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Abstract

How animals adapt their movements to take advantage of behaviorally-relevant time
intervals is not well understood, especially in the supra-second timescale. It has been
proposed that motor timing depends on the emergence of self-sustained dynamics
across ensembles of neurons. Alternatively, evidence from operant conditioning sug-
gests that animals can develop motor routines to adapt their behavior to fixed temporal
constraints. But it is unclear whether animals can accurately time their behavior with-
out the help of motor routines. To address this issue, we used a task in which rats,
freely moving on a motorized treadmill, could obtain a reward if they approached it
after a fixed interval. Most animals took advantage of the treadmill length and its
moving direction to develop, by trial-and-error, a unique motor routine whose exe-
cution resulted in the precise timing of their reward approaches. Noticeably, when
proficient animals occasionally failed to follow this routine, the timing of their re-
ward approaches was systematically poor. In a second step, we trained naive animals
in modified versions of the task specifically designed to prevent the development of
this motor strategy. Compared to rats trained in the first protocol, these animals never
reached a comparable level of timing accuracy. We conclude that motor timing crit-
ically depends on the ability of animals to develop motor routines adapted to the
structure of their environment. Our work also suggests that self-sustained neuronal
activity alone may not be sufficient to support motor timing, at least in the supra-
second timescale.
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Introduction1

The ability of animals to adapt their behavior to periodic events is critical for survival, as the2

appearance of a sensory cue can predict the timing of food availability, predator attack or mating3

opportunity [1–4]. Understanding the mechanisms underlying this ability is challenging because4

unlike sensory modalities (vision, olfaction, audition, . . . ), time is not a material entity and animals5

are not equipped with a sense organ for time perception. It has been postulated that animals6

use a dedicated internal clock to estimate the duration of behaviorally-relevant time intervals and7

sensory cues and produce well-timed movements or take adaptive decisions [5–10]. However, time8

is a critical parameter for a wide range of behavioral functions (sensory detection, memory, motor9

control, attention, response to threats) that engage distinct brain regions. In addition, temporal10

representations are intrinsic to the activity of ensembles of neurons (i.e., neuronal population activity11

dynamically evolves in time [11]). Thus, the ability of animals to judge the duration of sensory12

stimuli or to produce movements according to temporal constraints may emerge from the dynamics13

of task neuronal populations, rather than a time-dedicated internal clock [11, 12]. More specifically, it14

has been proposed that the well-timed production of movements (i.e., motor timing) could depend15

on the self-sustained population dynamics that naturally emerges from the activity of recurrently16

connected neurons [13]. This time-varying emergent signal would be triggered by a cue signalling the17

beginning of the interval to time and, at the end, will be read by output (motor) neurons controlling18

movement generation. Still, whether self-sustained neuronal activity alone can reliably produce19

well-timed motor responses independently of external signals (e.g., sensory stimuli appearing during20

the interval or sensorimotor feedback triggered by movements) is not resolved [13], an issue that is21

especially relevant for supra-second long intervals or delays.22

Interestingly, early investigations using a variety of supra-second long motor timing tasks reported23

that animals often develop stereotyped chains of actions between the operant responses delivering24

the reward [14–17]. These so-called collateral behaviors (sometimes referred to as superstitious,25

adjunctive or interim behaviors) have been observed in a wide range of species, including humans,26

but, as their names indicate, it is believed that they do not contribute to motor timing per se [17].27

Indeed, the duration and order of the collateral behaviors can substantially vary during supra-second28

long intervals, making them relatively unreliable external clocks. Consequently, in the few timing29

theories that considered collateral behaviors, their duration and transition times were assumed to be30

largely determined by some sort of internal clocks [18, 19] or habitual processes [20, 21].31

Recently, the continuous video monitoring of rats performing different timing tasks demonstrated32

that proficient animals developed highly stereotyped motor routines [22–24], raising again the33

possibility that timing could be facilitated by the execution of routines or motor sequences whose34

durations match the task temporal constraints. Still, it is possible that animals specifically rely on35

self-sustained neuronal activity when experimental conditions prevent the usage of stereotyped36

motor strategies. In other words, it is unclear whether animals can accurately time their behavior37

without the help of motor routines. Moreover, even if one assumes that motor routines do facilitate38

motor timing, it could still be argued that they are themselves primarily driven by self-sustained39

neuronal activity.40

To address these questions, we challenged rats in a task taking place on a 90 cm-long motorized41

treadmill, in which animals had to wait for a 7 s long time interval (or delay) before approaching a42

reward port located at the front of the treadmill. We observed that rats took advantage of the task43
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parameters (treadmill speed, direction and length) to learn, by trial and error, a simple motor routine44

whose execution resulted in their front-back-front trajectory on the treadmill and an accurate timing45

of their reward approaches. By manipulating the duration of the waiting time, the speed of the46

treadmill (its magnitude and reliability across trials), or interfering with the initiation of this simple47

motor routine, we created conditions that prevented its development or usage. In these conditions,48

rats were always less accurate and thus seemed unable to rely on a purely internal mechanism.49

Critically, we observed that accurate timing emerged only when animals could take advantage of50

salient external features of the environment that served as a scaffold for the execution of the motor51

routine. We conclude that the production of well-timed behaviors by rodents critically depends on52

their ability to develop motor routines adapted to the structure of their environment. Our work also53

suggests that in supra-second motor timing tasks in which animals cannot rely on motor routines,54

self-sustained neuronal activity alone may not be sufficient to produce well-timed behaviors.55

Results56

To investigate how animals adapt their behavior to temporal regularities in their environment, we57

challenged Long-Evans rats in a treadmill-based behavioral assay that required them to wait for 7 s58

before approaching a “reward area”. The treadmill was motorized, surrounded by 4 walls and its59

length (distance between the front and back walls) was 90 cm. The front wall was equipped with a60

device delivering rewards (a drop of sucrose solution) and an infrared beam, located at 10 cm of61

this device, defined the limit of the reward area. (Figure 1a). Animals were first familiarized with62

the apparatus and trained to lick drops of the sucrose solution delivered every minute while the63

treadmill was immobile (see Methods). Then, rats were trained once a day (Mondays to Fridays) for64

55 minutes in the proper waiting task. Each daily session contained ∼130 trials interleaved with65

resting periods of 15 s (intertrial, motor off). Each trial started by turning the treadmill motor on at a66

fixed speed of 10 cm/s. The conveyor belt moved toward the rear of the treadmill (Figure 1a). The67

animals’ entrance time in the reward area (ET, detected by the first interruption of the infrared beam68

in each trial) relative to a goal time (GT, 7 s after motor onset) defined 3 types of trials. Trials in which69

animals entered the reward area after the GT were classified as correct (7 ≤ ET < 15, Figure 1b).70

Trials in which animals entered the reward area before the GT were classified as error (1.5 ≤ ET < 7,71

Figure 1c). If in 15 s an animal had not interrupted the infrared beam, the trial ended and was72

classified as omission (Figure 1d). Interruptions that occurred during the first 1.5 s (ET < 1.5) were73

ignored to give the opportunity to the animals to leave (passively or actively) the reward area at the74

beginning of each trial. Additionally, the exact value of the ET determined a reward/punishment75

ratio. The volume of the sucrose solution delivered, increased linearly for ET values between 1.5 s76

