

1

2 Mitochondria branch within Alphaproteobacteria

3

4 **Lu Fan^{1,2¶}, Dingfeng Wu^{3¶}, Vadim Goremykin^{4¶}, Jing Xiao³, Yanbing Xu³, Sriram Garg⁶, Chuanlun**
5 **Zhang^{2,5}, William F. Martin^{6*}, Ruixin Zhu^{3,2*}**

6 ¹ Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology
7 (SUSTech), Shenzhen 518055, China

8 ² Shenzhen Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science and Engineering,
9 Southern University of Science and Technology (SUSTech), Shenzhen 518055, China

10 ³ Putuo people's Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092,
11 P.R.China.

12 ⁴ Research and Innovation Centre, Fondazione E. Mach, 38010 San Michele all'Adige (TN), Italy

13 ⁵ Laboratory for Marine Geology, Qingdao Pilot National Laboratory for Marine Science and Technology,
14 Qingdao, 266061, China

15 ⁶ Institute of Molecular Evolution, Heinrich-Heine-University, Universitätsstr. 1, 40225 Düsseldorf,
16 Germany

17

18 [¶] These authors contribute equally to this work.

19 ^{*} Corresponding authors:

20 William F. Martin (bill@hhu.de)

21 Ruixin Zhu (rxzhu@tongji.edu.cn)

22

23 **It is well accepted that mitochondria originated from an alphaproteobacterial-like ancestor. However,**
24 **the phylogenetic relationship of the mitochondrial endosymbiont to extant alphaproteobacteria**
25 **remains a subject of discussion. The focus of much debate is whether the affiliation between**
26 **mitochondria and fast-evolving alphaproteobacterial lineages reflects true homology or artifacts.**
27 **Approaches such as protein-recoding and site-exclusion have been claimed to mitigate compositional**
28 **heterogeneity between taxa but this comes at the cost of information loss and the reliability of such**
29 **methods is so far unjustified. Here we demonstrate that site-exclusion methods produce erratic**
30 **phylogenetic estimates of mitochondrial origin. We applied alternative strategies to reduce**
31 **phylogenetic noise by taxon replacement and selective exclusion while keeping site substitution**
32 **information intact. Cross-validation based on a series of trees placed mitochondria robustly within**
33 **Alphaproteobacteria.**

34

35 **Introduction**

36 The origin of mitochondria is one of the defining events in the history of life. Although alternative
37 explanations do exist (e.g. the mosaic origin ¹), gene-network analyses ²⁻⁵ and marker gene-based
38 phylogenomic inference (see review by Roger et al. ⁶) have generally reached a consensus that mitochondria
39 have a common bacterial ancestor, which was a close relative to extant alphaproteobacteria. However, the
40 exact relationship of mitochondria to specific alphaproteobacterial groups remains contentious. Phylogenetic
41 placement of mitochondria in the tree of Alphaproteobacteria has been extremely difficult for several reasons.

42 They include considerable phylogenetic divergence and metabolic variety within Alphaproteobacteria ^{2-5,7},
43 faint historical signals left behind the very ancient event of mitochondria origin ⁸, limited number of marker
44 genes shared between mitochondria and Alphaproteobacteria due to extensive gene loss in the prior ⁹,
45 taxonomic bias in datasets towards clinically or agriculturally important alphaproteobacterial members ¹⁰.
46 Furthermore, these effects are compounded by strong phylogenetic artifacts associating mitochondria with
47 some fast-evolving alphaproteobacterial lineages such as Rickettsiales and Pelagibacterales resulting in
48 erroneous clade formations (see a detailed review in Roger et al. (2017)).

49 To minimize the possible influence of long-branch attraction coupled with convergent compositional signals,
50 various strategies have been applied such as the use of nucleus-encoded mitochondrial genes ^{5,11,12}, site or
51 gene exclusion ¹³⁻¹⁵, protein recoding ¹⁵ and the use of heterogeneity-tolerant models such as the CAT model
52 implemented in Bayesian inference ^{11,16}. These attempts have generally proposed four hypotheses: (1)
53 mitochondria root in or as the sister of Rickettsiales ^{12,17}, which are all obligate endosymbionts (but see
54 reference ¹⁸); (2) mitochondria are sisters with free-living alphaproteobacteria such as *Rhodospirillum*
55 *rubrum* ¹⁴, Rhizobiales and Rhodobacterales ⁵; (3) mitochondria are neighbors to a group of uncultured
56 marine bacteria ¹⁰; and (4) mitochondria are most closely related to the most abundant marine surface
57 alphaproteobacteria – SAR11 (referred as Pelagibacterales in this study) ^{19,20}. While the first hypothesis has
58 been reported most frequently so far, the last has been explained by several independent groups as a result
59 of compositional convergence artifact ^{10,13,16}.

60 Recently, Martijn et al. revisited this topic by using a dataset including alphaproteobacterial genomes
61 assembled from the Tara Ocean metagenomes ²¹. They reported that when compositional heterogeneity of
62 the protein sequence alignments was sufficiently reduced by site exclusion and to fit their specified model,
63 the entire alphaproteobacterial class formed a sister group to mitochondria. Their conclusion challenged the
64 long-agreed phylogenetic consensus that mitochondria originated from within the Alphaproteobacteria ²².
65 However, model over-fitting comes at a cost of information loss and does not guarantee correct phylogenetic
66 prediction. While excluding possible noise in compositionally heterogenous sites might mitigate systematic
67 errors, it can also lead to model overfitting. *A priori*, one cannot rule out the possibility that these sites
68 contain phylogenetic information of true evolutionary connection between mitochondria and
69 Alphaproteobacteria? A similar concern about information loss and a demand for further justification of their
70 results was also voiced by Gawryluk ²³.

71 We here examined the phylogenetic affiliations of mitochondria by using several site-exclusion methods and
72 demonstrated that these results should be interpreted with utmost caution. We then applied a different
73 approach to significantly reduce compositional signals in the dataset by taxon replacement and selectively
74 lineage exclusion while keeping the native site substitution intact. We successfully resolved relationship of
75 fast-evolving lineages including mitochondria with slowly-evolving alphaproteobacteria. Our results support
76 the traditional view that mitochondria branch within Alphaproteobacteria.

77

78 **Results**

79

80 **Site exclusion approaches produced stochastic phylogenetic inference for mitochondria.**

81 The idea of excluding potentially model-violating sites to improve phylogenetic prediction was introduced
82 over two decades ago ^{24,25} but has been opposed by researchers (see review by Shepherd et al. ²⁶). The
83 concern is that in spite of non-historical signals, these sites may contain useful information. Nonetheless,
84 various versions of site exclusion have been applied in phylogenetic studies of mitochondria and
85 Alphaproteobacteria either based on evolving rate ^{14,15} or amino acid composition ^{13,21,27}. However,
86 conflicting results were reported by using different site-exclusion metrics ¹⁵.

87 To cross-validate the effects of site-exclusion approaches on mitochondrial and alphaproteobacterial
88 phylogeny, we implemented five metrics with different principles in this study (**Table 1**). Among them,
89 Stuart's test and Bowker's test are two typical evaluation metrics of symmetry violation ²⁸. Compared to
90 Stuart's test, Bowker's test of symmetry was reported to more comprehensive and sufficient to assess the
91 compliance of symmetry, reversibility and homogeneity in time-reversible model assumptions ²⁸. The χ^2 -
92 score metric was designed to test site contribution to dataset compositional heterogeneity ¹³ and was applied
93 by Martijn et al. for mitochondrial phylogeny study ²¹. ζ -score is a metric specifically designed to cope with
94 strong GC content-related amino acid compositional heterogeneity in datasets of alphaproteobacterial
95 phylogeny ²⁷. A method implemented in IQTREE for fast-evolving site selection was also included for
96 comparison since long-branch attraction caused by fast-evolving species in Alphaproteobacteria and
97 mitochondria is a potential issue ²⁹.

