

1 Howler monkeys are the reservoir of malaria parasites causing zoonotic infections
2 in the Atlantic forest of Rio de Janeiro

3
4 Filipe Vieira Santos de Abreu^{1,2}; Edmilson dos Santos³; Aline Rosa Lavigne Mello^{4,5}; Larissa
5 Rodrigues Gomes^{4,5}; Denise Anete Madureira de Alvarenga⁶; Marcelo Quintela Gomes¹;
6 Waldemir Paixão Vargas⁷; Cesare Bianco-Júnior⁴; Anielle de Pina-Costa^{5,8,9}, Danilo Simonini
7 Teixeira¹⁰; Alessandro Pecego Martins Romano¹¹; Pedro Paulo de Abreu Manso¹²; Marcelo
8 Pelajo-Machado¹²; Patrícia Brasil^{5,8}; Cláudio Tadeu Daniel-Ribeiro^{4,5}; Cristiana Ferreira Alves
9 de Britto⁶; Maria de Fátima Ferreira-da-Cruz^{4,5}; Ricardo Lourenço-de-Oliveira^{1,5}.

10 **Authors affiliations**

11 ¹Laboratório de Mosquitos Transmissores de Hematozoários, Instituto Oswaldo Cruz, Fiocruz,
12 Rio de Janeiro, Rio de Janeiro, Brazil.

13
14 ²Instituto Federal do Norte de Minas Gerais, Salinas, MG, Brazil.
15
16 ³Divisão de Vigilância Ambiental em Saúde, Secretaria de Saúde do Rio Grande do Sul, Porto
17 Alegre, RS, Brazil.

18
19 ⁴ Laboratório de Pesquisa em Malária, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ,
20 Brazil.

21
22 ⁵ Centro de Pesquisa, Diagnóstico e Treinamento em Malária, Instituto Oswaldo Cruz, Fiocruz,
23 Rio de Janeiro, RJ, Brazil.

24

25 ⁶Laboratório de Malária, Instituto René Rachou, Fiocruz, Belo Horizonte, MG, Brazil.

26

27 ⁷ Grupo de Pesquisa e Epidemiologia Espacial, Departamento de Endemias Samuel Pessoa, Escola
28 Nacional de Saúde Pública Sergio Arouca, Fiocruz, Rio de Janeiro, RJ, Brasil.

29

30 ⁸ Laboratório de Doenças Febris Agudas, Instituto Nacional de Infectologia Evandro Chagas,
31 Fiocruz, Rio de Janeiro, RJ, Brazil.

32

33 ⁹Centro Universitário Serra dos Órgãos, UNIFESO, Teresópolis, RJ, Brazil.

34

35 ¹⁰ Universidade Estadual de Santa Cruz, UESC, Ilhéus, BA, Brazil.

36

37 ¹¹ Secretaria de Vigilância em Saúde, Ministério da Saúde, Brasília, DF, Brazil.

38

39 ¹² Laboratório de Patologia, Instituto Oswaldo Cruz, Fiocruz, Rio de Janeiro, RJ, Brazil.

40 *Corresponding authors: MFFC mffcruz28@gmail.com; RLdO lourenco@ioc.fiocruz.br

41 **Abstract**

42 **Background:** Although malaria transmission was eradicated from southeast Brazil, a significant increase in
43 the number of *Plasmodium vivax-like* autochthonous human cases has been reported in remote areas of the
44 Atlantic Forest in the last decades in Rio de Janeiro (RJ) state, including an outbreak in 2015-2016. The
45 singular clinical and epidemiological aspects of several human cases combined with molecular and genetic
46 data revealed that they were due to the non-human primate (NHP) parasite *P. simium*. The full
47 understanding of the epidemiology of the autochthonous malaria in southeastern Brazil depends, however,

48 upon the knowledge on the circulation of NHP *Plasmodium* in the foci and the determination of its
49 reservoirs. **Methodology:** A large sampling effort was carried out in the Atlantic forest of RJ and its
50 bordering states (Minas Gerais, São Paulo, Espírito Santo) for capture and examination of free-living NHPs.
51 Blood and/or viscera were analyzed for Plasmodia infections through molecular and microscopic
52 techniques. **Principal findings:** In total, 146 NHPs of six species, from 30 counties in four states were
53 tested. Howler monkeys (*A. guariba clamitans*) were the only NHP species found infected. In RJ, 26% of
54 howlers were positive, among them 17% were found to be infected with *P. simium*. Importantly, specific
55 single nucleotide polymorphisms were detected in all *P. simium* infected howlers regardless geographical
56 origin of malaria foci. Interestingly, 71% of *P. simium* infected NHP were from the coastal slope of a
57 mountain chain (Serra do Mar), where most human cases have been occurring. *P. brasiliianum/malariae*
58 was detected for the first time in 14% free-living howlers in RJ as well as in 25% of those from the Espírito
59 Santo state. Moreover, malarial pigment was detected in spleen fragments of 50% of a subsample
60 composed of howler monkeys found dead in both RJ and ES. All NHPs were negative for *P. falciparum*.

61 **Conclusions/Significance:** Our data indicate the howler monkeys as the main reservoir of the Atlantic
62 forest human malaria in RJ and other sites in Southeast Brazil and reinforce its zoonotic nature.

63 **Key words:** Zoonosis; *Plasmodium simium*; *Plasmodium brasiliianum*; *Alouatta*; *Plasmodium vivax*;
64 *Plasmodium malariae*;

65

66 **Author summary:** The present work consists of an unprecedented capture effort and large-scale field
67 survey of plasmodial species in Non-human primates (NHPs) in RJ, a state recording a three-decade history
68 of autochthonous human cases of benign tertian malaria pending epidemiological clarification of their
69 origin. For the first time, we describe infection rates by *Plasmodium* sp. in free-living NHP, match the spatial
70 distribution of *P. simium* in NHP with that of local human cases of benign tertian malaria due to this

71 parasite, disclose howler monkeys as the only confirmed reservoir of this zoonotic malaria in the state and
72 showed that specific single nucleotide polymorphisms were present in all *P. simium* infected howlers,
73 regardless of the geographical origin of malaria foci. It is also the first time that *P. brasiliense/malariae* is
74 recorded in free-living NHPs from Rio de Janeiro and the widespread distribution of this quartan-malaria
75 parasite of zoonotic potential in the state is illustrated. Together, these findings increase the understanding
76 about the simian malaria parasites in Atlantic Forests, as well as on the zoonotic character of autochthonous
77 human malaria in Rio de Janeiro, providing subsidies for shaping surveillance and control.

78

79 **1 – Introduction**

80 In Brazil, more than 99% of malaria infections are acquired in the Amazon, and few
81 isolated imported cases or outbreaks of introduced cases from the Amazon or foreigner countries
82 are occasionally recorded in the Extra-Amazonian regions [1]. Malaria transmission was
83 considered eradicated from South and Southeast regions of Brazil more than 40 years ago [1].
84 However, in the last three decades, a significant increase in autochthonous malaria cases by
85 *Plasmodium vivax-like* parasites in the Atlantic Forest areas in southeastern Brazil, where no
86 index case that could have introduced the parasite from a malaria endemic region, have been
87 reported [1,2]. These cases present similar parasitological, clinical and epidemiological
88 characteristics, such as: low parasitemia, absence of the expected *P. vivax* relapses, and recent
89 visits to areas covered by dense rain forest where the bromeliad-inhabiting *Anopheles*
90 mosquitoes belonging to the subgenus *Kerteszia*, specially *An. cruzii*, are almost the exclusive
91 human-biting anopheline species [2–4]. *An. cruzii* is the main vector of the so-called bromeliad
92 malaria, endemic in Southern and Southeastern Brazil, and coincidentally it is the only proved
93 natural vector of simian malarias in the country [5]. This particular epidemiological context

94 revived the hypothesis raised by Deane et al in the 1960's about the existence of human malaria
95 cases of simian origin in Brazil. In fact, these authors reported a human natural infection by the
96 neotropical primate parasite *P. simium* Fonseca [6] in São Paulo (SP), southeast region [7]. The
97 patient presented a benign tertian malaria after being exposed to mosquito bites at the tree-
98 canopy during an entomological survey in a forest densely infested by *An. cruzii*. The description
99 of vertical movement of *An. cruzii* between the canopy and ground level in the Atlantics rain
100 forest of South Brazil reinforced Deane's hypothesis that part of the transmission of bromeliad
101 malaria in Southern and Southeastern Brazil would be of zoonotic character, being monkeys the
102 parasite reservoir [5–8].