(minimal reward) and GT (maximal reward) and decreased again between GT and 15 s (end of77

trial). A penalty period of extra running started when the animals erroneously crossed the infrared78

detector before GT (1.5 ≤ ET < 7) and its duration varied between 10 s and 1 s, according to the79

error magnitude (Figure 1c, inset). In addition, to progressively encourage the animals to enter the80

reward area after the GT, the smallest ET value that triggered reward delivery was raised across81

sessions, according to each animal’s performance, until it reached the GT (Figure 1b, inset and see82

Methods for details). Thus, to maximize reward collection and minimize running time, animals83

should cross the infrared beam just after the GT.84
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Figure 1: Treadmill task and trial types. a) Rats were enclosed on a motorized treadmill. The infrared beam
placed at 10 cm of the reward port marked the beginning of the reward area (pink shaded area). During
each trial, the belt pushed the animals away from the reward area and the first infrared beam interruption
defined the reward area entrance time (ET). During trials and intertrials, the animals’ position was tracked via
a ceiling-mounted video camera. b) Schematic description of a rewarded correct trial. Inset: the magnitude of
the delivered reward dropped linearly as ET increased (maximum reward at goal time, GT = 7 s). In early
stages of training, smaller rewards were delivered for trials with ET < 7 s. However, the smallest ET value that
triggered reward delivery was progressively raised during learning (see Methods). c) Schematic description
of an error trial. Early ETs triggered an extra-running penalty and an audio noise. Inset: the duration of the
penalty period was 10 s for the shortest ETs and fell linearly to 1 s for ETs approaching 7 s. d) Schematic
description of an omission trial (no beam crossing between 1.5 and 15 s). (b-d) Note that ETs started to be
detected 1.5 s after the motor start.

During the first training sessions, animals started most trials in the front of the treadmill, mostly85

ran in the reward area and interrupted the infrared beam before the GT (Video 1, Figure 2a, top,86

c, left). Progressively, across training sessions, animals waited longer and after ∼15 sessions, they87

reliably entered the reward area just after the GT (Figure 2b). Interestingly, for a large majority of88

animals, this ability of precisely waiting 7 s before entering the reward area was associated with the89

performance of a stereotyped motor sequence on the treadmill (Video 2, Figure 2a, bottom, c, right).90

First, animals began each trial in the reward area. Then, when the treadmill was turned on, they91

remained largely still while being pushed away from the reward area until they reached the rear wall.92

Finally, after reaching the rear wall, they ran across the treadmill, without pause, and crossed the93

infrared beam. The percentage of trials for which animals used this motor routine increased during94

learning (Figure 2d). Even though a strong preference for the reward area was observed for both95
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Figure 2: Most animals developed a unique stereotyped motor sequence. a) Left: illustration of an animal’s
trajectory on the treadmill during 9 consecutive trials of the 1st (top) and 30th (bottom) training sessions. On
the y-axis, 0 and 90 indicate the treadmill’s front (reward port) and rear wall, respectively. Right: trajectories
for all trials during the 1st (top) and 30th (bottom) sessions (same animal as left panels). Distributions of initial
positions for correct (green) and error (red) trials are shown on the y-axis. Black horizontal boxplots depict
entrance time range (center line, median; box, 25th and 75th percentiles; whiskers, 5th and 95th percentiles). b)
Median entrance time (ET) in the reward area for the first 30 daily training sessions. Circles indicate group
median and error bars, the median range (25th and 75th percentiles) across animals for ET and on the right
y-axis,SD of ET (SDET) values. The dashed magenta line shows the goal time (7 s). c) Median trajectory of
all the trials for the 1st (left) and 30th (right) training sessions. Each line represents a single animal (n = 54).
d) Session-by-session percentage of trials during which animals performed the stereotyped front-back-front
trajectory (see Methods). Circles indicate group median and error bars, the median range across animals (25th
and 75th percentiles). e) Probability distribution function (PDF) of the position of the animals at the beginning
of each correct (green) and error (red) trial, from sessions #20 to #30. Dashed lines represent cumulative
distribution functions (right y-axis). The gray area indicates that in trained animals, 80% of correct trials began
with the animal located near the front of the treadmill. f) PDF of the maximum position along the treadmill
reached by animals before crossing the beam (= ET). Only trials in which animals were initially located in the
front of the treadmill (gray area in panel e) were included.

correct and error trials, the probability to start a trial in the frontal portion of the treadmill was higher96

for correct trials compared to error trials (Figure 2e), a tendency that developed progressively during97

training (Figure S1). In addition, if an animal started a trial in the frontal portion of the treadmill,98

the probability of reaching the back of the treadmill was higher in correct trials than in error trials99

(Figure 2f), confirming that correct trials were associated with the animals following the wait-and-run100

routine and effectively reaching the back of the treadmill before running forward toward the reward101

area. However, a significant fraction of the animals (14/54) did not develop such a strategy (Figure 2c102
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Figure 3: Decreased temporal accuracy when the treadmill speed changes across trials. a) For each trial,
treadmill speed was either fixed at 10 cm/s (control condition, same data as in Figure 2), or randomly
selected from a uniform distribution between 5 and 30 cm/s (variable speed condition). b) Median ET for
animals trained in the variable speed (black), and control (gray) conditions. Colored dots indicate individual
performance for “variable speed” animals. Yellow line shows statistically significant differences between
groups (permutation test, see Methods). c) Median trajectory of “variable speed” animals in session #30
(same colors as in panel b). d) Probability of correct (7 ≤ ET < 15 s) and precise (6 < ET < 8 s) trial,
given the treadmill speed, for “variable speed” animals (session # ≥20). e) After extensive training in control
condition, animals (n = 14) were tested in a probe session with variable speed. f) Median ETs (left), SD of ETs
(middle) and percentage of correct trials (right) in the sessions immediately before and after the change in speed
condition. Each line represents a single animal. Asterisks indicate significant differences (non-parametric
paired comparison, see Methods). g) Similar to panel d, for the data collected from the probe session.

right, Figure S2a). Compared to these animals, those following regularly the wait-and-run routine103

entered the reward area later, displayed reduced variability and an increased percentage of correct104

trials (Figure S2b-d). While we cannot exclude that animals from the middle and front groups also105

used a more subtle stereotyped motor routine not captured by tracking the average body positions106

along the treadmill length, the above results suggest that following a front-back-front trajectory107

through the “wait-and-run” routine is the most reliable strategy to accurately enter the reward area108

just after 7 s.109

It could be argued that a combination of the task parameters (length of the treadmill, its speed110

and direction, possibility to start trials in the reward area, position of the infrared beam) and the111

length of the rats’ body (from head to tail) favored the development of this stereotyped strategy.112

