

1 **Uncovering *Staphylococcus aureus* genes with roles in pathogenicity by**
2 **silkworm infection model**

3

4 **Atmika Paudel[#], Hiroshi Hamamoto[#], Suresh Panthee, Yasuhiko Matsumoto[†],**
5 **Kazuhisa Sekimizu^{*}**

6

7 Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan

8

9 **Running Title:** *S. aureus* novel virulence factors

10

11 * Address correspondence to Kazuhisa Sekimizu, sekimizu@main.teikyo-u.ac.jp

12 # These authors contributed equally to this work.

13 [†] Current address: Department of Microbiology, Meiji Pharmaceutical University,
14 Tokyo, Japan

15

16

17 **Word count:**

18 Abstract: 143

19 Importance: 73

20 Main text: 2916

21

22 **Abstract**

23 The regulatory network of virulence factors production by *Staphylococcus aureus*, an
24 opportunistic pathogen, is incompletely understood, and the functions of many
25 uncharacterized genes in its genome remain to be uncovered. We screened 380
26 function unassigned genes disrupted mutants of the community-acquired methicillin-
27 resistant *S. aureus* USA300 for pathogenicity using silkworms and identified 11
28 strains with reduced silkworm killing ability. Nine out of the 11 strains displayed
29 reduced virulence in the mouse model as evidenced by reduced colony-forming units
30 in organs of the infected mice. Three of the identified gene-disrupted mutants had
31 reduced hemolytic activity, one among the three also had reduced proteolytic activity
32 and pigment production. These results suggest that silkworm model could identify
33 the genes required for virulence in the mouse model. The newly identified genes
34 involved in virulence in this study facilitates the further understanding of the
35 pathogenicity of *S. aureus*.

36

37 **Importance**

38 We performed a large scale screening of mutants of *Staphylococcus aureus* with
39 disruption in function unassigned genes using silkworm infection model and
40 identified eleven genes required for full virulence in silkworm. Nine of the eleven
41 genes were involved in virulence in mice and were previously not known to
42 aggravate virulence of *S. aureus*. The results suggest that silkworm model is suitable
43 for quantitative measurement of virulence, which is shared between silkworms and
44 mammals.

45

46 **Introduction**

47 *Staphylococcus aureus* is a commensal and an opportunistic pathogen that is
48 responsible for ailments ranging from skin infection to deep tissue infection,
49 endocarditis, and bacteremia(1). With an increasing rise in the resistance of
50 methicillin-resistant *S. aureus* (MRSA), the appearance of vancomycin-intermediate
51 *S. aureus* (VISA)(2, 3), and vancomycin-resistant *S. aureus* (VRSA)(4-7), *S. aureus*
52 has become one of the leading causes of morbidity and mortality and has been
53 categorized as a threat among antimicrobial-resistant strains by the World Health
54 Organization(8) and the Centers for Disease Control and Prevention(9). The ability of
55 *S. aureus* to rapidly infect host is due to the expression and release of many
56 virulence factors such as cytolsins, hemolysins, leukocidins, coagulases, adhesins,
57 proteases, nucleases, enterotoxins, lipases, exfoliative toxins, and immune-
58 modulatory factors, and cell surface-associated proteins including Protein A and
59 fibrinogen-, fibronectin- and collagen-binding proteins(10-15). Although some of the
60 pathways of virulence factor expression and regulation such as *sarA*, *agr*, *srrAB*,
61 *saeRS*, *ArRS*,(16) in *S. aureus* as well as the factors acting via one or more of these
62 pathways(17-19) are studied, the understanding of the production and regulation of
63 virulence factors in *S. aureus* is through a multifaceted network that is still obscure
64 and many genes with unknown functions in *S. aureus* genome with roles in virulence
65 and pathogenicity remain to be uncovered.

66

67 Since virulence is the degree of pathogenicity of a microorganism that is mostly
68 affected by host environment and host-pathogen interaction, a suitable model that
69 addresses host-pathogen interactions and mimics the clinical condition of infection is
70 required for the understanding of the pathogenicity of *S. aureus* on a molecular level.