98

99 **Table 1. Introduction of site-exclusion methods for justification.**

Site-scoring metrics	Features of sites targeted	Reference
Stuart's test	Compositional bias, site contribution to marginal symmetry violation	30*
Bowker's test	Compositional bias, site contribution to violation to symmetry, reversibility and homogeneity	31**
χ^2-score	Compositional bias, site contribution to symmetry violation	13
ζ-score	Site specific amino acid GARP/FYMINK bias (GC content-related)	27
Fast-evolving	Sites with the highest substitution rate	29***

100 * stationary-based calculation implemented in BMGE ³².

101 ** see **Methods** for implementation in this study.

102 *** implemented in IQTREE.

103


104 Site-excluded subsets of the '24-alphamitoCOGs' dataset in Martijn et al. (2018) were generated by using
105 the five methods with a series of cutoff values except for Stuart's test on which a single stationary-base
106 calculation was applied (**Supplementary Table 1**). Trees of the subsets were compared to the tree of the
107 untreated dataset, respectively. Topological dissimilarity between two trees was calculated by using the
108 Alignment metric ³³. This method was found to superior among other tree comparison metrics ³⁴. Both simple
109 model and mixed model (C60) were used in Maximum-likelihood (ML) tree reconstruction for comparison
110 (tree files are deposited in **Supplementary Data Files**). Site exclusion approaches led to substantial tree
111 topological changes (**Fig. 1**). In general, the increase in number of sites removed precipitated increases in
112 changes of tree topology. Among the five methods, ζ -score generally caused the least changes in nearly all
113 the subsets of alignment. These patterns are consistent when either simple or mixed models were applied in
114 phylogenetic inference.

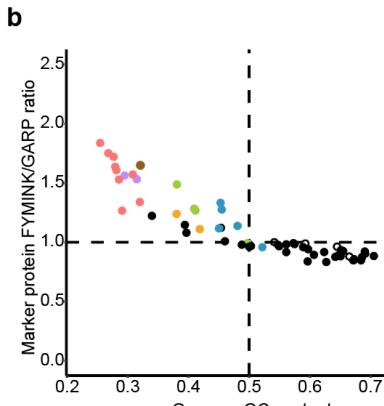
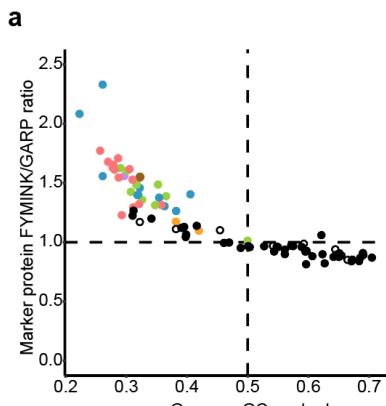
115 We summarized the position of mitochondria in these site-excluded trees and stochastic results were
116 observed (**Fig. 1**). Nearly half of the trees support mitochondria in a sisterhood with the entire
117 Alphaproteobacteria ('mito-out') and the other half support that mitochondria branch within
118 Alphaproteobacteria ('mito-in'). Noticeably, while we reproduced the results observed in Martijn et al. (2018)
119 that tree topology shifted from 'mito-in' to 'mito-out' when 5% to 40% of sites were removed by using the
120 χ^2 -score metric, exclusion of more sites (60% here) change the tree topology back to 'mito-in' predicted by
121 the simple model (**Fig. 1a**). It is likely that site-exclusion method, the number of sites excluded and tree
122 model applied had a mixed function to the phylogenetic relationship of mitochondria to Alphaproteobacteria.
123 One explanation to this observation is that sites strongly supporting either the 'mito-in' or the 'mito-out'
124 topology were randomly excluded by these metrics. The absence of certain topology-determining and 'mito-

125 in'-supporting sites can cause tree shift from one topology to the other, while the further loss of 'mito-out'-
126 supporting sites may shift the tree topology back.

127

a

128



129 **Fig. 1 | Tree dissimilarity based on the Alignment metric between the untreated tree and trees**
130 **generated after applying site-exclusion approaches.** All trees are rooted. Empty dots show trees
131 supporting the Alphaproteobacteria-sister topology and filled dots show trees supporting the within-
132 Alphaproteobacteria topology of mitochondria. **a**, ML trees under simple models. **b**, ML trees under the
133 mixed model (C60).

134

135 **Taxa replacement efficiently reduced compositional heterogeneity between lineages of interest.**

136 To counter compositional heterogeneity but without arbitrarily compromising phylogenetic signals, we then
137 replaced the mitochondrial and Rickettsiales sequences with GC-rich alternatives. Specifically, while
138 keeping most of the taxa used in the '24-alphamitoCOGs' dataset (see **Methods**), five less AT-rich
139 mitochondria (GC content 45.1%-52.2% compared to 22.3%-40.6% in the original dataset) and five less AT-
140 rich Rickettsiales (GC content 38.2%-49.8% compared to 29.0%-50.0% in the original dataset) were selected
141 to replace the mitochondrial and rickettsiales groups in the original dataset (**Supplementary Table 2**). The
142 GC-poor vs. GC-rich amino acid (FYMINK/GARP) ratio of marker proteins of the reselected mitochondria
143 and Rickettsiales ranged from 0.955 to 1.329 and from 1.013 to 2.330, respectively (**Fig. 2**). In comparison
144 to the '24-alphamitoCOGs' dataset, we have remarkably reduced the heterogeneity in FYMINK/GARP ratio
145 between mitochondria and slowly-evolving alphaproteobacteria.

