

1 **Title page**

2 **Title**

3 State and trait characteristics of anterior insula time-varying functional connectivity

4 **Authors**

5 Lorenzo Pasquini¹, Gianina Toller¹, Adam Staffaroni¹, Jesse A. Brown¹, Jersey Deng¹, Alex Lee¹, Katarzyna
6 Kurcyus^{2,3}, Suzanne M. Shdo⁵, Isabel Allen¹, Virginia E. Sturm¹, Yann Cobigo¹, Valentina Borghesani¹,
7 Giovanni Battistella¹, Maria Luisa Gorno-Tempini¹, Katherine P. Rankin¹, Joel Kramer¹, Howard H. Rosen¹,
8 Bruce L. Miller¹, William W. Seeley^{1,4*}

9 **Affiliations**

10 Memory and Aging Center, Departments of Neurology¹ and Pathology⁴, University of California, San
11 Francisco, California USA; Departments of Neuroradiology² and Nuclear Medicine³, Klinikum rechts der
12 Isar, Technische Universität München, Munich, Germany, ⁵Psychology, University of California Berkeley

13 ***Corresponding author:** William W. Seeley, MD. 675 Nelson Rising Lane 94158, San Francisco, California
14 USA. Email: bill.seeley@ucsf.edu. Phone: +1-415-476-2793

15 **Running title:** Time-varying functional connectivity of the anterior insula

16 **Key words:** Anterior insula, socio-emotional functioning, time-varying functional connectivity, trait, state

17 **Abbreviations**

18 Anterior insula = aINS; BOLD = blood oxygen level dependent; inferior frontal gyrus = IFG; task-free
19 functional MRI = tf-fMRI

20 **Abstract**

21 The human anterior insula (aINS) is a topographically organized brain region, in which ventral portions
22 contribute to socio-emotional function through limbic and autonomic connections, whereas the dorsal
23 aINS contributes to cognitive processes through frontal and parietal connections. Open questions
24 remain, however, regarding how aINS connectivity varies over time. We implemented a novel approach
25 combining seed-to-whole-brain sliding-window functional connectivity MRI and k-means clustering to
26 assess time-varying functional connectivity of aINS subregions. We studied three independent large
27 samples of healthy participants and longitudinal datasets to assess inter- and intra-subject stability, and
28 related aINS time-varying functional connectivity profiles to dispositional empathy. We identified four
29 robust aINS time-varying functional connectivity modes that displayed both “state” and “trait”
30 characteristics: while modes featuring connectivity to sensory regions were modulated by eye closure,
31 modes featuring connectivity to higher cognitive and emotional processing regions were stable over
32 time and related to empathy measures.

33

34

35 **Introduction**

36 The human anterior insula (aINS) is a functionally heterogeneous region implicated in functions ranging
37 from interoceptive awareness and emotion processing to time perception and cognitive control (1). In
38 humans, neuroimaging studies have begun to parcellate the aINS, based on its patterns of functional
39 and structural connectivity. For example, task-free fMRI (tf-fMRI) studies, which measure the brain-wide
40 correlation structure in slow (< 0.1 Hz), spontaneous blood oxygen level dependent (BOLD) signal
41 fluctuations (2, 3), have shown that the ventral, agranular aINS is functionally connected to limbic and
42 autonomic processing regions that include the pregenual anterior cingulate cortex, the amygdala, and
43 subcortical structures such as the thalamus and periaqueductal gray (4–8). These regions make up the
44 “salience network”, a large-scale distributed system that represents the homeostatic significance of
45 prevailing stimuli and conditions (9–13). In contrast, the dorsal, dysgranular aINS is connected to a
46 cingulo-opercular “task-control network” whose nodes include dorsolateral and opercular prefrontal,
47 anterior midcingulate, and anterior parietal areas involved in cognitive control processes such as task-
48 set initiation and maintenance (4, 7, 8, 14). Under task-free conditions, both aINS subregions, but
49 perhaps especially the dorsal aINS (8, 15), show activity that is anticorrelated with the “default mode
50 network”, a system including the posterior cingulate cortex, inferior parietal lobules, and precuneus
51 (16). In addition to the dorsal-ventral axis, hemispheric lateralization of the aINS is proposed to help
52 maintain bodily homeostasis by adjusting and balancing autonomic outflow based on bioenergetics
53 demands (1, 10, 11). Recent evidence suggests that while the left-sided (dominant hemisphere) aINS
54 controls parasympathetic tone, the homotopic right (non-dominant) aINS is more closely linked to
55 sympathetic tone and responses (1, 10, 11). Structural and functional changes in aINS subregions have
56 been reported in a variety of neuropsychiatric conditions, ranging from mood and anxiety disorders to
57 schizophrenia, autism, and frontotemporal dementia (13, 17–20).

58 Standard tf-fMRI has helped to reveal the functional organization of the human aINS and other brain
59 areas by providing a snapshot of functional connectivity as averaged across the duration of a scanning
60 session. Although long-range structural connections are assumed to be relatively stable in the adult
61 brain (21), coordinated functional activity is dynamic, with the brain continuously reshaping network
62 configurations in response to prevailing conditions or task demands (22–24). Approaches that capture
63 time-varying connectivity bring the potential to clarify how brain dynamics are organized and relate to
64 function. We reasoned that this approach could help clarify how the aINS may change its network
65 partners in response to salient internal and external stimuli and possibly contribute to the development
66 of more granular and personalized fingerprints of brain function in health and disease. Such time-varying
67 functional connectivity has been shown to relate to clinical outcomes (25–27); task performance (28);
68 and behaviorally relevant measures of cognitive (29–31), emotional (32, 33), and attentional processing
69 (34, 35). One of the few studies applying time-varying functional connectivity analyses to the insula
70 parcellated it into posterior, middle, and dorsal and ventral anterior components, revealing partially
71 overlapping time-varying connectivity profiles for ventral and dorsal aINS subregions. Ventral and dorsal
72 profiles diverged based on distinct contributions from limbic/emotional processing and cingulo-
73 opercular/cognitive regions mirroring findings from static tf-fMRI studies (15).

74 Despite this body of research, it remains unclear how distinct aINS subregions dynamically engage the
75 salience and task-control networks over time. Moreover, it is largely unknown whether time-varying
76 functional connectivity of the aINS — or any region for that matter — is modulated by externally-driven

77 states or instead displays trait characteristics such as within-subject temporal stability and relationships
78 to behavioral or dispositional measures. To gain a deeper understanding of these issues, we
79 implemented a novel approach combining seed-to-whole-brain sliding-window functional connectivity
80 and k-means clustering to derive time-varying functional connectivity profiles of aINS subregions across
81 three large, independent samples of healthy participants, including eyes open vs. eyes closed conditions
82 and longitudinal datasets. Across methods and samples, we found that aINS subregions display shared
83 and distinct time-varying connectivity “modes” that bind together cognitive and/or emotional
84 processing areas versus upstream sensory and motor cortices. Overall, the findings suggest that short-
85 term temporal variability in aINS connectivity reflects both state and trait characteristics, revealing a
86 path toward use of such data for assessing psychopharmacological treatment efficacy as well as long-
87 term therapeutic disease modification in neuropsychiatric conditions.

88 **Materials and Methods**

89 *Participants.* All participants were healthy, cognitively normal adults, recruited from two different
90 centers (Table 1, Supplementary Figure S1). Elderly participants were retrospectively selected from the
91 Hillblom Aging Network, an extensively characterized longitudinal cohort assessed at the University of
92 California, San Francisco (UCSF) Memory and Aging Center. Subjects were required to have a Clinical
93 Dementia Rating Scale score (36) of 0 (range 0-3) and a Mini-Mental State Examination score (37) of 28
94 (range 0-30) or higher. Secondary inclusion criteria were based on availability of the Interpersonal
95 Reactivity Index, a widely used questionnaire measuring emotional and cognitive empathy. Out of 224
96 elderly subjects with a tf-fMRI scan and at least one Interpersonal Reactivity Index available, a cross-
97 sectional cohort of 121 elderly adults was selected based on availability of the Interpersonal Reactivity
98 Index within three months of the tf-fMRI scan. A second sample was built based on availability of
99 longitudinal tf-fMRI scans. Out of total 184 older adults with longitudinally assessed tf-fMRI, 68 were
100 excluded because they overlapped with the cross-sectional sample (N = 121, described above) and 72
101 were excluded since they did not meet our selection criteria of being scanned twice within a 5-13 month
102 interval. This procedure resulted in a final selection of 44 participants having longitudinal data and that
103 did not overlap with the cross-sectional sample. All visits included neuropsychological testing and a
104 neurologic exam in addition to a structural MRI and tf-fMRI scan. Exclusion criteria included a history of
105 drug abuse, psychiatric or neurological conditions, and current use of psychoactive medications.

106 Twenty additional younger participants were recruited from a simultaneous FDG-PET/tf-fMRI study at
107 the Klinikum rechts der Isar, Technische Universität München (38). Neuroimaging data was assessed
108 twice within an interval of one month, during task-free conditions with either eyes closed or eyes open.
109 Participants were randomly assigned to one of the two conditions, resulting in eight participants
110 assessed with eyes closed at the first and with eyes open at the second scan, and 12 participants
111 assessed with eyes open at the first and eyes closed at the second scan. Exclusion criteria included a
112 history of psychiatric or neurological conditions, use of psychoactive medications, pregnancy, and renal
113 failure.

114 For all samples, written informed consent was obtained from all involved participants and the study was
115 approved by the institutional review board where the data was acquired (UCSF/Klinikum rechts der Isar).

116 *Empathy Assessment.* The Interpersonal Reactivity Index (39) was completed by the participant's
117 informant within three months of tf-fMRI scan. This questionnaire is composed by four subscales, each

118 one consisting of 7 questions that can comprehensively reach a maximum score of 35. While empathic
119 concern and personal distress measure emotional aspects of empathy, perspective taking and the
120 fantasy score are designed to assess cognitive aspects of empathy. The Interpersonal Reactivity Index
121 was chosen since it has been widely used to assess different aspects of empathy in healthy and
122 neuropsychiatric conditions (39, 40). For example, studies in frontotemporal dementia, a
123 neurodegenerative diseases of socioemotional dysfunction, have shown that deficits in subscales of the
124 Interpersonal Reactivity Index are linked to structural deterioration of the aINS and regions connected to
125 the aINS such as the anterior cingulate and orbitofrontal cortices (40, 41).

126 *Neuroimaging data acquisition.* The cross-sectional and longitudinal cohorts from the Hillblom Aging
127 Network were scanned at the UCSF Neuroscience Imaging Center on a Siemens Trio 3T scanner. A T1-
128 weighted MP-RAGE structural scan was acquired with acquisition time=8 min 53 sec, sagittal orientation,
129 a field of view of 160 x 240 x 256 mm with an isotropic voxel resolution of 1 mm³, TR=2300 ms, TE=2.98
130 ms, TI=900 ms, flip angle=9°. Task-free T2*-weighted echoplanar fMRI scans were acquired with an
131 acquisition time=8 min 6 sec, axial orientation with interleaved ordering, field of view=230 x 230 x 129
132 mm, matrix size=92 x 92, effective voxel resolution=2.5 x 2.5 x 3.0 mm, TR=2000 ms, TE=27 ms, for a
133 total of 240 volumes. During the 8-minute tf-fMRI acquisition protocol, participants were asked to close
134 their eyes and concentrate on their breathing.

135 Data from the Klinikum rechts der Isar was acquired on an integrated Siemens Biograph scanner capable
136 of simultaneously acquiring PET and MRI data (3T). FDG-PET activity and tf-fMRI was simultaneously
137 measured during the initial 10 min immediately after bolus injection of the FDG tracer. Scanning was
138 performed in a dimmed environment obtained by switching off all lights, including those in the scanner
139 bore. Subjects were instructed to keep their eyes closed or open, to relax, to not think of anything in
140 particular, and to not fall asleep. MRI data were acquired using the following scanning parameters: Task-
141 free echoplanar fMRI scans: TR, 2.000 ms; TE, 30 ms/angle, 90°; 35 slices (gap, 0.6 mm) aligned to AC/PC
142 covering the whole brain; sFOV, 192 mm; matrix size, 64 x 64; voxel size, 3.0 x 3.0 x 3.0 mm³ (each
143 measurement consists of 300 acquisitions in interleaved mode with a total scan time of 10 min and 8 s);
144 MP-RAGE: TR, 2.300 ms; TE, 2.98 ms; angle, 9°; 160 slices (gap, 0.5 mm) covering the whole brain; FOV,
145 256 mm; matrix size, 256 x 256; voxel size, 1.0 x 1.0 x 1.0 mm³; total length of 5 min and 3 s.