103 Two species of *Plasmodium* have been described in neotropical non-human primates
104 (NHP): *P. brasiliense* Gonder e Berenberg-Gossler (1908) and *P. simium*, almost
105 indistinguishable from the human malaria parasites *P. malariae* and *P. vivax*, respectively
106 [5,6,9]. Besides subtle morphological variations [2,5], molecular markers such as microsatellites
107 and single nucleotide polymorphisms (SNPs) were the only differences so far described between
108 *P. malariae* and *P. brasiliense* and *P. vivax* and *P. simium* [2,10,11]. *P. brasiliense* has a
109 broader distribution as has been found from México to Southern Brazil, infecting at least 11
110 genera of the five families of neotropical primates (Aotidae, Atelidae, Callitrichidae, Cebidae
111 and Phiteciidae) [5,12–15]. In contrast, *P. simium* has been found essentially in species
112 belonging to two genera (*Alouatta* and *Brachyteles*, family Atelidae) [5], from the Atlantic forest
113 of Southern and Southeastern Brazilian. Importantly, both *P. brasiliense* and *P. simium* are
114 experimentally infective to humans [9].

115 The full understanding of epidemiology of recent autochthonous malaria in southeastern Brazil
116 depends on the confirmation of circulation of NHP Plasmodia in the transmission foci as well as

117 the determination of parasite reservoirs. Studies on the prevalence of *P. simium* and/or *P.*
118 *brasilianum* infections in NHPs and determine the potential reservoirs in southeastern Brazilian
119 states were conducted during 1960-1990's. Almost 800 NHPs were examined, recording a
120 variation of *Plasmodium* infection from 10.9% in the states of Espírito Santo to 56.5% in SP [5].
121 At the time of these survey, only free-living lion-tamarins (Callitrichidae) could be examined
122 from RJ and all were negative to malaria parasites [16]. However, RJ recorded 110
123 autochthonous human cases of benign tertian malaria between 2005 and 2018, with an outbreak
124 in 2015-2016 of 49 cases [1,2]. Curiously, all these human infections were acquired in sites of RJ
125 located along Serra do Mar, an extensive mountain chain covered by the best-preserved rain
126 forest mosaic in the southeast. This biome harbor a rich NHP fauna, composed of species of six
127 genera (*Alouatta*, *Brachyteles*, *Callicebus*, *Callithrix*, *Leontophitecus* and *Sapajus*) [17], and
128 have *An. cruzi* as the most common anopheline [18]. Consequently, the hypothesis of simian
129 origin in these RJ malaria cases has been raised [5,7]. In response, multidisciplinary studies
130 including clinical, epidemiological, parasitological, and molecular approaches have been
131 conducted in RJ [2,4,19]. More recently, molecular studies of parasites infecting humans and
132 four howlers clearly demonstrated that they shared the same *P. simium* parasite. [2,7,20,21].
133 However, so far scarce number of wild NHPs of few species from only three out of numerous
134 autochthonous malaria foci in RJ and surroundings could be examined [2]. This work presents
135 the largest sampling effort ever carried out in the Atlantic forest of RJ and its borders for the
136 capture and examination of free-living NHPs to describe the geographical distribution and
137 frequency of simian malaria as well as to determine the local animal reservoirs and the identity
138 of the parasite infecting humans and NHPs in the autochthonous malaria foci.

139

140 **2 - Material and Methods**

141 *2.1 Study area*

142 The work was carried out between May 2015 and January 2019, totaling approximately
143 120 days of fieldwork in 44 sites of 30 counties in the Atlantic Forest biome, in RJ as well as
144 bordering sites in states of Minas Gerais (MG), ES and SP. The survey focused forest fragments
145 from lowlands areas to mountain valleys and escarpments of Serra do Mar and other mountain
146 chains [22]. The choice of capture areas comprised: local existence of NHPs and/or recent
147 human malaria cases as well as alerts of an information network built with key institutions,
148 inhabitants, health agents and environmental guards to continuously monitoring the presence of
149 howler monkeys, as previously described [23].

150 *2.2 Capture and sample collection*

151 The expeditions consisted of ten-days surveys in the forests conducted by 2 - 6 trained
152 people in target areas for the search of NHPs. The capture method was chosen according to NHP
153 species, behavior and size [24]. Briefly, smallest and frugivorous species such as marmosets
154 (genus *Callithrix*), lion tamarin (*Leontopithecus*), and capuchins (*Sapajus*) were trapped using
155 banana baited automatic tomahawk traps [25]. Largest species presenting folivores and
156 acrodendrophilic habits such as howlers (*Alouatta*) and woolly spider monkey (*Brachyteles*), or
157 then which usually don't enter in traps (e.g. one titi – *Callicebus*, captured in Minas Gerais) were
158 captured with anesthetic darts, as previously described [23]. Sick animals reported by the
159 information network during the 2017-2018 yellow fever epizooties [26] were captured with nets
160 [23]. A sample of 3-6 mL of blood was collected from anesthetized or dying or recently dead
161 animals. Thick and thin blood films were immediately prepared, and the remaining blood was let
162 for coagulating. After sample collections and the complete recovery of anesthetic effects,

163 animals were released always in the capture point during the daytime. Liver samples were
164 obtained from recently dead animals, due to yellow fever or other disease. Liver and blood
165 samples were stored at – 80°C until DNA extraction.

166 *2.3 Malaria diagnosis*

167 Giemsa-stained thick and thin blood films were examined in the microscopy under a
168 x100 oil-immersion objective by two trained and independent microscopists. DNA was extracted
169 from blood clots as previously described [27]; extractions from liver samples [28] were done
170 using the QIAGEN DNeasy mini kit according to manufacturer's instructions. Molecular
171 diagnosis was made through conventional PCR. All DNA samples were tested in triplicate for
172 18s rRNA *Plasmodium* genus-specific gene [29,30], and then for cysteine proteinase *P. vivax* and
173 ssrRNA *P. malariae* and *P. falciparum* genes, as previously described [30,31]. *P. vivax*-positive
174 samples were submitted to *P. simium* differential diagnosis based on a mitochondrial SNP
175 [2,10]. The molecular diagnosis was performed by *Nested*-PCR of *coxI* gene fragment and
176 subsequent enzymatic digestion, using primers and protocol previously described [10]. All the
177 PCR products were visualized under UV light after electrophoresis on 2% agarose gels.

178

179 *2.4 Histopathological analysis*

180 Spleen fragments of a subsample consisting of 16 howlers (12 from RJ and 4 from ES)
181 found dead were fixed in Carson's formalin-Millonig [32] and processed according to standard
182 histological techniques for paraffin embedding. Sections (5 µm thick) from each block were
183 stained with hematoxylin-eosin [33] or Lennert Giemsa [34], and analyzed looking for malarial
184 pigments under an AxioHome microscope equipped with an HRc Axiocam digital camera (Carl
185 Zeiss, Germany).

186 2.5 *Ethic issues*

187 The collection methods, biosafety and anesthesia protocols adhered to the Brazilian law
188 (11.794 of July 8, 2008) about the use of animals in scientific research, and complied with the
189 rules and regulations of Brazilian Ministry of Health [24] having been previously approved by
190 the institutional Ethics Committee for Animal Experimentation of Instituto Oswaldo Cruz
191 (protocol CEUA/IOC-004/2015, license L-037/2016) and by Brazilian Ministry of the
192 Environment (SISBIO 41837-3 and 54707-4) and Rio de Janeiro's Environment agency (INEA
193 012/2016 and 019/2018). The research also adhered to the American Society of Primatologists
194 Principles for the Ethical Treatment of Nonhuman Primates.

195

196 **3 – Results**

197 In total, 146 animals belonging to six species from 30 counties in four Brazilian states
198 were examined (S1 Table, Fig.1), being 130 by microscopy and PCR in blood samples, seven by
199 microscopy and PCR in blood samples and histopathology of spleen fragments, and nine by PCR
200 of viscera and histopathology of spleen fragments.

201

202 Figure 1: Map showing collection points of non-human primate in Rio de Janeiro. Each
203 circle means one NHP examined. The map was prepared using free software QGIS 2.18.

204

205 Regardless the geographical origin, the only NHP species found infected with
206 *Plasmodium* was the howler monkey *Alouatta g. clamitans* (Table 1). As expected, PCR was
207 more sensitive than microscopic examination of blood films, that failed to detect *Plasmodium* in
208 two infected howlers, one harboring *P. simium* and another *P. brasiliandum/malariae* (Table 1).

209 These results suggest that infected howler usually display detectable parasitemia despite the
210 infecting plasmodial species. Trophozoites were the most common visualized blood form, but
211 schizonts and gametocytes were also detected (Fig. 2). In addition, using PCR we were able to
212 detect both *Plasmodium* species in four animals from which only liver and spleen samples were
213 available.

214 Table 1: *Alouatta g. clamitans* captured and examined per state, infection rate per
215 *Plasmodium* species and method of detection of current and past infection. Number (%).

