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Abstract

Although the three-dimensional structures of G-protein-coupled receptors (GPCRs), the largest
superfamily of drug targets, have enabled structure-based drug design, there are no structures
available for 87% of GPCRs. This is due to the stiff challenge in purifying the inherently flexible
GPCRs. Identifying thermostabilized mutant GPCRs via systematic alanine scanning mutations
has been a successful strategy in stabilizing GPCRs, but it remains a daunting task for each
GPCR. We developed a computational method that combines sequence, structure and dynamics
based molecular properties of GPCRs that recapitulate GPCR stability, with four different
machine learning methods to predict thermostable mutations ahead of experiments. This method
has been trained on thermostability data for 1231 mutants, the largest publicly available dataset.
A blind prediction for thermostable mutations of the Complement factor C5a Receptor retrieved
36% of the thermostable mutants in the top 50 prioritized mutants compared to 3% in the first 50
attempts using systematic alanine scanning.

Statement Of Signifigance

G-protein-coupled receptors (GPCRs), the largest superfamily of membrane proteins play a vital
role in cellular physiology and are targets to blockbuster drugs. Hence it is imperative to solve
the three dimensional structures of GPCRs in various conformational states with different types
of ligands bound. To reduce the experimental burden in identifying thermostable GPCR mutants,
we report a computational framework using machine learning algorithms trained on
thermostability data for 1231 mutants and features calculated from analysis of GPCR sequences,
structure and dynamics to predict thermostable mutations ahead of experiments. This work
represents a significant advancement in the development, validation and testing of a
computational framework that can be extended to other class A GPCRs and helical membrane
proteins.
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Introduction

GPCRs, the largest superfamily of drug targets, reside in membranes, where they
coordinate agonist stimulation with activation of different G-proteins and/or B-arrestin signal
transduction pathways. Apo and ligand-bound GPCRs exhibit a dynamic equilibrium among
multiple functional conformational states(Thal et al., 2018) broadly classified as active and
inactive states. The active state conformations of class A GPCRs are characterized by the large
movement of the intracellular regions of transmembrane (TM) helices TM6, TM5 and TM7 as
illustrated in Fig. 1A using the crystal structures of adenosine receptor A;aR. The relative
population of these conformation states are modulated by binding of ligands and G-proteins or
other intracellular transducers(Bhattacharya and Vaidehi, 2010; Kim et al., 2013; Niesen et al.,
2011). Therefore, to enable structure-based ligand design for GPCRs, it is imperative to solve the
three-dimensional structures of GPCR conformations with various ligands and/or intracellular
transducer proteins bound. However, the conformational flexibility of GPCRs poses significant
challenges in stabilizing and purifying these proteins for structural studies. The breakthrough in
protein engineering technologies in the past decade has resulted in a bounty of GPCR structures
in inactive and active states that have provided many new functional insights(Tautermann and
Gloriam, 2016).

One such protein engineering technology that yielded multiple GPCR structures is via
thermostabilization, pioneered by Tate and coworkers(Tate and Schertler, 2009). This method
involves performing systematic alanine scanning mutations to identify thermostabilizing mutant
positions in the GPCR. These positions can be subsequently combined to yield a thermostable
mutant that exhibits conformational homogeneity, enabling purification of a selected GPCR
conformational state. Although this strategy has been successful for purifying multiple GPCRs in
various conformational states(Lebon et al., 2011; Magnani et al., 2008; Serrano-Vega et al.,
2008; Shibata et al., 2009), deriving an optimal combination of thermostable mutations quickly
escalates cost and scale of experiments/research and development. Therefore, this procedure is
only accessible to a handful of laboratories worldwide and requires smarter methods to
democratize this process. Computational methods that can reliably predict the thermostabilizing

mutations of a GPCR ahead of experiments greatly reduce the burden by prioritizing only
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promising alanine mutations. Our prior studies on properties of thermostable mutant GPCRs
showed that energy function calculated using all-atom forcefields and a conformational ensemble
rather than a single structural model, recapitulates thermostability and recovers more

thermostabilizing mutations in the predictions(Bhattacharya et al., 2014).