Indeed, depending on the initial position of the animal body at trial onset, it can take up to 7 or 8113

seconds for the animals to passively reach the back of the treadmill (Figure 2a) after which they114

can start running toward the reward area without the need to estimate time. Thus, in the following115

experiments, we examined how accurately animals respected the GT, when distinct task parameters116

were modified such as to prevent the use of this simple wait-and-run motor sequence. First, we117

trained a new group of rats in a version of the task in which, for each trial, the speed of the treadmill118

was selected randomly from a uniform distribution between 5 and 30 cm/s (Figure 3a). We found119
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Figure 4: Decreased temporal accuracy when animals are penalized for starting trials in the reward area.
a) In control condition, animals had a 1.5 s timeout period to leave the reward area after motor onset. In
“no-timeout” condition, crossing the infrared beam any time before 7 s is considered as an error. b) Median ET
for animals trained in the no-timeout (black), and control (gray) conditions. Colored dots indicate performance
for individual “no-timeout” animals. c) Median trajectory of no-timeout animals (same colors as in panel b) in
session #30. d) PDF of the no-timeout animals’ positions at the beginning of each trial, from sessions #20 to
#30. e) After extensive training in control condition, animals (n = 7) were tested in a no-timeout probe session,
in which the beam started at the beginning of the trial, rather than 1.5 s later. f) Trajectories of a representative
animal in the last “control” session (left), and the probe session (right). g) Median ETs (left), and percentage
of correct trials (right) in the sessions immediately before and after the change in beam start time. Each line
represents a single animal. Asterisks indicate significant differences (non-parametric paired comparison, see
Methods).

that, during the course of training, these animals consistently failed to wait as long as the animals120

trained in the control version of the task (“control” group, Figure 3b). Still, the average trajectories121

of animals extensively trained in this “variable speed” condition revealed that they followed a122

front-back-front trajectory (Figure 3c). Accordingly, the probability of performing a correct trial,123

given different speeds, fell rapidly from 5 to ∼15 cm/s and was lowest for the fastest treadmill124

speeds (Figure 3d). Indeed, when the treadmill speed was fast, performing the wait-and-run strategy125

resulted in error trials, as animals reached the back region of the treadmill earlier than when the126

treadmill speed was slow. We also found that the probability of entering the reward area at the127

GT±1 s sharply peaked for a treadmill speed (11.5 cm/s) that is suitable to perform the wait-and-run128

motor sequence (Figure 3d). Finally, when rats extensively trained in the control version of the task129

underwent a single probe session with variable speeds (Figure 3e), all measures of performance130

dropped significantly (Figure 3f). Examining the probability of correct trials and accurate ETs (7± 1 s)131

given the treadmill speed suggested that, animals kept performing the wait-and-run routine they132

previously learned in the control condition (compare Figure 3g and Figure 3d).133

In the control condition, ∼80% of correct trials started while animals were in the reward area134

(Figure 2e). If rats relied on an internal clock-based algorithm to accurately time their entrance in the135

reward area, they should adapt relatively easily to a perturbation of their initial starting position.136
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To test this prediction, we trained a group of rats in a modified version of the task that penalized137

them when they started the trials in the front region of the treadmill. This was done by activating the138

infrared beam as soon as the motor was turned on (in the control condition, the infrared beam was139

inactive during a timeout period that lasted 1.5 s after treadmill onset). In this “no-timeout” condition,140

error trials corresponded to ETs occurring between 0 and 7 s after motor onset (Figure 4a). Animals141

trained in this condition never reached the level of timing accuracy displayed by animals in the control142

condition (Figure 4b). Still, no-timeout animals followed a front-back-front trajectory (Figure 4c)143

and correct trials were associated with the animals starting the trials just behind the infrared beam144

(Figure 4d). The stereotyped reliance on the wait-and-run strategy was also demonstrated by the145

fact that rats extensively trained in control condition kept performing the exact same trajectory146

when tested in a single probe session under no-timeout condition, leading to a sharp decrease in147

performance (Figure 4e-g).148

We next examined how animals behaved when the goal time (GT) was set to 3.5 s (Figure 5), a149

condition in which the performance of the wait-and-run strategy would lead to late ETs (and smaller150

rewards) because it can take up to ∼8 s for the animals to passively travel from the front to the151

rear portion of the treadmill. Animals successfully entered the reward area after 3.5 s and reduced152

their variability across training sessions (Figure 5a) but as a group, they displayed an increased ET153

variability compared to animals trained in the control condition, with GT set 7 s (Figure 5e). From the154

averaged trajectories of “short GT” animals measured once their performance plateaued, it appeared155

that 3 subjects out 7 followed a front-back-front trajectory by running toward the rear portion of the156

treadmill. The other 4 animals remained still when the treadmill was turned on and tried to run157

forward before reaching the rear wall (Figure 5b). Interestingly, after training, in 67% of the error158

trials, the rats started running forward before reaching the middle of the treadmill (Figure 5c, compare159

with red histogram in Figure 2f). Conversely, after initiating a trial in the reward area, the probability160

of visiting a deeper portion of the treadmill was much stronger in correct than error trials, reinforcing161

the idea that accurate timing was accomplished by exploiting the most salient physical features of162

the environment (Figure 5c). Accordingly, the 3 rats that followed the front-back-front trajectory163

were less variable than those that passively stayed still before running toward the reward area from164

the middle of the treadmill (Figure 5e, same color code as in panel b). In addition, among animals165

trained in the short goal time condition, we found that the magnitude of the backward displacement166

on the treadmill was negatively correlated with ET variability (r = −0.49, p = 2.7× 10−3, Pearson’s167

correlation). In the short GT condition, animals became proficient more rapidly than in the control168

condition (compare Figure 5a with Figure 2c). Could the increased ET variance when the GT is 3.5 s169

be explained by the fact that the task is easier in this condition and that animals do not need to be170

very precise? To test this possibility, we increased the penalty for early ETs and decreased reward171

size for late ETs. In this “sharp reward” condition, the performance of the animals trained in the172

short GT was even more variable (Figure 5d-e). This result confirms that under short GT condition173

animals can not accurately time their entrance in the reward area. Finally, another group of animals174

was trained with GT set to 3.5 s and treadmill speed at 20 cm/s (i.e., twice as fast, such as following175

the front-back-front trajectory through the wait-and-run motor sequence would lead to ETs close176

to the GT, Figure 5f). These animals displayed reduced ET variability compared to animals trained177

at 10 cm/s, and after treadmill onset they stayed immobile until reaching the end of the treadmill,178

similar to animals trained in the control condition (Figure 5g,h).179
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Figure 5: Decreased temporal accuracy when the goal time is shortened. a) Median entrance time (ET)
during training. The dashed magenta line shows the goal time (GT = 3.5 s). The right y-axis shows standard
deviation (SD) of ET. b) Median trajectory of “short GT” animals after training. Colored lines indicate
performance of individual animals. Dashed line’s slope shows the treadmill speed (10 cm/s). c) PDF of the
maximum position reached by short GT animals before ET for correct (green) and incorrect (red) trials. Dashed
lines represent cumulative distribution functions (right y-axis). Data collected from session # ≥ 15. d) Sharp
reward condition applied to short GT and control experiments. Top: reward profiles in the sharp condition.
Bottom: trajectories of 2 illustrative sessions after training in sharp condition (left, short GT; right, control).
Highlighted areas indicate the reward window. e) Coefficient of variation (CV) for short GT and control
experiments with normal (first two boxes), and sharp (last two boxes) reward profiles. Data collected and
averaged once performance plateaued (after session #15 for short GT, between session #20 to #30 for control,
and last 5 sessions for the sharp condition experiments). Short GT vs. Control: p < 0.0001 (permutation test,
see Methods); Sharp short GT vs. Sharp control: p < 0.0001 (permutation test); Short GT vs. Sharp short
GT: Non significant (non-parametric paired comparison); Control vs. Sharp control: p = 0.79 (permutation
test). f) Similar to panel a, for another group of animals that were trained to wait for 3.5 s while the speed of
the treadmill was 20 cm/s. g) Similar to panel b, for animals trained in short goal time 20 cm/s condition
(panel f). Dashed line’s slope shows the treadmill speed (20 cm/s). Dotted line’s slope indicates control
treadmill speed (10 cm/s). h) CV for short GT and short GT 20 cm/s conditions (same colors as in panel b,g).
Data collected and averaged once performance plateaued (after session #15). Short GT vs. Short GT 20 cm/s:
Asterisk indicates significant difference (10,000 resamples with replacement, see Methods).