146 *Neuroimaging data preprocessing.* Before preprocessing, all images were visually inspected for quality
147 control. Images with excessive motion or image artifact were excluded. T1-weighted images underwent
148 segmentation using SPM12 (<http://www.fil.ion.ucl.ac.uk/spm/software/spm12/>). For each tf-fMRI scan,
149 the first five volumes were discarded. SPM12 and FSL (<http://fsl.fmrib.ox.ac.uk/fsl>) software were used
150 for subsequent tf-fMRI preprocessing. The remaining volumes were slice-time corrected, realigned to
151 the mean functional image and assessed for rotational and translational head motion. Volumes were
152 next co-registered to the MP-RAGE image, then normalized to the standard MNI-152 healthy adult brain
153 template using SPM segment, producing MNI-registered volumes with 2 mm³ isotropic resolution. These
154 volumes were spatially smoothed with a 6 mm radius Gaussian kernel and temporally bandpass filtered
155 in the 0.008-0.15 Hz frequency range using fslmaths. Nuisance parameters in the preprocessed data
156 were estimated for the CSF using a mask in the central portion of the lateral ventricles and for the white
157 matter using a highest probability cortical white matter mask as labeled in the FSL tissue prior mask.
158 Additional nuisance parameters included the 3 translational and 3 rotational motion parameters, the

159 temporal derivatives of the previous 8 terms (white matter/CSF/6 motion), and the squares of the
160 previous 16 terms (42). Subjects were included only if they met all of the following criteria: no inter-
161 frame head translations greater than 3 mm, no inter-frame head rotations greater than 3 degrees, and
162 less than 24 motion spikes (defined as inter-frame head displacements > 1 mm), less than 10% of the
163 total number of frames. Nuisance parameters were regressed out from the filtered data using *fslmaths*,
164 and masked with a binarized, skullstripped MNI-152 brain mask. The WM/CSF/head movement
165 denoised data was used for the subsequent time-varying functional connectivity analysis. Findings with
166 global signal regression are not presented in the main body of the manuscript but were generated for
167 the longitudinal dataset and are reported as sensitivity analysis in the Supplement.

168 *Time-varying functional connectivity analysis.* For each individual, average blood oxygen level dependent
169 signal time courses were extracted from the right and left ventral and dorsal aINS using four regions-of-
170 interest from the Brainnetome Atlas (<http://atlas.brainnetome.org/>). In order to assess the impact of
171 seed region selection, in the cross-sectional dataset activity time courses were also extracted from a
172 language-relevant region centered on the left inferior frontal gyrus (IFG), using a region-of-interest
173 defined in a previous study (43). Using in-house custom scripts based on Python
174 (<https://www.python.org/>) and FSL, a sliding-window approach was implemented to generate time-
175 varying seed-to-whole-brain connectivity maps (Figure 1A). The derived time series from the aINS and
176 the entire tf-fMRI scan of each subject were divided into sliding-windows of 18 TRs (36 s) in steps of 1 TR
177 creating 218 (275 for eyes closed/open) untapered, rectangular windows. At each window, linear
178 regression was used to derive seed-to-whole-brain time-varying functional connectivity maps for each
179 aINS seed (Figure 1B). A window size of 36 seconds was chosen based on previous research showing that
180 window sizes between 30 and 60 seconds capture additional variations in functional connectivity not
181 found in larger window sizes (24, 25, 44). Ideal sliding-window size has been explored by additional
182 methodological work assessing the relationship between window length and cut-off frequencies,
183 supporting the use of sliding-windows between lengths of 30–60 seconds for tf-fMRI data preprocessed
184 using a low-pass filter set at 0.15 Hz (45). These studies are further supported by empirical findings
185 showing that cognitive states can be discerned within such window lengths (46, 47). Nevertheless, in
186 order to assess the impact of sliding-window length, control analyses were performed with window
187 lengths of 72 TR (144 s). The resulting findings did not significantly differ from the reported findings with
188 windows of 36 s (Supplementary Results and Figure S2); therefore 36 s windows were used throughout.
189 The code used to derive time-varying functional connectivity maps is provided in the Appendix of the
190 Supplement and in GitLab (<https://gitlab.com/juglans/sliding-window-analysis/tree/master>). The
191 derived time-varying functional connectivity maps were finally standardized to z-scores (see Video 1 for
192 left ventral aINS time-varying functional connectivity maps of a typical study participant), masked with a
193 binarized gray matter mask, vectorized, and concatenated across subjects resulting in windows x voxels
194 matrices for each aINS seed. K-means clustering was then applied to the concatenated window matrices
195 using a $k = 4$ to produce four clusters representing four time-varying functional connectivity modes of
196 aINS subregions present across the course of the functional scan (Figure 1C). The k-means algorithm
197 used Euclidean distance, and an optimal solution was selected after 100 iterations and 10 replications.
198 The optimal number of clusters, referred to henceforward as modes, was determined using elbow and
199 silhouette plots and by performing additional clustering solutions with $k = 3, 5$, and 6 (Supplementary
200 Results and Figure S3). With lower k solutions, the identified modes merged, resulting in information
201 loss. Using higher k solutions resulted in the generation of redundant sub-modes, exemplified by Mode

202 4 of the left ventral aINS that would split in anterior and posterior centered components
203 (Supplementary Figure S3B). A total of three clustering analyses per aINS subregion were independently
204 performed on time-varying functional connectivity windows: one on the cross-sectional dataset; one on
205 the longitudinal dataset; and one on the eyes closed/open dataset (see Supplementary Figure S1 for a
206 schematized summary of k-means clustering analyses performed).

207 Group-averaged maps of the four identified modes were generated, for each seed region, using the
208 mode-specific centroid maps rendered using k-means clustering. The spatial similarity of modes derived
209 from distinct aINS subregions and distinct groups was assessed by vectorizing the mode's template maps
210 and performing Pearson's correlation analyses. To assess the distinct spatial contribution of major large-
211 scale brain networks to time-varying connectivity modes, we used publicly available templates of major
212 brain networks from a study investigating the functional network organization of the human brain
213 (48)(<https://www.jonathanpower.net/2011-neuron-bigbrain.html>). Briefly, in this study subgraphs
214 corresponding to major brain systems were derived from tf-fMRI data of > 300 healthy adults by
215 retaining 2% of the strongest correlations. This procedure resulted in 12 binary templates spanning
216 cognitive, primary sensory and subcortical systems: the salience, default, cingulo-opercular task-control,
217 executive-control, ventral attention, dorsal attention, auditory, visual, ventral sensorimotor, dorsal
218 sensorimotor, medial temporal lobe ("memory retrieval") and subcortical networks (4, 48, 49)
219 (Supplementary Figure S4). Subsequently, for each aINS subregion the averaged z-score value enclosed
220 within these brain network templates was extracted from the mode-specific centroid maps generated in
221 the cross-sectional dataset.

222 Further, the assignment of each window to a specific mode was used to derive: (i) the number of
223 transitions from one mode to another; (ii) a fractional occupancy metric for each mode, defined as the
224 number of windows assigned to that mode divided by the total number of windows; and (iii) how often
225 aINS subregions simultaneously occupy distinct mode configurations in time. To identify meta-profiles of
226 aINS time-varying functional connectivity, individual subject fractional occupancy profiles, defined as a
227 vector of 16 elements summarizing the time fraction separately spent by individual aINS subregions on
228 the four identified modes, were derived from the cross-sectional dataset. Fractional occupancy profiles
229 were subsequently clustered using k-means with a clustering solution of $k = 4$ based on a silhouette
230 analysis (using Euclidean distance, 100 iterations, and 10 replication). On the cross-sectional sample,
231 static functional connectivity maps were also generated through voxel-wise regression analyses of each
232 aINS seed's time-course for the duration of the entire scan, following previous established methods (50,
233 51).

234 *Statistical analysis.* Statistical analyses were carried out using R (<https://www.r-project.org/>) and
235 Matlab-R2018 (<https://www.mathworks.com/products/matlab.html>). Pearson's correlation was used to
236 assess the spatial similarity of modes derived from different clustering analyses, using maps thresholded
237 for z-values higher than 0.3 and lower than -0.3.

238 In the cross-sectional dataset, the Shannon diversity index was used to analyze whether aINS subregions
239 of an individual subject transitioned repeatedly between distinct modes or showed instead a stereotypic
240 behavior spending most of the time only in a specific aINS mode:

$$241 \text{Shannon diversity index} = - \sum_{i=0}^{n-1} p_i \log_2 p_i$$

242 wherein p is the fractional occupancy of an aINS subregion in a specific time-varying functional
243 connectivity mode. A Shannon diversity index of 1.4 indicates that all modes are equally occupied by the

244 aINS, while the lower the Shannon diversity index, the higher the fractional occupancy of the aINS on
245 one specific mode.

246 In the cross-sectional dataset, one-way ANOVAs were used to investigate whether aINS subregions
247 differed, within subjects, in terms of mode-specific fractional occupancy, number of transitions, and
248 Shannon diversity index. For descriptive purposes, averages and standard deviations derived over all
249 aINS subregions and modes are reported. Additionally, for each meta-profile cluster identified in the
250 cross-sectional dataset, one-way ANOVAs were used to assess differences in mode-specific fractional
251 occupancy averaged across aINS subregions. The assignment of participant to four meta-profiles of time-
252 varying aINS fractional occupancy was additionally used to test differences in aINS subregions' static
253 connectivity using ANOVA models and post-hoc t-tests implemented in SPM12 (height threshold
254 $p < 0.005$; extent threshold $p < 0.05$ FWE corrected for multiple comparisons).

255 Finally, in the cross-sectional dataset, four multiple linear regression models were used to test the
256 association of mode-specific fractional occupancies with subscales of the Interpersonal Reactivity Index
257 (39). Subscales of the Interpersonal Reactivity Index were used as dependent variables, and each model
258 contained the mode-specific fractional occupancies averaged across aINS subregions. Each model was
259 corrected for age, sex, and sum frame-wise head displacement ($p < 0.05$ uncorrected for multiple
260 comparisons). To assess specificity of the aINS results, four additional models were estimated, using
261 subscales of the Interpersonal Reactivity Index as dependent variables and fractional occupancy of time-
262 varying functional connectivity modes derived from the left IFG as predictors.

263 For the longitudinal datasets, cosine similarity was used to assess the similarity of fractional occupancy
264 profiles across distinct scanning dates.

$$265 \text{Cosine similarity} = 1 - \left(\frac{\sum_{i=1}^n A_i B_i}{\sqrt{\sum_{i=1}^n A_i^2} \sqrt{\sum_{i=1}^n B_i^2}} \right)$$

266 Where A and B are the vectorized fractional occupancy profiles of all aINS subregions at two different
267 scanning dates. Cosine similarity varies between 1 and 0, with 1 indicating identical fractional occupancy
268 profiles. Paired t-tests were performed to assess differences in fractional occupancy in the longitudinal
269 and in the eyes closed/open datasets. All statistical findings are reported at $p < 0.03$, two-tailed,
270 uncorrected for multiple comparisons except where specified otherwise.