Building on this success, in this work we trained four different machine learning (ML)
models on the largest publicly available thermostability data for 1231 GPCR mutants from four
different class A GPCRs. The ML models were trained using a combination of 26 features
calculated from (a) amino acid sequence covariation analysis of all class A GPCRs, (b) GPCR
structural features extracted using network analysis, and (c) thermodynamic energies calculated
from an ensemble of conformations of the GPCRs that include a membrane potential. We
performed a blind prediction of thermostabilizing mutations for the human Complement C5a
Receptor, C5aR. We recovered 14 out of 39 thermostable mutants within the top 50 prioritized
mutations, while systematic alanine scanning mutation has a probability of only capturing 1
mutant in 50 attempts. 4 out of the 14 thermostable mutants showed strong thermostability. We
present a robust machine learning workflow that is extensible to other class A GPCRs. This
makes the predictions of thermostabilizing mutations for any class A GPCR accessible to the

larger community.
Methods

Experimental Thermostability Measurements: To train the machine learning models, we have
used the thermostability data on 1231 single alanine scanning mutants on four class A GPCRs
(two sets of data for inactive state and active-intermediate state stabilization for A,aR) measured
by Tate and coworkers. We have thermostability data only for 200-250 mutations in each of the
four GPCRs tested. For training the machine learning algorithms, we have collected features
from our computational models that correspond to these residues for which thermostability data
is available in the training dataset. The experimental measurements were performed on
antagonist cyanopindolol bound turkey [B1-adrenergic receptor in the inactive state (Serrano-
Vega et al., 2008), agonist 5'-N-ethylcarboxamidoadenosine (NECA) bound active-intermediate
state of adenosine receptor A;aR (Lebon et al., 2011) and antagonist ZM-241385 bound inactive
state of A,aR (Magnani et al., 2008), agonist NTS1 bound rat neurotensin receptor NTSR1
bound (Shibata et al., 2013) and antagonist ZD7155 bound human angiotensin receptor 1, AT1R
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Briefly, the experimental thermostability was measured by heating the detergent-solubilized
mutant to an elevated temperature (~28-32°C), cooling to 0°C, and the amount of correctly
folded receptor was determined by a radioligand (either an agonist or antagonist or both) binding
assay. In the work presented here, we have defined the thermostability of the wild type receptor
as 100% and any mutants that showed 100% or higher ligand binding compared to the wild type
receptor are defined as thermostable. For the 3;AR, A;aR and AT1R receptor, the mutants were
heated without any ligand present. In the case of NTSR1, two types of experiments were
performed, one where the mutants were heated in the presence of the agonist neurotensin, and
the other experiment heated the receptor in the absence of neurotensin, the data that is used in

our machine learning models only included data from heating without the presence of agonist.

Thermostability measurements for C5aR: The wild-type human C5aR receptor gene was cloned
into mammalian cell expression vector pcDNAS3.1 with the haemagglutinin (HA) signal sequence
followed by a Flag epitope tag at the N terminus and a 10x His-tag at the C terminus. A library
of 283 mutant C5a receptors was constructed with individual residues from Val35 to Leu311 of
C5aR mutated to alanine or leucine (if the original residue is an alanine) by PCR-based site-
directed mutagenesis. Each clone of the mutation was transient transfected in 6ml of human
HEK-293 Expi cells and 6 million cells harvested after 2 days expression were pelleted in
aliquots and frozen for thermostability screening. Six million cells expressing wild type-C5aR or
mutant C5aR were suspended into 650 ul of PBS supplemented with protease inhibitor cocktail.
Thermostability of C5aR mutants was assessed in a high-throughput three-temperature assay
screening and all experiments were run in triplicate. For non-heat-treated samples aliquots of cell
suspension were kept on ice while other aliquots of cell suspension were heated at 43°C
(apparent Tm determined previously) and 46°C for 15 min respectively and the samples were
then cooled on ice for 5 min. The following radioligand binding assay was done in a 96-well
format; the functional expression level of each C5aR mutant was assessed on non-heat-treated
samples and the thermal stability on thermal treated samples in their cellular lipid environment.
In each 200 pl of radioligand binding assay reaction, 20 pl of C5aR cellular suspension was
incubated in binding buffer (75 mM Tris-HCI pH 7.4, 1 mM EDTA, 5 mM MgCl,, 100 mM
NaCl) with 100 nM [*H] Compound 1 (PF-06733901) at room temperature for 1 hour.
Nonspecific binding of [*H] PF-06733901 was determined in the presence of 2.5 pM unlabeled

ligand. Unbound radioligand was then removed from the reaction on PerkinElmer Filtermate and
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radioactivity was counted by liquid scintillation on a PerkinElmer Microbeta. Data were

analyzed using Prism software (GraphPad).

Partitioning the experimental data into training and testing ensembles: To train the machine
learning models, we have used the thermostability measured by Tate and coworkers on every
residue in four different class A GPCRs listed above. Experimentally we classify a mutant as
thermostable if the experimental thermostability value is at or above the wild type (WT)
threshold which is a score of 100. To convert this experimental data into labels for training
machine learning models we used threshold ranking. If a mutation has a measured
thermostability score of 100 (the score for the wild type receptor) or more it is considered
thermostable and given a label “1”. Any score below 100 is considered non-thermostable and

given a label “0”. These labels are used to classify our computationally calculated dataset.