The above results suggest that, in a task requiring animal to produce a motor response according180

to a fixed temporal constraint, the possibility to perform a stereotypical motor sequence adapted to181

salient features of the environment (here, taking advantage of the full treadmill length and its physical182

boundaries) critically determines temporal accuracy. To further investigate this idea, we trained a183
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Figure 6: Performance of animals trained while the treadmill remained immobile. a) Left: illustrations
of the positions of two animals on the immobile treadmill for 9 consecutive trials, early (1st row: Rat #132-
session #3, 3rd row: Rat #123-session #2) and late (2nd row: Rat #132-session #28, 4th row: Rat #123-session #25)
during training. Right: trajectories for all the trials of the corresponding sessions on the left, aligned to the
ET. Distributions of positions 2 s before ET, for correct (green) and error (red) trials are shown on the y-axis.
b) Median ET across sessions for “immobile treadmill” animals. Filled black markers correspond to the
sessions illustrated in panel a. c) Similar to panel b, for the standard deviation of entrance times (SDET). d)
Median trajectory aligned to ET of each “immobile treadmill” animal (only correct trials from sessions #20
to #30 are considered; shaded regions denote standard error). e) Median percentage of correct trials for
each immobile treadmill animal (same sessions as in panel d). Each dot represents one session. f) Repeated
measures correlation between the percentage of correct trials and average displacement during a session. Each
dot represents one session. g) PDF of a correct trial, given the displacement of an animal. Each dot represents
the average probability for an individual animal, during a single session. (e-g) Analyses based on the same
sessions as in panel d. Individual animal color code is preserved in panels b-g.

group of animals in a version of the task in which the treadmill was never turned on (trial onset was184

signalled by turning the ambient light on). In this condition, animals displayed a strong impairment185

in respecting the GT, compared to animals trained in the control condition (Figure 6a,b). On average,186

animals reached the reward area later and later across sessions but displayed a constant high187
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Figure 7: Lack of temporal knowledge transfer across task protocols. After extensive training on the
immobile treadmill, animals were trained under normal conditions (GT= 7 s, treadmill speed= 10 cm/s). a)
Median ET across sessions in control condition. b) Similar to panel a, for the standard deviation of entrance
times (SDET). c) Median trajectory of the individual animals after relearning the task in the control condition.
a-c) Individual animal color code is preserved in all panels.

variability in ET (Figure 6c). We also noticed that correct trials preferentially occurred when animals188

crossed the treadmill from the rear wall to the reward area (Video 3, Figure 6a,d,e). Accordingly,189

after extensive training, a robust correlation was observed on a session by session basis between the190

percentage of correct trials and displacement of the animal on the treadmill (Figure 6f). Moreover,191

the probability of a correct trial increased for higher values of displacement (Figure 6g).192

Lastly, animals trained in the immobile treadmill condition during several weeks were challenged193

in the control condition (i.e., by simply setting the treadmill speed at 10 cm/s). These animals194

improved their behavior at the same pace and with the same wait-and-run routine as naı̈ve animals195

(Figure 7a-c). Thus, animals that previously learned to wait in one version of the task did not learn196

faster than naı̈ve animals when challenged in a second version of the task with distinct movement197

requirement but identical GT, demonstrating again that task proficiency relied primarily on the198

acquisition of a motor sequence rather than an internal knowledge of time.199

Discussion200

In this study, we used a treadmill-based behavioral assay in which rats, once a trial started, where201

required to wait for 7 s before approaching a reward location. Objectively, animals may accurately202
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time their approaches using either one of the following two mechanisms. First, they may rely on a203

purely internal mechanism (self-sustained neuronal dynamics read by their motor system). In that204

case, behavioral accuracy should be largely independent of variations in external factors (e.g., the205

speed of the treadmill, the animals position on the treadmill at trial onset, . . . ). In addition, animals206

would probably stay close to the reward area for most of the duration of the trial (Figure S3d-g).207

Alternatively, animals may discover by trial-and-error a motor routine adapted to the apparatus208

and task parameters, whose completion would take them into the reward area at the right time. In209

that case, timing accuracy should be associated with the stereotyped performance of the routine210

and should also depend on the structure of the environment that must favor the routine expression211

(Figure S3a-c, Figure S4).212

We report that to accurately wait 7 seconds before approaching the reward port, most rats develop213

the following “wait-and-run” motor routine. First, rats waited for the beginning of each trial close214

to the reward area. Then, after trial onset, they remained relatively still while the treadmill carried215

them toward the back of the treadmill. Finally, when they reached the treadmill’s rear wall, they ran216

straight to the reward port. Importantly, even for proficient animals, the probability of performing a217

correct trial was almost null when they started a trial in the back region of the treadmill. In addition,218

when animals started a trial in the reward area, performing a correct trial was almost exclusively219

associated with the animals reaching the back portion of the treadmill. Crucially, following extensive220

training in the control condition, when we modified the task parameters to penalize the stereotyped221

performance of the wait-and-run routine, the behavioral proficiency and accuracy of the animals222

dropped dramatically. These results support the hypothesis that, in our task, performing the motor223

routine is necessary for accurate timing.224

It could be argued that the parameters of the task (waiting time, treadmill’s length, speed and225

direction) provided the ideal condition for the discovery of this simple wait-and-run routine. In other226

words, in conditions that do not favor the usage of a simple motor routine, rats may time their reward227

approaches by relying on an internal representation of time that arises from the ability of recurrent228

neural networks to generate self-sustained time-varying patterns of neural activity [13]. However,229

we found that in such conditions, rats did not seem capable of accurately timing their entrance in230

the reward area. First, we trained a group of animals while the treadmill speed randomly changed231

across trials. Compared to animals trained in the control condition, those trained with a variable232

speed were less accurate. Additionally, these animals also attempted to use the front-back-front233

trajectory as shown by an increased probability of correct trials when the treadmill speed allowed234

it. Second, we trained a different group of rats in a version of the task that penalized them when235

they started the trials in the reward area. In this condition, solving the task is not possible using the236

wait-and-run routine since they would generate early entrance times in the reward area. Rats trained237

in this condition displayed strong accuracy impairment and they kept trying to develop a modified238