271

272 **Results**

273 *Bilateral ventral and dorsal aINS occupy four overlapping but distinct time-varying functional*
274 *connectivity modes*

275 By combining seed-to-whole-brain functional connectivity, sliding-window analysis, and k-means
276 clustering, we found that aINS subregions adopt four overlapping but distinct large-scale configurations
277 or "modes" of time-varying functional connectivity (Figure 2A). All modes were characterized by
278 bilateral connectivity between the aINS and anterior cingulate cortices. Modes could be distinguished
279 from each other, however, by specific patterns of connectivity to other brain regions (Figure 2A and
280 Supplementary Table S1). In Mode 1, all four aINS subregions showed connectivity to the anterior

281 midcingulate/pre-supplementary motor area, right frontal operculum, and dorsal parietal and
282 dorsolateral prefrontal areas that together make up the task-control network. Mode 2 was
283 characterized by negative connectivity to primary visual and sensorimotor areas and prominent
284 connectivity to the ventral striatum and thalamus. Mode 3 showed inverted connectivity patterns to the
285 same regions. Finally, Mode 4 showed connectivity patterns aligned with more ventral salience network
286 regions, including pre- and sub-genual anterior cingulate and orbitofrontal cortices, with additional
287 connectivity to the temporal poles for the right ventral aINS. All four modes were identified in each aINS
288 subregion, as shown by the correlation matrix highlighting the spatial correspondence of equivalent
289 modes (Figure 2B). Important distinctions were found, however, when comparing dorsal and ventral
290 aINS connectivity patterns within modes. In Mode 1, the dorsal aINS showed prominent anti-
291 correlations to the precuneus, angular gyrus, and medial prefrontal cortex regions that make up the
292 default mode network (16). In Mode 4, the ventral aINS showed a more ventral connectivity pattern that
293 encompassed subgenual anterior cingulate cortex and temporal poles, when compared to the dorsal
294 aINS (Figure 2C, Supplementary Figure S6A). Modes derived from homologous left and right aINS regions
295 differed from each other mainly with regard to the extent of ipsilateral connectivity to neighboring
296 regions (Supplementary Figure S6B-C). Importantly, similar aINS time-varying functional connectivity
297 modes were identified using longer sliding-window lengths (Supplementary Figure S2), lower and higher
298 clustering solutions (Supplementary Figure S3), and data preprocessed using global signal regression
299 (Supplementary Figure S7).

300 *aINS subregions coherently transition between time-varying functional connectivity modes*

301 Average fractional occupancy, i.e. the proportion of time spent by aINS subregions in the four time-
302 varying functional connectivity modes ranged from 0.18 (left ventral aINS in Mode 2) to 0.30 (right
303 ventral aINS in Mode 1), with an overall average of 0.25 +/- 0.20 (Figure 3A). Importantly, no significant
304 differences in mode-specific fractional occupancy were found across the four aINS subregions (Mode 1:
305 $F = 0.2$, $p = 0.82$; Mode 2: $F = 0.7$, $p = 0.56$; Mode 3: $F = 0.4$, $p = 0.77$; Mode 4: $F = 0.5$, $p = 0.71$). In only a
306 few participants did aINS subregions spend disproportionate time in only one mode. The number of
307 transitions was also comparable across aINS subregions ($F = 0.4$, $p = 0.759$; Figure 3B), with an overall
308 average of 18.0 +/- 6.6 transitions over the task-free acquisition. In particular, our data shows that there
309 were no direct transitions between the primary sensory anticorrelated Mode 2 and the primary sensory
310 correlated Mode 3 (Supplementary Figure S8), suggesting that aINS subregions need to transition to
311 modes rooted in cognitive networks before occupying primary sensory-centered modes characterized by
312 opposing connectivity patterns. The Shannon diversity index was used to quantify the diversity of
313 fractional occupancy and to compare this diversity across subregions. On average, aINS subregions
314 showed high Shannon diversity, suggesting that each subregion moved between modes in most
315 subjects, rather than stacking on a single mode. The overall average Shannon diversity index of
316 fractional occupancy across aINS subregions was 1.0 +/- 0.2 and did not significantly differ between
317 subregions ($F = 0.8$; $p = 0.503$; Figure 3C). Subject-level fractional occupancy profiles are illustrated in
318 Figure 3D, which shows two subjects with contrasting signatures. We finally sought to assess whether
319 aINS subregions coherently occupy the same modes at the same time, or for instance, how often the
320 right ventral and dorsal aINS are simultaneously connected to Mode 1. For each subject and each aINS
321 subregion, we assessed how often possible mode configurations were jointly occupied in time. This
322 analysis revealed a tendency across aINS subregions to occupy the same modes in time (Figure 3E). On
323 average, the right ventral and dorsal aINS occupied the same modes 50% of the time, the left ventral

324 and dorsal aINS 53% of the time, the right and left ventral aINS in 51% of the time, and the right and left
325 dorsal aINS 61% of the time. These findings suggest an overall tendency for aINS subregions to
326 cohesively engage the same modes over time under task-free scanning conditions.

327 *Individual aINS connectivity mode occupancy profiles are reproducible across samples and within*
328 *subjects over time*

329 To assess the generalizability and reproducibility of our findings, we next turned to a longitudinal
330 healthy aging dataset, which consisted of 44 participants who were scanned twice over an interval
331 between 5-13 months. Clustering of time-varying connectivity windows identified modes that strongly
332 resembled the four modes derived from the larger (and non-overlapping) cross-sectional dataset (Figure
333 4A-D and Supplementary Figure S5 panels A, C and E). Average fractional occupancies of aINS subregions
334 in the four modes were comparable with the cross-sectional sample (comparing Figure 3A to 4A-D).
335 Across aINS subregions and modes, paired t-tests revealed no significant differences in fractional
336 occupancy when comparing the first scanning date with the second ($p < 0.05$ uncorrected for multiple
337 comparisons, for details on paired t-test statistics see Supplementary Table S2). Within subjects, cosine
338 similarity analysis showed that most participants had relatively stable fractional occupancy profiles over
339 time (mean cosine similarity = 0.70 ± 0.19 s.d.), as further supported by the inverted bell-shaped
340 distribution of cosine similarity (Figure 5A). Stable fractional occupancies are exemplified in Subjects 10
341 (first scanning date in red; second scanning date in blue; cosine similarity = 0.98) and 41 (cosine
342 similarity = 0.92) (Figure 5B-C). A few participants, however, showed very different fractional occupancy
343 profiles when comparing the two scanning dates, as exemplified by Subjects 21 (cosine similarity = 0.46)
344 and 26 (cosine similarity = 0.24) (Figure 5D-E). Overall, however, the temporal stability of the individual
345 profiles suggests a major contribution from trait-level factors.

346 *Eye opening decreases the time aINS spends anticorrelated with visual cortices*

347 Independently performed clustering of time-varying connectivity data from the eyes closed/open
348 dataset revealed similar aINS modes to those identified in the cross-sectional and longitudinal aging
349 datasets (Figure 6A-B and Supplementary Figure S5 panels B, D and E). For all subregions except the
350 right ventral aINS, participants showed higher fractional occupancies in the anti-correlated primary
351 sensory/motor Mode 2 with eyes closed and higher fractional occupancies in the task-control Mode 1
352 with eyes open ($p < 0.05$ uncorrected, for details on paired t-test statistics see Supplementary Table S2).

353 *Time-varying functional connectivity meta-profiles show that aINS subregions cohesively occupy the*
354 *same modes*

355 Individual subjects were clustered into meta-profiles (see Methods “*Time-varying functional connectivity*
356 *analysis*”), based on the tendency of their aINS subregions to occupy specific time-varying functional
357 connectivity modes. Individual fractional occupancy profiles of the cross-sectional sample ($n = 121$) were
358 clustered into four clusters using k-means. Silhouette plots were used to choose the ideal number of
359 clusters, $k = 4$ (Supplementary Figure S9). This analysis revealed four meta-profiles, characterized by
360 preferred fractional occupancy in one of the four time-varying functional connectivity modes (Figure
361 7A). Meta-profile 1 (in green, 26 subjects) was characterized by a tendency to spend time in the task-
362 control Mode 1 (see Subject 22, Figure 7A); Meta-profile 2 (in blue, 31 subjects) was characterized by a
363 tendency to spend time in the sensory anticorrelated Mode 2 (see Subject 79, Figure 7A); Meta-profile 3
364 (in violet, 44 subjects) was characterized by a tendency to spend time in the sensory connected Mode 3

365 (see Subject 80, Figure 7A); while Meta-profile 4 (in red, 20 subjects) was characterized by a tendency to
366 spend time in the salience network Mode 4 (see Subject 88, Figure 7A). To evaluate statistical
367 differences in mode occupancy across meta-profiles, we averaged the time spent in each mode across
368 aINS subregions and used one-way ANOVAs to test for significant group differences in mode-specific
369 fractional occupancy across the distinct aINS meta-profiles (Meta-profiles 1, $F = 50.1$, $p < 0.0001$; Meta-
370 profile 2, $F = 39.8$, $p < 0.0001$; Meta-profile 3, $F = 79.6$, $p < 0.0001$; Meta-profile 4, $F = 46.1$, $p < 0.0001$,
371 see also Figure 7B). These differences were further statistically assessed via post-hoc t-tests. In
372 summary, these analyses revealed a preference for aINS subregions to collectively spend similar
373 fractions of time in a given mode, whereas distinct modes were primarily occupied by subjects in
374 different meta-profiles.

375 Next, we asked whether the constituents of a given meta-profile would show group-level differences in
376 terms of their static functional connectivity patterns. We therefore compared groups based on static
377 functional connectivity of aINS subregions across the four meta-profiles described above. This analysis
378 revealed that participants in Meta-profile 1 showed prominent static anticorrelation of the dorsal aINS
379 to the default mode network when compared to participants clustered on other meta-profiles.
380 Participants clustered on Meta-profile 2 and 3 showed marked visual and sensorimotor cortex static
381 hypoconnectivity and hyperconnectivity, across all aINS subregions, when compared to participants of
382 other meta-profiles; while participants in Meta-profile 4 showed prominent static connectivity of all
383 aINS subregions to more ventral frontal regions (Supplementary Figure S10). In summary, key
384 components of the time-varying connectivity modes were reflected in static connectivity differences
385 between meta-profile-based groups.

386 *Comparison of aINS and left IFG time-varying functional connectivity*

387 To control for the location of the seed, we derived time-varying functional connectivity modes by
388 seeding the left IFG. Time-varying functional connectivity modes of the left IFG shared some common
389 themes with modes identified using aINS subregions (Supplementary Figure S11A). The four identified
390 modes showed similar connectivity to regions of the language network, such as the left IFG, pre-
391 supplementary motor area, and superior parietal lobule (43, 52). This contrasts with the modes
392 identified in aINS subregions that showed overlapping time-varying functional connectivity to typical
393 task-control and salience network regions (Supplementary Figure S11B). Modes derived from both the
394 aINS and left IFG, however, showed similar patterns of default mode network anticorrelation (Mode 1),
395 primary sensory anticorrelation (Mode 2), and primary sensory hypercorrelation (Mode 3). A fourth
396 mode was identified using the left IFG, showing time-varying functional connectivity to regions of the
397 dorsal attention network (49) (Mode 4).

398 *Time spent by the aINS in the task-control and salience networks correlates with metrics related to 399 dispositional empathy*

400 A key question of this work concerns whether individual differences in aINS time-varying connectivity
401 relate to differences in aINS-associated traits and functions. Among the many tasks that activate and
402 depend on the anterior insula, empathy is one of the best documented (1, 18). The Interpersonal
403 Reactivity Index is an informant-based questionnaire widely used to assess distinct aspects of empathy
404 (39). Emotional aspects of empathy are covered by the empathic concern and personal distress
405 measures, with the first assessing another-centered emotional response, while the second reflects
406 general anxiety and self-oriented emotional reactivity. Perspective taking and fantasy scores measure

407 cognitive aspects of empathy, with the first assessing the tendency to spontaneously imagine the
408 cognitive perspective of another person, while the second measures the tendency to project oneself
409 into the experiences of fictional characters. Mode-specific fractional occupancies were averaged across
410 aINS subregions and used as regressors in four models using subscales of the Interpersonal Reactivity
411 Index as dependent variables. These multiple linear regression models were corrected for age, sex, and
412 sum frame-wise head displacement and identified two significant positive associations with time-varying
413 connectivity metrics. First, fractional occupancy in the task-control Mode 1 predicted higher levels of
414 personal distress, reflecting self-oriented feelings of personal anxiety and unease in tense interpersonal
415 settings ($\beta = 7.1$; $p < 0.05$ uncorrected for multiple comparisons; Supplementary Table S3). Second,
416 fractional occupancy in the salience Mode 4 correlated with higher scores on the fantasy subscale,
417 reflecting greater ability to transpose one's self imaginatively into the feelings and actions of fictitious
418 characters in books, movies, and plays ($\beta = 9.2$; $p < 0.05$ uncorrected for multiple comparisons;
419 Supplementary Table S3). These results remained significant when removing outliers (Mode 1 and
420 personal distress $\beta = 6.9$, $p < 0.05$ uncorrected for multiple comparisons; Mode 4 and fantasy score $\beta =$
421 9.2 , $p < 0.05$ uncorrected for multiple comparisons). No significant associations were found between
422 fractional occupancy in any mode and the empathic concern or perspective taking subscales. As
423 hypothesized, fractional occupancy of left IFG time-varying connectivity modes was not significantly
424 associated with any measure of dispositional empathy ($p < 0.05$ uncorrected for multiple comparisons,
425 see Supplementary Table S3).