State	N	Total with <i>Plasmodium</i>	<i>P.</i> <i>simium</i>	<i>P.</i> <i>brasiliandum</i> / <i>malariae</i>	<i>P. simium</i> and <i>P. brasiliandum/</i> <i>malariae</i>	<i>P.</i> <i>falciparum</i>	Diagnosis		Malarial Pigment\$	
							Blood slides + PCR	Only PCR	N	Positive
RJ	42	11 (26.1)	5 (45.4)	4 (36.3)	2 (18.1)	-	7 [#]	4*	12	6 (50) ¹
ES	4	1 (25.0)	-	1 (100.0)	-	-	NR	1	4	2 (50) ²
MG	2	-	-	-	-	-	-	-	-	-
TOT.	48	12 (25.0)	5 (41.6)	5 (41.6)	2 (16.6)	0	7	5	16	8 (50) ³

216 [#]Parasitemia ranging from 15 to 300 parasites/ μ L (median = 40 p/ μ L); *One harboring *P.*
217 *simium*, one with *P. malariae/brasiliandum* and the remaining two found dead with no blood
218 slides available. NR: not realized, they were found dead during a yellow fever outbreak. ^{\$}Search
219 in spleen tissues in a subsample consisting of dead animals. ¹Two out of these six animals had
220 positive PCR; ²One of then had positive PCR. ³Three of then had positive PCR; the other five
221 had negative PCR.

222
223 Figure 2: Giemsa's solution-stained thick (A-D) and thin (E-I) blood samples, and
224 histopathological analysis hematoxylin-eosin-stained spleen fragments of howlers naturally
225 infected with *Plasmodium* in Rio de Janeiro state, Brazil, showing (J) hypertrophy of red pulp
226 with malarial pigments and white pulp atrophy and (K) detail of malarial pigments in the red
227 pulp.

228

229 Only 12 NHPs could be examined from the bordering states of RJ: six of them were
230 howler monkeys from MG and ES and none was infected by *P. simium*. One of the four
231 examined howlers from ES was PCR positive to *P. brasiliandum/malariae* (25%) (Table 1).

232 Regarding RJ, 11 (26.1%) howler monkeys were infected with malaria parasites at the
233 time of sampling and, among them, 16.7% were infected by *P. simium*, the causative agent of the
234 autochthonous human malaria in this state (Tables 1 and 2). Importantly, specific *P. simium* SNP
235 were detected in 100% of these tertian malaria parasite infected howlers. Coincidentally, most of
236 these animals were originated from the coastal slope of Serra do Mar where most human cases
237 were recorded in the last decade (Table 2, Fig.3). Six howlers from RJ were infected by the
238 quartan-malaria parasite *P. brasiliandum/malariae* (14.3%), two of which displaying mixed *P.*
239 *simium* infection (Tables 1 and 2). All samples were negative for *P. falciparum* parasites.

240

241 Figure 3: Map showing the distribution, number and *Plasmodium infections* of the
242 examined *Alouatta g. clamitans* in Rio de Janeiro. Green shaded areas represent the counties
243 with register of autochthonous malaria in human: 1. Macaé, 2. Nova Friburgo, 3. Cachoeira de
244 Macacu, 4. Teresópolis, 5. Sapucaia, 6. Guapimirim, 7. Petrópolis, 8. Magé, 9. Duque de Caxias
245 10. Miguel Pereira, 11. Angra dos Reis. Number 12 represents Sumidouro, where human case
246 has been never detected. The map was prepared using free software QGIS 2.18.

247

248 Previous malaria infections could be investigated by the search of malarial pigment in a
249 subsample of 16 howlers found dead. Accordingly, malarial pigment (Fig. 2) was detected in
250 spleen fragments of five out of 13 animals with negative PCR at the time of death and, as
251 expected, in three with positive PCR (Table 1). Interestingly, malarial pigment was found in

252 spleen samples of 50% of howlers found dead in both RJ (6/12) and ES (2/4) displayed malarial
253 pigment indicating that malaria is frequent in these monkeys from both states.

254 Howlers could be examined from 15 counties in RJ, six of which with records of
255 autochthonous human malaria in the past decade. Current infections by *P. simium* were
256 diagnosed in howlers from four (66.6%) of the surveyed counties reporting human cases of
257 benign tertian malaria in the state, and in a neighboring county (Sumidouro) where human case
258 has been never detected (Fig. 3). Coincidentally, in Macaé where the highest number of human
259 cases was recorded, all howlers found dead had malarial pigments in the spleen, suggesting that
260 simian malaria is highly enzootic in the county (Table 2).

261
262 Table 2: RJ *Plasmodium*-positive howler monkeys, according to plasmodial species,
263 county, year, slope of capture, and occurrence of autochthonous human cases of benign tertian
264 malaria recorded in the respective county and the year of detection.

		<i>Plasmodium</i> infections in NHP			Previous PNH <i>Plasmodium</i> infection\$	Human “vivax-like” cases	
Serra do Mar Slope	County	NP (%)	Parasitemia (p/mm³)	<i>Plasmodium</i> species		N	Year
Coastal	Miguel Pereira	2 (50)	40	<i>P. brasiliانum</i>	0 of 1	10	2015-2017
			300	<i>P. simium</i> + <i>P. brasiliانum</i>			
	Macaé	1 (16.6)	25	<i>P. simium</i>	3 of 3	12	2011, 2013, 2015-2017
	Petrópolis	1 (100)	0	<i>P. simium</i>	NA	3	2015-2016
			0	<i>P. brasiliانum</i>			
			NR	<i>P. brasiliانum</i>			
Continent al	Angra dos Reis	4 (40)	250	<i>P. simium</i>	1 of 4	3	2015, 2017
			NR	<i>P. simium</i>			
	Teresópolis*	1 (33.3)	40	<i>P. brasiliانum</i>	NA	0	–
	Sumidouro	2 (100)	15	<i>P. simium</i>	NA	0	–

	240	<i>P. simium</i> + <i>P. brasiliense</i>	NA	0	-
--	-----	--	----	---	---

265 NP= number of *Plasmodium* positive howlers. [§]Eight howlers were found dead due to Yellow
266 Fever virus, with *Plasmodium*-negative results (PCR and/or blood slides) in three counties where
267 *Plasmodium*-positive howlers were found. Histological preparations of spleen fragments showed
268 malarial pigment in four (50%) of these PCR-negative animals, suggesting previous infection.
269 *The *P. brasiliense* infection was found in the district of Água Quente, in the continental side of
270 Teresópolis. NA= viscera non available.

271 **4 – Discussion**

272 The present work consists of an unprecedented capture effort and large-scale field survey
273 of plasmodial species in NHPs in RJ, a state recording a three-decade history of autochthonous
274 human cases of benign tertian malaria. For the first time, infection rates by *Plasmodium* were
275 described, spatial distribution of *P. simium* in NHP was matched with local human cases of *P.*
276 *simiun* malaria previously recorded, howler monkeys were disclosed as the only confirmed
277 reservoir of this zoonotic malaria in the state and the presence of the so-called specific SNP was
278 demonstrated in all *P. simium* infected howlers, regardless geographical origin of malaria foci.
279 Although *P. brasiliense/malariae* has already been found in captive NHPs from RJ [13], it is
280 also the first time that this parasite species was recorded in free-living NHPs from Rio de Janeiro
281 and the widespread distribution of this quartan-malaria parasite and its zoonotic potential in the
282 state were illustrated.

283 *P. simium* was detected in howlers captured in five out of 11 counties recently reporting
284 autochthonous human malaria cases in RJ (Fig.2). Despite efforts, we failed in capturing howlers
285 in four malaria foci due to some local hindrances such as the steep terrain, hunt pressure and low
286 *A. g. clamitans* population densities [23]. Nevertheless, the strong geographical overlap of
287 howler monkey and human infections by parasites displaying specific *P. simium* SNPs in 83.3%
288 (five out of six) of malaria foci, strengthens the importance of howlers as main reservoir of

289 benign tertian human malaria over the zoonotic transmission areas in Southeast Brazil
290 [4,5,20,21]. Howlers have also been by far the NHP most commonly found parasitized with both
291 *P. simium* and *P. brasiliense* in Southern and Southeastern Brazil [5]. Beside their
292 susceptibility to *Plasmodium* infection [5], the acrodendrophilic behavior, the larger body
293 surface, and the slower displacement (compared to the smaller monkeys) [35] may make them
294 more exposed to the bites of the mosquito vectors. Importantly, the finding of malarial pigment
295 in spleen fragments of 50% of a sub-sample consisting of howlers from RJ and ES, some of
296 which *Plasmodium*-negative by PCR at the time of death, suggest that simian malaria is very
297 frequent in this species. Indeed, in some areas with the highest numbers of human cases (e.g.
298 Macaé), the percentage of howlers exposed to *Plasmodium* sp reached 66.6% when considering
299 those with current and past malaria infections. This finding may also suggests that spontaneous
300 healing from malaria infections may occur in howlers in nature, as described in *P. simium*
301 experimental infections in some neotropical NHPs [36] and in a human natural infection [7].

