 57) and 495 

suggests that environmental conditions impact time-varying aINS connectivity by shifting the major 496 

modes occupied. Therefore, a measurable component of time-varying connectivity may reflect external 497 

cues such as conditions of eyes closure (38, 58), mental states (59, 60), or internally driven physiological 498 

conditions of the body (12). Finally, it is tempting to speculate that aINS occupancy of the visually 499 

anticorrelated Mode 2 might reflect levels of drowsiness and fluctuations in alertness. Intriguingly, a 500 

recent study investigated wakefulness fluctuations as a source of time-varying functional connectivity by 501 

combining simultaneously acquired tf-fMRI and EEG data (61). This study revealed progressive whole-502 

brain hypoconnectivity during deeper sleep stages (N2 and N3) when compared to wakefulness, raising 503 

the possibility that the increased aINS fractional occupancy in Mode 2 during eyes closed is related to 504 

reduced levels of alertness and wakefulness.  505 

“Trait” characteristics of aINS time-varying functional connectivity modes 506 

To the extent that modes and profiles of time-varying aINS functional connectivity represent traits, 507 

individuals should show stability of these features over time. To assess this stability, we studied a 508 

longitudinal dataset of cognitively healthy older adults. The four aINS modes were stable over an 509 

average of 9 months in this sample, whether assessed by comparing fractional occupancy at the group 510 

level via parametric tests or at the individual level via cosine similarity. These findings converge with 511 

several recent studies showing that individual topologies in static functional brain organization are 512 

highly stable across time and show unique features with promise for use in precision functional mapping 513 

of individual human brains (62–65). In line with previous work associating aINS function with social-514 

emotional functions such as empathy (15, 66, 67), we found that the time aINS subregions cohesively 515 

spent in the task-control Mode 1 was positively associated with personal distress, while the time aINS 516 

subregions spent in the salience Mode 4 was positively associated with the fantasy score from the 517 

Interpersonal Reactivity Index. Caution is advised, however, in the interpretation of these findings since 518 

the statistical associations were modest and did not survive correction for the four models used to 519 

assess these relationships. Nevertheless, the identified associations were specific to the aINS (compared 520 

to the left IFG) and survived when removing outliers, adding tentative support for the trait 521 

characteristics of aINS time-varying functional connectivity. Nonetheless, the strongest evidence for a 522 

trait component to the identified modes remains their reproducibility in individual subjects. The 523 

personal distress subscale measures "self-oriented" feelings of personal anxiety and unease in tense 524 

interpersonal settings. The level of personal distress was associated with greater time spent in a mode 525 

characterized by dorsal cingulo-opercular regions overlapping with the task-control network and anti-526 

correlations to the default mode network, in line with findings associating connectivity of the anterior 527 

cingulate cortex and insula with pre-scan anxiety levels, dispositional anxiety, and affective symptoms in 528 

mood disorders (4, 20, 68). The fantasy score reflects the capacity of participants to transpose 529 

themselves imaginatively into the feelings and actions of fictitious characters in books, movies, and 530 

plays. This capacity requires a high level of social contextualization and involves semantic processes 531 

typically associated with regions of the semantic appraisal network, such as the temporal lobes and 532 

ventro-medial prefrontal areas (13, 18, 54), the same regions contributing to the salience Mode 4. 533 

Importantly, fractional occupancies of time-varying functional connectivity modes derived from the left 534 
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IFG were not significantly associated with measures of dispositional empathy, suggesting a degree of 535 

specificity of these findings to the aINS. 536 

Limitations and future directions 537 

Although time-varying functional connectivity analyses have been of increasing interest to the human 538 

brain mapping community, consensus is still lacking about whether time-varying fluctuations in BOLD 539 

signal coherence reflect brain physiology or are mainly due to noise stochastically occurring in the 540 

scanner between the acquisition of distinct brain volumes (69). One limitation of this work relates to the 541 