426 **Discussion**

427 To date, most efforts to relate large-scale networks to individual differences have relied on metrics that
428 capture the topology or strength of node-to-node static functional (or “intrinsic”) connections. Here, we
429 developed a novel approach combining seed-to-whole-brain functional connectivity, sliding-window
430 analysis, and k-means clustering on tf-fMRI data to identify distinct time-varying functional connectivity
431 modes of the aINS, a brain region critical for many human socio-emotional functions (1, 18). These
432 robust modes were identified across methods and samples, showing both “state” and “trait”
433 characteristics. In particular, while aINS modes related to sensory processing were modulated by visual
434 input (eyes closed vs. open conditions during scanning), modes featuring connectivity to cognitive and
435 emotion processing regions were stable over time and related to measures of dispositional empathy.

436 *Partially overlapping but distinct time-varying aINS functional connectivity modes*

437 Our pipeline reliably identified four time-varying functional connectivity modes of the aINS across
438 different subregions, methods, and samples. These modes were characterized by common connectivity
439 of aINS subregions to the contralateral insula and to the anterior cingulate cortex, but could be
440 differentiated from each other based on recruitment of other brain regions. Mode 1 was characterized
441 by a more dorsal connectivity pattern that resembles previous characterizations of a cingulo-opercular
442 task-control network (4, 14, 53) involving the bilateral aINS and anterior cingulate cortex, with
443 additional connectivity to dorsomedial parietal and dorsolateral frontal areas. Mode 2 was characterized
444 by negative connectivity to primary sensory areas and increased connectivity to the thalamus while
445 Mode 3 showed an inverted connectivity pattern to these regions. Finally, Mode 4 was characterized by
446 fronto-insular connectivity to more rostral and ventral portions of the anterior cingulate cortex,
447 resembling the salience network (4, 8), with additional connectivity to the temporal pole and medial
448 orbitofrontal cortex, components of the “semantic-appraisal network” (18, 54). These findings are

449 consistent with those of a previous region-of-interest-based time-varying functional connectivity study
450 focusing on the insula, which reported time-varying visual and sensorimotor hyperconnectivity of the
451 ventral aINS. Our findings differ, however, in that we did not detect positive default mode network
452 connectivity to the dorsal aINS and that patterns of hypoconnectivity to primary visual and sensorimotor
453 areas were less apparent in the aforementioned study (15). While left and right aINS subregions
454 primarily differed with respect to connectivity to regions in the ipsilateral hemisphere, consistent
455 differences in time-varying functional connectivity at the system-level were identified when comparing
456 ventral to dorsal aINS subregions. Mirroring static functional connectivity studies and the
457 aforementioned time-varying connectivity study on the insula (7, 8, 15), the task-control Mode 1 of the
458 dorsal aINS showed stronger anti-correlations to the default mode network than did its ventral
459 counterpart. This observation is in line with salience network models proposing that the dorsal aINS
460 receives ventral aINS input streams regarding the moment-to-moment condition of the body and then,
461 based on these inputs, recruits task control (14) and executive control (4) network resources to maintain
462 cognitive set and guide behavior while inhibiting the default mode network (13). The salience network
463 Mode 4 showed stronger connectivity between ventral aINS and ventromedial prefrontal, orbitofrontal,
464 and temporopolar cortices when compared to its dorsal aINS counterpart. This finding is in line with
465 functional-anatomical models suggesting a close alliance between the salience and the semantic
466 appraisal networks (13, 18, 54), whose main components (the temporal pole, ventral striatum, medial
467 orbitofrontal cortex, and amygdala) have been proposed to interact with autonomic representations in
468 the aINS to construct the meaning and significance of social and non-social stimuli under prevailing
469 conditions (13, 18, 54). Importantly, we did not find any differences across aINS subregions in the
470 number of transitions or in the diversity of fractional occupancy profiles. Moreover, our analyses
471 exploring overlapping mode occupancy across aINS subregions revealed that distinct aINS subregions
472 tend to occupy the same mode at the same time. Further support for this conclusion comes from the
473 clustering analysis of individual fractional occupancy profiles, which led to the identification of four
474 meta-profiles characterized by occupancy of a dominant mode. Although our findings are not conclusive
475 on whether aINS subregions always engage the same mode in time, they comprehensively suggest a
476 tendency for coherent mode occupancy that could potentially underpin specific trait characteristics or
477 behavioral states. Future studies could leverage methods such as directed and effective connectivity to
478 assess the temporal relationships between intrinsic time-varying activity of distinct aINS subregions,
479 which could be lagged, phase-shifted, or anticorrelated over time. In order to assess the specificity of
480 aINS time-varying functional connectivity modes, we assessed and compared time-varying functional
481 connectivity of the left IFG, a region involved in language processing and syntax production (43, 52, 55).
482 The left IFG showed region-specific contributions from language processing regions but also displayed
483 pronounced anticorrelation to default mode network regions in Mode 1 and similar time-varying
484 connectivity to the same sensory regions found in Modes 2 and 3 derived from the aINS. These findings
485 suggest that distinct brain regions, although characterized by seed specific connectivity patterns, may
486 cohesively transition between broader modes characterized by shared regional time-varying functional
487 connectivity patterns, possibly revealing a fundamental property of functional brain organization.

488 *“State” characteristics of aINS time-varying functional connectivity modes*

489 Having determined that two of the four major modes of aINS connectivity involved varying connectivity
490 to sensory, and, most notably, visual cortices, we chose to evaluate how sensory input modifies aINS
491 connectivity dynamics. To this end, we studied the same participants under eyes closed and eyes open

492 scanning conditions. Compared to the eyes open condition, participants with eyes closed spent
493 significantly less time in the task-control network Mode 1 but more time in the primary sensory anti-
494 correlated Mode 2. This finding is consistent with recent static connectivity studies revealing occipital
495 and sensorimotor functional changes in eyes closed versus open scanning conditions (56, 57) and
496 suggests that environmental conditions impact time-varying aINS connectivity by shifting the major
497 modes occupied. Therefore, a measurable component of time-varying connectivity may reflect external
498 cues such as conditions of eyes closure (38, 58), mental states (59, 60), or internally driven physiological
499 conditions of the body (12). Finally, it is tempting to speculate that aINS occupancy of the visually
500 anticorrelated Mode 2 might reflect levels of drowsiness and fluctuations in alertness. Intriguingly, a
501 recent study investigated wakefulness fluctuations as a source of time-varying functional connectivity by
502 combining simultaneously acquired tf-fMRI and EEG data (61). This study revealed progressive whole-
503 brain hypoconnectivity during deeper sleep stages (N2 and N3) when compared to wakefulness, raising
504 the possibility that the increased aINS fractional occupancy in Mode 2 during eyes closed is related to
505 reduced levels of alertness and wakefulness.

506 *“Trait” characteristics of aINS time-varying functional connectivity modes*

507 To the extent that modes and profiles of time-varying aINS functional connectivity represent traits,
508 individuals should show stability of these features over time. To assess this stability, we studied a
509 longitudinal dataset of cognitively healthy older adults. The four aINS modes were stable over an
510 average of 9 months in this sample, whether assessed by comparing fractional occupancy at the group
511 level via parametric tests or at the individual level via cosine similarity. These findings converge with
512 several recent studies showing that individual topologies in static functional brain organization are
513 highly stable across time and show unique features with promise for use in precision functional mapping
514 of individual human brains (62–65). In line with previous work associating aINS function with social-
515 emotional functions such as empathy (15, 66, 67), we found that the time aINS subregions cohesively
516 spent in the task-control Mode 1 was positively associated with personal distress, while the time aINS
517 subregions spent in the salience Mode 4 was positively associated with the fantasy score from the
518 Interpersonal Reactivity Index. Caution is advised, however, in the interpretation of these findings since
519 the statistical associations were modest and did not survive correction for the four models used to
520 assess these relationships. Nevertheless, the identified associations were specific to the aINS (compared
521 to the left IFG) and survived when removing outliers, adding tentative support for the trait
522 characteristics of aINS time-varying functional connectivity. Nonetheless, the strongest evidence for a
523 trait component to the identified modes remains their reproducibility in individual subjects. The
524 personal distress subscale measures “self-oriented” feelings of personal anxiety and unease in tense
525 interpersonal settings. The level of personal distress was associated with greater time spent in a mode
526 characterized by dorsal cingulo-opercular regions overlapping with the task-control network and anti-
527 correlations to the default mode network, in line with findings associating connectivity of the anterior
528 cingulate cortex and insula with pre-scan anxiety levels, dispositional anxiety, and affective symptoms in
529 mood disorders (4, 20, 68). The fantasy score reflects the capacity of participants to transpose
530 themselves imaginatively into the feelings and actions of fictitious characters in books, movies, and
531 plays. This capacity requires a high level of social contextualization and involves semantic processes
532 typically associated with regions of the semantic appraisal network, such as the temporal lobes and
533 ventro-medial prefrontal areas (13, 18, 54), the same regions contributing to the salience Mode 4.
534 Importantly, fractional occupancies of time-varying functional connectivity modes derived from the left

535 IFG were not significantly associated with measures of dispositional empathy, suggesting a degree of
536 specificity of these findings to the aINS.

537 *Limitations and future directions*

538 Although time-varying functional connectivity analyses have been of increasing interest to the human
539 brain mapping community, consensus is still lacking about whether time-varying fluctuations in BOLD
540 signal coherence reflect brain physiology or are mainly due to noise stochastically occurring in the
541 scanner between the acquisition of distinct brain volumes (69). One limitation of this work relates to the
542 use of hard clustering techniques such as k-means to extract modes of time-varying functional
543 connectivity, since distinct modes are likely to reflect extremes in time-varying connectivity gradients
544 rather than discrete clusters of topographical connectivity. Therefore, the ideal number of derived time-
545 varying connectivity modes may vary depending on the temporal and spatial resolution of the used
546 dataset, on the investigated anatomical region, and on the specific question of the researcher. We make
547 no claim that the aINS transitions between only four modes, but since we were interested in large-scale
548 time-varying connectivity patterns, we deemed it impractical to use an overly fine-grained mode
549 decomposition by applying higher clustering solutions. Further, the sliding-window approach has been
550 scrutinized because of its moderate reliability (70) and since its output is prone to influence by head
551 movement, sliding-window length, and other methodical choices (71–73), such as global signal
552 regression. In our study, however, we did not find any significant association between time spent by
553 distinct aINS subregions in a specific mode and summary measures of head movement, as exemplified
554 by the regression analyses associating fractional occupancy and dispositional empathy, which were
555 corrected for mean frame-wise head displacement (42, 74). Importantly, our control analyses using the
556 longitudinal dataset preprocessed with global signal regression resulted in the identification of time-
557 varying functional connectivity modes that highly resembled the time-varying modes derived using data
558 without global signal regression (Supplementary results and Figure S6). The only exception was for the
559 primary sensory hyperconnected Mode 3, which was not identified in three out of four aINS subregions,
560 suggesting that this mode is highly modulated by the global signal. A recent report suggested that noise
561 sources (for instance motion and respiration) can have a temporally lagged effect on the BOLD signal,
562 which is greatly reduced by global signal regression (72). However, a recent study investigating time-
563 varying functional connectivity in mice reliably mapped distinct time-varying patterns of tf-fMRI co-
564 activation that occurred at specific phases of global signal fluctuations (75). These findings suggest that
565 the global signal may partially relate to oscillatory cycling of slowly propagating neural activity, as
566 observed in lag threads of propagated tf-fMRI signal in the human brain (76) and transient variation in
567 calcium co-activation patterns in mice (77). Slow oscillation in the global signal have been proposed to
568 coordinate fluctuating periods of brain network topologies characterized by heightened global
569 integration and shifts in arousal (30, 78).