302 The frequency of *P. simium* infection in free-living howler monkeys in RJ (16.6%) was
303 higher than that found in the bordering state of SP (5.8%) but lower than that found in the entire
304 southern and southeastern Brazilian regions (26.3-35%) [5,20,37]. *A. g. clamitans* was also the
305 only free-living NHP from RJ in which blood forms by microscopy and plasmoidal DNA were
306 detected. Recently, DNA but not blood forms of *P. simium* was detected in captive *Cebus* and
307 *Sapajus* from the Southeast, whose role as reservoir for the zoonotic malaria in the region is still
308 unclear [28]. *P. brasiliense* DNA was detected in captive capuchin, titi, howler and owl
309 monkeys, besides tamarins and marmosets [13,28], most of which was exotic species to the
310 Brazilian Southeast. All these NHPs were confined in a breeding institution (Center of
311 Primatology of Rio de Janeiro - CPRJ) located in a cleared area of the enzootic simian malaria

312 forest in RJ. Therefore, it was suspected that the local ecological conditions favored the
313 accidental infection of these captive NHPs by parasites carried from infected free-living howlers.
314 One free living specimen was also found infected by *P. simium* near CPRJ [28]. There still no
315 evidence if the parasite DNA found in the blood of these captive animals implies that they really
316 undergo *Plasmodium* infections or only bear a transient parasitemia. However, it is important to
317 continuously monitor the potential role as zoonotic plasmodia reservoir of other local or
318 introduced NHPs, besides howlers.

319 Although *P. brasiliannum* has been found in several NHP genera [5,38,39] around other
320 Brazilian regions, previous studies conducted in Brazilian Atlantic forest and Cerrado biomes did
321 not find any capuchin (56 examined) nor marmosets (out of 44) infected with *Plasmodium* [20].
322 In the same way, more than 270 marmosets and lion-tamarins from the Southeast were
323 *Plasmodium* negative [5]. Splenectomized capuchins did not become infected when injected with
324 *P. simium* infected blood, while splenectomized marmoset endured low parasitemia [36]. Thus,
325 the epidemiological role of other NHPs besides howlers in the zoonotic transmission of malaria
326 in Southeast Brazil, including RJ state, is probably despicable.

327 *P. brasiliannum / malariae* was found in similar frequency to *P. simium* (14.3 versus
328 16.7%, respectively) in howlers from RJ, and mixed infections were recorded in 18% of
329 *Plasmodium* infected ones. *P. brasiliannum / malariae* was the only malaria parasite detected in
330 howlers from ES (Table 1). Besides, geographical co-occurrence of these parasites seems to be
331 frequent in RJ, as it was disclosed in three out of five counties wherein howlers were detected
332 with malaria parasites (Fig. 2). Curiously, despite this coincident distribution and similar
333 frequency of *P. brasiliannum / malariae* and *P. simium* in RJ, autochthonous human cases in this
334 and in other Atlantic forest states of Southeast Brazil (SP and ES) have been diagnosed

335 microscopically and/or molecularly as benign tertian malaria due to *P. simium* for decades
336 [1,4,5,7,21,40,41]. In reality, *P. simium* was only identified by molecular tests and DNAmt
337 sequencing as the causative agent in the 2015-2016 malaria outbreak in RJ, whose patients were
338 essentially non-residents of foci [2]. Nevertheless, six human asymptomatic infection by *P.*
339 *malariae* were detected by PCR in residents of Guapimirim in RJ, in 2011 [19], and a subsample
340 of reactive local individuals for any plasmodial species revealed antibodies against erythrocytic
341 antigens of *P. malariae* in 30.9%. The hypothesis of infection of NHP origin due to *P.*
342 *brasilianum* was raised because there was no index case of introduced or imported human case
343 of *P. malariae* in Guapimirim, and because the cases had close contact with the Atlantic forest
344 [19]. It is well known that *P. brasilianum* is a widespread and common simian malaria parasite
345 in the Amazon [5,14,42] and that it is experimentally infective to humans, either by inoculation
346 of parasitized monkey blood or by the bite of infected mosquitoes [9]. High prevalence of
347 antibodies against sporozoites antigens and erythrocytic forms of *P. brasilianum/malariae* in
348 people living or frequently working in Amazon forests (e.g. indians, miners, settlers) of Brazil,
349 French Guiana and Venezuela suggested infection of this simian quartan malaria parasite to
350 humans [42–44]. Infections by *P. brasilianum/malariae* in humans would be, therefore, expected
351 to occur also in RJ and in other southeastern states where *P. simium* has been described. In
352 effect, the natural vector of both parasites is the same (*An. cruzii*) [5]. Notwithstanding, why
353 malaria cases due to *P. brasilianum/malariae* have not been reported yet in this region is a
354 question that remains to clarify and it is recommended to strengthen malaria surveillance either
355 in residents or visitors of the Atlantic forest to evaluate the zoonotic potential of *P.*
356 *brasilianum/malariae* in southern and southeast Brazil [1].

357 Noteworthy, most of the *P. simium* - and *P. brasiliandum/malariae* - infected howlers
358 (73%) were from forest coastal slope of Serra do Mar, where all autochthonous human malaria
359 cases have been acquired [2,19]. At least two main premises may explain this apparently
360 geographical coincidence and distinct distribution of simian and human malarias. From the
361 entomological and climatic points of view, the higher relative humidity in the costal slope may
362 increase *An. cruzii* survival rates, supporting the sporogonic cycle of the *Plasmodia*. Sea
363 moisture also favor density of epiphyte shade bromeliads, the larval habitat of *An. cruzii*, and
364 generates higher rainfall indexes [45], which in turn increases the amount of water accumulated
365 in the vector larval habitats, positively influencing mosquito density. Greater longevity and
366 density directly influence the vector capacity of the mosquito to transmit *Plasmodia* [46–48].
367 Vector competence is governed by genetics of vector population and therefore influence
368 *Plasmodium* transmission dynamics [48,49]. Indeed, Deane (1992) has emphasized that
369 environmental conditions influence to a high degree the presence and densities of neotropical
370 NHP hosts, bromeliads and *An. cruzii*, and, consequently, defining the occurrence or not of
371 simian malaria in nearby sites. Moreover, two genetic lineages of *An. cruzii* with partial
372 reproductive isolation have been recently described in Serra do Mar, one curiously occurring in
373 the coastal and another in the continental slopes [50]. Costal slope of Serra do Mar has much
374 more sites coveted by urban people to settle hidden weekend home in the forest and visited sights
375 by ecotourists and hikers than the continental one. As explained, the autochthonous human cases
376 in the Atlantic forest in RJ has been reported mainly in non-residents [1,2,19]. Together, the
377 environmental, entomological, ecological and epidemiological characteristics seem to indicate
378 costal slope of Serra do Mar as the place to acquire malaria of simian origin. Protective measures

379 such as the use of repellents and long clothes should be encouraged especially for those who live
380 or practice ecotourism in this slope.

381 During the present study, an yellow fever virus (YFV) outbreak erupted in the southeast
382 Brazil, a region without records of this virus circulation for almost 80 years [26,51]. Hundreds of
383 epizootics of NHPs were reported, causing a significant impact on the population size of howler
384 monkeys , an extremely susceptible host to YFV [24,52–57]. Considering the role of the howlers
385 as reservoir of *Plasmodium* infective to humans, it is plausible to suppose that dynamics of
386 zoonotic transmission of malaria will undergo changes in short or medium term in RJ and
387 bordering states affected by the YFV epizooties. In this context, we postulate that the rapid
388 decrease of *Alouatta* populations would also decrease the source of plasmodial infection to *An.*
389 *cruzii*, which would reduce the circulation of *Plasmodia* in the Atlantic forest. Despite the short
390 time since the 2016-2018 YFV epizootics, records from the malaria surveillance seem to confirm
391 this scenario. In fact, there was an abrupt drop in human malaria case records between 2018-
392 2019 [58], contrasting with the numbers reported in 2015-2016 [2]. If the reduction of
393 autochthonous malaria cases in Atlantic Forest is depending of plasmodial sources of NHP origin
394 the role of NHP for the occurrence of malaria in Extra-Amazonia would be reinforced as never
395 before.

396 Previous sampling efforts of examining free-living NHPs in the Southeastern Atlantic
397 Forest over the last 30 years showed limited geographical coverage, with samplings essentially
398 limited to wildlife rescues or carried out in areas close to cities, or were based on few
399 individuals [4,20,21]. As a result, our data contribute to understanding the simian malaria
400 parasite distribution and frequency as well as the zoonotic character of autochthonous human
401 malaria in Rio de Janeiro, which in turn provides subsidies for shaping surveillance and control.