146

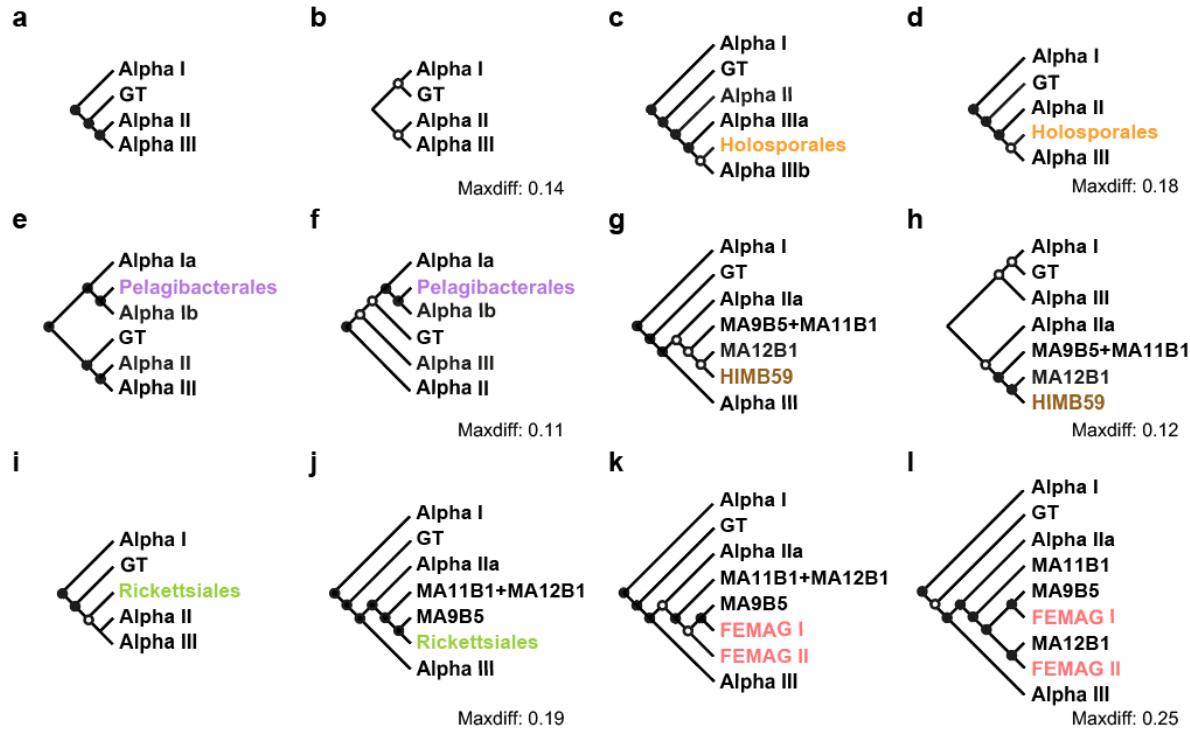
147

148 **Fig. 2 | GC content and amino acid compositional heterogeneity among alphaproteobacterial lineages**
149 **and mitochondria.** Dots represent taxa. Lineages are colored according to **Fig. 4** except empty dots
150 represent Beta-, Gammaproteobacteria and Magnetococcales. **a**, taxa in the ‘24-alphamitoCOGs’ dataset. **b**,
151 taxa in the ‘18-alphamitoCOGs’ dataset.

152

153 In total, 61 nonredundant taxa were selected and 18 of the original 24 marker proteins were used for
154 phylogenetic inference (**Supplementary Table 2, 3**). We named our new dataset ‘18-alphamitoCOGs’. It is
155 needed to notice that the introduced GC-rich mitochondria were all from higher plants. While this may
156 compromise the representation of data, the mitochondrial sequences of higher plants are considered to have
157 diverged from bacterial sequences to the least extent^{35,36} as a result of low mutation rate in genes possibly
158 maintained by DNA repair mechanisms³⁷.

159


160 **Taxon-reduced datasets produced congruent phylogenetic prediction for fast-evolving**
161 **alphaproteobacteria.**

162 A meaningful alphaproteobacterial species phylogeny is prerrequired in investigating the phylogenetic
163 relationship between Alphaproteobacteria and mitochondria. However, until recently, the tree topology of
164 Alphaproteobacteria is not yet fully resolved²⁷. We tested our new dataset for resolving phylogeny between
165 alphaproteobacterial lineages. First, to minimize the interference between fast-evolving lineages in the same
166 tree, fast-evolving taxa were excluded for ML and Bayesian tree reconstruction (see **Methods**). The
167 remaining alphaproteobacteria are expected to contain minimum non-historical signals and less likely cause
168 model violation. While the ML tree and Bayesian tree were slightly different in the topology of basal
169 branches, they reached an agreement that these slowly-evolving alphaproteobacteria can be classified into
170 four major clades, which were named as Alpha I, Alpha II, Alpha III and GT, respectively (**Fig. 3ab**,
171 **Supplementary Fig. 1, 2, Supplementary Table 2**). We here assign these alphaproteobacteria as ‘backbone
172 taxa’ and the four clades as ‘backbone clades’.

173

174 Group GT is equivalent to Geminicoccaceae in Muñoz-Gómez et al. (2019)²⁷. Alpha I comprises core
175 Alphaproteobacterial orders including Kordiimonadales, Sphingomonadales, Rhizobiales, Caulobacterales,
176 Parvularculales and Rhodobacterales. Grouping of these lineages is in consistence with the findings by
177 Muñoz-Gómez et al. and others^{7,27,38}. Alpha II comprises three isolates belonging to Rhodospirillaceae and
178 several marine alphaproteobacterial metagenome-assembled genomes (MAGs). Grouping of these lineages
179 was observed in by Williams et al. and others^{7,27,38}. Alpha III comprises Kiloniellaceae, SAR116,
180 Acetobacteraceae, Azospirillaceae, and some taxa classified to the polyphyletic Rhodospirillaceae. This
181 result is similar to the finding by Muñoz-Gómez et al.²⁷. Noticeably, separation of these four groups were
182 exactly recovered by Martijn et al. in their untreated ‘24-alphamitoCOGs’ dataset (Supplementary Fig. 9, 10
183 in Martijn et al. (2018)), but not in their stationary-trimmed dataset (Fig. 4a and Supplementary Fig. 11, 12
184 in Martijn et al. (2018)), which they claimed to support their ‘mito-out’ result. This again suggests site-
185 exclusion may result in abnormal tree topology for even slow-evolving species.

186

187

188 **Fig. 3 | Schematic phylogenetic trees of subgroups of Alphaproteobacteria in the ‘18-alphamitoCOGs’**
189 **dataset.** Alphaproteobacterial lineages are named according to **Supplementary Table 2**. Taxa and
190 taxonomic groups in black present the backbone taxa. Filled dots show node support values greater than 80%
191 while empty dots show values greater than 50% but less than 80%. Node values show posterior probability
192 support values for Bayesian trees and bootstrapping support values based on 1000 iterations for ML trees.
193 Trees are rooted. Outgroup taxa and *Magnetococcus marinus* MC-1 are not shown. The Maxdiff values of
194 Bayesian trees are shown beside the trees. **a-l**, Schematic trees of **Supplementary Fig. 1-12**, respectively.

195

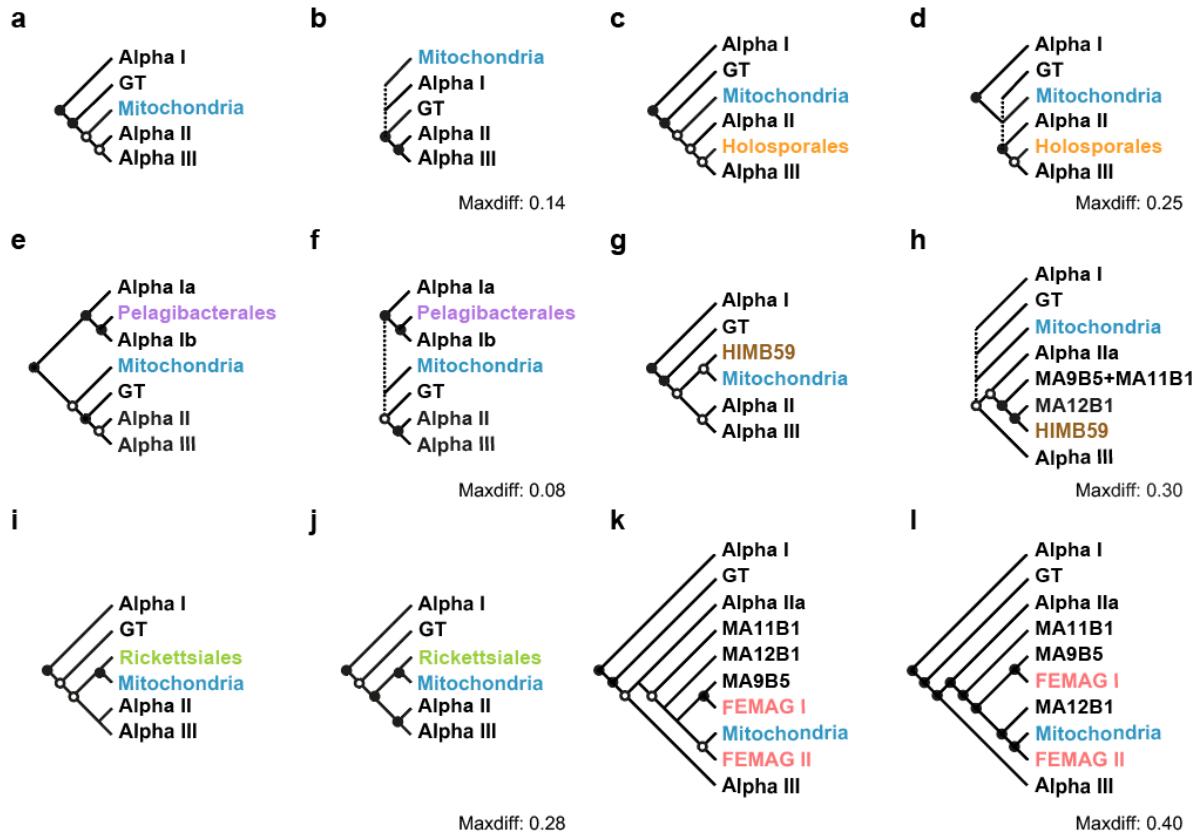
196 Each of the six groups of fast-evolving alphaproteobacteria were then added to this dataset of backbone taxa
197 and a series of phylogenetic trees were built, respectively. Despite the addition and removal of fast-evolving
198 taxa, backbone taxa maintained a topology in which all the four backbone clades maintained their monophyly
199 (**Fig. 3**).

