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Abstract

The use of antimicrobials in the animal industry has increased the prevalence of antimicrobial resistant
commensal bacteria in food products derived from animals, which could be associated with
antimicrobial resistance in human pathogens. To reduce the influx of antibiotic resistant bacteria (and
genes) to the human microbiota, restrictions on antimicrobials (in food animals) have been
implemented in different countries. We investigated the impact of antimicrobial restriction in the
frequency of antimicrobial resistant bacteria in pigs. No differences in antimicrobial resistance or
antimicrobial resistance genes (richness or abundance) was found when we compared animals fed with
and without antibiotics. Fitness costs of antimicrobial resistance in bacteria (in the field) seems to be
overestimated.

1 Introduction

Thorough history, antimicrobials have been effective in the treatment and control of bacterial diseases
and have contributed to greater life expectancy of humanity (Ferri et al., 2017). However, the
emergence, spread and increasing incidence of bacteria with multiple antimicrobial resistance (AMR)
has risen the concern about the use or misuse of antimicrobials (Garcia-Migura et al., 2014). Farms
use around 80% of total antimicrobial production in United States (Ferri et al., 2017) and it is possible
that larger proportions of antibiotics are used in animals in less industrialized countries which lack
regulatory policies for antibiotic use (Ayukekbong et al., 2017).

There is a complex relationship between antimicrobial resistance in food animal microbiota and human
pathogens. The use of antimicrobials in animals cause the proliferation of commensal bacteria with
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antimicrobial resistant genes (ARGs) which can horizontally transferred to many other bacterial species
in the intestines (Forslund et al., 2013; Neu, 1992). Antimicrobial resistant commensals from farm
animals can end up in food products such as meat and dairy (Van Den Bogaard and Stobberingh, 2000;
Zdolec et al., 2016); these bacteria can colonize human intestines and could either become
opportunistic pathogens or transfer ARGs to opportunistic pathogens (Von Wintersdorff et al., 2016;
Zolec et al., 2016). This interaction between bacteria from food animals and humans has driven the
creation of new policies and regulations aimed to reduce the use of antibiotics in farm animals
(Chattopadhyay, 2014; Pugh, 2002)

In theory, reducing the use of antimicrobials in farms should cause a reduction in AMR bacteria
commonly found in food animals and derived products (Wegener, 2003). The elimination of the
selective pressure over the bacterial population should reduce the amount of AMR bacteria overtime
and this process should be fast if ARGs are causing a fitness cost in commensal bacteria in the absence
of antibiotics (Andersson and Hughes, 2010, 2012). However, many experiments in which animals
were deprived of antibiotics as growth promotors, showed high levels of antibiotic resistance in
numerically dominant Escherichia coli (Ahmed et al., 2017; Mathew et al., 1998) or high relative
abundance of resistance genes (Pakpour et al., 2012). More importantly, resistant genes, multi-resistant
and numerically dominant bacteria have been found associate to animal production in organic farms
too (Gerzova et al., 2015; Osterberg et al., 2016; Mollenkopf et al., 2018). In the present study we
investigated the effect of the removal of antibiotics administered as prophylactics (higher antibiotic
doses than for growth promotion). We analyzed phenotypic resistance in coliforms and microbiota
resistome.

2 Material and methods

2.1 Animals

A random, balanced double-blind study was conducted in two generations of pigs. Twenty healthy
female 70d piglets were selected and separated in two pens with 10 piglets each. One group was fed
with antimicrobial additives (group A) and, 10 without antimicrobial additives in feed (group B).
Treatments were maintained during growth, sexual maturity and pregnancy. Once sows farrowed,
piglets were weaned and placed in two separate pens for group A (n=32) and B (n=32) respectively
and continued with treatments of their respective mothers. All the experimental procedures were
approved by the Ethics Committee for Animal Research of San Francisco de Quito University.
Vaccines were administered to all animals and the antimicrobial treatment was administered under
veterinarian supervision to animals that have any diagnosed infection. Antimicrobial additives used are
described in Table 1.

2.2 Samples and phenotypic analysis

Rectal swabs were taken from sows and 5 randomly selected piglets from each litter during one
productive cycle (Figure 1). During weaning and fattening phases, each pen grouped 32 piglets. Pig
density was 0,45 m?/pig in weaning phase and 0,90-1,0m?/pig at fattening phase. Animals from each
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80  group were monitored for 170 days (Figure 1). The type and antimicrobial concentrations in feed
81  changed overtime and have been used routinely in the farm for the two previous years (table 1).