use of hard clustering techniques such as k-means to extract modes of time-varying functional 542 

connectivity, since distinct modes are likely to reflect extremes in time-varying connectivity gradients 543 

rather than discrete clusters of topographical connectivity. Therefore, the ideal number of derived time-544 

varying connectivity modes may vary depending on the temporal and spatial resolution of the used 545 

dataset, on the investigated anatomical region, and on the specific question of the researcher. We make 546 

no claim that the aINS transitions between only four modes, but since we were interested in large-scale 547 

time-varying connectivity patterns, we deemed it impractical to use an overly fine-grained mode 548 

decomposition by applying higher clustering solutions. Further, the sliding-window approach has been 549 

scrutinized because of its moderate reliability (70) and since its output is prone to influence by head 550 

movement, sliding-window length, and other methodical choices (71–73), such as global signal 551 

regression. In our study, however, we did not find any significant association between time spent by 552 

distinct aINS subregions in a specific mode and summary measures of head movement, as exemplified 553 

by the regression analyses associating fractional occupancy and dispositional empathy, which were 554 

corrected for mean frame-wise head displacement (42, 74). Importantly, our control analyses using the 555 

longitudinal dataset preprocessed with global signal regression resulted in the identification of time-556 

varying functional connectivity modes that highly resembled the time-varying modes derived using data 557 

without global signal regression (Supplementary results and Figure S6). The only exception was for the 558 

primary sensory hyperconnected Mode 3, which was not identified in three out of four aINS subregions, 559 

suggesting that this mode is highly modulated by the global signal. A recent report suggested that noise 560 

sources (for instance motion and respiration) can have a temporally lagged effect on the BOLD signal, 561 

which is greatly reduced by global signal regression (72). However, a recent study investigating time-562 

varying functional connectivity in mice reliably mapped distinct time-varying patterns of tf-fMRI co-563 

activation that occurred at specific phases of global signal fluctuations (75). These findings suggest that 564 

the global signal may partially relate to oscillatory cycling of slowly propagating neural activity, as 565 

observed in lag threads of propagated tf-fMRI signal in the human brain (76) and transient variation in 566 

calcium co-activation patterns in mice (77). Slow oscillation in the global signal have been proposed to 567 

coordinate fluctuating periods of brain network topologies characterized by heightened global 568 

integration and shifts in arousal (30, 78).  569 

Finally, the limitations in temporal resolution affecting the sliding-window approach may also explain 570 

the inability to detect mode-specific fractional occupancy differences between the left and right aINS, 571 

although both regions play a distinct role in autonomic outflow and behavior (11, 12). More 572 

sophisticated methods that preserve the temporal richness of tf-fMRI data, such as hidden Markov 573 

models and Topological Data Analysis (28, 31), may help elucidate lateralized differences in time-varying 574 

connectivity of the left and right aINS. However, the detection of static functional connectivity 575 

heterogeneity informed by time-varying fractional occupancy profiles and the reproducibility of our 576 

findings across distinct preprocessing pipelines, sliding-window lengths, clustering choices, samples, and 577 
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time points (within individuals)(79) increase confidence in the biological relevance of findings. In the 578 

future, our approach could be extended to analyze time-varying functional connectivity of other brain 579 

regions, or to assess time-varying fractional occupancy profiles in psychiatric and neurological disorders 580 

characterized by aINS dysfunction.  581 
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 768 

 769 

 770 

Tables, Figures and Legends 771 

 772 

Table 1. Demographics and sample characteristics 773 

Dataset Cross-sectional Longitudinal Eyes closed/open 

Number of subjects 121 44 20 

Age in years, mean (s.d.) 69.3 (3.6) 72.9 (7.6) 42.8 (6.4) 

Sex (Female/Male) 73/48 25/19 9/11 

Handedness (L/A/R) 0/0/121 6/0/38 0/0/20 

Education in years, mean (s.d.) 17.6 (2.0) 17.5 (1.9) 14.4 (2.6) 

IRI-EC, mean (s.d.) 27.4 (4.8) NA NA 

IRI-PT, mean (s.d.) 24.3 (5.7) NA NA 

IRI-PD, mean (s.d.) 13.1 (5.0) NA NA 

IRI-FS, mean (s.d.) 18.3 (5.1) NA NA 

Interval between scanning dates in 

months, mean (s.d.)  