Balancing the training data: The experimental data is heavily imbalanced towards the non-
thermostable mutants. In most cases the number of non-thermostable mutants is 3 times more
than thermostable mutations. The 85% of the thermostability data that we used for training was
balanced using a method called the Synthetic Minority Oversampling Technique (SMOTE)
SMOTE-Tomek sampling. With SMOTE-Tomek method we were able to both under sample the
majority class (non-thermostable mutants) and oversample the minority class (thermostable
mutants) simultaneously. SMOTE oversamples the minority class using its k nearest neighbors
(KNN). Tomek links removes samples from the majority class by removing outliers between the
two classes using distance measurements. SMOTE forms new minority class(thermostable
mutants ) data by interpolating between several minority class data points that lie
together(Batista et al., 2004) . The results of the effect of balancing the data are shown in

sections below.

Generating Features for the Machine Learning Algorithms: The quality of predictions made
using machine learning algorithms requires accurate description of “features” that describe the
property of the outcome (in this case thermostability of GPCR mutants). We have computed
several physical properties of GPCR structures listed in Table S2 that contribute to its stability as

features for training the machine learning algorithms (listed in Table S2).

Energy Related Features: In our previous studies of GPCR thermostability we have shown the

various energy components calculated using all-atom forcefield function CHARMM(Brooks et
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al., 2009) leads to 30% recovery of the thermostable mutants for several class A GPCRs in the
top 50 predicted mutants (Fig. 3A). The CHARMM energy function includes the valence bond
energy, the angle energy and the dihedral angle energy. It also includes non-bond energy terms
such as Coulombic energy and van der Waals energy. In this study, we have also included other
energy terms derived from statistical analysis of protein structures in the protein data bank, such
as energy term favoring preferred Ramachandran backbone dihedral angles, and statistics-based
term favoring salt bridges available in the ROSETTA forcefield(Alford et al., 2015). We also
included a feature that classifies an amino acid as hydrophobic or hydrophilic.

Structures of GPCRs used to calculate the features: We used the crystal structures for all the
GPCRs used to train the machine learning models. For the blind test case C5aR, we generated a
homology model since this work was done prior to the report of crystal structure of
C5aR(Robertson et al., 2018). C5aR showed low sequence homology with existing crystal
structures at the time of this modeling effort. Crystal structures of the inactive state of u, «, o-
opioid receptors, nociception receptor, chemokine receptors CCR5(Tan et al., 2013),
CXCR1(Vaidehi et al., 2006) and CXCR4(Qin et al., 2015) showed 17 to 23% sequence
homology to human C5aR. Therefore we used GPCR-I-TASSER(Zhang et al., 2015) [ method to
build the homology models with multiple templates. Specifically, the human C5aR sequence was
first threaded through GPCR structure library to identify putative structures of fragment
templates. Following which the fragments are assembled into full-length models by replica-
exchange Monte Carlo simulations, which are assisted by a GPCR and membrane specific force
field and spatial restraints collected from mutagenesis experiments. All models were further
refined by fragment-guided dynamics simulation to eliminate inter-TM steric clashes that
improve the model quality. This led to C5aR structural models with high confidence score (C-
score = 2.3), especially for TM1-7 and ECL1-3 regions allowing for further use in

thermostability mutation predictions.

Structural Properties Related to Stability: Apart from energy terms, we. have also calculated
structural properties of GPCRs using GPCR crystal structures where available or homology
models. The interatomic structural properties we used were calculated using the Protein Contact

Atlas available at https://www.mrc-lmb.cam.ac.uk/rajini/index.html. The properties we used are

(i) the betweenness and closeness centrality of each residue calculated from the crystal structures
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or homology models, that reflect how connected each residue is to other residues in the protein
structure, (ii) the solvated area of each residue and, (iii) the property known as degree which

reflects the number of residue contacts made by each residue.

Sequence based Properties Related to Stability: To provide a comprehensive set of features to
train the machine learning models, we included amino acid sequence-based property known as
evolutionary coupling score(Hopf et al., 2014) that quantifies the extent to which each residue is
conserved or undergoes correlated mutation. The higher the evolutionary coupling score stronger
is the role of the residue in preserving the structure or function of the GPCR. To calculate the
evolutionary coupling score for each amino acid in each GPCR structure we used a web based

structure analysis software ( http://evfold.org/evfold-web/newmarkec.do? ). The evolutionary

score is calculated using a multiple sequence alignment which we generated using 300 non-
olfactory class A GPCR sequences and GPCRDB(Isberg et al., 2015) web server.