71 Use of mouse models for screening of virulence factors is impractical due to high
72 costs and the associated ethical issues. Therefore, utilization of a model that has
73 less ethical issues, resembles a mouse systemic infection model, and allows
74 quantitative analysis of virulence is desired. Here, we used silkworms (*Bombyx mori*)
75 to uncover the roles of uncharacterized genes of *S. aureus* in pathogenicity. We
76 have previously shown that injection of *S. aureus* kills the silkworms(20) and
77 activates innate immunity(21). We can evaluate the therapeutic effectiveness of
78 antibiotics using silkworm infection model by comparison of effective dose fifty (ED₅₀)
79 values of clinically used antibiotics between silkworms and mammals(22). On the
80 basis of these advantages, we used silkworms to discover various antibacterial
81 agents against *S. aureus* infections such as lysocin E from *Lysobacter* sp. RH2180-5
82 (23-25), GPI0363(26), compound 5(27) and iminothiadiazolo-pyrimidinone
83 derivatives(28). Additionally, silkworms have large enough body size to allow
84 administration of precise inoculum and dosage, are economical, easy to handle, and
85 associated with less ethical issues as well as less biohazard potential(29, 30). The
86 number of bacterial cells required to kill silkworms can be quantitatively determined
87 by the administration of precise inoculum of the bacteria. This allows a direct and
88 easy comparison of the degree of pathogenicity among bacterial strains from their
89 respective lethal dose fifty (LD₅₀) values. We have previously identified novel *S.*
90 *aureus* virulence factors using silkworms such as CvfA, CvfB, CvfC(31), SarZ(32)
91 and SA1684(33) that have roles in pathogenicity in mice models. In this regard, the
92 use of silkworm as a model is the unique way for the identification of novel virulence
93 factors of *S. aureus* that can have roles in pathogenicity to mammals. Since
94 community-acquired MRSA (CA-MRSA) USA300 is hypervirulent compared to the
95 majority of the hospital-acquired MRSAs(34), we used USA300 strain for screening

96 in this study. Here, we performed the first large-scale and quantitative screening of
97 the gene-disrupted mutants of USA300 JE2 from the Nebraska Transposon Mutant
98 Library (NTML)(35) using silkworms. We identified 11 mutants with reduced
99 virulence in silkworms, among which nine had reduced virulence in mice. To our
100 knowledge, this is the first report that uncovers the roles of these genes in
101 aggravating the infection.

102

103 **Results**

104 ***Identification of novel S. aureus genes with roles in pathogenicity using 105 silkworms***

106 Previous attempts of evaluation of virulence genes in *S. aureus* by using silkworms
107 have been performed in small scales and with methicillin-susceptible *S. aureus*
108 (MSSA) strains such as RN4220(31) and NCTC8325-4(36). In this study, we
109 performed a large-scale screening of a mutant library of a CA-MRSA USA300 LAC
110 JE2 strain to find genes required for full virulence in silkworms for the first time. At
111 first, a total of 380 gene-disrupted mutants whose gene products were hypothetical
112 proteins and were not tested previously using silkworms(31) were selected for the
113 study. As silkworms can be injected with accurate volumes of inoculum by using
114 syringes, the primary screening was performed by injection of same dilutions (ten-
115 fold) of the overnight culture of the strains and observing the survival of the infected
116 silkworms. We obtained 28 strains in the primary screening that did not kill silkworms
117 when the wild-type strain killed all the silkworms (**Figure 1a, Supplementary Table
118 S1**). Next, we compared the lethal dose fifty (LD₅₀) values, the bacterial dose that
119 kills half of the silkworms, after injecting serial dilutions of the cultures into the
120 silkworm hemolymph. Counting the colony-forming units (CFU) of the injected

121 bacteria was performed separately. Out of 28, 12 strains showed ≥ 2 fold higher LD₅₀
122 values than that of the wild-type (**Supplementary Table S1**). We, then, selected
123 these 12 strains for further examination and found that 11 showed higher LD₅₀
124 values with statistical significance in silkworms compared to that of the wild-type
125 (**Figure 1a,b**). The feasibility of accurate inoculum administration and quantitative
126 analysis can be attributed to the discovery of previously unidentified genes with roles
127 in pathogenicity.

128

129 ***Pathogenicity of the identified mutants in the mouse infection model***

130 We evaluated the pathogenicity of the 11 strains in the mouse systemic infection
131 model by examining the microbial burden in organs- heart and kidney of the infected
132 mice. Nine out of 11 strains had significantly reduced microbial survival in at least
133 one of the organs (**Figure 2a, b**) indicating that more than 80% of the virulence
134 factors identified using silkworms exert virulence in mammals. This finding shows
135 that the silkworm infection model efficiently identifies bacterial factors with roles in
136 pathogenicity to mammals.