570 Finally, the limitations in temporal resolution affecting the sliding-window approach may also explain
571 the inability to detect mode-specific fractional occupancy differences between the left and right aINS,
572 although both regions play a distinct role in autonomic outflow and behavior (11, 12). More
573 sophisticated methods that preserve the temporal richness of tf-fMRI data, such as hidden Markov
574 models and Topological Data Analysis (28, 31), may help elucidate lateralized differences in time-varying
575 connectivity of the left and right aINS. However, the detection of static functional connectivity
576 heterogeneity informed by time-varying fractional occupancy profiles and the reproducibility of our
577 findings across distinct preprocessing pipelines, sliding-window lengths, clustering choices, samples, and

578 time points (within individuals)(79) increase confidence in the biological relevance of findings. In the
579 future, our approach could be extended to analyze time-varying functional connectivity of other brain
580 regions, or to assess time-varying fractional occupancy profiles in psychiatric and neurological disorders
581 characterized by aINS dysfunction.

582 **Acknowledgements**

583 We thank the participants for their contributions to neuroscience research.

584 **Conflicts of interest**

585 The authors declare no competing conflicts of interest.

586 **Data availability**

587 The data that support the findings of this study are available on request from the corresponding author
588 W.W.S. The data are not publicly available due to them containing information that could compromise
589 the privacy of participants in the study.

590 **Author's contributions**

591 L.P and W.W.S conceived the study; all authors designed the experiments; L.P implemented the analysis
592 of the data; L.P. and W.W.S. wrote the manuscript; and all the authors edited the manuscript.

593 **Funding**

594 This work was supported by the Larry L. Hillblom Foundation grants 2014-A-004-NET and 2018-A-025-
595 FEL, The Bluefield Project to Cure FTD, the Tau Consortium, and NIH grants R01AG032289,
596 R01AG048234, and UCSF ADRC P50 AG023501.

597 **References**

- 598 1. Craig AD (2009) How do you feel - now? The anterior insula and human awareness. *Nat Rev Neurosci* 10(1):59–70.
- 600 2. Smith SM, et al. (2009) Correspondence of the brain's functional architecture during activation
601 and rest. *Proc Natl Acad Sci U S A* 106(31):13040–5.
- 602 3. Fox MD, et al. (2005) The human brain is intrinsically organized into dynamic , anticorrelated
603 functional networks. *Proc Natl Acad Sci U S A* 02(27):9673-8
- 604 4. Seeley WW, et al. (2007) Dissociable intrinsic connectivity networks for salience processing and
605 executive control. *J Neurosci* 27(9):2349–2356.
- 606 5. Deen B, Pitskel NB, Pelpfrey KA (2011) Three systems of insular functional connectivity identified
607 with cluster analysis. *Cereb Cortex* 21(7):1498–1506.
- 608 6. Kurth F, Zilles K, Fox PT, Laird AR, Eickhoff SB (2010) A link between the systems: functional
609 differentiation and integration within the human insula revealed by meta-analysis. *Brain Struct Funct*
610 214:1–16.
- 611 7. Touroutoglou A, Hollenbeck M, Dickerson BC, Feldman Barrett L (2012) Dissociable large-scale
612 networks anchored in the right anterior insula subserve affective experience and attention.
613 *Neuroimage* 60(4):1947–1958.
- 614 8. Uddin LQ (2014) Salience processing and insular cortical function and dysfunction. *Nat Rev*

615 *Neurosci* 16(1):55–61.

616 9. Critchley HD (2005) Neural mechanisms of autonomic, affective, and cognitive integration. *J*
617 *Comp Neurol* 493(1):154–166.

618 10. Critchley HD, Harrison NA (2013) Visceral Influences on Brain and Behavior. *Neuron* 77(4):624–
619 638.

620 11. Sturm VE, et al. (2018) Network architecture underlying basal autonomic outflow: Evidence from
621 frontotemporal dementia. *J Neurosci* (415):0347–18.

622 12. Guo CC, et al. (2016) Dominant hemisphere lateralization of cortical parasympathetic control as
623 revealed by frontotemporal dementia. *Proc Natl Acad Sci*:201509184.

624 13. Zhou J, Seeley WW (2014) Network Dysfunction in Alzheimer’s Disease and Frontotemporal
625 Dementia: Implications for Psychiatry. *Biol Psychiatry* 75(7):565–573.

626 14. Dosenbach NUF, et al. (2006) A Core System for the Implementation of Task Sets. *Neuron*
627 50(5):799–812.

628 15. Nomi JS, et al. (2016) Dynamic functional network connectivity reveals unique and overlapping
629 profiles of insula subdivisions. *Hum Brain Mapp* 37(5):1770–1787.

630 16. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network: Anatomy,
631 function, and relevance to disease. *Ann N Y Acad Sci* 1124:1–38.

632 17. Menon V, Uddin LQ (2010) Saliency, switching, attention and control: a network model of insula
633 function. *Brain Struct Funct*:1–13.

634 18. Seeley WW, Zhou J, Kim E-J (2012) Frontotemporal Dementia: What Can the Behavioral Variant
635 Teach Us about Human Brain Organization? *Neurosci* 18(4):373–385.

636 19. Brandl F, et al. (2019) Specific Substantial Dysconnectivity in Schizophrenia: A Transdiagnostic
637 Multimodal Meta-analysis of Resting-State Functional and Structural Magnetic Resonance
638 Imaging Studies. *Biol Psychiatry* (10):1–11.

639 20. Williams LM (2016) Precision psychiatry: A neural circuit taxonomy for depression and anxiety.
640 *The Lancet Psychiatry* 3(5):472–480.

641 21. Sporns O, Tononi G, Kötter R (2005) The Human Connectome: A Structural Description of the
642 Human Brain. *PLoS Comput Biol* 1(4):e42.

643 22. Lurie DJ, et al. (2018) On the nature of resting fMRI and time-varying connectivity. *Preprint*:1–33.
644 DOI: 10.31234/osf.io/xtzre

645 23. Preti MG, Bolton TA, Van De Ville D (2017) The dynamic functional connectome: State-of-the-art
646 and perspectives. *Neuroimage* 160(December 2016):41–54.

647 24. Allen E, Damaraju E, Plis S, Erhardt E (2014) Tracking whole-brain connectivity dynamics in the
648 resting state. *Cerebral Cortex* 24(3):663–76.

649 25. Damaraju E, et al. (2014) Dynamic functional connectivity analysis reveals transient states of
650 dysconnectivity in schizophrenia. *NeuroImage Clin* 5:298–308.

651 26. Kaiser RH, et al. (2016) Dynamic Resting-State Functional Connectivity in Major Depression.

652 *Neuropsychopharmacology* 41(7):1822–1830.

653 27. Soury M, Thoraval L, Roquet D (2016) Identifying dynamic functional connectivity changes in
654 dementia with lewy bodies based on product hidden markov models. *Front Comput Neurosci*
655 10:60

656 28. Saggar M, Sporns O, Gonzalez-castillo J, Bandettini PA, Carlsson G (2018) Towards a new
657 approach to reveal dynamical organization of the brain using topological data analysis. *Nature
658 Communication* 9:1–33

659 29. Madhyastha TM, Askren MK, Boord P, Grabowski TJ (2015) Tara M. Madhyastha, Mary K. Askren,
660 Peter Boord, and Thomas J. Grabowski 1,2. 5(1):45–59.

661 30. Shine JM, et al. (2016) The Dynamics of Functional Brain Networks: Integrated Network States
662 during Cognitive Task Performance. *Neuron* 92(2):544–554.

663 31. Vidaurre D, Smith SM, Woolrich MW (2017) Brain network dynamics are hierarchically organized
664 in time. *Proc Natl Acad Sci*:201705120.

665 32. Résibois M, et al. (2017) The neural basis of emotions varies over time: different regions go with
666 onset- and offset-bound processes underlying emotion intensity. *Soc Cogn Affect Neurosci*
667 12(8):1261–1271.

668 33. Tobia MJ, Hayashi K, Ballard G, Gotlib IH, Waugh CE (2017) Dynamic functional connectivity and
669 individual differences in emotions during social stress. *Hum Brain Mapp* 38(12):6185–6205.

670 34. Sadaghiani S, Poline J, Kleinschmidt A, Esposito MD (2015) Ongoing dynamics in large-scale
671 functional connectivity predict perception. *Proc Natl Acad Sci* 112(27):8463–8468.

672 35. Ekman M, Derrfuss J, Tittgemeyer M, Fiebach CJ (2012) Predicting errors from reconfiguration
673 patterns in human brain networks. *Proc Natl Acad Sci* 109(41):16714–16719.

674 36. Morris JC (1997) Clinical Dementia Rating: A reliable and valid diagnostic and staging measure for
675 dementia of the Alzheimer type. *Int Psychogeriatrics* 9(SUPPL. 1):173–176.

676 37. Tombaugh TN, McIntyre NJ (1992) The mini-mental state examination: a comprehensive review. *J
677 Am Geriatr Soc* 40(9):922–35.

678 38. Riedl V, et al. (2016) Metabolic connectivity mapping reveals effective connectivity in the resting
679 human brain. *Proc Natl Acad Sci* 113(8):6260–6266

680 39. Davis MHA (1980) A Multidimensional Approach to Individual Differences in Empathy. *JSAS
681 Catalog of Selected Documents in Psychology* 10:85.

682 40. Rankin KP, et al. (2006) Structural anatomy of empathy in neurodegenerative disease. *Brain*
683 129(11):2945–2956.

684 41. Nana AL, et al. (2018) Neurons selectively targeted in frontotemporal dementia reveal early stage
685 TDP-43 pathobiology. *Acta Neuropathol* 137(1):27–46.

686 42. Satterthwaite TD, et al. (2013) An improved framework for confound regression and filtering for
687 control of motion artifact in the preprocessing of resting-state functional connectivity data.
688 *Neuroimage* 64(1):240–256.

689 43. Gorno-Tempini ML (2004) Cognition and Anatomy in Three Variants of Primary Progressive

690 43. Aphasia. *Ann Neurol* 119(11):2658–2666.

691 44. Hutchison RM, et al. (2013) Dynamic functional connectivity: Promise, issues, and
692 interpretations. *Neuroimage* 80:360–378.

693 45. Leonardi N, Van De Ville D (2015) On spurious and real fluctuations of dynamic functional
694 connectivity during rest. *Neuroimage* 104:430–436.

695 46. Shirer WR, Ryali S, Rykhlevskaia E, Menon V, Greicius MD (2012) Decoding subject-driven
696 cognitive states with whole-brain connectivity patterns. *Cereb Cortex* 22(1):158–165.

697 47. Wilson RS, et al. (2015) Influence of epoch length on measurement of dynamic functional
698 connectivity in wakefulness and behavioural validation in sleep. *Neuroimage* 112:169–179.

699 48. Power JD, et al. (2011) Article Functional Network Organization of the Human Brain. *Neuron*
700 72(4):665–678.

701 49. Dosenbach NUF, et al. (2007) Distinct brain networks for adaptive and stable task control in
702 humans. *Proc Natl Acad Sci* 104(26):11073–11078.

703 50. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative Diseases
704 Target Large-Scale Human Brain Networks. *Neuron* 62(1):42–52.

705 51. Toller G, et al. (2018) Individual differences in socioemotional sensitivity are an index of salience
706 network function. *Cortex* (March):1–13.

707 52. Friederici AD, Gierhan SM (2013) The language network. *Curr Opin Neurobiol* 23(2):250–254.

708 53. Sadaghiani S, D'Esposito M (2015) Functional Characterization of the Cingulo-Opercular Network
709 in the Maintenance of Tonic Alertness. *Cereb Cortex* 25(9):2763–2773.

710 54. Guo CC, et al. (2013) Anterior temporal lobe degeneration produces widespread network-driven
711 dysfunction. *Brain* 136(10):2979–2991.

712 55. Hickok G, Poeppel D (2007) The cortical organization of speech processing. *Nat Rev Neurosci*
713 8(5):393–402.