Properties that discriminate the experimental data on thermostable mutants: We performed
Principal Component Analysis(PCA)(Jolliffe, 2013; Tharwat, 2016) and Linear Discriminant
Analysis(LDA)(Mika et al., 2003; Tharwat et al., 2017) on the 26 features listed in Table S2.
These two methods reduce the multi-dimensional space into fewer dimensions. The vectors
obtained from these analyses best separate the thermostable from the non-thermostable mutant
data. Therefore, we have considered these vectors as additional features in training the machine

learning models.

Methods used to calculate energy related features: For the GPCRs used in the training set shown
in ensembles E1 to E5 in Table S1, there were crystal structures available. However, at the time
we started this work we did not have a crystal structure for the blind test case of C5aR and hence
we have not used the C5aR crystal structure that has been published since(Robertson et al.,
2018). Starting from the respective crystal structure for each GPCR (see Table S1 for a list of
crystal structures and their respective protein databank identities) we used the LiticonDesign
method(Bhattacharya et al., 2014; Bhattacharya and Vaidehi, 2012; Vaidehi et al., 2016) to
generate a small ensemble of conformations for each GPCR. We have described the
LiticonDesign method in detail in our previous work(Balaraman et al., 2010; Bhattacharya et al.,
2014, 2008; Bhattacharya and Vaidehi, 2012). Briefly, the LiticonDesign method for predicting

thermostable GPCR mutants involves two steps: (i) using a starting structural model of the
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GPCR, the method generates a small ensemble of conformations that allows for the perturbations
in the GPCR conformation caused by mutations and, (ii) an all-atom energy function to calculate
the stability of the conformations that takes into account the difference in the structural stability
of the mutants and the wild type to score the positive thermostable mutants. Starting from an
initial receptor structure, or homology model in the case of C5aR, all of the seven
transmembrane (TM) helices are rotated simultaneously about their respective helical axes
between #5° in 10° increment. Thus, 2’=128 conformations are generated for the wild type
receptor. Then we perform mutation of each residue to alanine (alanine in the wild type is
mutated to leucine) in each of the 128 conformations and repack the side chain conformations of
all of the residues using SCWRL4.0(Krivov et al., 2009), followed by steepest descent (SD)
energy minimization using CHARMM27 force field for 1000 steps(Brooks et al., 2009). Each of
the energy components listed in Table S2 was calculated for the wild type and the mutant for
each of the 128 conformations, and averaged over the 128 conformations for the wild type and
the mutant separately. Each energy component of the overall stability score was calculated as
the difference in the average mutant energy of that particular energy component to the average
wild type energy. For example, the van der Waals energy component of the stability was
calculated as Stability score (vdw) = <Eygw, mutant> - <Evaw, wild type > fOr a given single mutant
where the respective energies are averaged over the 128 conformations. To give equal weight to
every amino acid type in our scoring, we calculated the z score from the stability score, for every
amino acid type. We will refer to this z score as the stability score from here afterwards in the
paper. The stability score for each energy component and for mutant was also calculated using
the Rosetta forcefield mpframework_fa_2007 as implemented in the Rosetta software(Alford et
al., 2015). The different energy components listed in Table S2 were all calculated for each

mutant.

Methods used to calculate sequence and structure related features: The evolutionary coupling
score is a measure of the extent of correlated evolutionary sequence changes across non-
olfactory class A GPCRs and it identifies the residues that play a critical role in structural
stability or function of the GPCR. We calculated the evolutionary coupling score using the
EVcoupling web server(Hopf et al., 2014). The web server generated the cumulative
evolutionary coupling scores for each residue in a given GPCR sequence using a multiple

sequence alignment that we had provided for 300 non-olfactory class A GPCRs. We converted
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the evolutionary scores calculated using the webserver to z scores. The multiple sequence
alignment containing a total 300 non-olfactory class A GPCRs was generated using
GPCRDB(Isberg et al., 2015).