82

83  Swabs were maintained on ice for transportation to the lab facilities within 2h after collection. For
84  molecular analysis, samples were frozen at -80°C. Intestinal coliforms were used as microbial indicator
85  of phenotypic resistance. Swabs were eluted in ImL of sterile phosphate buffered saline solution (PO),
86  0.1mL of this solution with be serial diluted in 0.9mL of PO until 10-3. Then, 0.1mL of dilution of the
87  sample was plated onto the surface of MacConkey Agar (MKL) with and without antimicrobials (Table
88  2).

89

90  We estimated the ratio of resistant coliforms by counting the number of colonies in plates with
91  antimicrobials divided by the colonies in MKL plate without antimicrobials.

92
93 23 Antimicrobial susceptibility test
94

95  One lactose fermenting (coliform) colony from each plate was isolated and stored at -80C in TSB with

96  10% of glycerol. Antimicrobial susceptibility tests were performed with Bauer Kirby test following

97  CLSI guidelines, on random selected strains using AMP ampicillin (10pg), TET tetracycline (30pg),

98  SXT trimethoprim-sulfamethoxazole (1.25/23.75nug), GEN gentamycin (10pg), AMC amoxicillin-

99  clavulanic ac. (20/10pg), CIP ciprofloxacin (5pg), CHLOR chloramphenicol (30pg) and COX
100  ceftriaxone (30ng) as representatives of the most used families of antibacterial drugs used in health
101 care (Eisenberg et al., 2012; Kozak et al., 2009).

102
103 24 Molecular analysis
104

105  DNA from swabs taken for each pig were isolated using MO BIO Power Soil DNA Isolation Kit (MO
106  BIO, 12888-100) using swab dilution material in bead solution buffer and following manufacturer
107  instructions. Quality and quantity were evaluated using nanodrop (Thermo Scientific) and Qubit
108  dsDNA HS (Thermo Fisher Scientific, Oregon, USA)

109

110 From sows’ samples, mcr-1 PCR amplification were performed used the conditions described
111 previously (Liu et al., 2016). One pooled sample from each sampling point (6 from A and 6 from B
112 group) were analyzed in duplicate with high throughput qPCR. WaferGen SmartChip Real-time PCR
113 system was performed to detect 384 genes, 338 are informative for AR genes or MGE. Primers for
114  these genes and associated HT- qPCR assay were designed, used, and validated in the previous studies
115  (Guo et al., 2018; Looft et al., 2012; Su et al., 2015; Zhu et al., 2017), and primer set was update
116  recently (Stedtfeld et al., 2018). The genetic richness was defined as the number of AMR genes found
117  in aniche.

118
119 2.5 Statistical analysis
120
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121 All collected data were registered in MS EXCEL software and descriptive and inferential statistics
122 analysis were performed in INFOSTAT (Statistic Software Vs 2017). The impact of antimicrobial
123 restriction on coliforms count, on the susceptibility patterns of isolates and animal performance were
124 compared with T test and Chi Square respectively (p<0.05). HT-qPCR data was analyzed according to
125  previously established methods (Looft et al., 2012; Muurinen et al., 2017). Specifically, AACT method
126  was used to normalize and calculate the fold change. Moreover, the relative abundance of ARG was
127  calculated with normalization to the universal 16S rRNA; estimated from the Ct value with a
128  conservative threshold Ct of 30 as the gene copy detection limit due to the lack of quantification curves
129  for each 384 primer sets used. Calculated data represent the copy number per 16S rRNA gene copy.
130 QIUcore Omics Explore 3.4 software were used to show heat maps.

131
132 3 Results
133

134 Based on coliform counts in MKL with and without antimicrobials, AMR ratios of resistant coliforms
135  to overall coliforms were calculate and are shown in Table 3. The resistance ratios for tetracycline were
136  higher than that for trimethoprim-sulfamethoxazole or ampicillin. No significant differences between
137  treatment groups for any antibiotic was found (p: 0.434, 0.722, 0,763 respectively)

138

139  Antimicrobial susceptibility tests for 537 randomly selected strains (A=266 and B= 271) showed
140  general resistance to ampicillin (n= 397; 73.9%), amoxicillin- clavulanic ac. (n=188; 35%),
141  tetracycline (n=434; 81.1%), trimethoprim-sulfamethoxazole (n=301; 56.1%), gentamycin (n=125;
142 23.3%), ciprofloxacin (n=71; 13.2%), chloramphenicol (n= 174; 32.4%) and ceftriaxone (n=77;
143 14.3%) were detected. There were no significative differences (p > 0.05) between treatment groups
144 neither in sows nor in piglets (in nursing or fattening phases) (Table 4). Strains with resistance to 3 or
145  more antimicrobials were considered as multidrug resistant phenotype (MDR) (n=354; 65.9%).