front-back-front trajectory by starting the trials as close as possible to the infrared beam. In all the239

above experiments, during trials, the treadmill pushed the animals away from the reward area which240

favors the usage of the wait-and-run routine. To avoid this possible bias, in another experiment, we241

trained a group of rats on an immobile treadmill. Rats’ performance was poor in this condition,242

with some animals failing to show any signs of learning. Furthermore, animals that did eventually243

learn, performed a modified motor sequence during which they ran to the back, performed some244

movements in the back of the treadmill (that we could not quantify with our video tracking system)245
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and then rushed back to the front. Altogether, we conclude from this set of experiments that rats246

were unable to use a purely internal representation of time, but always attempted to develop a motor247

routine in the confined space of the treadmill, routine whose execution duration amounted to the248

time they needed to wait. This conclusion was also supported by the fact that animals were less249

accurate in timing their entrance in the reward area when the goal time was set to 3.5 s, compared to250

the control goal time (7 s). Indeed, in this short goal time condition, the wait-and-run strategy is not251

optimal, as animals would enter the reward area too late. Thus, the decreased timing accuracy might252

be explained by the difficulty to “self-estimate” when to start running forward without the help of a253

salient sensory cue (such as touching the back wall). In support of this idea, in 67% of the error trials,254

the rats started running forward before reaching even the middle of the treadmill. In addition, a255

few animals trained in the short goal time condition developed a new stereotyped motor sequence256

(running to the rear, and back to the front). Interestingly, their entrance times were less variable than257

animals that remained immobile after trial onset and tried to estimate when to run forward in the258

middle portion of the treadmill.259

It could also be argued that rats never understood our task as a time estimation challenge and260

this is why they tried to solve it using a motor strategy. While we agree that animals solved the task261

as a motor learning problem, we believe this type of consideration is irrelevant because our study262

aimed at testing an objective non-trivial question based on the popular view that animals can use263

an internal representation of time to adapt their behavior to fixed temporal constraints. This logic264

was confirmed using a simple simulation of the task in the reinforcement-learning theory framework265

(Figure S3) and thus, our main experimental result was not predictable before doing the experiments.266

In addition, to the best of our knowledge, models of timing that emphasize the importance internal267

processes do not require animals to be explicitly aware of time [7, 13]. Finally, there will always be268

a limit to the inferences that an experimenter can make regarding the mental state of a behaving269

animal or its internal model of a task. Even in choice tasks explicitly designed to require rats to270

estimate the duration of sensory cues, it is unclear if they do so (whatever this might mean for them)271

and video quantification supported the hypothesis that the animals’ performance in this type of task272

was also dependent on an overt timing strategy (see below).273

A more practical limitation of our work is whether its conclusion is relevant beyond the specifics274

of our experimental protocols (a supra-second long motor timing task in which the rewarding action275

is a full-body movement in space). Interestingly, in a study in which rats had to perform two lever276

presses interleaved by 700 ms, each animal slowly developed an idiosyncratic motor sequence (e.g., 1#277

first press on the lever with the left paw; 2# touching the wall above the lever with the right paw; 3#278

second press on the lever with the left paw), lasting precisely 700 ms [23]. The large inter-individual279

variability reported in this study may arise from multiple possibilities of simple action sequences that280

can be squeezed in such a short time interval, taking advantage of the proximity of the front wall281

and lever. Nevertheless, this study provides an additional example in which virtually all animals282

developed a motor strategy, even if, compared to our task, the time interval was much shorter283

(< 1 s) and the terminal operant response was distinct (a single lever press). More remarkably, in284

one of the rare studies that continuously recorded and quantified the full body dynamics of rats285

performing a sensory duration categorization choice task, it was reported that animals developed286

highly stereotyped motor sequences during presentation of the sensory cues and that perceptual287

report of the animals could be predicted by these motor sequences [22]. This result is reminiscent of288
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an earlier study showing that the prediction of rats’ temporal judgement (a 6 s long versus a 12 s289

long luminous signal) was always better if based on the collateral behavior performed by the animal290

at the end of the signal than if based on time [25]). Thus, in such temporal discrimination tasks, a291

stereotyped sequences of movements (collateral behavior) might serve as an external clock and the292

choice of the animals might be primarily determined by what the animal is doing when a sensory293

cue disappears rather than by an internal estimation of the duration of that cue. Altogether, these294

studies support the idea that animals resort to motor strategies to adapt to temporal constraints in a295

wide range of timing tasks. The novelty of our work is, first, to demonstrate that even in conditions296

that discourage the use of such motor strategies rats do not seem able to rely on a purely internal297

timing mechanism and, second, that a critical determinant of temporal accuracy is the possibility to298

develop motor routines that can be guided by interactions with salient features of the environment.299

It has been previously proposed that timing could be mediated through motor routines whose300

precise execution is internally controlled [18–21]. Thus, it could be argued that accurate timing301

in our task was ultimately driven by internal neuronal dynamics. We don’t dispute the fact that302

neuronal activity is required for proficient performance in our task. Actually, we have previously303

reported that striatal inactivation decreased timing accuracy in a slightly modified version of this304

task [24]. In addition, there is no reason why the moment-to-moment movement dynamics of the305

animals on the treadmill could not be decoded from spiking activities recorded across cortical and306

subcortical regions. However, this type of result can not be used as a definitive evidence in favor of a307

neuronal representation of time read by the animals as we, humans, watch a clock [26–28]. Indeed,308

here we report that timing accuracy was reduced when the task parameters prevented the animals309

from taking advantage of the physical structure of the treadmill to learn the motor routine. Thus,310

in our task, something more than an internal process (be it a dedicated clock or the self-sustained311

population dynamics emerging from recurrently connected circuits) was required for accurate timing:312

the reciprocal and repetitive interactions between the nervous system and the body (sensors and313

actuators) on the one hand, and the surrounding environment on the other hand. Our results are314

compatible with the idea that timing emerges from the dynamics of neural circuits [11,12], as long as315

these dynamics are not entirely internally generated but also reflect feedback from the environment.316

For instance, we would assume that the timing deficits induced by striatal inactivation [24] might317

be explained by the role of this brain region in accumulating sensory information before taking a318

decision [29, 30].319

That timing could be primarily embodied and situated might seem counterintuitive with our320

innerly rooted feeling of time. Nevertheless, it is interesting to note that to precisely measure time,321

we have created devices that indicate time by moving objects in space and extensively use metaphors322

containing movement and space references when speaking of time (“holidays are approaching”,323