402 The evidence of the simian origin of parasites infecting humans and the widespread occurrence
403 of anophelines vectors in the southeast increased the concern of the reemergence of endemic or
404 epidemic autochthonous transmission in the region independent of the enzootic cycle [2].
405 However, it is not clear if parasitaemic humans infected by the bite of *An. cruzii* carrying
406 sporozoites of *P. simium* acquired from howlers could be source of infection to *An. cruzii* or any
407 other malaria vector occurring in the region. It is knowning that *P. simium* infected humans
408 usually display scanty to null parasitemia, can cure spontaneous in few days without treatment
409 and any relapse or molecular detection of parasites during follow-ups of treatment have been
410 described [2,5]. Besides, all autochthonous human case of benign tertian malaria detected for
411 decades in southeast have reported recent contact with the *P. simium* enzootic forest, and no
412 secondary transmission directly derived from a human infected in the zoonotic cycle has never
413 been detected outside the sylvatic foci. These epidemiological and parasitological profiles appear
414 to indicate that humans are not a source of *P. simium* infection to mosquitoes. In this light,
415 determining vector competence of *An. cruzii* and other traditional human malaria vector
416 occurring in the southeast (e.g. *An. darlingi*, *An. aquasalis* and *An. albitalis*) for transmitting *P.*
417 *simium* and *P. brasiliense* between humans and from NHPs and humans and vice-versa is
418 imperative.

419
420 Authors' contributions: RLO Conceptualization; CFAB, CTDR, MFFC, RLO Funding acquisition
421 APMR, APC, CBJ, DAMA, DST, ES, FVSA, LRG, MPM, MQG, PPAM, RLO, WPV Investigation;
422 APC, CBJ, CFAB, DAMA, FVSA, MQG, MFFC, PB, RLO Data curation; APC, FVSA, PB, RLO
423 Formal analyses; APMR, ES, CFAB, DAMA, DST, FVSA, MFFC, RLO Methodology; FVSA, RLO
424 Project administration; APMR, CTDR, CFAB, MPM, MFFC, RLO Resources FVSA, PPAM, MPM, RLO

425 Visualization; FVSA, MFFC, RLO Writing original draft; APC, CFAB, CTDR, DAMA, DST - Review
426 and Editing the manuscript; All authors read and approved the manuscript.

427

428 Acknowledgments: To Carlos Alberto C. da Silva, Alexandre B. de Souza, Vicente Klonowski,
429 Romenique L. Araújo, Luiz R. Nogueira, Fernando Barreto, Ana L. Quijada, Luiz P. P. Silva,
430 Gelson Medeiros, Adilson B. Ramos, Marcilene B. Ramos, Carlos A. A. Júnior, Paulo G.
431 Barbosa, Sérgio F. Fragoso, Adilson R. Silva, Cecília Cronemberger, Marcelo Rheingantz,
432 Leonardo Nascimento, João Marins for the support in the field. To Orzinete Rodrigues Soares for
433 non□human primates' blood slides' review. To Grupo Técnico de Vigilância de Arboviroses
434 (GT□Arbo—Secretaria de Vigilância em Saúde—Brazilian Ministry of Health) for field and
435 material supports.

436

437 Funding: RLO: E□26/010.001537/2014 and E-26/203.064/2016 - Fundação Carlos Chagas Filho
438 de Amparo à Pesquisa do Estado do Rio de Janeiro; 309577/2013-6 and 312446/2018-7 -
439 Conselho Nacional de Desenvolvimento Científico e Tecnológico. MFFC: PAEFIOC-008-FIO-
440 15-64 - Instituto Oswaldo Cruz. CTDR: IOC-0117-FIO-17 - Ministério da Saúde, Secretaria de
441 Vigilância em Saúde. CFAB: 407873/2018-0 Conselho Nacional de Desenvolvimento Científico
442 e Tecnológico; CBB-APQ-02620-15 - Fundação de Amparo à Pesquisa de Minas Gerais.

443

444 **5 – References**

445 1. Pina-Costa A de, Brasil P, Santi SM Di, Araujo MP de, Suárez-Mutis MC, Santelli ACF e
446 S, et al. Malaria in Brazil: what happens outside the Amazonian endemic region. Mem
447 Inst Oswaldo Cruz. 2014;109: 618–633. doi:10.1590/0074-0276140228

448 2. Brasil P, Zalis MG, de Pina-Costa A, Siqueira AM, Júnior CB, Silva S, et al. Outbreak of

449 human malaria caused by *Plasmodium simium* in the Atlantic Forest in Rio de Janeiro: a
450 molecular epidemiological investigation. Lancet Glob Heal. 2017;5. doi:10.1016/S2214-
451 109X(17)30333-9

452 3. Curado I, dos Santos Malafronte R, de Castro Duarte AMR, Kirchgatter K, Branquinho
453 MS, Bianchi Galati EA. Malaria epidemiology in low-endemicity areas of the Atlantic
454 Forest in the Vale do Ribeira, São Paulo, Brazil. Acta Trop. 2006;100: 54–62.
455 doi:10.1016/j.actatropica.2006.09.010

456 4. Cerutti C, Boulos M, Coutinho AF, Hatab M do CL, Falqueto A, Rezende HR, et al.
457 Epidemiologic aspects of the malaria transmission cycle in an area of very low incidence
458 in Brazil. Malar J. 2007;6: 33. doi:10.1186/1475-2875-6-33

459 5. Deane LM. Simian malaria in Brazil. Mem Inst Oswaldo Cruz. 1992;87: 1–20.
460 doi:10.1590/S0074-02761992000700001

461 6. Fonseca F. Plasmódio de primata do Brasil. Mem Inst Oswaldo Cruz. 1951. pp. 543–553.
462 doi:10.1590/S0074-02761951000100008

463 7. Deane LM, Deane MP, Ferreira Neto J. Studies on transmission of simian malaria and on
464 a natural infection of man with *Plasmodium simium* in Brazil. Bull World Health Organ.
465 1966;35: 805–8.

466 8. Deane LM, Ferreira Neto JA, Lima MM, Deane LM, Ferreira Neto JA, Lima MM. The
467 vertical dispersión of *Anopheles (Kerteszia) cruzi* in a forest in southern Brazil suggests
468 that human cases of malaria of simian origin might be expected. Mem Inst Oswaldo Cruz.
469 1984;79: 461–463. doi:10.1590/S0074-02761984000400011

470 9. Coatney GR. The Simian Malaria: Zoonoses, Anthroponoses, or Both? Am J Trop Med
471 Hyg. 1971;20: 795–803.

472 10. de Alvarenga DAM, Culleton R, de Pina-Costa A, Rodrigues DF, Bianco C, Silva S, et al.
473 An assay for the identification of *Plasmodium simium* infection for diagnosis of zoonotic
474 malaria in the Brazilian Atlantic Forest. *Sci Rep.* 2018;8: 86. doi:10.1038/s41598-017-
475 18216-x

476 11. Guimarães LO, Bajay MM, Wunderlich G, Bueno MG, Röhe F, Catão-Dias JL, et al. The
477 genetic diversity of *Plasmodium malariae* and *Plasmodium brasiliense* from human,
478 simian and mosquito hosts in Brazil. *Acta Trop.* 2012;124: 27–32.
479 doi:10.1016/j.actatropica.2012.05.016

480 12. Rylands AB, Mittermeier RA, Silva JS. Neotropical primates: taxonomy and recently
481 described species and subspecies. *Int Zoo Yearb.* 2012;46: 11–24. doi:10.1111/j.1748-
482 1090.2011.00152.x

483 13. Alvarenga DAM, Pina-Costa A, Bianco C, Moreira SB, Brasil P, Pissinatti A, et al. New
484 potential *Plasmodium brasiliense* hosts: tamarin and marmoset monkeys (family
485 Callitrichidae). *Malar J.* 2017;16: 71. doi:10.1186/s12936-017-1724-0

486 14. Lourenço-de-Oliveira R, Deane LM. Simian malaria at two sites in the Brazilian Amazon.
487 I--The infection rates of *Plasmodium brasiliense* in non-human primates. *Mem Inst
488 Oswaldo Cruz.* 1995. pp. 331–339. doi:10.1590/S0074-02761995000300004

489 15. Eyles DE. The species of simian malaria: Taxonomy, morphology, life cycle, and
490 geographical distribution of the monkey species. *J Parasitol.* 1963;49: 866–87.
491 doi:10.2307/3275712

492 16. Lourenço-de-Oliveira R, Ziccardi M. Natural infection of Golden lion tamarin,
493 *Leontopithecus rosalia*, with *Trypanosoma cruzi*, in the state of Rio de Janeiro, Brazil.
494 *Mem Inst Oswaldo Cruz.* 1990;85: 15.

495 17. Paglia AP, Rylands AB, Herrmann G, Aguiar LMS, Chiarello AG, Leite YLR, et al. Lista
496 anotada dos mamíferos do Brasil, segunda edição. 2nd ed. Arlington: Conservation
497 International; 2012.

498 18. Guimarães AE, Arlé M, Machado RNM. Mosquitos no Parque Nacional da Serra dos
499 Órgãos, Estado do Rio de Janeiro, Brasil. II. Distribuição vertical. Mem Inst Oswaldo
500 Cruz. 1985;80: 171–85.