NA 9.2 (2.7) 1.0 (0.2) 

A = ambidextrous; EC = empathic concern; FS = fantasy score; IRI = Interpersonal Reactivity Index; L = 774 

left; NA = not applicable; PD = personal distress; PT = perspective taking; R = right; s.d. = standard 775 

deviation 776 

  777 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 1, 2019. ; https://doi.org/10.1101/716720doi: bioRxiv preprint 

https://doi.org/10.1101/716720
http://creativecommons.org/licenses/by-nc-nd/4.0/


Pasquini et al

22

 

 778 

779 

Figure 1. Time-varying functional connectivity pipeline. (A) For each individual Si, average BOLD activity780 

time courses were extracted from subregions of the aINS, here the left ventral. (B) For each individual,781 

218 time-varying seed-to-whole-brain connectivity maps (SiW1-SiW218) were generated using a sliding-782 

windows of 18 TRs (36 s) in steps of 1 TR. (C) The derived connectivity windows were vectorized and783 

concatenated across subjects resulting in windows x voxels matrices for each aINS seed. K-means784 

clustering was then applied to the concatenated window matrices using a value of k = 4 to produce four785 

clusters representing four time-varying aINS modes present across the course of the functional scan. (D)786 

Group averaged maps of the four modes were generated using the cluster-specific centroid maps787 

generated through k-means (threshold at -0.5 > z > 0.5). The assignment of each window to a specific788 

mode, was used to derive fractional occupancy profiles for each mode (i.e. the time spent by an aINS789 

subregion in each mode), defined as the number of windows assigned to one mode divided through the790 

total number of generated windows. aINS = anterior insula; BOLD = blood oxygen level dependent signal791 
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792 

Figure 2. Time-varying functional connectivity modes of the aINS. (A) Spatial maps of the four time-793 

varying functional connectivity modes identified across the four aINS subregions in the cross-sectiona794 

dataset. Threshold at -0.5 > z > 0.5, negative connectivity is depicted in blue, positive in red. The right795 

side of the brain is shown on the right side of the image. (B) Correlation matrix reflecting the spatia796 

similarity of modes identified in distinct aINS subregions. (C) Differences in time-varying connectivity797 

between correspondent modes of the right dorsal and ventral aINS (threshold at -0.3 > z > 0.3, higher798 

connectivity of the dorsal aINS is depicted in red, higher connectivity of the ventral aINS in blue). 799 
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Figure 3. Temporal characteristics of the identified aINS time varying functional connectivity modes. 801 

(A) Violin plots reflecting group fractional occupancy in the four identified time-varying functional 802 

connectivity modes across the four aINS subregions. (B) Violin plots representing the number of 803 

transitions between time-varying functional connectivity modes across the four aINS subregions. (C) 804 

Violin plots representing the diversity of fractional occupancy profiles – measured using the Shannon 805 

diversity index – across aINS subregions. This measure reflects whether an aINS subregion tends to 806 

spend similar amounts of time in different modes or spends most of its time in only one mode. (D) Polar 807 

plots schematizing the fractional occupancies of aINS subregions into the four time-varying functional 808 

connectivity modes. On the left side, the fractional occupancy profile of Subject 47 transitions between 809 

several modes, and is characterized by a high number of transitions and by high Shannon diversity index 810 

averaged across aINS subregions. On the right side, we can appreciate the highly stereotyped fractional 811 

occupancy profile of Subject 22, with aINS subregions spending most of their time in a single mode. 812 