“time flies”) [31, 32]. Moreover, humans display poor temporal judgment accuracy when prevented324

to count covertly or overtly [33] and several studies have reported that movements improve the325

perception of rhythmical intervals [34–36] It has been recently proposed that the explicit perception326

of time in humans may be constructed implicitly through the association between the duration of an327

interval and its sensorimotor content [37]. The fact that motor timing may be fundamentally related328

to movement in space for both animals and humans could explain why brain regions involved in329

movement control and spatial representation, such as the motor cortex, basal ganglia, cerebellum330

and hippocampus, have consistently been associated with time representation [38–46]. Still, why331
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animals and humans seem to favor embodied and interactive timing strategies over purely internal332

mechanisms is not clear. Insights regarding this question might be obtained by considering adaptive333

behavior in an evolutionary perspective [47] and time in the context of ecologically valid timing334

tasks [48].335

Methods336

Subjects337

Subjects were male Long-Evans rats. They were 12 weeks old at the beginning of the experiments,338

housed in groups of 4 rats in temperature-controlled ventilated racks and kept under 12 h–12 h339

light/dark cycle. All the experiments were performed during the light cycle. Food was available ad340

libitum in their homecage. Rats had restricted access to water while their body weights were regularly341

measured. A total of 111 rats were used in this study (the number of animals in each experimental342

condition is systematically shown in its respective figure). No animal was excluded from the343

analysis. All experimental procedures were conducted in accordance with standard ethical guidelines344

(European Communities Directive 86/60 - EEC) and were approved by the relevant national ethics345

committee (Ministère de l’enseignement supérieur et de la recherche, France, Authorizations #00172.01346

and #16195).347

Apparatus348

Four identical treadmills were used for the experiments. Treadmills were 90 cm long and 14 cm349

wide, surrounded by plexiglass walls such that the animals were completely confined on top of the350

treadmill. Each treadmill was placed inside a sound-attenuating box. Treadmill belt covered the351

entire floor surface and was driven by a brushless digital motor (BGB 44 SI, Dunkermotoren). A352

reward delivery port was installed on the front (relative to the turning direction of the belt) wall of353

the treadmill and in case of a full reward, released a ∼80 µL drop of 10% sucrose water solution.354

An infrared beam was installed 10 cm from the reward port. The first interruption of the beam was355

registered as entrance time in the reward area (ET). A loudspeaker placed outside the treadmill356

was used to play an auditory noise (1.5 kHz, 65 db) to signal incorrect behavior (see below). Two357

strips of LED lights were installed on the ceiling along the treadmill to provide visible and infrared358

lighting during trials and intertrials, respectively (see below). The animals’ position was tracked via359

a ceiling-mounted camera (Basler scout, 25 fps). A custom-made algorithm detected the animal’s360

body and recorded its centroid as animal’s position. The entire setup was fully automated by a361

custom-made program (LabVIEW, National Instruments). Experimenter was never present in the362

behavioral laboratory during the experiments.363

Habituation364

Animals were handled 30 m per day for 3 days, then habituated to the treadmill for 3 to 5 daily365

sessions of 30 min, while the treadmill’s motor remained turned off and a drop of reward was366

delivered every minute. Habituation sessions resulted in systematic consumption of the reward upon367

delivery.368
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Behavioral Task (Normal Condition)369

Treadmill Waiting Task370

Training started after handling and habituation. Each animal was trained once a day, 5 times a week371

(no training on weekends). Each of the daily sessions lasted for 55 min and contained ∼130 trials.372

Trials were separated by intertrial periods lasting 15 s. During intertrials, the treadmill remained in373

the dark and infrared ceiling-mounted LEDs were turned on to enable video tracking of the animals.374

Position was not recorded during the last second of the intertrials to avoid buffer overflow of our375

tracking routine and allow for writing to the disk. The beginning of each trial was cued by turning376

on the ambient light, 1 s before motor onset. Since animals developed a preference to stay in the377

front (i.e., close to the reward port), the infrared beam was turned on 1.5 s after trial start. This378

timeout period was sufficient to let the animals be carried out of the reward area by the treadmill,379

provided they did not move forward. After the first 1.5 s, the first interruption of the beam was380

considered as ET. The outcome of the trial depended solely on the value of the ET, compared to381

the goal time (GT= 7 s, except for the short goal time condition). In a correct trial (ET ≥ GT, see382

Figure 1), infrared beam crossing stopped the motor, turned off the ambient light, and triggered the383

delivery of reward. In an error trial (ET < GT, see Figure 1), there was an extended running penalty384

for a duration determined by the rule displayed in Figure 1c, inset. During the penalty, the motor385

kept running, the ambient light stayed on and an audio noise indicated an error trial. In omission386

trials wherein animals didn’t cross the beam in 15 s since the motor start, trial stopped and reward387

was not delivered.388

Reward Profile The magnitude of the reward was a function of the ET and animal’s performance389

in previous sessions (only in early training, see Figure 1b, inset). Reward was maximal at ET = GT390

and dropped linearly to a minimum (= 38% of the maximum) for ETs approaching 15 s (i.e., the391

maximum trial duration). Moreover, in the beginning of the training, partial reward was also392

delivered for error trials with ET > ET0, where ET0 denotes the minimum threshold for getting a393

reward. The magnitude of this additional reward increased linearly from zero for ET = ET0, to its394

maximum volume for ET = GT. In the first session of training, ET0 = 1.5 s and for every following395

session, it was updated to the maximum value of median ETs of the past sessions. Once ET0 reached396

the GT, it was not updated anymore (late training reward profile in Figure 1b, inset).397

Motor Routine We quantified the percentage of trials in which animals performed the front-back-398

front motor routine. Trials were considered routine if all the following three conditions were met:399

1) the animal started the trial in the front (initial position < 30cm); 2) the animal reached the rear400

portion of the treadmill after trial onset (maximum trial position > 50cm); 3) the animal completed the401

trial (i.e., they crossed the infrared beam). The same criteria were applied to the median trajectories402

after training (session #30) to classify animals into two groups: those that used the front-back-front403

trajectory and those that did not (Figure S2).404
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Alternative Training and Testing Conditions405

Variable Speed Condition406

In this condition, for each trial, treadmill speed was pseudo-randomly drawn from a uniform407

distribution between 5 and 30 cm/s. During any given trial, the speed remained constant. We used408

5 cm/s as the lowest treadmill speed. Lower speeds generated choppy movements of the conveyor409

belt. Also, velocities higher than 30 cm/s were not used, to avoid any physical harm to the animals.410

No-timeout Condition411

In the control condition, the infrared beam was not active during the first 1.5 s of the trials. This412

timeout period was sufficient to let the animals be carried out of the reward area by the treadmill,413

provided they did not move forward. In the “no-timeout” condition, the infrared beam was activated414

as soon as the trial started. Thus, in this condition, error trials corresponded to ETs between 0 and415

7 s. Consequently, animals were penalized if they were in the reward area when the trial started (i.e.,416

ET = 0 s).417

Short Goal Time Condition418

In this condition, the goal time (GT) was set to 3.5 s, half the value for the control condition. The419

reward profile in this condition followed the same rules as for the control condition, except that420

reward was maximal at ET = GT = 3.5 s. Two different groups of animals were trained in this421

condition, one with treadmill speed set to the normal value of 10 cm/s, and another with treadmill422

running twice as fast (20 cm/s, see Figure 5). In the short goal time condition, we also examined423

if the increased variability in ET could be attenuated when the penalty associated with early ET424

was increased and when reward magnitude was decreased for late ET. This was implemented425

by doubling the treadmill speed during the penalty period (from 10 cm/s to 20 cm/s), and the426

reward was delivered for a narrower window of ETs (maximal reward at ET = GT = 3.5 s, and no427

reward after ET = 4.5 s). For proper comparison, we also examined the behavior of rats trained428

with GT = 7 s when the running penalty was increased and the reward was decreased for late ETs429