501 19. Miguel RB, Albuquerque HG, Sanchez MCA, Coura JR, Santos S da S, Silva S da, et al.
502 Asymptomatic *Plasmodium* infection in a residual malaria transmission area in the
503 Atlantic Forest region: Implications for elimination. Rev Soc Bras Med Trop. 2019;52: 1–
504 9. doi:10.1590/0037-8682-0537-2018

505 20. de Castro Duarte AMR, Malafronte R dos S, Cerutti C, Curado I, de Paiva BR, Maeda
506 AY, et al. Natural *Plasmodium* infections in Brazilian wild monkeys: Reservoirs for
507 human infections? Acta Trop. 2008;107: 179–185. doi:10.1016/j.actatropica.2008.05.020

508 21. Buery JC, Rodrigues PT, Natal L, Salla LC, Loss AC, Vicente CR, et al. Mitochondrial
509 genome of *Plasmodium vivax/simium* detected in an endemic region for malaria in the
510 Atlantic Forest of Espírito Santo state, Brazil: do mosquitoes, simians and humans harbour
511 the same parasite? Malar J. 2017;16: 437. doi:10.1186/s12936-017-2080-9

512 22. Ribeiro MC, Metzger JP, Martensen AC, Ponzoni FJ, Hirota MM. The Brazilian Atlantic
513 Forest: How much is left, and how is the remaining forest distributed? Implications for
514 conservation. Biol Conserv. 2009;142: 1141–1153. doi:10.1016/J.BIOCON.2009.02.021

515 23. Abreu FVS, dos Santos E, Gomes MQ, Vargas WP, Oliveira Passos PH, Nunes e Silva C,
516 et al. Capture of *Alouatta guariba clamitans* for the surveillance of sylvatic yellow fever
517 and zoonotic malaria: Which is the best strategy in the tropical Atlantic Forest? Am J

518 Primatol. 2019;81: e23000. doi:10.1002/ajp.23000

519 24. Brasil. Guia de vigilância de epizootias em primatas não humanos e entomologia aplicada
520 à vigilância da febre amarela. 2nd ed. Brasília: Ministério da Saúde; 2017.

521 25. Watsa M, Erkenswick G, Halloran D, Kane EK, Poirier A, Klonoski K, et al. A Field
522 Protocol for the Capture and Release of Callitrichids. Neotrop Primates. 2015;22: 59–68.

523 26. Possas C, Lourenço-de-oliveira R, Tauil PL, Pinheiro FDP, Pissinatti A, Venâncio R, et al.
524 Yellow fever outbreak in Brazil□: the puzzle of rapid viral spread and challenges for
525 immunisation. 2018;113: 1–12. doi:10.1590/0074-02760180278

526 27. de Abreu FVS, Gomes LR, Mello ARL, Bianco-Júnior C, de Pina-Costa A, dos Santos E,
527 et al. Frozen blood clots can be used for the diagnosis of distinct *Plasmodium* species in
528 man and non-human primates from the Brazilian Atlantic Forest. Malar J. 2018;17: 338.
529 doi:10.1186/s12936-018-2485-0

530 28. de Alvarenga D, de Pina-Costa A, de Sousa T, Pissinatti A, Zalis MG, Suaréz-Mutis MC,
531 et al. Simian malaria in the Brazilian Atlantic forest: first description of natural infection
532 of capuchin monkeys (Cebinae subfamily) by *Plasmodium simium*. Malar J. 2015;14: 81.
533 doi:10.1186/s12936-015-0606-6

534 29. Gama BE, Silva-Pires F do ES, Lopes MNR, Cardoso MAB, Britto C, Torres KL, et al.
535 Real-time PCR versus conventional PCR for malaria parasite detection in low-grade
536 parasitemia. Exp Parasitol. 2007;116: 427–432. doi:10.1016/j.exppara.2007.02.011

537 30. Torres KL, Figueiredo D V., Zalis MG, Daniel-Ribeiro CT, Alecrim W, Ferreira-da-Cruz
538 M de F. Standardization of a very specific and sensitive single PCR for detection of
539 *Plasmodium vivax* in low parasitized individuals and its usefulness for screening blood
540 donors. Parasitol Res. 2006;98: 519–524. doi:10.1007/s00436-005-0085-8

541 31. Snounou G, Viriyakosol S, Xin Ping Zhu, Jarra W, Pinheiro L, do Rosario VE, et al. High
542 sensitivity of detection of human malaria parasites by the use of nested polymerase chain
543 reaction. *Mol Biochem Parasitol.* 1993;61: 315–320. doi:10.1016/0166-6851(93)90077-B

544 32. Carson FL, Martin JH, Lynn JA. Formalin Fixation for Electron Microscopy: A Re-
545 evaluation. *Am J Clin Pathol.* 1973;59: 365–373. doi:10.1093/ajcp/59.3.365

546 33. Mayer P. Die Caprellidae der Siboga-Expedition. Leiden, Buchhandlung und druckerei
547 vormals E.J. Brill; 1903.

548 34. Lennette DA. An improved mounting medium for immunofluorescence microscopy. *Am J*
549 *Clin Pathol.* 1978;69: 647–648. doi:10.1093/ajcp/69.6.647

550 35. Kowalewski MM, Garber PA, Cortés-Ortiz L, Urbani B, Youlatos D. Howler monkeys□:
551 behavior, ecology, and conservation. New York, NY: Springer; 2014. doi:10.1007/978-1-
552 4939-1960-4

553 36. Deane LM. Studies on simian malaria in Brazil. *Bull World Health Organ.* 1964;31: 752–
554 3.

555 37. Costa DC, Cunha VP da, Assis GMP de, Souza Junior JC de, Hirano ZMB, Arruda ME
556 de, et al. *Plasmodium simium/Plasmodium vivax* infections in southern brown howler
557 monkeys from the Atlantic Forest. *Mem Inst Oswaldo Cruz.* 2014;109: 641–653.
558 doi:10.1590/0074-0276130578

559 38. Lourenço-de-Oliveira R, Luz SLB. Simian malaria at two sites in the Brazilian Amazon -
560 II. Vertical distribution and frequency of anopheline species inside and outside the forest.
561 *Mem Inst Oswaldo Cruz.* 1996;91: 687–694. doi:10.1590/S0074-02761996000600005

562 39. Figueiredo MAP, Di Santi SM, Manrique WG, André MR, Machado RZ. Identification of
563 *Plasmodium* spp. in Neotropical primates of Maranhense Amazon in Northeast Brazil.

564 PLoS One. 2017;12: 1–14. doi:10.1371/journal.pone.0182905

565 40. Gomes ADC, De Paula MB, Duarte AMRDC, Lima MA, Malafronte RDS, Mucci LF, et
566 al. Epidemiological and ecological aspects related to malaria in the area of influence of the
567 lake at Porto Primavera dam, in western São Paulo State, Brazil. Rev Inst Med Trop Sao
568 Paulo. 2008;50: 287–295. doi:10.1590/S0036-46652008000500008

569 41. Brasil P, Costa A, Longo C, Silva S, Ferreira-da-Cruz M, Daniel-Ribeiro CT. Malaria, a
570 difficult diagnosis in a febrile patient with sub-microscopic parasitaemia and polyclonal
571 lymphocyte activation outside the endemic region, in Brazil. Malar J. 2013;12: 402.

572 42. de Arruda M, Nardin EH, Nussenzweig RS, Cochrane AH. Sero-epidemiological studies
573 of malaria in Indian tribes and monkeys of the Amazon Basin of Brazil. Am J Trop Med
574 Hyg. 1989;41: 379–85.

575 43. Volney B, Pouliquen J-F, De Thoisy B, Fandeur T. A sero-epidemiological study of
576 malaria in human and monkey populations in French Guiana. Acta Trop. 2002;82: 11–23.
577 doi:10.1016/S0001-706X(02)00036-0

578 44. Lalremruata A, Magris M, Vivas-Martínez S, Koehler M, Esen M, Kempaiah P, et al.
579 Natural infection of *Plasmodium brasiliense* in humans: Man and monkey share quartan
580 malaria parasites in the Venezuelan Amazon. EBioMedicine. 2015;2: 1186–1192.
581 doi:10.1016/j.ebiom.2015.07.033

582 45. Brito TT, Oliveira-Júnior JF, Lyra GB, Gois G, Zeri M. Multivariate analysis applied to
583 monthly rainfall over Rio de Janeiro state, Brazil. Meteorol Atmos Phys. 2017;129: 469–
584 478. doi:10.1007/s00703-016-0481-x

585 46. Machado RL, Ceddia MB, Carvalho DF de, Cruz ES da, Francelino MR. Spatial
586 variability of maximum annual daily rain under different return periods at the Rio de

587 Janeiro state, Brazil. *Bragantia*. 2010;69: 77–84. doi:10.1590/S0006-87052010000500009

588 47. Coutinho JO, Rachou R. Data on the biology and the malaria vector capacity of
589 anophelines of sub-group *Kerteszia* under natural conditions. *Rev Bras Malariol Doencas*
590 *Trop*. 1966;18: 557–80.