200 Holosporales was previously considered as a subclade of Rickettsiales based on phylogenetic analysis and
201 the factor that members of both groups are obligate endosymbionts (but see **Discussion**)³⁹⁻⁴¹. However, other
202 studies suggested the phylogenetic affiliation between Holosporales and other Rickettsiales families are the
203 result of artifact^{12,20,21,39,42}. In the very recent study by Muñoz-Gómez et al. where amino acid bias was
204 corrected by site exclusion, Holosporales was suggested to have a derived position within the
205 Rhodospirillales and possibly close to Azospirillaceae²⁷. In our study, the ML tree suggests Holosporales be
206 placed in Alpha III forming a sister relationship with Azospirillaceae and Acetobacteraceae (Alpha IIIb) with
207 a weak node support, while the Bayesian result suggests they are in sisterhood with the entire Alpha III (**Fig.**
208 **3cd, Supplementary Fig. 3, 4**). Our results suggest that Holosporales are distant to Rickettsiales but close
209 to taxa in Alpha III.

210 Recent studies suggested the grouping of Pelagibacteriales, alphaproteobacterium HIMB59 and Rickettsiales,
211 as reported by many earlier studies is the result of a compositional bias artefact^{21,27}. Using site-exclusion
212 datasets, it was suggested that Pelagibacteriales should be placed after the common ancestor of
213 Sphingomonadales (belonging to Alpha Ia here) but before the divergence of Rhodobacterales,
214 Caulobacterales and Rhizobiales (belonging to Alpha Ib here)²⁷. Our result is consistent with this (**Fig. 3ef,**
215 **Supplementary Fig. 5, 6**). Moreover, without interference of other fast-evolving species,

216 alphaproteobacterium HIMB59 here was placed in the clade Alpha IIb forming a sisterhood with
217 MarineAlpha 12 Bin1 (**Fig. 3gh, Supplementary Fig. 7, 8**).

218 Rickettsiales appearing as sister to all other alphaproteobacteria has been reported in some artifact-attenuated
219 studies²⁷ while conflicting results were recovered in others²¹ suggesting the current difficulty in resolving
220 its relationship with slow-evolving alphaproteobacteria. We found that Rickettsiales were placed as sister to
221 the clade of Alpha II and Alpha III in the ML tree with a weak basal node support (**Fig. 3i, Supplementary**
222 **Fig. 9**). Interestingly, however, in the converged Bayesian tree, Rickettsiales was placed within Alpha II, as
223 the sister of MarineAlpha9 Bin5, suggesting possible connection between Rickettsiales and this newly
224 discovered, non-fast-evolving marine alphaproteobacterium (**Fig. 3j, Supplementary Fig. 10**).


225 Including MarineAlpha9 Bin5, Martijn et al. obtained a number of marine alphaproteobacterial MAGs from
226 the Tara Oceans project⁴³. In both ML and Bayesian trees, fast-evolving MAGs belonging to FEMAG I and
227 FEMAG II were robustly placed within Alpha IIb (**Fig. 3kl, Supplementary Fig. 11, 12**). Specifically,
228 FEMAG I showed a strong connection to MarineAlpha9 Bin5, while FEMAG II was linked to
229 MarineAlpha12 Bin1 in the Bayesian tree.

230

231 **Taxon replacement and selective exclusion approaches placed mitochondria within**
232 **Alphaproteobacteria.**

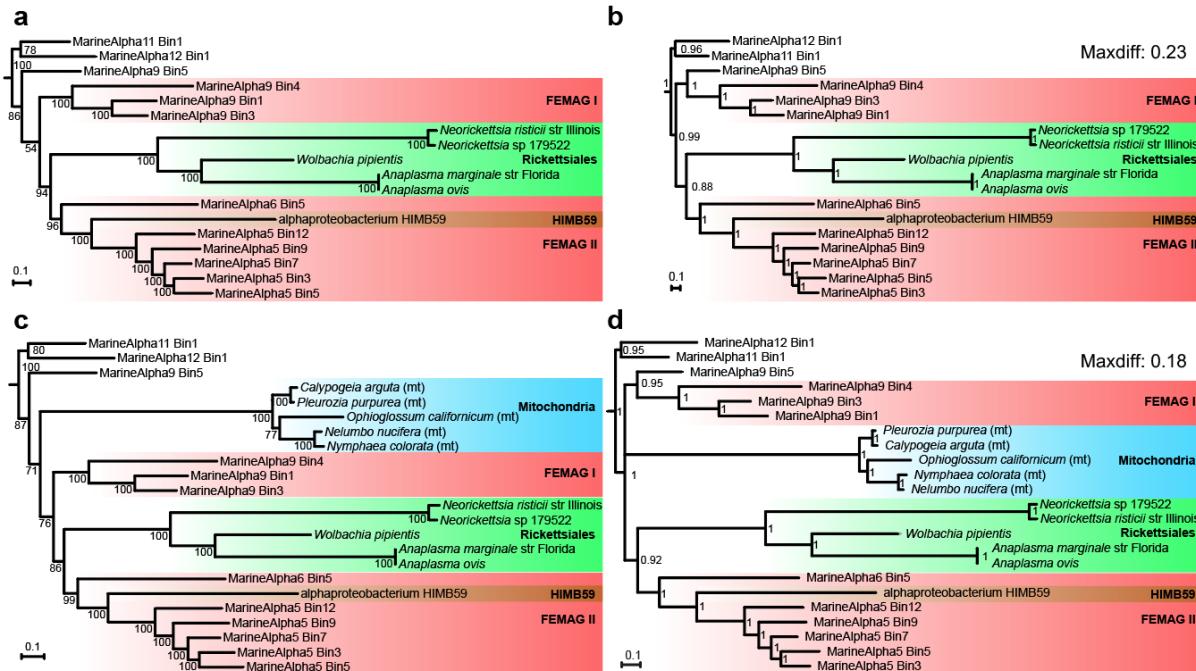
233 To study the phylogenetic relationship of mitochondria to alphaproteobacterial groups, we added GC-neutral
234 mitochondria to the trees of backbone taxa solely or in combinations with other fast-evolving clades.
235 Mitochondria by themselves were placed within Alphaproteobacteria as the sister of Alpha II and Alpha II
236 in the ML tree with a weak node support (**Fig. 4a, Supplementary Fig. 13**). However, the counterpart
237 Bayesian tree could not resolve the relationship of mitochondria to taxa of the four alphaproteobacterial
238 backbone clades (**Fig. 4b, Supplementary Fig. 14**). Similar results were observed in trees including
239 mitochondria in combination with Holosporales, Pelagibacterales and alphaproteobacterium HIMB59,
240 respectively (**Fig. 4c-h, Supplementary Fig. 15-20**). Specifically, in ML trees, mitochondria were always
241 placed within Alphaproteobacteria with low bootstrap support (71%, 57%, and 65%, respectively). In
242 Bayesian trees, none of the three fast-evolving clades could provide adequate information in resolving the
243 phylogeny of mitochondria. Our approach successfully broke the frequently reported false grouping of
244 Holosporales, Pelagibacterales, alphaproteobacterium HIMB59 and mitochondria causing by compositional
245 convergence and clearly suggested that there is little phylogenetic connection between mitochondria and
246 these three alphaproteobacterial lineages.