137

138 While comparing the microbial burden of the above mentioned nine strains with that
139 of the wild-type strain, three strains (0553::Tn, 0750::Tn and 0904::Tn) had a lower
140 microbial burden in both the organs; five strains (1012::Tn, 0657::Tn, 2320::Tn,
141 0942::Tn and 0321::Tn) had a reduced survival in kidney while their survival in heart
142 was indistinguishable; and one strain (0980::Tn) displayed a lower survival in heart
143 and an indistinguishable difference in kidney. The findings indicate that the patterns
144 of colonization efficiencies in each mice organ were different between the gene-
145 disrupted strains.

146

147 ***In vitro phenotypes of the mutants***

148 We examined the growth rates of all the mutants grown *in vitro* in TSB medium at
149 37°C. We found that the doubling times of the mutants were not significantly different
150 from that of the wild-type (**Supplementary Figure S1**) suggesting that the
151 differences in pathogenicity could not be attributed to differences in growth rates of
152 the strains. To further check whether the phenomena of low pathogenicity is related
153 to the reduction in toxin production, we compared the hemolytic and proteolytic
154 activities of the mutants with those of the wild-type. We found that three strains
155 0904::*Tn*, 0750::*Tn* and 0657::*Tn* had reduced hemolytic activity as determined by a
156 clear zone surrounding the colony in sheep-blood (**Figure 3**) and that 0904::*Tn* had
157 reduced proteolytic activity as evaluated by a clear zone surrounding the colony in
158 skim milk agar plates (**Figure 3**). Besides, the 0904::*Tn* strain had a reduced
159 pigment production capacity on the sheep blood agar plate (**Figure 3**). The reduced
160 pigment and protease production of 0904::*Tn* were in accordance to previous
161 reports(35, 37).

162

163 Among the analyzed strains, the LD₅₀ value in silkworm was the highest for the

164 0904::*Tn* strain which could not lyse sheep red blood cells and casein, and had a

165 reduced pigment production capacity suggesting that the loss of pathogenicity of this

166 strain could be explained at least in part by the reduced toxin production capacity.

167 For the strains with the indistinguishable change in the toxin production capacity, we

168 assume that these genes regulate virulence in *S. aureus* via pathways other than

169 toxin production and that the loss of pathogenicity could be a result of various host-

170 pathogen interplay. This suggested that the candidates identified in this study would

171 have been missed in the *in vitro* screens, highlighting the importance of *in vivo*
172 screening system for the screening of genes involved in virulence.

173

174 To understand the properties of these novel virulence factors, we performed a
175 bioinformatic analysis and predicted the functional domains of these proteins. First,
176 based on the description in the GenBank, we found that all but two were categorized
177 as hypothetical proteins. Next, we obtained the complete genome sequences of 328
178 *S. aureus* strains from GenBank and analyzed the orthologous proteins by
179 Orthofinder 2.2.6(38) as explained previously(39). We found that the nine proteins
180 identified in this study were highly conserved (detected in nearly 97% strains) among
181 different strains of *S. aureus* while eight strains did not harbor the homologs for five
182 of the identified virulence factors: SAUSA300_0553, SAUSA300_0904,
183 SAUSA300_0942, SAUSA300_1012, and SAUSA300_2320 (**Supplementary Table**
184 **S2**). Furthermore, we found that four out of the nine proteins were predicted to be
185 located in the cytoplasm and three in the cytoplasmic membrane; four were
186 predicted to consist of transmembrane helicases; one was predicted to be a
187 secretory protein; and six were categorized to be proteins with either no known
188 homologous superfamily or having an uncharacterized domain (**Table 1**). Detailed
189 analysis of the molecular mechanism of how these proteins act as virulence factors
190 will be the next step in our research.

191

192 **Discussion**

193 The success of *S. aureus* to infect host depends on its ability to evade the immune
194 system and acquire nutrition from the host. The genomic analysis of multiple *S.*
195 *aureus* indicates the presence of several genes encoding for hypothetical or

196 uncharacterized proteins. Some of these genes are conserved among many *S.*
197 *aureus* strains indicating that they might serve as a tool to compete in the host
198 environment. In our study, we found that some of these conserved uncharacterized
199 proteins were, in fact, involved in *S. aureus* pathogenicity as virulence factors.