591 48. Cohuet A, Harris C, Robert V, Fontenille D. Evolutionary forces on *Anopheles*: what
592 makes a malaria vector? *Trends Parasitol*. 2010;26: 130–136.
593 doi:10.1016/J.PT.2009.12.001

594 49. Beerntsen BT, James AA, Christensen BM. Genetics of mosquito vector competence.
595 *Microbiol Mol Biol Rev*. 2000;64: 115–37. doi:10.1128/mmbr.64.1.115-137.2000

596 50. de Rezende Dias G, Fujii TTS, Fogel BF, Lourenço-de-Oliveira R, Silva-do-Nascimento
597 TF, Pitaluga AN, et al. Cryptic diversity in an Atlantic Forest malaria vector from the
598 mountains of South-East Brazil. *Parasit Vectors*. 2018;11: 36. doi:10.1186/s13071-018-
599 2615-0

600 51. Bonaldo MC, Gómez MM, dos Santos AA, Abreu FVS de, Ferreira-de-Brito A, Miranda
601 RM de, et al. Genome analysis of yellow fever virus of the ongoing outbreak in Brazil
602 reveals polymorphisms. *Mem Inst Oswaldo Cruz*. 2017;112: 447–451. doi:10.1590/0074-
603 02760170134

604 52. Brasil. Monitoramento do Período Sazonal da Febre Amarela [Internet]. 2018 pp. 1–15.
605 Available: <http://portalarquivos2.saude.gov.br/images/pdf/2018/fevereiro/21/Informe-n14-FA-20fev18-c.pdf>

606 53. Moreno ES, Agostini I, Holzmann I, Di Bitetti MS, Oklander LI, Kowalewski MM, et al.
607 Yellow fever impact on brown howler monkeys (*Alouatta guariba clamitans*) in
608 Argentina: A metamodeling approach based on population viability analysis and

609

610 epidemiological dynamics. *Mem Inst Oswaldo Cruz*. 2015;110: 865–876.

611 doi:10.1590/0074-02760150075

612 54. Almeida M., Dos Santos E, Da Cruz Cardoso J, Da Fonseca DF, Noll CA, Silveira VR, et
613 al. Yellow fever outbreak affecting *Alouatta* populations in southern Brazil (Rio Grande
614 do Sul State), 2008-2009. *Am J Primatol*. 2012;74: 68–76. doi:10.1002/ajp.21010

615 55. Araújo FAA, Ramos DG, Santos AL, Passos PH de O, Elkhoury ANSM, Costa ZGA, et
616 al. Epizootias em primatas não humanos durante reemergência do vírus da febre amarela
617 no Brasil, 2007 a 2009. *Epidemiol e Serviços Saúde*. 2011;20: 527–536.
618 doi:10.5123/S1679-49742011000400012

619 56. Bicca-marques JC, Calegaro-marques C, Rylands AB, Karen B, Mittermeier RA, Almeida
620 MAB De, et al. Yellow fever threatens Atlantic Forest primates Júlio. *Sci Adv*.
621 2017;1600946: 18–20.

622 57. Duchiade A. Brazilian forests fall silent as yellow fever decimates threatened monkeys.
623 In: *Scientific American* [Internet]. 12 May 2018 [cited 12 May 2019]. Available:
624 <https://www.scientificamerican.com/article/brazilian-forests-fall-silent-as-yellow-fever-decimates-threatened-monkeys/>

626 58. Datasus Ministério da Saúde. TabNet Win32 3.0: MALÁRIA - Casos confirmados
627 Notificados no Sistema de Informação de Agravos de Notificação - Rio de Janeiro
628 [Internet]. [cited 12 May 2019]. Available:
629 <http://tabnet.datasus.gov.br/cgi/tabcgi.exe?sinannet/cnv/malarj.def>