146

147  The antimicrobial resistance richness was not different (p> 0.05) in animals within group neither
148  between groups (Figure 3) and the abundance of resistant genes decreased overtime, although
149  tetracycline resistance genes and mobile genetic elements (MGE) remained stable. Among the most
150 abundant genes detected were aminoglycoside resistance and MGE (Tp614, 1S613, tnpA, intl-a-
151  marko, intl2, intl1F165  clinical, pBS228-IncP-1, trb-C, 1S26, 1S256, IS6100, IS91). These MGEs
152 could be responsible for the transference of resistance genes among microbiota species; tet(32) was
153  detected in all samples. Colistin resistant gene were found too but the frequency was low and was
154  reported within “Other” category. Furthermore, a PCR amplification were performed on sows’ samples
155  at the beginning of this study. mcr-1 was amplified in 19 from 20 of these samples.

156

157 A Sperman correlation test was performed on QIUcore Omics Explore 3.4 software (Supl. 16) showed
158  no difference of ARG relative abundance profiles between samples collected during growth phases.
159  Pigs at day 30, showed a higher ARG relative abundance (although not statistically significant) than
160  pigs at day 5, however there was no statistical difference between groups (figure 3). However, this high
161 ARG relative abundance declined overtime.

162
163
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164 4 Discussion
165

166  In this study, we found that antimicrobial restriction (during 2 generations of pigs) had no significant
167 impact in antibiotic resistance of intestinal coliforms. We hypothesized that the absence of
168  antimicrobials in the diet (during two generations of animals) will cause antimicrobial sensible bacteria
169  to outgrow resistant ones. However, we did not find significant differences (o > 0.05) in the total
170  number of resistant coliforms nor did we find differences in resistance gene abundance or diversity
171  associated with antibiotic additives. Similar results, in pathogens and commensals, have been reported
172 previously (Ahmed et al. 2017; Miranda et al., 2009; Cho et al., 2007; Sato et al., 2004). The lack of
173 differences in ARG relative abundance between groups of pigs feeding with and without antimicrobials
174  was also reported (Gerzova et al., 2015). Other studies found that E. coli isolated from sows with
175  different levels of antimicrobials in feed, had some differences in antibiotic resistance genes but similar
176  antibiotic susceptibility phenotypes (Mazurek et al., 2014; Looft et al., 2014); other studies, however,
177  showed an important decrease in resistance bacterial isolates or reduced resistant gene abundance after
178  antibiotic removal (Osterberg et al., 2016; Looft et al., 2012; Mathew et al, 1998). These discrepancies
179  may be due to differences in fitness cost of the different plasmids over different bacterial populations.
180  Some authors suggest that longer periods of antibiotic restriction are required in order to observe some
181  changes in the relative abundance of antimicrobial resistant genes (Pakpour et al., 2012), however, long
182  time (> 10 years) reductions in antibiotic use have resulted in almost null reduction of antibiotic
183  resistance in Enterobacteriacea from food-animals (Danish Integrated Antimicrobial Resistance
184  Monitoring, Research Programme, 2017). These findings are also in agreement with the notion that
185  the resistome tends to persist over time even in the absence of selective pressure (Lehtinen et al., 2017).

186  The resistance genes with higher relative abundance were against tetracyclines,  lactams, and
187  aminoglycosides (Figure 3). These phenotypes have been commonly reported in pig farms (Osterberg
188 etal., 2016). Genes associated with tetracycline resistance have been detected in pigs feeding with or
189  without medicated feed which concords with the notion tetracycline resistance genes are common in
190  swine intestinal resistome (Koga et al., 2015; Looft et al., 2012; Kazimierczak et al., 2009; Mathew et
191  al, 1998). B-lactamase or aminoglycoside resistance genes were detected despite these antimicrobials
192  were absent in the diet. Similar observations have been reported by Looft et al. (2012) and were
193 confirmed by the same research group in 2014. The mobile genetic elements markers, that showed an
194  important relative abundance, may explain the abundance of these genes (Looft et al., 2014).

195  Our results may indicate that ARGs are not causing any fitness reduction in the bacterial population in
196  the intestine. Under laboratory conditions it has been shown that fitness costs, associated a plasmid,
197  could be transformed in fitness advantages after 420 generations (Dionisio et al., 2005); and the
198  advantageous plasmid could improve the fitness of bacterial hosts never exposed to this plasmid
199  (Dionisio et al., 2005).