247

248

249 **Fig. 4 | Schematic phylogenetic trees of mitochondria and subgroups of Alphaproteobacteria in the**
250 **'18-alphamitoCOGs' dataset.** Alphaproteobacterial lineages and Mitochondria are named according to
251 **Supplementary Table 2.** Taxa and taxonomic groups in black present the backbone taxa. Filled dots show
252 node support values greater than 80% while empty dots show values greater than 50% but less than 80%.
253 Node values show posterior probability support values for Bayesian trees and bootstrapping support values
254 based on 1000 iterations for ML trees. Trees are rooted. Outgroup taxa and *Magnetococcus marinus* MC-1
255 are not shown. The Maxdiff values of Bayesian trees are shown beside the trees. **a-l**, Schematic trees of
256 **Supplementary Fig. 13-24**, respectively.

257 In contrast, apparent phylogenetic connection of mitochondria to Rickettsiales and FEMAG II were observed
258 in both ML and Bayesian trees (Fig. 4i-l, Supplementary Fig. 21-24). Specifically, mitochondria and
259 Rickettsiales were placed together independently to the four backbone clades (node support 97% for the ML
260 tree), while mitochondria and FEMAG II were placed in sisterhood inside the Alpha IIb clade (node support
261 68% for the ML tree). The inconsistency in the relative placement of mitochondria to the backbone clades
262 could be the result of insufficient taxon sampling.


263

264 **Phylogenetic relationships of taxa in clade Alpha IIb provided novel insights into the origin of**
265 **mitochondria.**

266 Since Rickettsiales, alphaproteobacterium HIMB59, FEMAG I and FEMAG II individually showed
267 phylogenetic connections to taxa of Alpha IIb in Bayesian trees, evolutionary relationships between these
268 lineages were then investigated specifically by setting Alpha IIa (Supplementary Table 2) as the outgroup.
269 MarineAlpha11 Bin1 and MarineAlpha12 Bin2 formed a monophyletic clade in both trees (Fig. 5ab).
270 MarineAlpha9 Bin5 either branched below all the fast-evolving taxa studied here in the ML tree or formed
271 monophyly with FEMAG I in the Bayesian tree. The nodes connecting the branch of MarineAlpha9 Bin5
272 and the branch of FEMAG I, respectively, had low support suggesting the phylogenetic relationship between
273 these two branches in the ML tree was unstable. Both trees reached an agreement that alphaproteobacterium

274 HIMB59 branched within FEMAG II and Rickettsiales was in sisterhood with FEMAG II. This result
 275 suggests both Rickettsiales and alphaproteobacterium HIMB59 are evolutionarily connected to a group of
 276 uncultured marine planktonic alphaproteobacteria.

277
 278

279
 280 **Fig. 5 | Phylogenetic relationships of fast-evolving taxa and mitochondria to alphaproteobacteria of**
 281 **Alpha IIb.** Node values show posterior probability support values for Bayesian trees and bootstrapping
 282 support values based on 1000 iterations for ML trees. mt, mitochondria. All trees are rooted and the outgroup
 283 is not shown. **a** and **b**, ML and Bayesian trees, respectively, of fast-evolving alphaproteobacteria and taxa of
 284 Alpha IIb. **c** and **d**, ML and Bayesian trees, respectively, of fast-evolving alphaproteobacteria, mitochondria
 285 and taxa of Alpha IIb.

286
 287 Moreover, as mitochondria showed strong phylogenetic connections to both Rickettsiales and FEMAG II
 288 (**Fig. 4**), we then included mitochondria in these two trees. When mitochondria were present, the topology
 289 of all other taxa was preserved in both the ML tree and the Bayesian tree (**Fig. 5cd**). Mitochondria were
 290 placed below the clade consist of FEMAG II, alphaproteobacterium HIMB59, Rickettsiales and FEMAG I
 291 in the ML tree with node support of 71%. In comparison, the phylogenetic relationship of mitochondria, the
 292 clade of FEMAG I and MarineAlpha9 Bin5 and the clade of FEMAG II, alphaproteobacterium HIMB59
 293 and Rickettsiales was unresolved by Bayesian inference. Despite that, the placement of mitochondria within
 294 Alpha IIb was robust. Our result suggests that mitochondria may have originated from the common ancestor
 295 of Rickettsiales and certain extant marine planktonic alphaproteobacteria.

296 The placement of mitochondria together with fast-evolving taxa within Alpha IIb is unlikely a result of
 297 phylogenetic artifact based on several lines of evidence. First, taxon-exclusion analyses clearly demonstrate
 298 the phylogenetic connections of these fast-evolving alphaproteobacterial lineages to non-fast-evolving taxa
 299 MarineAlpha9 Bin5 and MarineAlpha11 Bin1 in the absence of possible influence from non-historical
 300 signals (**Fig. 3**). Secondly, in our analysis, mitochondria and these fast-evolving taxa did not form a singlet
 301 clade falling apart from backbone clades as a result of long-branch attraction – something shown in
 302 Supplementary Fig. 9, 10 in Martijn et al. (2018). Instead, they were placed together with slowly-evolving
 303 taxa within Alpha IIb. Lastly, there were divergent FYMINK/GARP ratios among Rickettsiales,

304 mitochondria and FESMASs (**Fig. 2**). A compositional convergence artifact would actually have separated
305 them instead of grouped them.

306

307 Discussion

308 As datasets in studies on phylogeny between mitochondria and Alphaproteobacteria heavily suffer from
309 compositional heterogeneity and long-branch attraction, various approaches to mitigate non-historical
310 signals have been adopted but the drawbacks of these methods are rarely examined. Among them, protein
311 recoding cause signal loss and artificial mutation saturation⁴⁴. Nucleus-encoded mitochondrial genes have
312 to be adapted to new rules of expression and regulation in the nucleus system and therefore may actually
313 have undergone intensive site substition compared to mitochondrion-encoded genes. Thus, the reliability of
314 using nucleus-encoded mitochondrial genes in phylogenetic analysis of mitochondria need further
315 justification^{11,45}. In this study, we further demonstrated that site-exclusion methods can impair the study of
316 mitochondrial phylogeny by causing random topological shifts, particularly among basal branches, via
317 arbitrary cutoff selection, thereby breaking well-established phylogenetic relationships of even
318 homogeneous datasets. Specifically, we found that the Alphaproteobacteria-sister topology reported by
319 Martijn et al. was the result of a very particular experimental setup and set of parameters that caused by loss
320 of historical signal. In other cases of site excluded datasets, mitochondria emerged from within
321 Alphaproteobacteria.