Results

Thermostable mutants cluster on the intracellular region of transmembrane helices 5 and 6:
Four GPCRs have been subjected to comprehensive alanine scanning mutagenesis by Tate and
coworkers, and the resulting mutants tested for their thermostability using a radioligand binding
assay(Tate, 2012). The turkey Bi-adrenoceptor (B;AR)(Serrano-Vega et al., 2008), human
adenosine Axa receptor (AaR)(Magnani et al., 2008) and human angiotensin receptor (AT1R)
were stabilized in an inactive state that bind antagonists and with similar affinity to the wild type
receptors. The rat neurotensin receptor (NTSR1)(Shibata et al., 2009) and A;aR(Lebon et al.,
2011) were also thermostabilized in an active-intermediate state (Fig. 1A) that binds agonists
with similar affinity to the wild type receptor. A total of 1231 alanine/leucine mutants were
tested for thermostability out of which 256 mutants are thermostable. The criteria for
thermostability we use here is if the mutant has the same or increased thermostability as the wild
type receptor. The mutants with >130% of the wild type are strong thermostable mutants.
Analysis of the positions of thermostable mutations, show that they are distributed throughout
the TM helices and loop regions with a higher percentage located in TM5, TM6 and intracellular
loop 3 (ICL3) (Fig. 1B and Fig. S1A). The thermostabilizing mutations common to B;AR, both
conformational states of A,aR and NTSR1, are clustered in the intracellular region of TM5, TM6
and ICL3 (Fig. 1C and Fig. S1B). The highly conserved residue in each TM helix is numbered as
the 50" residue according to Ballesteros-Weinstein residue numbering scheme for
GPCRs(Ballesteros and Weinstein, 1995). The clustering of mutations in this mobile domain of
the GPCR highlights that GPCRs have evolved to retain flexibility in their dynamic equilibrium,
and mutation away from natural sequence effectively shunts this conformational flexibility.
Understandably, mutation of this most conserved residue in each TM helix decreases the stability
of the receptor (Fig. S2). This may be related to the mechanism of receptor activation, which
involves significant changes in the orientation of TM5 and TM6 with respect to TM3 (Fig. 1A).

However, mutation of other conserved residues such as Asn or Tyr of the NPxxY motif on TM7
9
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does not always destabilize the receptor (Fig. S2B). GPCRs are in a dynamic equilibrium
between inactive and active states, so thermostabilization of an inactive state may arise through
mutations that prevent the transition to active states or destabilize the active states. Other
mutations may stabilize the receptor through increasing contacts between residues, promoting
formation of inter-helical backbone hydrogen bonds and/or entropic effects(Lee et al., 2015;
Vaidehi et al., 2016). Mutation of aliphatic hydrocarbon amino acids such as Val, lle, Leu, Met
and Cys more often lead to thermostabilization than other types of amino acids (Fig.1D).

A Machine Learning Model for predicting GPCR thermostabilizing mutations: Comparison of
the amino acid positions of thermostabilizing mutations in different receptors shows that there is
no significant conservation between amino acid position and thermostability. Thus, transferring
thermostabilizing mutations between GPCRs works only if the receptor sequences are highly
conserved, for example, between the turkey B;AR and human B;AR(Serrano-Vega and Tate,
2009). Therefore, a robust mutagenesis prediction method will help scientists reduce time and
cost, focusing the number of trials on more promising amino acids mutations. Using the largest
set of experimental thermostability data publicly available, we have employed ensemble ML
models for predicting thermostabilizing mutations ahead of experiments. We developed a
workflow as shown in Fig. 2 to train and optimize ML models. The two major sections of this
workflow consist of: (i) preparing the experimental data for machine learning (ii) calculating
features describing thermostability of GPCRs. Detailed description of these two sections are

given in the Methods section.

I. Preparing experimental data for ML optimization: We divided the five sets of experimental
thermostability data set on four GPCRs (A;aR has two sets of data, one for the antagonist bound
inactive state and other for the agonist bound active-intermediate state (Fig. 1A)) into five
ensembles shown in Table S1. In each of the five ensembles we trained the ML models using
four datasets and held out the fifth dataset as a test for prediction. The experimental
thermostability data on 1231 mutants contains 256 thermostable mutants and 975
non-thermostable mutants and hence is not balanced. Therefore, to balance the training data we
used the Synthetic Minority Oversampling Technique (SMOTE)-Tomek sampling(Batista et al.,
2004) method to both under sample the majority class (non-thermostable mutants) and
oversample the minority class (thermostable mutants) simultaneously. SMOTE oversamples the

minority class using its k nearest neighbors(Guo et al., 2010) (KNN). Tomek removes samples
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from the majority class by measuring intrasample distance and removing outliers. 85% of the
resulting balanced data was used for training the ML models, while 15% data was held out from

training, for ML model validation.

ii. Features derived from sequence, structure and thermodynamics describe the thermostability
of GPCRs: Features are individual, measurable properties that describe the characteristics of the
phenomenon being observed, thermostability of mutants in this case. Identifying informative,
discriminating, and independent GPCR features that best describe its thermostability is a crucial
step for effective ML classification algorithms. As listed in Table S2, we have used features
extracted from class A GPCR amino acid sequence analysis, structural analysis and atomistic

energy calculated from conformation ensembles.