714 56. Wei J, et al. (2018) Eyes-Open and Eyes-Closed Resting States With Opposite Brain Activity in
715 Sensorimotor and Occipital Regions: Multidimensional Evidences From Machine Learning
716 Perspective. *Front Hum Neurosci* 12:422.

717 57. Agcaoglu O, Wilson T, Wang Y, Stephen J, Calhoun VD (2019) Resting state connectivity
718 differences in eyes open versus eyes closed conditions. *Hum Brain Mapp* 40(8):2488–2498.

719 58. Hahn A, et al. (2018) Task-relevant brain networks identified with simultaneous PET/MR imaging
720 of metabolism and connectivity. *Brain Struct Funct* 223(3):1369–1378.

721 59. Shine JM, Koyejo O, Poldrack RA (2016) Temporal metastates are associated with differential
722 patterns of time-resolved connectivity, network topology, and attention. *Proc Natl Acad Sci U S A*
723 113(35):9888–91.

724 60. Kucyi A (2018) Just a thought: How mind-wandering is represented in dynamic brain connectivity.
725 *Neuroimage* 180:505–514.

726 61. Haimovici A, Tagliazucchi E, Balenzuela P, Laufs H (2017) On wakefulness fluctuations as a source

727 of BOLD functional connectivity dynamics. *Sci Rep* 7(1):5908.

728 62. Gordon EM, et al. (2017) Precision Functional Mapping of Individual Human NeuroResource
729 Precision Functional Mapping of Individual Human Brains. *Neuron* 95(4):791-807.

730 63. Laumann TO, et al. (2015) Functional System and Areal Organization of a Highly Sampled
731 Individual Human Brain. *Neuron* 87(3):657–670.

732 64. Poldrack RA, et al. (2015) Long-term neural and physiological phenotyping of a single human. *Nat
733 Commun* 6:8885.

734 65. Guo CC, et al. (2012) One-year test–retest reliability of intrinsic connectivity network fMRI in
735 older adults. *Neuroimage* 61(4):1471–1483.

736 66. Gu X, et al. (2012) Anterior insular cortex is necessary for empathetic pain perception. *Brain*
737 135(9):2726–2735.

738 67. Leigh R, et al. (2013) Acute lesions that impair affective empathy. *Brain* 136(8):2539–2549.

739 68. Menon V (2011) Large-scale brain networks and psychopathology: A unifying triple network
740 model. *Trends Cogn Sci* 15(10):483–506.

741 69. Laumann TO, et al. (2017) On the Stability of BOLD fMRI Correlations. *Cereb Cortex* 27(10):4719–
742 4732.

743 70. Choe AS, et al. (2017) NeuroImage Comparing test-retest reliability of dynamic functional
744 connectivity methods. 158:155–175.

745 71. Hindriks R, et al. (2016) Can sliding-window correlations reveal dynamic functional connectivity in
746 resting-state fMRI? *Neuroimage* 127:242–256.

747 72. Byrge L, Kennedy DP (2017) Identifying and characterizing systematic temporally-lagged BOLD
748 artifacts. *Neuroimage* 171:376–392.

749 73. Nalci A, Rao BD, Liu TT (2018) Nuisance Effects and the Limitations of Nuisance Regression in
750 Dynamic Functional Connectivity fMRI. *bioRxiv*: doi.org/10.1101/285239

751 74. Power JD, et al. (2014) NeuroImage Methods to detect, characterize, and remove motion
752 artifact in resting state fMRI. *Neuroimage* 84:320–341.

753 75. Gutierrez-Barragan D, Basson MA, Panzeri S, Gozzi A (2018) Oscillatory brain states govern
754 spontaneous fMRI network dynamics. *bioRxiv*: doi.org/10.1101/393389.

755 76. Mitra A, Snyder AZ, Constantino JN, Raichle ME (2015) The Lag Structure of Intrinsic Activity is
756 Focally Altered in High Functioning Adults with Autism. *Cereb Cortex* 27(2):1083-1093.

757 77. Matsui T, Murakami T, Ohki K (2016) Transient neuronal coactivations embedded in globally
758 propagating waves underlie resting-state functional connectivity. *Proc Natl Acad Sci
759* 113(23):6556–6561.

760 78. Liu X, et al. Subcortical evidence for a contribution of arousal to fMRI studies of brain activity. *Nat
761 Commun* (2018):1–10.

762 79. Abrol A, et al. (2017) Replicability of time-varying connectivity patterns in large resting state fMRI
763 samples. *Neuroimage* 163:160–176.

764

765

766

767

768

769

770

771 **Tables, Figures and Legends**

772

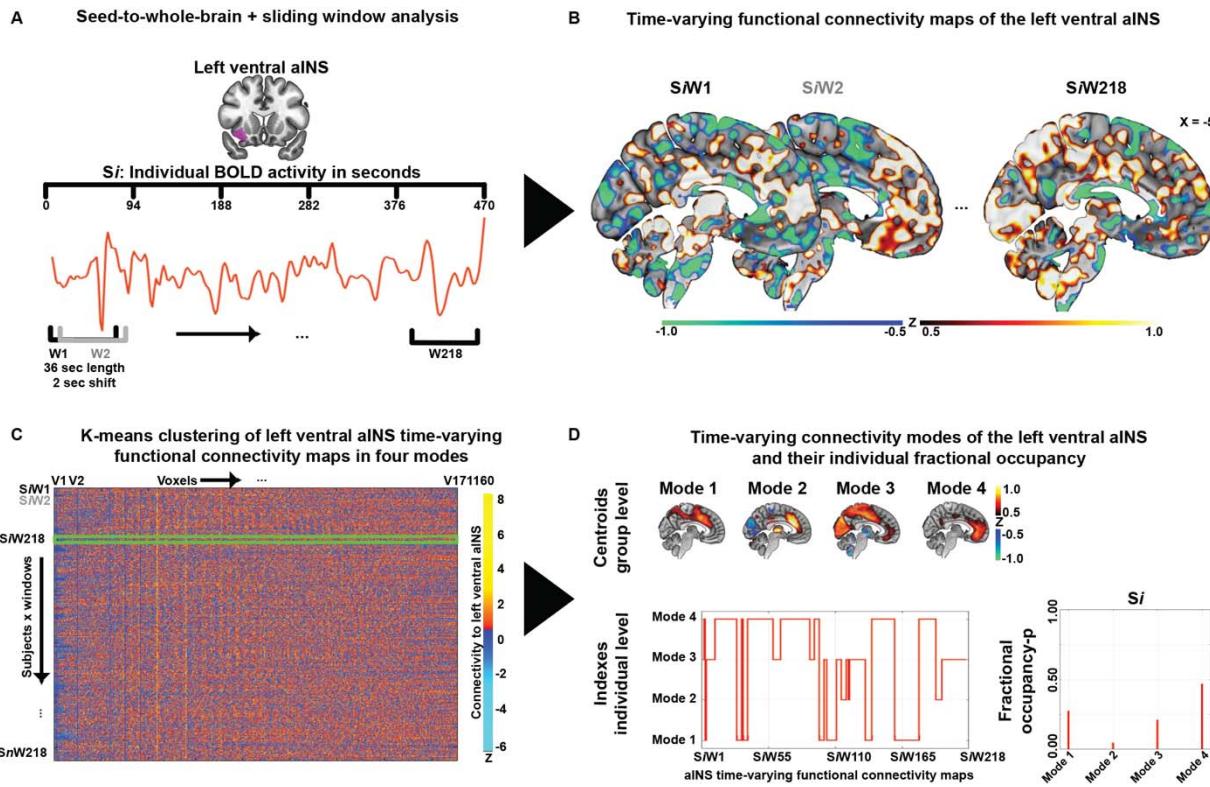
773 **Table 1. Demographics and sample characteristics**

Dataset	Cross-sectional	Longitudinal	Eyes closed/open
Number of subjects	121	44	20
Age in years, mean (s.d.)	69.3 (3.6)	72.9 (7.6)	42.8 (6.4)
Sex (Female/Male)	73/48	25/19	9/11
Handedness (L/A/R)	0/0/121	6/0/38	0/0/20
Education in years, mean (s.d.)	17.6 (2.0)	17.5 (1.9)	14.4 (2.6)
IRI-EC, mean (s.d.)	27.4 (4.8)	NA	NA
IRI-PT, mean (s.d.)	24.3 (5.7)	NA	NA
IRI-PD, mean (s.d.)	13.1 (5.0)	NA	NA
IRI-FS, mean (s.d.)	18.3 (5.1)	NA	NA
Interval between scanning dates in months, mean (s.d.)	NA	9.2 (2.7)	1.0 (0.2)

774 A = ambidextrous; EC = empathic concern; FS = fantasy score; IRI = Interpersonal Reactivity Index; L =
775 left; NA = not applicable; PD = personal distress; PT = perspective taking; R = right; s.d. = standard
776 deviation