322 To detour the shortcomings of these methods, we here applied taxon replacement and selective exclusion in
323 investigating the phylogenetic relationships between mitochondrial and alphaproteobacterial lineages.
324 Supported by a number of bias-alleviated trees, we found that mitochondria have strong phylogenetic
325 connection to the common ancestors of Rickettsiales and several fast-evolving alphaproteobacteria derived
326 from marine surface metagenomes. While this result again supports a robust evolutionary association
327 between mitochondria and Alphaproteobacteria, it also provides important ecological insights to the origin
328 of both mitochondria and Rickettsiales. Based on our result, the common ancestor of mitochondria and
329 Rickettsiales was a free-living alphaproteobacterium. This is consistent with a recent report favoring
330 independent branching of Rickettsiales and mitochondria¹⁸ but again in agreement with numerous previous
331 studies which suggested phylogenetic connection between mitochondria and Rickettsiales⁶.

332 Physiological and geological modellings have suggested that mitochondrial acquisition possibly occurred in
333 shallow marine environments⁴⁶ or in anaerobic syntropy⁴⁷. Our study along with others¹⁰ implies that
334 future work could discover the closest extant relatives of mitochondria in present marine environments.
335 Proteome study of Rickettsiales and MarineAlpha bins in Alpha II may provide hints about the metabolic
336 nature of the common ancestor of mitochondria^{47,48}.

337

338 Methods

339 No statistical methods were used to predetermine sample size. The experiments were not randomized and
340 the investigators were not blinded to allocation during experiments and outcome assessment.

341 **Implementation of site-exclusion metrics.** To obtain the 24-alphamitoCOGs dataset in Martijn et al. (2018),
342 file ‘alphaproteobacteria_mitochondria_untreated.aln’ was downloaded from
343 <https://datadryad.org/resource/doi:10.5061/dryad.068d0d0>. As the names of some MarineAlpha bins in this
344 file are not consistent with the phylogenetic trees in the original paper, we obtained the name mapping file
345 from Dr. Joran Martijn on 4 July 2018. On this dataset, χ^2 -score based site exclusion was achieved by
346 applying the equation introduced by Viklund et al.¹³. ζ -scores of sites were calculated according to the
347 method introduced by Muñoz-Gómez et al.²⁷. Fast-evolving site exclusion was based on conditional mean
348 site rates estimated under the LG+C60+F+R6 model in IQTREE (v1.5.5) using the ‘-wsr’ flag²⁹. Based on
349 these three metrics, 5%, 10%, 20%, 40% and 60% of sites with the highest scores were excluded for

350 downstream phylogenetic analyses. Moreover, site exclusion based on Stuart's test was conducted by using
351 the stationary-trimming function in BMGE (v1.12) ³².

352 Bowker's test of symmetry ³¹ was used to produce subsets of the 'alphamitoCOGs-24' dataset in Martijn et
353 al. (2018) by meeting increasingly stringent p-value-based thresholds
354 ($>0.005, >0.01, >0.05, >0.1, >0.2, >0.3, >0.4$ and >0.5 , respectively). The Bowker's test has long been used
355 as an overall test for symmetry ³¹. The test assesses symmetry in an $r \times r$ contingency table with the ij -th cell
356 containing the observed frequency n_{ij} . The null hypothesis for symmetry is $H_0 = n_{ij} = n_{ji}, i \neq j, i, j = 1, \dots, r$;
357 and the test value is computed as:

358

$$BT = \sum_{i < j} \frac{(n_{ij} - n_{ji})^2}{n_{ij} + n_{ji}} \quad (1)$$

359 360 The test statistics follows χ^2 distribution with the number of degrees of freedom equal to the number of
361 comparisons (n_{ij} vs n_{ji}) made.

362 The scoring function (SF) utilized for symmetry-based alignment trimming employed here is a sum of
363 absolute values of natural logarithms of Bowker's test's p-values, each raised to a certain power (15 as the
364 default value). SF can be computed as a mean over the values in an upper or lower triangular part of a square
365 matrix which rows and columns represent taxa, populated with $|\ln p|^\alpha$ values for Bowker's tests among these
366 taxa, e.g.

367

$$SF = \sum_{a=1}^{a=h} \sum_{b=1}^{b=h} |\ln p_{ab}|^\alpha$$

$$(a > b) \quad (2)$$

368 369 wherein h is the number of taxa in the msa, and p_{ab} is a p value for the sequences a and b .

370 The script which performs symmetry-based trimming (symmetry.pl, available as **Supplementary Data Files**)
371 deletes a site in an alignment, computes a SF value and restores the original alignment. The operation is
372 performed for every alignment site. Then, the site which removal results in lowest SF value is deleted
373 irreversibly. The procedure is repeated for each shortened alignment subset until the lowest p-value for a
374 pair-wise Bowker's test in the trimmed dataset exceeds certain p-value-based threshold(s).

375 Exponentiation in formula 2 leads to a sooner recovery of trimmed subsets. The exponentiation
376 disproportionately increases the addend values in formula 2 ($|\ln p_{ab}|^\alpha$) for smaller p values. For instance, the
377 default addend in the formula 2 for p-value 0.5 is 0.004 and the addend for p-value 0.005 is 72789633288.
378 Thus, when there is a disparity in individual p-values in the data, which is the case when the method is
379 needed, the exponentiation increases the relative contribution of the lowest p-values onto the SF value size.
380 At each trimming step the heuristic algorithm identifies a site which removal is likely to improve the worst
381 (lowest) p-values. The script outputs a trimmed subset when the lowest p-value exceeds the threshold value.
382 The suggested exponentiation, causing preferential improvement of the worst p-values at each site stripping
383 step, is able to deliver a result when less positions are removed. The default exponent value ($\alpha = 15$) has
384 been determined experimentally.

385

386 387 **Phylogenetic inference and tree topology comparison.** ML trees in this study were reconstructed by using
IQTREE under either auto-selected simple model (ModelFinder) or mixed model (LG+C60+F) as specified

388 in text. Bayesian trees were produced by using PhyloBayes MPI (v1.8) ⁴⁹, four chains were run until a
389 Maxdiff < 0.3 were reached.

390 For comparison of topology, ML trees of site-excluded datasets were first rooted to Beta-,
391 Gammaproteobacteria, Magnetococcales, MarineProteo1 Bin1 and Bin 2. The dissimilarity value between
392 each tree and the untreated tree was then calculated by using the Alignment metric developed by Nye et al.
393 Briefly the Alignment metric considers all the ways that the branches of one tree map onto the other ³³. The
394 code was adapted from Kuhner et al. (2015) and implemented in Python.

395 **Genome and marker protein selection of the GC-bias-reduced dataset.** The ‘18-alphamitoCOGs’ dataset
396 of this study was based on the ‘24-alphamitoCOGs’ dataset in Martijn et al. (2018) after several
397 modifications. Specifically, MAGs derived from composite bins, which contain sequences from multiple
398 naturally existing genomes were excluded to minimize possible assembly-induced artifacts. Mitochondria
399 and Rickettsiales in the original dataset used were replaced by less AT-rich alternatives (**Supplementary**
400 **Table 2**). All relevant genomes were downloaded from the RefSeq database of NCBI on 21 July 2018.