200

201 Several virulence factors and their regulators have been exploited as targets for
202 screening and identification of inhibitors; however, the intricate multidimensional
203 nature of virulence factors expression and regulation makes it difficult to select a
204 single virulence factor as a target. Moreover, the expression of virulence factors is
205 largely dependent upon the host environment(40) and stage of infection. Therefore,
206 for target-based screening, it is important to select the virulence factor(s) that are
207 expressed while infecting a host and be responsible for full virulence. We used
208 silkworms for this purpose. Since silkworms are easy to rear in a small space, easy
209 to handle, and special injection techniques are not required, it is possible to inject
210 hundreds of silkworms within an hour. Most importantly, less ethical concerns
211 associated with its use and feasibility of quantitative administration of precise
212 inoculum/dose make the silkworm an excellent model host for screening purposes.

213 The established infection models, activation of innate-immunity by pathogen
214 invasion, treatment by clinically used antimicrobial agents, and presence of basic
215 pharmacokinetic pathways common to mammals advocate that silkworms are
216 suitable for the study of host-pathogen interactions.

217

218 Here, we employed a simple model host-based approach using silkworms and
219 uncovered nine novel genes that are required for full virulence of *S. aureus*. The
220 success relied on the quantitative screening using silkworms resulting in a high

221 degree of correlation between the virulence in silkworm and mice. Microbes such as
222 *S. aureus* also take advantage of the host's acquired immunity to establish
223 infection(41), and silkworms only have an innate immune system. Therefore, the use
224 of silkworm model can identify virulence factors that trigger innate immunity and not
225 the acquired immunity.

226

227 The disruption of the identified genes had different effects on the tissue-specific
228 colonization of *S. aureus* in mice likely due to the ability of *S. aureus* to generate
229 physiologically distinct phenotypes for survival on a particular host environment(42)
230 as well as the ability to activate and respond to the different immune cells recruited
231 to specific organ by the host in response to the infection(43).

232

233 The identified genes have not been previously identified to have roles in aggravating
234 virulence. However, in contrast to our result, a recent study(37) showed that retro-
235 orbital injection of *0904::Tn* resulted in increased colonization in the C57BL/6J
236 mouse kidney. The differences might have been observed owing to the differences in
237 the infection models and the genetic backgrounds of the mice used. Our survival
238 assay in silkworm systemic infection model clearly indicates that *0904::Tn* has
239 reduced virulence, which is consistent with the reduced colonization of the mutant in
240 the organs of a mouse systemic infection model.

241

242 In summary, by the identification of novel virulence factors, our study facilitates the
243 understanding of host-pathogen interaction and the complex network of virulence
244 factors production and regulation of *S. aureus*. The gene products identified in this
245 study could serve as the targets for the treatment of infections by *S. aureus*. This

246 study further justifies the use of silkworm model for the discovery of therapeutically
247 effective antibiotics and screening novel virulence factors using silkworm model,
248 which can be utilized to other pathogenic microorganisms besides *S. aureus*.

249

250 **Materials and Methods**

251 **Mutant library and bacterial growth conditions**

252 The transposon mutant library of *S. aureus* USA300 strain JE2 referred to as-
253 Nebraska Transposon Mutant Library Screening Array was kindly provided by BEI
254 resources (NR-48501). The library consists of gene disruptants of 1920 genes.
255 Single colonies of the wild-type and the gene-disrupted mutants were isolated in
256 tryptic-soy broth (TSB; Becton Dickinson and Company, Franklin Lakes NJ, USA)
257 agar plates with supplementation of 5 µg/ml erythromycin (Wako Pure Chemicals,
258 Tokyo, Japan) for the mutants. A single colony was then inoculated in 5 ml of TSB or
259 TSB supplemented with erythromycin and grown overnight by shaking at 37°C to
260 prepare the full growth.

261

262 **Silkworm rearing and infection assay**

263 Silkworms were raised as previously described(26). The fifth instar larvae were fed
264 an antibiotic-free artificial diet for one day, and 50 µl of each dilution of the strains
265 was injected into the hemolymph of larvae (n=10) using a 1-ml syringe (Terumo
266 Corporation, Tokyo, Japan) equipped with a 27-gauge needle (Terumo Corporation).