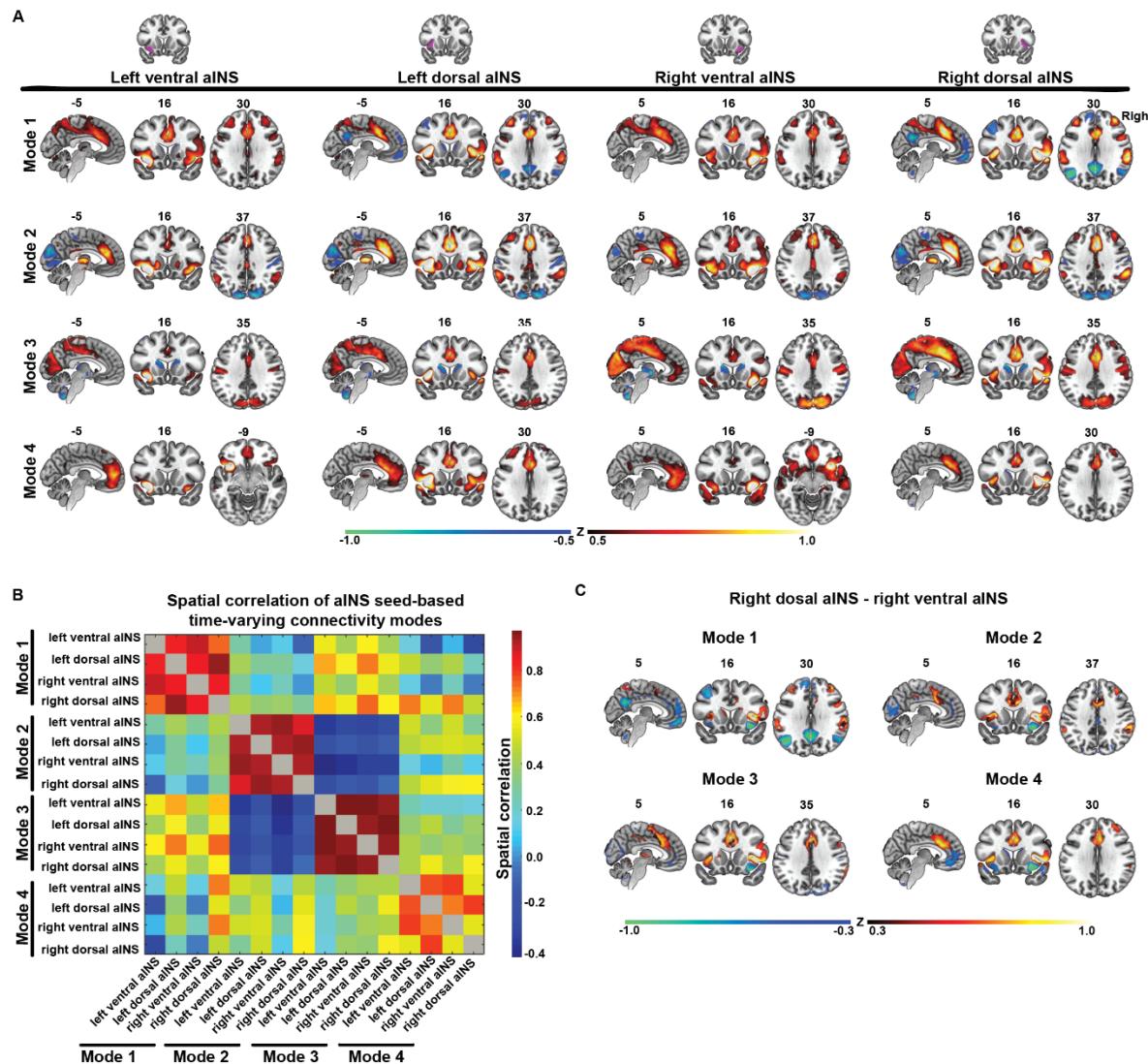
777

778



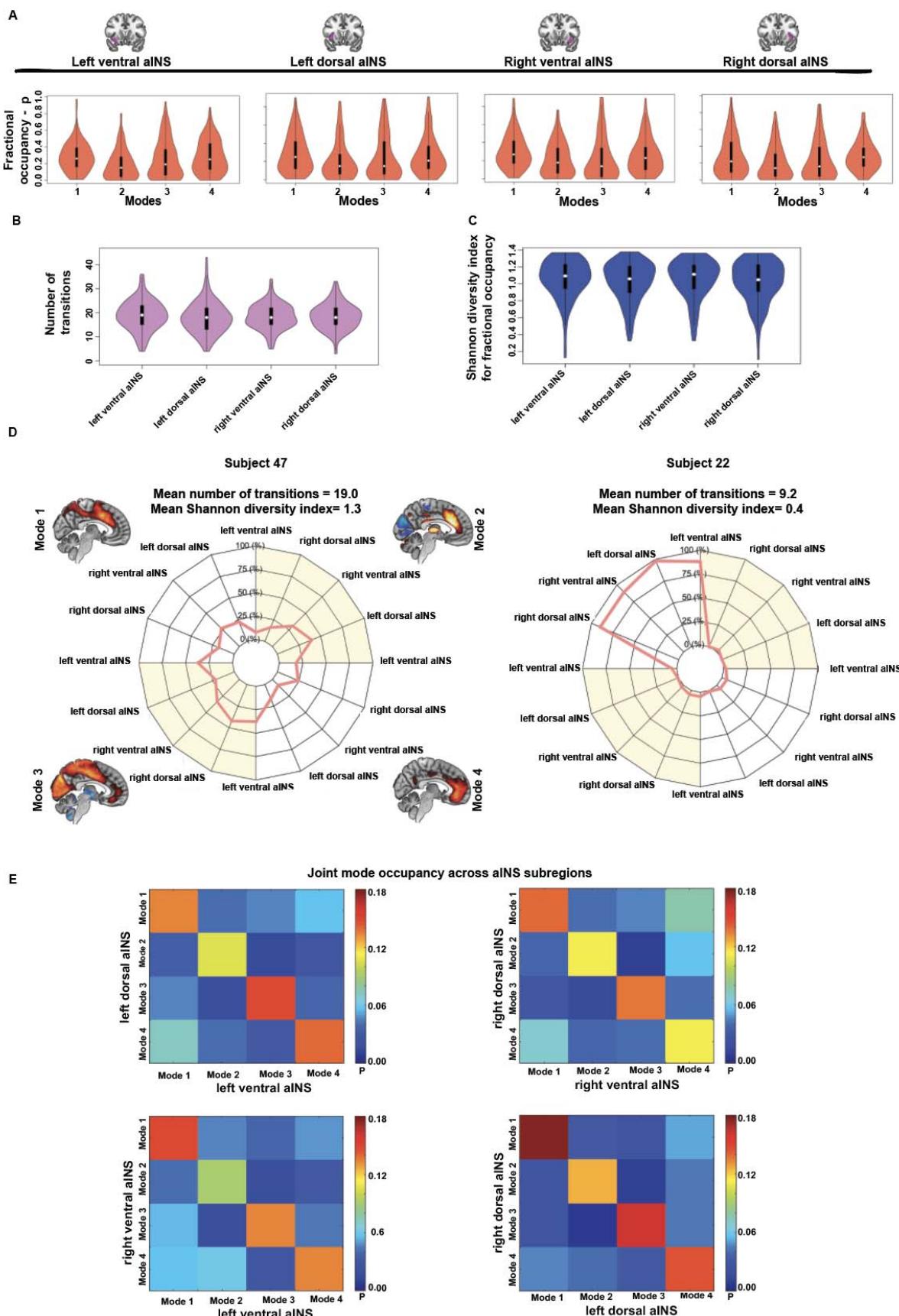
779

780 **Figure 1. Time-varying functional connectivity pipeline.** (A) For each individual Si , average BOLD activity
781 time courses were extracted from subregions of the aINS, here the left ventral. (B) For each individual,
782 218 time-varying seed-to-whole-brain connectivity maps ($S_iW_1-S_iW_{218}$) were generated using a sliding-
783 windows of 18 TRs (36 s) in steps of 1 TR. (C) The derived connectivity windows were vectorized and
784 concatenated across subjects resulting in windows \times voxels matrices for each aINS seed. K-means
785 clustering was then applied to the concatenated window matrices using a value of $k = 4$ to produce four
786 clusters representing four time-varying aINS modes present across the course of the functional scan. (D)
787 Group averaged maps of the four modes were generated using the cluster-specific centroid maps
788 generated through k-means (threshold at $-0.5 > z > 0.5$). The assignment of each window to a specific
789 mode, was used to derive fractional occupancy profiles for each mode (i.e. the time spent by an aINS
790 subregion in each mode), defined as the number of windows assigned to one mode divided through the
791 total number of generated windows. aINS = anterior insula; BOLD = blood oxygen level dependent signal



792

793 **Figure 2. Time-varying functional connectivity modes of the aINS.** **(A)** Spatial maps of the four time-
 794 varying functional connectivity modes identified across the four aINS subregions in the cross-sectional
 795 dataset. Threshold at $-0.5 > z > 0.5$, negative connectivity is depicted in blue, positive in red. The right
 796 side of the brain is shown on the right side of the image. **(B)** Correlation matrix reflecting the spatial
 797 similarity of modes identified in distinct aINS subregions. **(C)** Differences in time-varying connectivity
 798 between correspondent modes of the right dorsal and ventral aINS (threshold at $-0.3 > z > 0.3$, higher
 799 connectivity of the dorsal aINS is depicted in red, higher connectivity of the ventral aINS in blue).



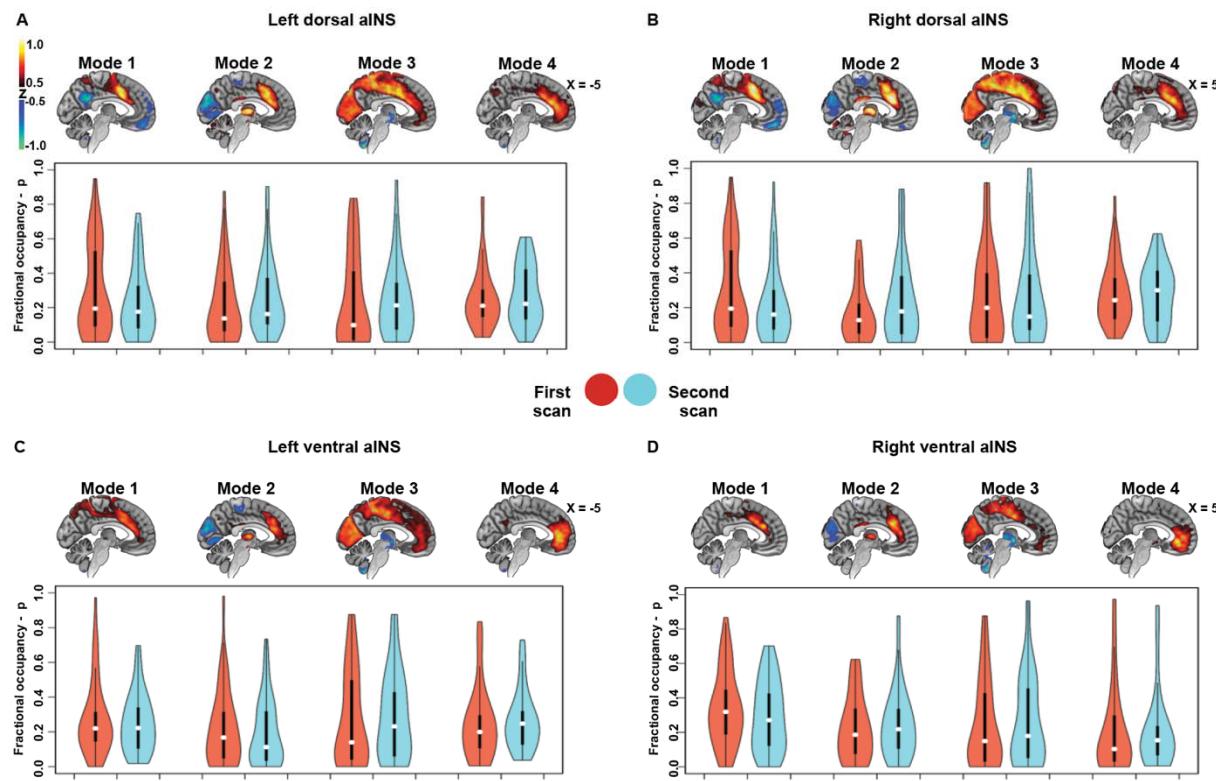
801 **Figure 3. Temporal characteristics of the identified aINS time varying functional connectivity modes.**
802 **(A)** Violin plots reflecting group fractional occupancy in the four identified time-varying functional
803 connectivity modes across the four aINS subregions. **(B)** Violin plots representing the number of
804 transitions between time-varying functional connectivity modes across the four aINS subregions. **(C)**
805 Violin plots representing the diversity of fractional occupancy profiles – measured using the Shannon
806 diversity index – across aINS subregions. This measure reflects whether an aINS subregion tends to
807 spend similar amounts of time in different modes or spends most of its time in only one mode. **(D)** Polar
808 plots schematizing the fractional occupancies of aINS subregions into the four time-varying functional
809 connectivity modes. On the left side, the fractional occupancy profile of Subject 47 transitions between
810 several modes, and is characterized by a high number of transitions and by high Shannon diversity index
811 averaged across aINS subregions. On the right side, we can appreciate the highly stereotyped fractional
812 occupancy profile of Subject 22, with aINS subregions spending most of their time in a single mode.
813 Regardless of the subregion, aINS subregions in this participant tend to spend time only in Mode 1,
814 showing hence a low number of transitions and low Shannon diversity index averaged across aINS
815 subregions. **(E)** Heat maps reflecting how specific modes are jointly occupied at the same time by
816 distinct aINS subregions. Scale bar reflects the average group probability that distinct aINS subregions
817 occupy certain mode configurations.