401 For quality control of the 24 marker proteins of the original dataset, sequences of these proteins were
402 downloaded from the MitoCOGs ⁵⁰ database and then aligned by using MAFFT-L-INS-I (v 7.055b) ⁵¹,
403 respectively. Alignment of each protein was trimmed by using trimAl (v.1.4) ⁵². Protein-specific e-values
404 were determined with distributions of positive and negative sequences. For each gene, sequences classified
405 into the proteins in MitoCOGs database were used as positive dataset and sequences classified into other
406 proteins were used as negative one. E-value distribution of positive and negative sequences was calculated
407 by using Hmmer (v3.2.1) ⁵³. Protein-specific e-values were the minimum of 95% quantile e-values of
408 positive sequences, and the minimum of negative sequences. We searched these 24 proteins individually in
409 the genomes by using Hmmer based on protein-specific e-values of the HMM models. The obtained proteins
410 were processed for ML tree reconstruction by using IQTREE under the model ‘LG+C60+F’. Copies
411 identified as paralogs, possible contaminants or events of lateral gene transfer in each gene tree were
412 removed. *Candidatus Paracaedibacter symbiosus* was excluded as multiple contaminant proteins were
413 detected in its genome and we think its genome likely suffers from heavy contamination. MitoCOG0003 and
414 MitoCOG0133 were excluded as they were detected in few genomes. MitoCOG00052, MitoCOG00060,
415 MitoCOG00066 and MitoCOG00071 were excluded as they were absent in reselected mitochondrial
416 genomes. Consequently, 18 marker proteins were selected. Except for outgroup species (including Beta-,
417 Gammaproteobacteria and Magnetococcales), genomes contained 16 or more than 16 of the 18 marker
418 proteins were kept. Furthermore, we removed redundant MarineAlpha bins of the original dataset based on
419 pairwise similarity of marker proteins by using BLASTP (v2.6.0+, identity ≥ 0.99 and coverage ≥ 0.95) to
420 reduce computational time. As a result, 61 genomes were kept for downstream analysis.

421 Before phylogenetic inference, selected proteins were aligned respectively by using MAFFT-L-INS-i. Low-
422 quality columns were removed by BMGE (-m BLOSUM30) and the multiple sequence alignments after
423 quality control were concatenated.

424

425 **References**

- 426 1. Georgiades, K. & Raoult, D. The rhizome of *Reclinomonas americana*, *Homo sapiens*, *Pediculus*
427 *humanus* and *Saccharomyces cerevisiae* mitochondria. *Biol Direct* **6**, 55 (2011).
- 428 2. Ku, C., Nelson-Sathi, S., Roettger, M., Sousa, F. L., et al. Endosymbiotic origin and differential loss of
429 eukaryotic genes. *Nature* **524**, 427-432 (2015).
- 430 3. Thiergart, T., Landan, G., Schenk, M., Dagan, T. & Martin, W. F. An evolutionary network of genes
431 present in the eukaryote common ancestor polls genomes on eukaryotic and mitochondrial origin.
432 *Genome Biol Evol* **4**, 466-485 (2012).

433 4. Abhishek, A., Bavishi, A., Bavishi, A. & Choudhary, M. Bacterial genome chimaerism and the origin of
434 mitochondria. *Can J Microbiol* **57**, 49-61 (2011).

435 5. Atteia, A., Adrait, A., Brugiére, S., Tardif, M., *et al.* A proteomic survey of *Chlamydomonas reinhardtii*
436 mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the alpha-
437 proteobacterial mitochondrial ancestor. *Mol Biol Evol* **26**, 1533-1548 (2009).

438 6. Roger, A. J., Muñoz-Gómez, S. A. & Kamikawa, R. The Origin and diversification of mitochondria.
439 *Curr Biol* **27**, R1177-R1192 (2017).

440 7. Ettema, T. J. & Andersson, S. G. The alpha-proteobacteria: the Darwin finches of the bacterial world.
441 *Biol Lett* **5**, 429-432 (2009).

442 8. Betts, H. C., Puttick, M. N., Clark, J. W., Williams, T. A., *et al.* Integrated genomic and fossil evidence
443 illuminates life's early evolution and eukaryote origin. *Nat Ecol Evol* (2018).

444 9. Karkowska, A., Vacek, V., Zubáčová, Z., Treitli, S. C., *et al.* A Eukaryote without a mitochondrial
445 organelle. *Curr Biol* **26**, 1274-1284 (2016).

446 10. Brindefalk, B., Ettema, T. J., Viklund, J., Thollesson, M. & Andersson, S. G. A phylometagenomic
447 exploration of oceanic alphaproteobacteria reveals mitochondrial relatives unrelated to the SAR11
448 clade. *PLoS One* **6**, e24457 (2011).

449 11. Derelle, R. & Lang, B. F. Rooting the eukaryotic tree with mitochondrial and bacterial proteins. *Mol*
450 *Biol Evol* **29**, 1277-1289 (2012).

451 12. Wang, Z. & Wu, M. An integrated phylogenomic approach toward pinpointing the origin of
452 mitochondria. *Sci Rep* **5**, 7949 (2015).

453 13. Viklund, J., Ettema, T. J. & Andersson, S. G. Independent genome reduction and phylogenetic
454 reclassification of the oceanic SAR11 clade. *Mol Biol Evol* **29**, 599-615 (2012).

455 14. Esser, C., Ahmadinejad, N., Wiegand, C., Rotte, C., *et al.* A genome phylogeny for mitochondria among
456 alpha-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. *Mol Biol Evol*
457 **21**, 1643-1660 (2004).

458 15. Fitzpatrick, D. A., Creevey, C. J. & McInerney, J. O. Genome phylogenies indicate a meaningful alpha-
459 proteobacterial phylogeny and support a grouping of the mitochondria with the Rickettsiales. *Mol Biol*
460 *Evol* **23**, 74-85 (2006).

461 16. Rodríguez-Ezpeleta, N. & Embley, T. M. The SAR11 group of alpha-proteobacteria is not related to the
462 origin of mitochondria. *PLoS One* **7**, e30520 (2012).

463 17. Viale, A. M. & Arakaki, A. K. The chaperone connection to the origins of the eukaryotic organelles.
464 *FEBS Lett* **341**, 146-151 (1994).

465 18. Castelli, M., Sabaneyeva, E., Lanzoni, O., Lebedeva, N., *et al.* Deianira, an extracellular bacterium
466 associated with the ciliate Paramecium, suggests an alternative scenario for the evolution of
467 Rickettsiales. *ISME J* (2019).

468 19. Thrash, J. C., Boyd, A., Huggett, M. J., Grote, J., *et al.* Phylogenomic evidence for a common ancestor
469 of mitochondria and the SAR11 clade. *Sci Rep* **1**, 13 (2011).

470 20. Georgiades, K., Madoui, M. A., Le, P., Robert, C. & Raoult, D. Phylogenomic analysis of *OdysSELLA*
471 *thessalonicensis* fortifies the common origin of Rickettsiales, *Pelagibacter ubique* and *Reclimonas*
472 *americana* mitochondrion. *PLoS One* **6**, e24857 (2011).

473 21. Martijn, J., Vosseberg, J., Guy, L., Offre, P. & Ettema, T. J. G. Deep mitochondrial origin outside the
474 sampled alphaproteobacteria. *Nature* **557**, 101-105 (2018).

475 22. Gray, M. W., Burger, G. & Lang, B. F. Mitochondrial evolution. *Science* **283**, 1476-1481 (1999).

476 23. Gawryluk, R. M. R. Evolutionary Biology: A new home for the powerhouse? *Curr Biol* **28**, R798-R800 (2018).

478 24. Hansmann, S. & Martin, W. Phylogeny of 33 ribosomal and six other proteins encoded in an ancient
479 gene cluster that is conserved across prokaryotic genomes: influence of excluding poorly alignable sites
480 from analysis. *Int J Syst Evol Microbiol* **50 Pt 4**, 1655-1663 (2000).