630

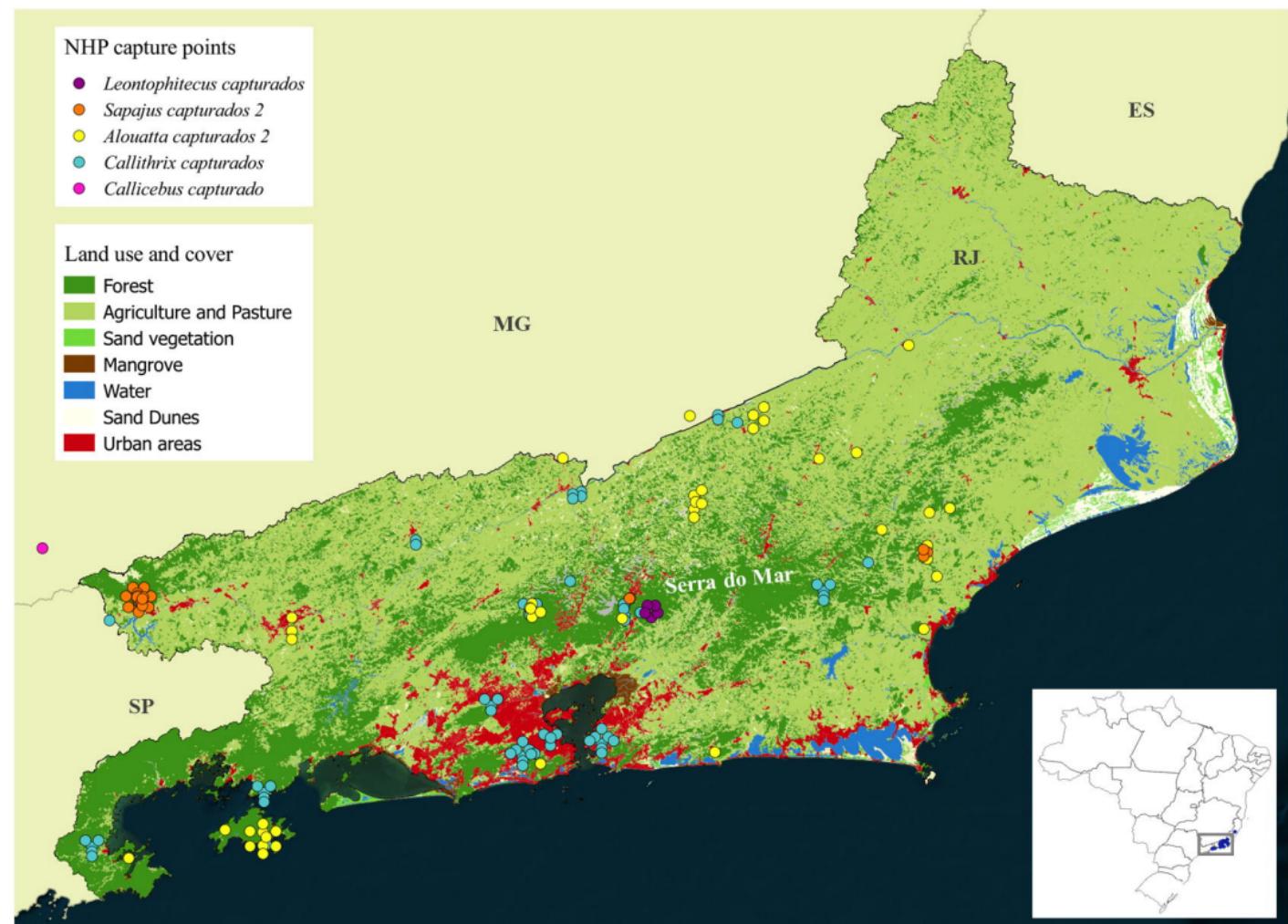
631

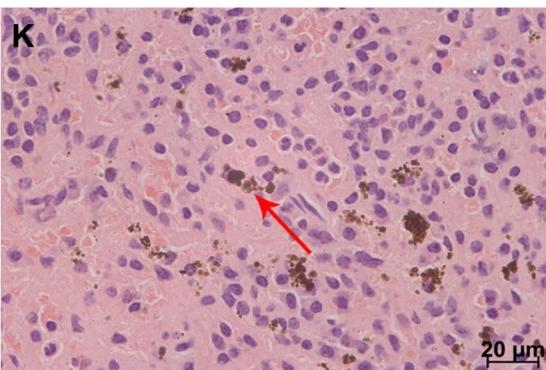
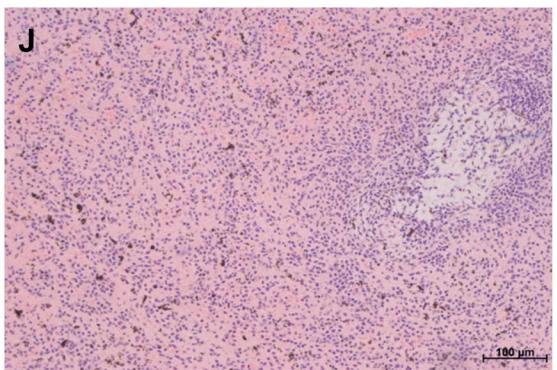
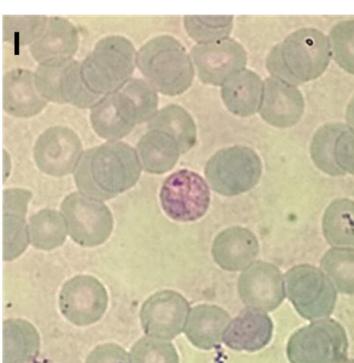
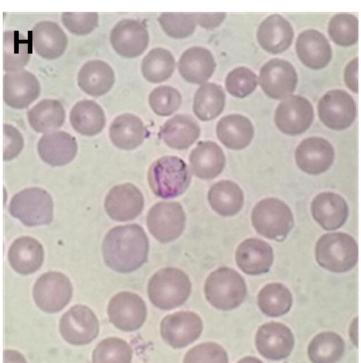
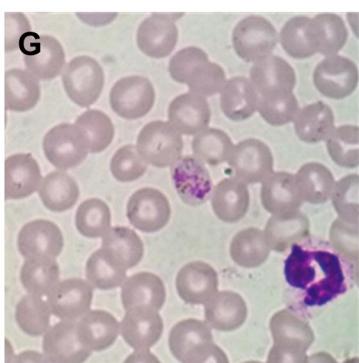
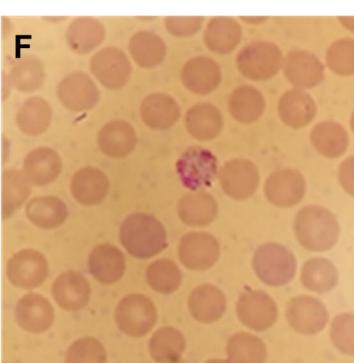
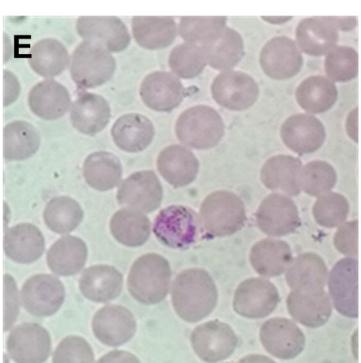
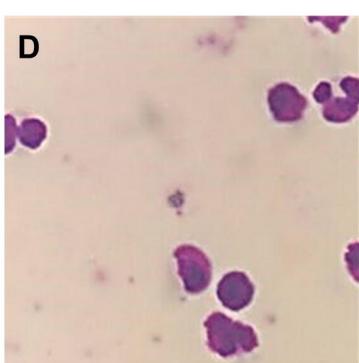
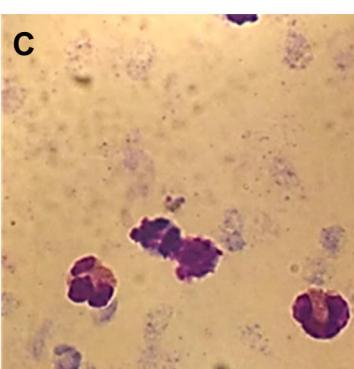
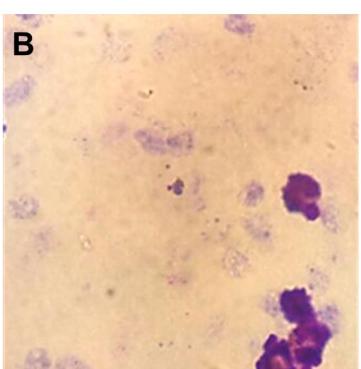
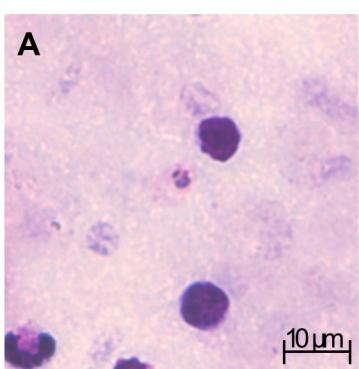
632

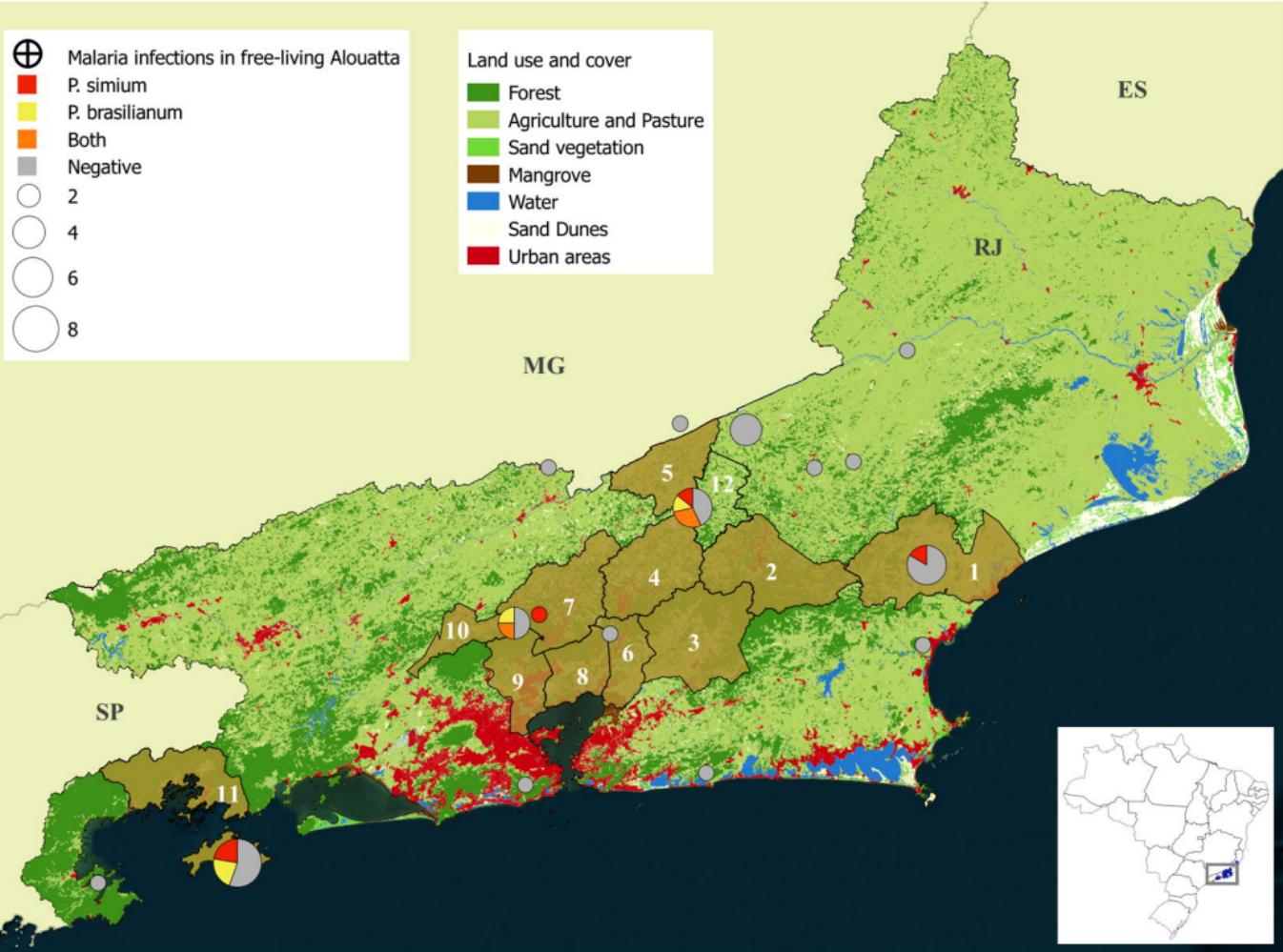
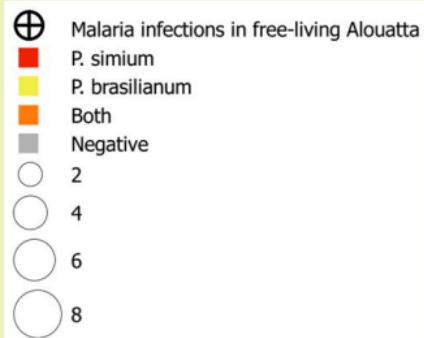
633

634

635


636 Supplementary table 1: Number of examined NHP, by species, habitat and capture method.












NHP capture points



- *Leontopithecus capturados*
- *Sapajus capturados* 2
- *Alouatta capturados* 2
- *Callithrix capturados*
- *Callicebus capturado*

Land use and cover

- Forest
- Agriculture and Pasture
- Sand vegetation
- Mangrove
- Water
- Sand Dunes
- Urban areas