Sequence and Structural features that describe the thermostability: We performed evolutionary
covariation analysis using the “EV couplings” webserver (EVfold.org)(Hopf et al., 2014) with
the multiple amino acid sequence alignment of 300 non-olfactory class A GPCRs as input,
generated using the toolkit from “GPCRdb”(Isberg et al., 2015) . This analysis calculates the co-
variation of any pair of amino acid positions in the class A GPCR sequence alignment. We have
abstracted structural properties using a graphical network model of the GPCR crystal structures
where available or homology models if the crystal structures are not available. We used the

“Protein Contact Atlas” web server (https://www.mrc-Imb.cam.ac.uk/rajini/index.html) and

calculated residue based structural properties such as degree, centrality, betweenness, and
closeness, from a single input of the structure or structural model of the GPCRs. The solvent

accessible surface area (referred to as solvated area) for each residue was calculated using the

POPS(Cavallo et al., 2003) algorithm within “Protein Contact Atlas” (https://www.mrc-

Imb.cam.ac.uk/rajini/index.html ). More details are given in the Methods section. Together, these

structural properties capture the non-covalent interactions between residues in the protein

framework.

Energy features calculated from forcefield function: In our previous studies we used the
LiticonDesign(Bhattacharya et al., 2014; Bhattacharya and Vaidehi, 2012; Vaidehi et al., 2016)
method to generate an ensemble of conformations for each GPCR using the rotational degrees of
freedom of the seven TM helices. The stability score was calculated as the difference between

the average value of the energy component of the mutant (averaged over the ensemble) and the
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average energy component for the wild type. For example, Stability score = <Eyqw, mutant™> - <Evaw,
wild type > for the van der Waals component. The energy components were calculated using atomic
forcefield functions, CHARMMZ27(Brooks et al., 2009) and ROSETTA(AIlford et al., 2015), to
describe the thermostability of GPCRs. Previously, we had shown that using an ensemble of
conformations for the stability score lead to better recovery of known mutants compared to using

a single structural model(Bhattacharya et al., 2014).

Merits of the features in recovering thermostable mutants: We assessed the merit of each of
these features to predict thermostable mutants by using the z-scores of each feature to test how
well they recover the thermostable mutations in the 1231 mutant dataset. The number of
thermostable mutations recovered in the top 50 predicted mutants using each of the sequence,
structural and energy-based features as well as their sum are shown in a radial plot (Fig. 3A). All
the features recover more thermostable mutants in the top 50 predicted mutants compared to the
random predictions, demonstrating the merit of these properties in describing the GPCR
thermostability. The sum of the z-scores of all the 26 features recovers nearly three-fold the
number of thermostable mutants compared to the individual features since the individual features
recover distinct set of thermostable mutants. This suggests that the sum of the properties captures

the GPCR thermostability better than a single property.

Machine Learning Algorithms Tested: Our goal is to use machine learning methods to recover
the maximum number of thermostable mutants in fewer mutant trials. We used supervised
“classification” learning models to identify the relationship between our feature set and the
thermostability class. We labeled our training data of experimental mutation results as either
class “1” (thermostable) or class “0” (non-thermostable) when compared to the wild type. We
have tested the performance of four machine learning algorithms: random forest(Breiman, 2001)
(RF), cost sensitive random forest(Elkan, 2001) (CSRF) , adaptive boosting(Freund and
Schapire, 1999) (aka AdaBoost) (AB) , and gradient boost(Hastie et al., 2009) (GB) on 5
ensembles. To achieve the optimal parameters that will allow the model to generalize to new
data, we performed hyper-parameterization using the 85% of the balanced data for training and
the 15% for validation. We used the Matthews Correlation coefficient (MCC)(Boughorbel et al.,
2017) as a metric to assess the performance of each of the ML models since it is a composite

function of the true positives (TP), true negatives(TN) and false positives(FP) and false negatives
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(FN). The performance of the four ML models was validated on the 15% held out data from the
balanced training data. We further tested the hyper-parametrized ML models on the test protein
that was not used in the training, in each of the five ensembles (Table S1). Fig. S3A and B show
the MCC ratios for the validation data and for the test proteins respectively. The Random Forest
and AdaBoost models perform better than the Cost Sensitive Random Forest and Gradient Boost
models in most cases with a higher MCC value. These two models predict more true positives
and negatives, while having a lower prediction rate of false positive and negatives. Figure 3B
shows the fraction of thermostable mutations retrieved as a function of the prioritized ML-
predicted alanine mutation list as compared to the systematic alanine scanning mutation list. We
observe that 35% to 40% of the thermostable mutants are recovered in the top 50 prioritized
mutant list compared to less than 10% in the systematic alanine scanning mutations. We note that
the systematic alanine scanning mutations list contains only those residues for which we have

reliable experimental thermostability results.

Blind predictions of thermostable mutations for C5aR: Using the four optimized ML models, we
performed blind predictions on the thermostabilizing single point mutants for the inactive state of
wild type C5aR GPCR. We predicted the thermostable mutants using the four ML models not
previously trained or validated on C5aR. Simultaneously, systematic alanine mutagenesis
experiments were performed to identify thermostable mutants for the antagonist-bound inactive

state of C5aR using the procedure described in Methods section.