200  MGEs are important actors in antimicrobial resistance spread (Jansen and Aktipis, 2014) and in this
201  study, we observed a higher relative abundance of MGEs in piglets at 30 day of age which coincides
202 with the weaning period. This phenomenon may be linked to gut microbiome stress due to changes in
203  diet (Frese et al., 2015; Gresse et al., 2017; Isaacson and Kim, 2012); bacteria under stress may turn
204  on their S.0.S response which increases mobilization of MGEs (Shapiro, 2015; Beaber et al., 2014).
205  This perturbation of intestinal microbiota has been associated with higher activity of MGEs and
206  abundance of resistance genes in piglets (Twiss et al., 2005)

207  Our study had some limitations such as housing the two groups of animals in the same barn. The
208  environment may be saturated with resistant clones and our results may be driven by this environmental
209  exposure. However, this limitation doesn't invalidate our findings as we wanted to investigate whether
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210 antibiotic-sensitive bacteria in the intestine are a better fit to grow in the intestines in the absence of
211  antibiotics (Aarestrup, 2015; Wasyl et al., 2012). Finally, the withdraw of antibiotics in this setting did
212 not have any repercussion in the growth or the health of these animals.

213
214 5 Conclusion
215

216  Our observations suggest that antibiotic restriction is not enough to reduce the numbers of antibiotic-
217  resistant bacteria in the gastrointestinal tract of food animals and their products. The maintenance of
218 antibiotic resistance in the absence of antibiotic pressure is not easily explained, there are many
219  evolutionary factors that are not fully understood and require additional research.
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11  Tables

Table 1. Antimicrobial additives used in pigs farm as prophylactics in group A.

Growth Age Administration
phase (days) Antimicrobial Dose, ppm via

Tilmicosin 200 Feed

0 21-28
Colistin 40 Feed
Tiamulin 150 Feed

1 29 -34
Chlortetracycline 450 Feed
Tiamulin 150 Feed

2 35-45
Chlortetracycline 450 Feed
Tiamulin 150 Feed

3 45-70
Chlortetracycline 450 Feed
4 70 - 85 Chlortetracycline 450 Feed
5 123 - 139  Chlortetracycline 450 Feed

2 Trimetoprim-

37-40 sulfamethoxazole 25mg/Kg/PV Water
3 45 -47 Doxicycline 10mg/Kg/PV Water
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Table 2. Antimicrobials used as supplements to MacConkey Lactose (MKL) culture media.

Antimicrobial Concentration Reference
Tetracycline TET 32mg/L (Aggaetal., 2016)
Ampicillin AMP 16 mg/L (Bibbal et al., 2007; Havelaar et al.,
1987)
Trimethoprim- SXT 4mg/L (Schmidt et al., 2015)
Sulfamethoxazole
76mg/L

Table 3. Total count of coliform colony forming units (CFU) in Mac Conkey lactose without
antimicrobials. The average and standard deviation (SD) is shown for each treatment. Antimicrobial
resistance ratios for ampicillin (AMP), cotrimoxazole (SXT) and Tetracycline (TET) were calculate
using the total count of coliform colony forming units in Mac Conkey Lactosa plates with
antimicrobials divided by the total count of coliform in Mac Conkey Lactosa without antimicrobials.

Treatment A

Treatment B

AGE (days) (AVERAGE) SD AMP SXT TET 234E+07 SD AM SXT TET
5 1,73E+07 1,15E+07 0,48 1,22 2,15 5,15E+04  1,10E+13 0,39 1,55 2,38
30 6,71E+05 1,01E+06 0,78 0,56 0,66 8,90E+05  7,92E+14 0,98 0,43 0,97
50 9,17E+05 8,70E+05 0,26 0,48 0,83 7,40E+04  §,41E+14 0,48 0,48 1,01
100 2,46E+05 1,68E+05 0,38 0,94 0,99 2,65E+05  1,16E+13 0,48 1,48 0,72
140 1,08E+05 1,68E+05 0,34 0,32 1,05 2,55E+14 0,25 0,14 1,2
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Table 4.- Antimicrobial susceptibility test from coliform isolated. Strains are classified by sampling period (1.- 5days; 2- 30days; 3.- 50 days;
4.- 100 days; 5.- 140 days) and treatment group (A.- with antimicrobials; B.- without antimicrobials) (p = 0,77). p was calculated based on
sampling period comparison. Strain with more than 2 resistances was count as multidrug resistant (MDR). AMP ampicillin (10pg), TET
tetracycline (30ug), SXT trimethoprim-sulfamethoxazole (1.25/23.75pg), GEN gentamycin (10pg), AMC amoxicillin-clavulanic ac.
(20/10pg), CIP ciprofloxacin (5ug), CHLOR chloramphenicol (30pug) and COX ceftriaxone (30ug) were used to perform the antimicrobial