481 25. Goremykin, V. V., Hansmann, S. & Martin, W. F. Evolutionary analysis of 58 proteins encoded in six
482 completely sequenced chloroplast genomes: revised molecular estimates of two seed plant divergence
483 times. *Plant Systematics and Evolution* **206**, 337-351 (1997).

484 26. A Shepherd, D. & Klaere, S. How well does your phylogenetic model fit your data? *Syst Biol* **68**, 157-
485 167 (2019).

486 27. Muñoz-Gómez, S. A., Hess, S., Burger, G., Lang, B. F., *et al.* An updated phylogeny of the
487 Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins.
488 *Elife* **8**, (2019).

489 28. Jermiin, L. S., Jayaswal, V., Ababneh, F. M. & Robinson, J. Identifying optimal models of evolution.
490 *Methods Mol Biol* **1525**, 379-420 (2017).

491 29. Nguyen, L. T., Schmidt, H. A., von Haeseler, A. & Minh, B. Q. IQ-TREE: a fast and effective stochastic
492 algorithm for estimating maximum-likelihood phylogenies. *Mol Biol Evol* **32**, 268-274 (2015).

493 30. Stuart, A. A test for homogeneity of the marginal distributions in a two-way classification. *Biometrika*
494 **42**, 412-416 (1955).

495 31. Bowker, A. H. A test for symmetry in contingency tables. *J Am Stat Assoc* **43**, 572-574 (1948).

496 32. Criscuolo, A. & Gribaldo, S. BMGE (Block Mapping and Gathering with Entropy): a new software for
497 selection of phylogenetic informative regions from multiple sequence alignments. *BMC Evol Biol* **10**,
498 210 (2010).

499 33. Nye, T. M., Liò, P. & Gilks, W. R. A novel algorithm and web-based tool for comparing two alternative
500 phylogenetic trees. *Bioinformatics* **22**, 117-119 (2006).

501 34. Kuhner, M. K. & Yamato, J. Practical performance of tree comparison metrics. *Syst Biol* **64**, 205-214
502 (2015).

503 35. Yang, D., Oyaizu, Y., Oyaizu, H., Olsen, G. J. & Woese, C. R. Mitochondrial origins. *Proc Natl Acad
504 Sci U S A* **82**, 4443-4447 (1985).

505 36. Palmer, J. D. & Herbon, L. A. Plant mitochondrial DNA evolves rapidly in structure, but slowly in
506 sequence. *J Mol Evol* **28**, 87-97 (1988).

507 37. Christensen, A. C. Plant mitochondrial genome evolution can be explained by DNA repair mechanisms.
508 *Genome Biol Evol* **5**, 1079-1086 (2013).

509 38. Williams, K. P., Sobral, B. W. & Dickerman, A. W. A robust species tree for the alphaproteobacteria. *J
510 Bacteriol* **189**, 4578-4586 (2007).

511 39. Szokoli, F., Castelli, M., Sabaneyeva, E., Schrallhammer, M., *et al.* Disentangling the taxonomy of
512 rickettsiales and description of two novel symbionts ("*Candidatus* Bealeia paramacronuclearis" and
513 "*Candidatus* Fokinia cryptica") sharing the cytoplasm of the ciliate protist *Paramecium biaurelia*. *Appl
514 Environ Microbiol* **82**, 7236-7247 (2016).

515 40. Vannini, C., Ferrantini, F., Schleifer, K. H., Ludwig, W., *et al.* "Candidatus anadelfobacter veles" and
516 "Candidatus cyrtobacter comes," two new rickettsiales species hosted by the protist ciliate *Euplotes*
517 *harpa* (Ciliophora, Spirotrichea). *Appl Environ Microbiol* **76**, 4047-4054 (2010).

518 41. Martijn, J., Schulz, F., Zaremba-Niedzwiedzka, K., Viklund, J., *et al.* Single-cell genomics of a rare
519 environmental alphaproteobacterium provides unique insights into Rickettsiaceae evolution. *ISME J* **9**,
520 2373-2385 (2015).

521 42. Ferla, M. P., Thrash, J. C., Giovannoni, S. J. & Patrick, W. M. New rRNA gene-based phylogenies of
522 the Alphaproteobacteria provide perspective on major groups, mitochondrial ancestry and phylogenetic
523 instability. *PLoS One* **8**, e83383 (2013).

524 43. Sunagawa, S., Coelho, L. P., Chaffron, S., Kultima, J. R., *et al.* Ocean plankton. Structure and function
525 of the global ocean microbiome. *Science* **348**, 1261359 (2015).

526 44. Philippe, H., Brinkmann, H., Lavrov, D. V., Littlewood, D. T., *et al.* Resolving difficult phylogenetic
527 questions: why more sequences are not enough. *PLoS Biol* **9**, e1000602 (2011).

528 45. Adams, K. L., Song, K., Roessler, P. G., Nugent, J. M., *et al.* Intracellular gene transfer in action: dual
529 transcription and multiple silencings of nuclear and mitochondrial cox2 genes in legumes. *Proc Natl
530 Acad Sci U S A* **96**, 13863-13868 (1999).

531 46. Waldbauer, J. R., Newman, D. K. & Summons, R. E. Microaerobic steroid biosynthesis and the
532 molecular fossil record of Archean life. *Proc Natl Acad Sci U S A* **108**, 13409-13414 (2011).

533 47. Gould, S. B., Garg, S. G. & Martin, W. F. Bacterial vesicle secretion and the evolutionary origin of the
534 eukaryotic endomembrane system. *Trends Microbiol* **24**, 525-534 (2016).

535 48. Martin, W. F., Tielens, A. G. M., Mentel, M., Garg, S. G. & Gould, S. B. The physiology of phagocytosis
536 in the context of mitochondrial origin. *Microbiol Mol Biol Rev* **81**, (2017).

537 49. Lartillot, N., Rodrigue, N., Stubbs, D. & Richer, J. PhyloBayes MPI: phylogenetic reconstruction with
538 infinite mixtures of profiles in a parallel environment. *Syst Biol* **62**, 611-615 (2013).

539 50. Kannan, S., Rogozin, I. B. & Koonin, E. V. MitoCOGs: clusters of orthologous genes from mitochondria
540 and implications for the evolution of eukaryotes. *BMC Evol Biol* **14**, 237 (2014).

541 51. Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements
542 in performance and usability. *Mol Biol Evol* **30**, 772-780 (2013).

543 52. Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment
544 trimming in large-scale phylogenetic analyses. *Bioinformatics* **25**, 1972-1973 (2009).

545 53. Eddy, S. R. Accelerated profile HMM searches. *PLoS Comput Biol* **7**, e1002195 (2011).

546

547

548 **Acknowledgements** This work was financially supported by the National Natural Science Foundation of
549 China (91851210, 41530105 and 81774152), the European Research Council (ERC 666053), the Shenzhen
550 Key Laboratory of Marine Archaea Geo-Omics, Southern University of Science and Technology,
551 (ZDSYS201802081843490), Shenzhen Science and Technology Innovation Commission
552 (JCYJ20180305123458107), the VW foundation (93 046), and the Laboratory for Marine Geology, Qingdao
553 National Laboratory for Marine Science and Technology, (MGQNLM-TD201810).

554

555

556

557 **Author Contributions** L.F., W.F.M. and R.Z. conceived this study. L.F., D.W., V.G., J.X., Y.X. and S.G.
558 were involved in data analysis. L.F., V.G., C.Z., W.F.M. and R.Z. interpreted the results and drafted the
559 manuscript. All authors participated in the critical revision of the manuscript.

560

561 **Competing interests** The authors declare no competing interests.

562