We generated homology based three-dimensional structural models for C5aR, followed
by the LiticonDesign method(Balaraman et al., 2010; Bhattacharya et al., 2014; Bhattacharya
and Vaidehi, 2012) to generate a small conformation ensemble starting from the homology
model. We calculated the energy features listed in Table S2, for all the alanine scanning
mutations using ROSETTA(AIlford et al., 2015) and CHARMM 27(Brooks et al., 2009)
forcefields. We calculated the evolutionary coupling scores for C5aR using non-olfactory class
A GPCRs multiple sequence alignment, and the structural features using the homology model.
These features were used in the ML models to calculate the probability score for mutating each
residue in C5aR to alanine (or mutate to leucine if the wild type is alanine). We compared our
blind predictions to the experimental thermostabilities that we obtained from our collaborators at

Pfizer. Fig. 4A shows the fraction of thermostable mutants recovered from the ala scanning
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mutation list prioritized by each ML model (green, blue, red, purple) compared to performing the
sequential alanine scanning mutations in C5aR (black). The dots plotted in Fig. 4A are the
positions at which strong thermostable mutants (>130% wild type ligand-binding density) are
recovered. All four ML models recover the thermostable mutants at a higher recovery rate than
the systematic alanine scanning mutation trials, but Random Forest and Adaptive Boost models
recover consistently higher number of thermostable mutations, even for as few as 25 mutation
trials (Fig. 4B). The gradient boost model recovers 14 thermostable mutants containing 4 strong
thermostable mutants in the top 50 prioritized list. Thus, we demonstrate that sequence, structure,
and dynamics derived features are useful tools for efficiently prioritizing thermostabilizing

mutations.

Prediction of thermostable mutants for agonist bound active-intermediate state of the adenosine
AzaR: Magnani et al(Magnani et al., 2008) identified single point thermostable mutants of the
agonist-bound (NECA\) active-intermediate state and the antagonist-bound (ZM-241385) inactive
state of AzaR using alanine scanning mutagenesis across the entire receptor sequence. They
identified mutations that retained the ligand binding at higher temperatures as compared to the
wild type(Magnani et al., 2008). The majority of thermostabilizing mutations are distinct to
either the inactive or active-intermediate state of the receptors, with few common mutation
positions (Fig. S4). Mutants present in transmembrane helices TM1 to TM4 (shown in magenta,
Fig. S4), stabilize the antagonist-bound inactive state, while mutants that specifically stabilize
the agonist-bound active intermediate state are predominantly found in TM5, TM6, and TM7
(shown in yellow, Fig. S4). This shows that the thermostable mutants are not easily

generalizable, even for the same receptor in different conformational states.

We tested the optimized ML models in predicting thermostabilizing mutations for the
agonist bound active-intermediate state of A,aR. We trained the ML models on the experimental
thermostabilizing data for inactive state of AR, inactive state of A,aR, inactive state of AT;R,
and agonist-bound active-intermediate state of NTSR1. Fig. 5A shows the recovery curve for
agonist-bound active-intermediate state of A;aR using the ML models trained on the ensemble of
thermostability data. The ML models recover 17 to 20 thermostable mutants out of which 11 to

14 are strong thermostable mutants in the top 50 prioritized alanine mutants as shown in Fig. 5B.
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This test validates that our ML prioritized list recovers thermostable mutants much faster than

systematic alanine scanning.

Relative importance of features describing thermostability: The most important features for
thermostability prediction using a ML model can be determined via feature selection (model
agnostic) or directly from the ML model by feature ranking. For three of the four ML models
(Random Forest, AdaBoost and Gradient Boost) the feature ranking was generated using the
importance measure, “Mean Decrease in Impurity (MDI)” otherwise known as the “Gini
Importance” (defined in the Methods section). Across the three ML models, Fig. 6A shows that
the “solvated area” feature is the most important and removal of this feature from the list, shows

poor recovery of thermostable mutants (Fig. 6B).
Discussion

In this study, we have used an innovative combination of molecular level features
calculated from GPCR sequence co-variation analysis, structural features calculated from
network analysis and thermodynamic ensemble properties of GPCRs to recapitulate the
thermostability of GPCRs. As shown in Fig. 3, the sum of these features, without any machine
learning methods involved, recover more thermostable mutations than a random prediction or
systematic alanine scanning mutation analysis along the sequence of the GPCR. These 26
features when combined with four different classification based machine learning methods
provide robust models for prediction of thermostabilizing mutations as demonstrated in the blind
test case of C5aR. These ML models are useful in prioritizing alanine scanning mutations for
experimentalists. The trained ML models performed better than random predictions or systematic
alanine scanning mutations along the amino acid sequence of C5aR. These predictions
demonstrate the power of combining physically meaningful features of GPCRs with machine
learning models in reducing the time and reagent costs for experiments. We have demonstrated
that the features calculated from a homology model of the GPCR structures works well for the
blind test case C5aR.