818

819

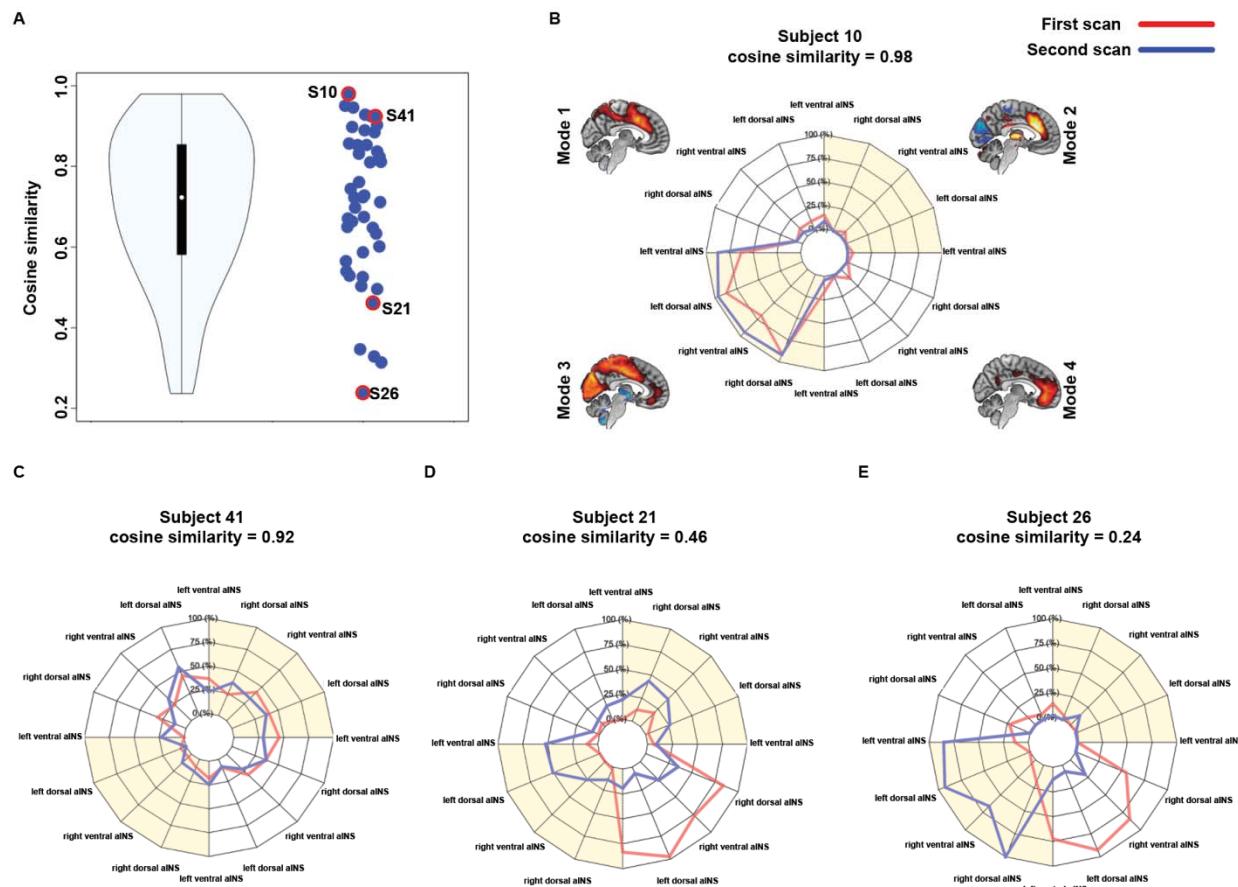
820

821



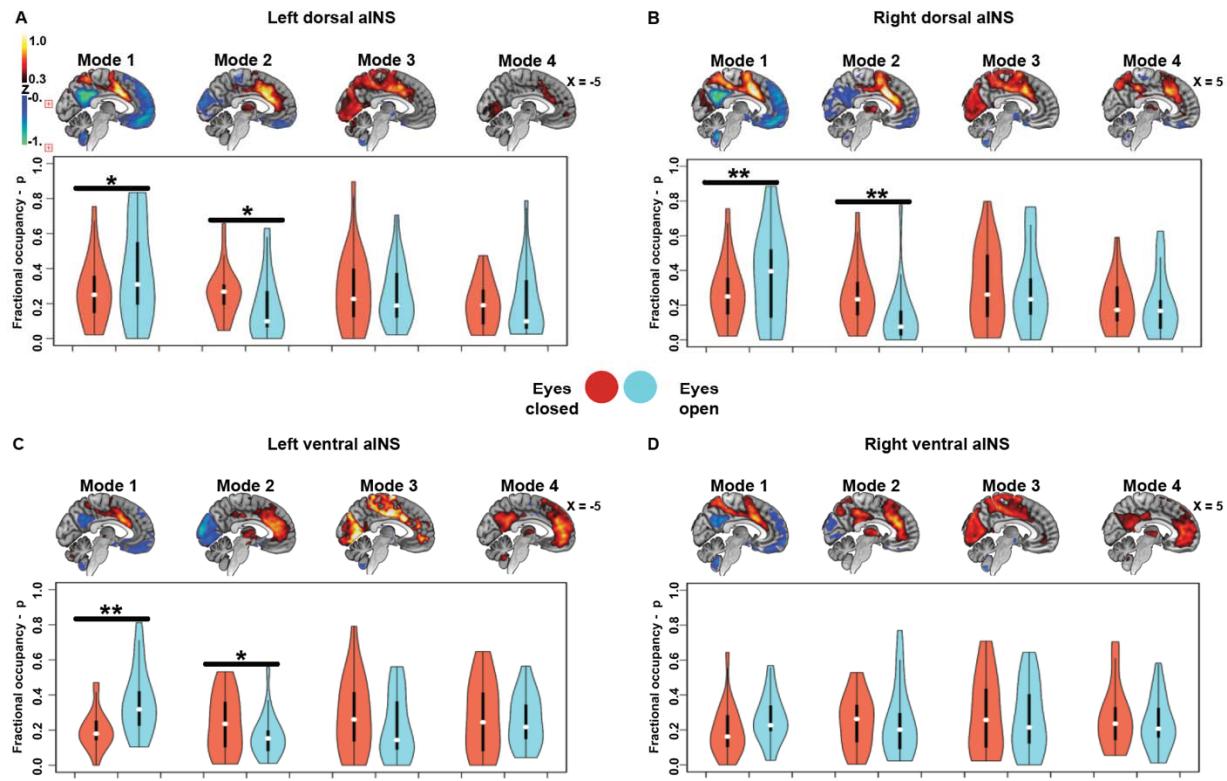
822

823 **Figure 4. Time-varying functional connectivity modes across time.** In the longitudinal data sample,
824 spatial patterns of time-varying functional connectivity modes were identified across the four aINS
825 subregions bearing high similarity to the modes identified in the cross-sectional sample (maps averaged
826 across both time points, sagittal plane only panels A-D). Fractional occupancy in the identified modes
827 did not significantly differ between the first (red violin plots) and second scanning dates (blue violin
828 plots) ~9 months apart (paired t-test; $p < 0.05$ uncorrected for multiple comparisons).



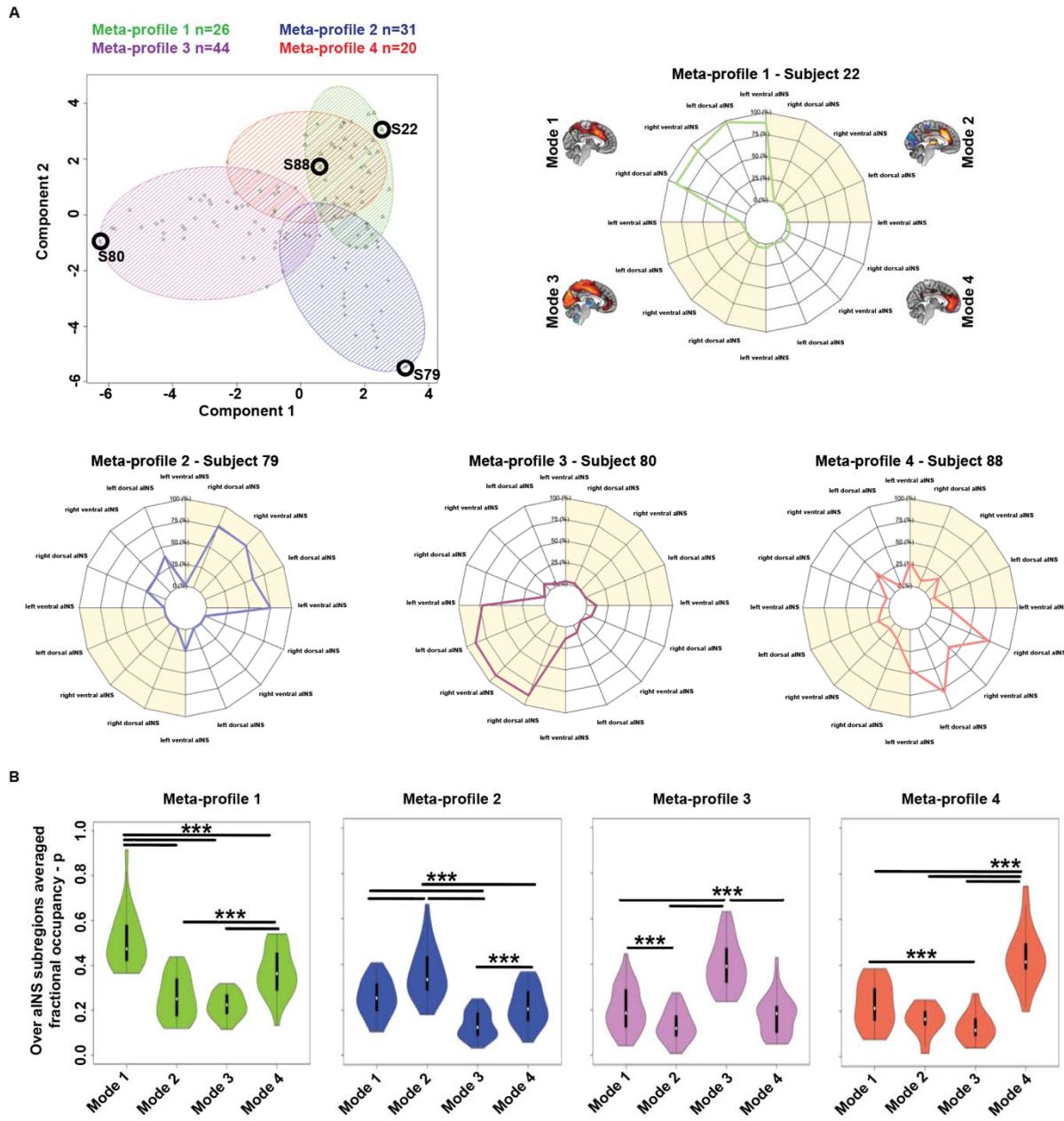
829

830 **Figure 5. Individual fractional occupancy of aINS subregions across time.** (A) Violin plot representing
831 the similarity of aINS fractional occupancy profiles across scanning dates assessed using cosine
832 similarity. Subjects 10, 41, 21 and 26 are highlighted with red circles in the individual data plot. The
833 individual fractional occupancy profiles of these subjects and correspondent cosine similarity values are
834 further schematized in panels B-E, where the fractional occupancies are shown at the first (red) and
835 second (blue) scanning dates. aINS fractional occupancy in Subjects 10 and 41 did not substantially differ
836 between scanning dates (note the overlap in the polar plots and the high cosine similarity index), while
837 Subjects 21 and 26 showed very different aINS fractional occupancy profiles when assessed at different
838 time points (note the little overlap in the polar plot and the low cosine similarity index).



839

840 **Figure 6. Time-varying functional connectivity modes during scanning with eyes closed versus eyes**
841 **open.** In the eyes closed/open dataset, spatial patterns of time-varying functional connectivity modes
842 where identified across the left dorsal, right dorsal, left ventral, and right ventral aINS bearing high
843 similarity to the modes identified in the cross-sectional sample (maps averaged across eyes closed/open
844 conditions, sagittal plane only panels **A-D**). With exception of the right ventral aINS, fractional
845 occupancy in the visually anticorrelated Mode 2 was significantly higher during eyes closed (red violin
846 plots) than during eyes open scanning (blue violin plots). On the other hand, in the eyes open condition
847 participants spent significantly more time in the task-control Mode 1 (paired t-test; $p < 0.05$ uncorrected
848 for multiple comparisons). * $p < 0.05$; ** $p < 0.005$



849

850 **Figure 7. Meta-profiles of time-varying dynamic connectivity modes. (A)** Individual fractional
 851 occupancy profiles of aINS subregions were clustered into four clusters, reflecting four meta-profiles of
 852 time-varying aINS functional connectivity. 26 subjects were clustered into Meta-profile 1 (triangles,
 853 green), 31 into Meta-profile 2 (+ sign, blue), 44 into Meta-profile 3 (circles, violet), and 20 into Meta-
 854 profile 4 (x's, red). Panels show individual fractional occupancy profiles representative of the identified
 855 meta-profiles (see black circles in the scatterplots). Across aINS subregions, Subject 22 tended to spend
 856 time in Mode 1, Subject 79 in Mode 2, Subject 80 in Mode 3, and Subject 88 in Mode 4. **(B)** When
 857 averaged across aINS subregions, one-way ANOVAs and related post-hoc t-tests reveal that the aINS of
 858 participants clustered in Meta-profile 1 showed significantly higher fractional occupancy in Mode 1.

859 Similarly, the aINS of participants clustered on Meta-profiles 2, 3, or 4, spent more time on Modes 2, 3,
860 or 4, respectively.