(maximal reward at ET = GT = 7 s, and no reward after ET = 9 s, see Figure 5d,e).430

Immobile Condition431

In this condition, the treadmill’s motor was never turned on. The ambient light was turned on during432

the trials and turned off during the intertrials. Error trials were penalized by an audio noise and433

extended exposure to the ambient light.434

Statistics435

All statistical comparisons were performed using resampling methods (permutation test and boot-436

strapping). These non-parametric methods alleviate many concerns in traditional statistical hypothe-437

sis tests, such as distribution assumptions (e.g., normality assumption under analysis of variance),438

error inflation due to multiple comparisons, and sensitivity to unbalanced group size.439

We used the permutation test to compare the performance of two groups of animals during440

training on a session-by-session basis, such as in Figure 3b, and Figure 4b. To simplify the description441
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(see [49] for more details), let’s assume, as in Figure 3b, we have X = [X1, X2, ..., Xn], where Xi is442

the set of ETs of all the animals in session i. Similarly, we have Y that contains ETs from another443

experimental condition. Here, the null hypothesis states that the assignment of each data point in Xi444

and Yi to either X or Y is random, hence there is no difference between X and Y.445

In short, the test statistic was defined as the difference between smoothed (using Gaussian kernel446

with σ = 0.05) average of X and Y for each session i: D0(i). We then generated one set of surrogate447

data by assigning ET of each animal in session i to either Xi or Yi, randomly. For each set of surrogate448

data, the test statistic was similarly calculated, i.e., Dm(i). This process was repeated 10,000 times for449

all the statistical comparisons in this study, obtaining: D1(i), . . . , D10000(i).450

At this step, two-tailed pointwise p-values could be directly calculated for each i, from the Dm(i)451

quantiles (see [49]). Moreover, to compensate for the issue of multiple comparisons, we defined452

global bands of significant differences along the session index dimension [49]). From 10,000 sets of453

surrogate data, a band of the largest α-percentile was constructed, such that less than 5% of Dm(i)s454

broke the band at any given session i. This band (denoted as the global band) represents the threshold455

for significance, and any break-point by D0(i) at any i is a point of significant difference between X456

and Y.457

A similar permutation test was also used when comparing only two sets of unpaired data points458

(such as in Figure 5e, comparing control vs. short goal time groups). The same algorithm was459

employed, having only one value for index i. If none of the Dm(i)s exceeded D0(i), the value460

p < 0.0001 was reported (i.e., less than one chance in 10,000).461

For paired comparisons (such as in Figure 3f), we generated the bootstrap distribution of mean462

differences (n = 10000 with replacement). Significance was reported (yellow asterisks) if 95%463

Confidence Interval (CI) of the pairwise differences differed from zero (i.e., zero was not within464

the CI) [50]. For example, in Figure 3f, right, the 95% CI of pairwise differences is (19, 27)%. Since465

this interval does not contain zero, it is reported significant, whereas in Figure 5e, the CI of the466

comparison between normal and sharp short goal time is (−0.17, 0.01) which includes zero, and467

hence is reported non-significant.468

Exceptionally, for the comparison in Figure 5h, even though it is not paired, we used bootstrapping,469

because we did not have enough data points to perform the permutation test. In this case, the470

resampled distribution (n = 10000 with replacement) for each group was calculated, and it was471

reported significant, since the distributions did not overlap at 95% CI.472

In Figure 6f, we used repeated measures correlation implemented in the Pingouin package [51].473

This technique relaxes the assumption of independent data points, since each animal contributes474

more than one.475

Reinforcement Learning Models476

Here, we used the Markov Decision Process (MDP) formalism to analyze how artificial agents learn477

to perform a simplified version of the treadmill task. According to the MDP formalism, at each time478

step, the agent occupies a state and selects an action. The probability to transition to a new state479

depends entirely on the previous action and state, and each transition is associated with a certain480

reward. The agent tries to maximize future rewards and, in our simulations, we used a simple481

Q-learning algorithm ( [52], see below) to model the way the agent learned an optimal policy (i.e.,482

which action to take for any possible state).483
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We modeled the treadmill task using a deterministic environment in which the time was dis-484

cretized and the treadmill was divided in 5 regions of equal length. In this simplified setting, we485

simulated two types of agents that differed only by the type of the information available to them to486

select actions and analyzed how their behaviour varied.487

The first type of agents did not use an explicit representation of time to perform the task. At each488

time step t, the state st (i.e., the information used to select actions) consisted in the agent’s position pt,489

in the treadmill and in a boolean variable wt, whose value was equal to 1, if the agent had previously490

reached the rear wall during the trial and 0, otherwise. Given these assumptions, each state can be491

written as st = {pt, wt} and the state space consisted of 5 pair of states (a total of 10 states).492

The second type of agents in addition, benefited from the information on the elapsed time since493

the beginning of the trial. Thus, each state was represented as st = {pt, wt, t}.494

For both types of agents, the task was simulated in an episodic manner and the initial position p0495

at the beginning of each trial was assigned randomly as follows: the probability P(p0) that the initial496

state corresponds to p0 was proportional to q(1− q)p0 for p0 = 0, . . . , 4. We set the parameter q = 0.5497

such as to account for the tendency of the rats to initiate trials in the reward area.498

During the rest of the trial, at each time step t, agents occupied a state st, and could select one of499

three different actions that determined a transition to a new state st+1. Action at = 0 corresponded500

to remaining still and, considering that the treadmill was on, moving one position backward on501

the treadmill. Action at = 1 consisted in moving at the same speed of the treadmill (vT), but in the502

opposite direction. Thus after performing this action, the agents remained at the same position on503

the treadmill. Finally, performing action at = 2, the agents moved at twice the treadmill speed which504

made him move one position step forward. We also introduced two physical constraints that limited505

the action space at the extreme sides of the treadmill. In the front of the treadmill, the agents cannot506

move forward (i.e., when the position was p = 0 the action a = 2 was forbidden). In the rear of the507

treadmill the agents could not stay still, as otherwise it would hit the rear wall (i.e., when p = 4 the508

action a = 0 was not available).509

After entering a new state at time t + 1, the agents received a reward rt+1 = r̄. The value r̄ varied510

depending on the position pt+1 and on the current time t. Similarly than in the real task, the agent511

had to reach the most frontal region of the treadmill (equivalent of the reward area) after 7 time512

steps (the minimum ET in the frontal region to obtain a reward is 8 time steps). We also created an513

equivalent of the time out period (see above in experimental method section), such as the agent was514

not penalized to start a trial in the reward area. Still, the agents had to leave the front of the treadmill515

(i.e., p = 0) within 2 time steps. Finally, agents had a maximum amount of time (15 time steps)516

to perform the task. More specifically, reward rules were as follows. The punishment associated517

with an early ET (2 ≤ ET < 8) had a maximum (negative) value of r̄ = −2 and its absolute value518

decreased linearly between 2 and 7. Correct trials occurred when agents reached the frontal region of519

the treadmill between 8 and 15 time step (8 ≤ ET ≤ 15), which delivered a reward with a maximum520

value of r̄ = +3, that decreased linearly with ET. Omission trials (i.e., those trials in which the agent521

did not approach the front area within 15 time steps) were associated with the delivery of a small522

punishment r̄ = −0.5. We also modeled the cost of the passage of time while the treadmill was on,523

by adding a small punishment r̄ = −0.1 at each time step in all trial types.524

Agents learned the value (expressed in terms of future rewards) of selecting a particular action in
a specific internal state via the Q-learning algorithm. Specifically, for any state-action pair {s, a}, a
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state-action value function Q(s, a) can be defined as follows:

Q(s, a) = E
[

Gt | st = s, at = a
]

(1)

where Gt = ∑T−t
i=0 γi · rt+1+i is the discounted sum of expected future rewards, and γ is the discount525

factor (0 ≤ γ ≤ 1). Equation 1 implies that each value Q(s, a) is a measure of the future reward that526

the agent expects to receive after performing action a when its current state is s.527

Following the Q-learning algorithm, after each time step t, the Q(st, at) will change according to:

∆Q(st, at) = α
(
rt+1 + γ maxa′{Q(st+1, a′)} −Q(st, at)

)
(2)

where the parameter α represents the learning rate.528

These state-action values are then used to determine the policy π: a mapping from states to
actions (i.e., the way agents acted in any possible state). In our model, the policy was stochastic and
depended on the Q-values via a softmax distribution:

P(a | st) =
exp(βQ(st, a))

∑a′ exp(βQ(st, a′))
(3)

where the parameter β governs the exploitation/exploration trade-off (when β → 0, the policy529

becomes more and more random).530

Updates in Equation 2 can be proved to converge to the optimal Q-value for each pair {s, a} [52].531

Optimal value means the value (in terms of rewards) that action a assumes in state s, when the policy532

of agent across all the sequence of states and actions is such to maximize future rewards. Therefore533

selecting actions with a probability that increases with the Q-values allows learning of the optimal534

behavior.535

We used the formalism described above to simulate n = 15 agents of the first type and n = 15536

of the second type. Each agent differed in the exploitation/exploration parameter (see below) and537

performed the task for 30 sessions of 100 trials each. The exploitation/exploration parameter started538

with an initial value β0, and was increased after each session of training by an amount ∆β (i.e.,539

the policy became more and more greedy), up to a maximum of βmax = 10. Different agents were540

represented by different values of β0 and ∆β. The agents of our simulations corresponded to all the541

possible combinations of β0 = {0, 2, 2.5, 3, 4} and ∆β = {0.3, 0.35, 0.4}. In all the simulation, we set542

the parameters α = 0.1, and γ = 0.99.543

Data Analysis544

Data from each session was stored in separate text files, containing position information, entrance545

times, treadmill speeds, and all the task parameters. Position information was scaled to the treadmill546

length, and smoothed (Gaussian kernel, σ = 0.3 s). The entire data processing pipeline was547

implemented in python, using open-source libraries and custom-made scripts. We used a series548

of Jupyter Notebooks to process, quantify, and visualize every aspect of behavior, to develop and549

run the reinforcement learning algorithms, and to generate all the figures in this manuscript. All550

the Jupyter Notebooks, as well as the raw data necessary for full replication of the figures and551

videos are publicly available via the Open Science Foundation (https://osf.io/7s2r8/?view_552

only=7db3818dcf5e49e88d708b2597a21956).553
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Supplementary Material682

Video 1. Video clip showing several consecutive trials from an animal performing its first training683

session in control condition. Information about trial number, time since light on, GT, ET, and ongoing684

task status are given on the upper left corner.685

Video 2. Same as Video 1 for a well-trained animal performing the task in control condition.686

Video 3. Same as Video 2 for an animal performing the task in the immobile treadmill condition.687

The 3 videos can be seen and downloaded via the Open Science Foundation (https://osf.io/688

7s2r8/?view_only=7db3818dcf5e49e88d708b2597a21956)689
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Supplementary Figure S1: Initial position distributions for correct and error trials diverged progressively
during training. Similar to Figure 2e, each panel shows PDF of the initial position of the animals for correct
(green) and incorrect (red) trials, but plotted separately for each training session (#1 to #30). Dashed lines
represent cumulative distribution functions (right y-axis). For each PDF, σ values denote the standard deviation.
Each PDF included pooled data from all the animals trained in the control condition (n = 54).
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Supplementary Figure S2: Task proficiency according to the type of trajectory performed by animals. a)
Same as Figure 2, panel c, right, but the animals were divided in two groups according to whether they
performed the front-back-front trajectory (gray) or not (other, orange). b) Entrance times (ETs). p = 0.0066
(permutation test). c) SD of ET. p = 0.03 (permutation test). d) Percentage of correct trials. p = 0.01
(permutation test). For panels b, c, d, same color code as in panel a. Data from sessions # ≥ 20 were averaged
for each animal.
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Supplementary Figure S3: Performance comparison between artificial agents with or without time knowl-
edge. a) Schematic representation of the state-action space and transitions used to model the treadmill task
for agents that did not use time information. Space and time were discretized. The same physical location
corresponded to 2 different internal states before and after reaching the rear wall. At each time step, agents
could choose one of the three following actions: staying still (red arrow, action a = 0); moving at the treadmill
speed vT (blue arrow, a = 1); or moving at twice vT (green arrow, a = 2, see Methods for details). b) Average
learning profile for several agents with different learning parameters (see Methods). Median entrance time (ET)
for the first 30 sessions. Error bars show ET range (25th and 75th percentiles). The dashed magenta line shows
the goal time (7 time steps). The right y-axis shows standard deviation (SD) of ET. c) Trajectories of three
sessions at different stages of learning. Each session contained 100 trials. For each session, the space-time
occupancy matrix was normalized to its maximum value, for correct (green), error (red), and omission (gray)
trials. Across training sessions, the artificial agents (simulated rats) waited longer and longer and reduced
their entrance time variability by performing the front-back-front trajectory. The same strategy was developed
by agents endowed with different learning parameters and exploration/exploitation rates (Figure S4). After
learning, the agents performed the front-back-front routine independently of their initial positions. Thus,
they arrived in the reward area too early when their initial position was near the middle of the treadmill,
in a striking similarity with the behavior of well-trained rats. d) Same as in panel a, but agents have now
access to the time elapsed since trial onset. e-f) Same as panels b-c, respectively, but for agents following
the model sketched in panel d. Agents with temporal knowledge also learned progressively to enter in the
reward area at the right time and reduced their variability. However, after learning, they did not perform
the front-back-front trajectory. Rather, they mainly stayed behind the infrared beam and were capable of
respecting the GT independently of their initial position. g) Trajectories after training for 8 different agents
that accessed time information. The different agents developed idiosyncratic position trajectories (even if
they remained close to the reward area during most of the trial duration), due to stochastic variations in their
learning dynamics.
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Supplementary Figure S4: Final trajectories performed by agents are identical regardless of exploita-
tion/exploration parameters. Similar to Figure S3c but for four different agents (differences among agents
are determined by the values of the exploitation/exploration parameters β0 and ∆β; see Methods). Even if
agents displayed different trajectories during learning (sessions #1 and #10), all of them performed the same
trajectory at session #30.
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