We have used the largest publicly available thermostability dataset (1231 mutants) for
training the ML models. These data are for the inactive state of [B;AR, inactive state of AzaR,
inactive state of AT;R, and active-intermediate state of A,aR and NTSR1. As anticipated in

many biological datasets, our thermostability data was imbalanced by negative data, which
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complicates the development of a classification model generalizable to new data(Rahman and
Davis, 2013). Using SMOTE-TOMEK(Batista et al., 2004) to balance our training data resulted

in a significant improvement in MCC.

Predictions for thermostabilizing mutants of different conformation states: We have
demonstrated a high recovery rate of thermostable mutants for GPCRs in different
conformational states. Machine learning models trained on all data show a recovery of over 30%
of thermostable mutants (and 20% of ‘highly’ thermostable mutants) within the top 50 prioritized
mutations. We note that the structural and energetic features describing the stability of the
agonist bound state were calculated using the structural models for active-intermediate state
rather than inactive states. We infer that it is important to calculate the features using the
structural model of the conformation state for which thermostabilization is desired. Particularly,
we Dbelieve individual features may capture distinct aspects of the phenomenon of

thermostability, but the right ensemble of features is critical for better predictive ability.
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Figure legends

Figure 1: Analysis of the experimental thermostability data on 1231 thermostable GPCR
mutants. A. The overlay of the crystal structures of A,aR in the antagonist bound inactive (grey),
agonist bound active-intermediate (green) and agonist and G-protein bound fully active state
(red). The intracellular view shows large movements in TM5, TM6 and TM7 upon activation. B.
Analysis of the location of the thermostable mutant positions in all the five experimental
thermostability datasets. C. Location of the thermostable mutants in the transmembrane regions
that are common in B;AR, AzaR inactive and active-intermediate states and in NTSR1 active-
intermediate states. D. Classification of the thermostable mutants by the amino acid properties.

Figure 2: Workflow developed for optimizing, validating and testing the machine learning
methods. The figure shows the atomic level features that we have calculated to recapitulate the
GPCR structural thermostability. Properties based on co-variation of amino acid sequence
positions, structural properties such as betweeneness, centrality calculated from network
analysis, and thermodynamic energies calculated from structural ensemble. The right side of the
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figure shows the algorithm we used for balancing the experimental thermostability that was the
target data for training the machine learning models.

Figure 3: A. Merits of the sequence, structure and dynamical based properties used for training
the ML models. The recovery of thermostable mutants greater than 100% of the wild type
stability using each of the features. B. The five figures here show the fraction of thermostable
mutants recovered using the predicted prioritized listof mutants using different machine learning
models on the five ensemble of data used for training and testing the four machine learning
models in this work (for breakdown of the GPCR systems included in training and testing see
Table S1). The aqua colored curve in this figure is the recovery rate using the sum of the features
without any machine learning.

Figure 4: A. Recovery rate of thermostable mutants from the prioritized list of alanine scanning
mutations for the blind test on C5aR, prioritized using different machine learning models. The x
axis shows a prioritized list of mutations predicted by the four machine learning models. The
black curve is the recovery rate when performing systematic alanine scanning mutations along
the sequence. B. This table shows the mutant trial numbers at which the true positive
thermostable mutations were recovered. The strength of thermostability are shown in grey scale.
The sequential trial numbers shown in the last column of this table assumes that the mutation
trial will start from amino acid 1 in the sequence,

Figure 5: A. Recovery rate of thermostable mutants from the prioritized list of alanine scanning
mutations for the agonist bound active-intermediate state of A;aR, prioritized using different
machine learning models. The black curve is the recovery rate when performing systematic
alanine scanning mutations along the sequence. B. This table shows the mutant trial numbers at
which the true positive thermostable mutations were recovered. The strength of thermostability
are shown in grey scale. The sequential trial numbers shown in the last column of this table
assumes that the mutation trial will start from amino acid 1 in the sequence,

Figure 6: A. Ranking the weights of the 26 features derived from sequence, structure and
thermodynamics energy analysis, used to describe the GPCR thermostability. The 26 features
used here are described in Table S2 of the Supporting Information. On the y-axis is the
normalized weighted consensus score derived from feature ranking for each machine learning
model. The normalization was done with respect to the solvated area feature. B. The percentage
recovery rate of thermostable mutants using 25 features after omitting the high weighted
“solvated area” feature.
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