Regardless of the subregion, aINS subregions in this participant tend to spend time only in Mode 1, 813 

showing hence a low number of transitions and low Shannon diversity index averaged across aINS 814 

subregions. (E) Heat maps reflecting how specific modes are jointly occupied at the same time by 815 

distinct aINS subregions. Scale bar reflects the average group probability that distinct aINS subregions 816 

occupy certain mode configurations. 817 

 818 

 819 

 820 

 821 
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822 

Figure 4. Time-varying functional connectivity modes across time. In the longitudinal data sample,823 

spatial patterns of time-varying functional connectivity modes where identified across the four aINS824 

subregions bearing high similarity to the modes identified in the cross-sectional sample (maps averaged825 

across both time points, sagittal plane only panels A-D). Fractional occupancy in the identified modes826 

did not significantly differ between the first (red violin plots) and second scanning dates (blue violin827 

plots) ~9 months apart (paired t-test; p < 0.05 uncorrected for multiple comparisons). 828 
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829 

Figure 5. Individual fractional occupancy of aINS subregions across time. (A) Violin plot representing830 

the similarity of aINS fractional occupancy profiles across scanning dates assessed using cosine831 

similarity. Subjects 10, 41, 21 and 26 are highlighted with red circles in the individual data plot. The832 

individual fractional occupancy profiles of these subjects and correspondent cosine similarity values are833 

further schematized in panels B-E, where the fractional occupancies are shown at the first (red) and834 

second (blue) scanning dates. aINS fractional occupancy in Subjects 10 and 41 did not substantially differ835 

between scanning dates (note the overlap in the polar plots and the high cosine similarity index), while836 

Subjects 21 and 26 showed very different aINS fractional occupancy profiles when assessed at different837 

time points (note the little overlap in the polar plot and the low cosine similarity index). 838 
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839 

Figure 6. Time-varying functional connectivity modes during scanning with eyes closed versus eyes840 

open. In the eyes closed/open dataset, spatial patterns of time-varying functional connectivity modes841 

where identified across the left dorsal, right dorsal, left ventral, and right ventral aINS bearing high842 

similarity to the modes identified in the cross-sectional sample (maps averaged across eyes closed/open843 

conditions, sagittal plane only panels A-D). With exception of the right ventral aINS, fractiona844 

occupancy in the visually anticorrelated Mode 2 was significantly higher during eyes closed (red violin845 

plots) than during eyes open scanning (blue violin plots). On the other hand, in the eyes open condition846 

participants spent significantly more time in the task-control Mode 1 (paired t-test; p < 0.05 uncorrected847 

for multiple comparisons).  *p < 0.05; **p < 0.005 848 
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849 

Figure 7. Meta-profiles of time-varying dynamic connectivity modes. (A) Individual fractiona850 

occupancy profiles of aINS subregions were clustered into four clusters, reflecting four meta-profiles of851 

time-varying aINS functional connectivity. 26 subjects were clustered into Meta-profile 1 (triangles,852 

green), 31 into Meta-profile 2 (+ sign, blue), 44 into Meta-profile 3 (circles, violet), and 20 into Meta-853 

profile 4 (x’s, red). Panels show individual fractional occupancy profiles representative of the identified854 

meta-profiles (see black circles in the scatterplots). Across aINS subregions, Subject 22 tended to spend855 

time in Mode 1, Subject 79 in Mode 2, Subject 80 in Mode 3, and Subject 88 in Mode 4. (B) When856 

averaged across aINS subregions, one-way ANOVAs and related post-hoc t-tests reveal that the aINS of857 

participants clustered in Meta-profile 1 showed significantly higher fractional occupancy in Mode 1858 
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Similarly, the aINS of participants clustered on Meta-profiles 2, 3, or 4, spent more time on Modes 2, 3, 859 

or 4, respectively. 860 
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