susceptibility test.
TREATMENT A TREATMENT B
1 2 3 4 5 6 1 2 3 4 5 6

AMR |n (% |n |% |n |% |n|% |n|% |n|% |n|% |[n|% |n|% |[n|% |[n|% |n|% P
MDR | 28| 60.8 |28 | 528 (20| 952|290 |53,7| 19| 513 |49 | 89,1 | 27587 |30 (73,5 | 24| 923 |31 | 54414452 |46 |79 | M08
AMP [ 32| 69,529 | 547 |21 | 1000 |25 | 463 (36| 973 |52 |945]22 | 47,8 40| 75526 | 1000 | 30 | 52,6 | 29 | 93,5 | 55 | 94,8 | #77816292
AMC [ 16| 34711207 17| 809 | 3| 55(19[513]20[527] 7|152|16]301 | 18| 692 5| 8815|484 |32]s552]|H7000647
SXT |19 413 |32(603 | 8| 381 |31|57.4|21|567 40| 727 | 21| 456 | 35| 660 | 11| 423 |34 (506 |10|322 39 | 672 | 0024382423
TET | 46| 1000 [ 52| 98,1 [ 21| 1000 | 52 | 963 | 0| 00|44 | 80,0 | 45| 97,8 |49 [ 924 | 25| 96,1 |51 [89,5| 1| 33|48 |sap | 377740267
crp 6| 130| s|1s1| 1| 47|11]203] 2| 54| 4| 73| of 00]18(339] 3| 11513228 1] 32| 4| 69|00
CHLOR | 10| 21,7 [ 14| 264 [ 10| 476 |16 |29.6| 6| 162 |20 |363 | 10| 21,7 |25 472 | 11| 423 |22 |386 | 10322 | 20 | 34,5 | %194337987
GEN | 9| 195| 8|150] 5| 238|17|31.5| 3| 81|11 |200|19|413|21|396| 6| 23.1|18|31,6| 1] 32| 7121 | 38299528
cox |12] 260| 4| 75| 11| 24| 5| 92| 4|108] 5| o1 | s|{109] 7| 132|11] 423 7[122] 4|129] 2| 34 |030582182
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Figure 1.- Work flow for a productive pig’s cycle of each treatment group A. fed with
antimicrobials. B. fed without antimicrobials. 10 female pigs (sows at 70 days) were randomly
selected for each treatment. All farrowed piglets were maintained under the same treatment
group until day 21(Breastfeeding phase). A homogeneous group of 32 piglets (similar age and
weight) within each treatment group were selected to form a weaning phase pen (since 22 days
to 70 days) that was conserve until the slaughter phase (170 days). Rectal swabs samples were
collected at 1.- 5 days; 2.- 30days; 3.- 50days; 4.-100 days; 5.-140 days. A sample from sows
were taken at 180days (6.)
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Figure 2. Antimicrobial resistance genes (ARG) richness. Number of genes of each class of

antimicrobial target. In columns there are assigned the growing phase of piglets (1.- 5 days, 2.-
30 days; 3.- 50 days, 4.- 100 days; 5.- 140 days) and sows (6.- 180days). Animals feeding
antimicrobials were 1dentified as A and animal without antimicrobial additives were 1dentified

with B.
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Figure 3. Relative abundance (RA%) of antimicrobial resistance genes grouped by sampling
phase and treatment group (A.- Pigs fed antibiotics; B.- Pigs not feed antibiotics); 1.- 5 days;

2.- 30 days; 3.- 50 days; 4.- 100 days; 5.- 140 days; 6 Sows 180 days)
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Figure 4. Relative abundance (RA%) of ARG genes grouped by sampling phase and
treatment group (A.- Pigs feeding with antibiotics; B.- Pigs feeding without antibiotics):
1.- 5d; 2.- 30d; 3.- 50d; 4.- 100d; 5.- 140d; 6 Sows at 180d). Genes with CT <30 were
excluded, the heat map represents only genes detected in at least one sample. In red are
shown genes with higher relative abundance, in blue the less abundant genes.
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