267 The silkworms were then kept at 27°C, and survival was observed.

268

269 **Screening of gene-disrupted mutants for reduced pathogenicity in silkworms**

270 The screening was performed in two stages:

271 *Primary screening*: The full growth of the wild-type JE2 and the selected 380 gene-
272 disrupted mutants was diluted tenfold with sterile 0.9% NaCl (Otsuka Normal Saline,
273 Otsuka Pharmaceutical Factory, Inc., Tokyo, Japan) and injected into silkworms.
274 Strain with mutation in *cvfB* gene, SAUSA300_1284 was used as a positive
275 control(31). Those strains with reduced silkworm killing ability under the following
276 criteria were selected as hits: survival of at least 50% silkworms when all silkworms
277 injected with the wild-type died and all silkworms injected with the vehicle survived.
278

279 *Secondary screening*: The overnight culture of the strains was subjected to two-fold
280 serial dilution with sterile 0.9% NaCl (Otsuka Normal Saline, Otsuka Pharmaceutical
281 Factory) and injected into the hemolymph of silkworm larvae (n=5). Survival of the
282 larvae was observed. The colony-forming units (CFU) of the injected strains was
283 counted by diluting the bacterial suspension, spreading onto Mueller-Hinton Broth
284 (MHB; Becton Dickinson and Company) agar plates and incubating for overnight at
285 37°C. The lethal dose fifty (LD₅₀) values of each strain were determined from the
286 CFU and survival of silkworms. Strains that showed significantly higher LD₅₀ values
287 than that of the wild-type were selected for further experiments.

288

289 **Pathogenicity of the strains in mice**

290 All mouse protocols were approved by the Teikyo University Animal Ethics
291 Committee. Overnight cultures of the strains were diluted 100 fold and incubated at
292 37°C with shaking for 16 hours. The resulting cultures were then centrifuged, washed
293 with Phosphate Buffered Saline (PBS; Wako Pure Chemicals), and suspended in
294 PBS to adjust the turbidity (A₆₀₀) to 0.7 using a spectrophotometer (UV-1280
295 Shimadzu Corp., Kyoto, Japan). Mice (ICR, female, eight weeks, Charles River

296 Laboratories Japan Inc., Kanagawa, Japan) were injected with 200 μ l of the
297 prepared suspension of strains intravenously into the tail vein. The injected
298 suspensions were diluted, spread on agar plates, and appeared colonies were
299 counted to obtain the injected CFU of each strain. After 24 hours, organs (kidney and
300 heart) of the infected mice were isolated, suspended in PBS and homogenized,
301 diluted, and spread on agar plates. Appeared colonies were counted after overnight
302 incubation of the plates at 37°C.

303

304 **Determination of hemolytic and proteolytic activities**

305 The strains were cultured in TSB or TSB supplemented with erythromycin at 37°C
306 200 rpm overnight. Two microliters of the overnight cultures were spotted on sheep-
307 blood agar plates (Nissui Pharmaceutical Co. Ltd., Tokyo, Japan), and TSB agar
308 plates supplemented with 3.3% skim milk to determine hemolytic and proteolytic
309 activity, respectively. The plates were then dried under the clean bench and
310 incubated at 37°C overnight. The activity was determined by the appearance of the
311 clear zone surrounding the grown bacteria.

312

313 **Acknowledgments**

314 This work was supported by JSPS KAKENHI Grant Number JP15H05783 (Grant-in-
315 Aid for scientific research (S)) to KS; and in part by a JSPS KAKENHI Grant Number
316 JP19K16653 (Grant-in-Aid for Early-Career Scientists) to AP, JSPS KAKENHI Grant
317 Number JP19K07140 (Grant-in-Aid for scientific research) to HH, and JSPS
318 KAKENHI Grant Number JP17F17421 (Grant-in-Aid for JSPS Fellows) to SP and
319 KS. The authors would like to acknowledge Genome Pharmaceuticals Institute Co.,
320 Ltd. for the help in the primary screening for pathogenicity in silkworms.

321 **Competing interest**

322 KS is a consultant for Genome Pharmaceuticals Institute Co., Ltd.

323

324 **References**

325 1. Lowy FD. 1998. *Staphylococcus aureus* infections. N Eng J Med 339:520-532.

326 2. Hiramatsu K, Hanaki H, Ino T, Yabuta K, Oguri T, Tenover FC. 1997. Methicillin-
327 resistant *Staphylococcus aureus* clinical strain with reduced vancomycin
328 susceptibility. J Antimicrob Chemother 40:135-136.

329 3. Howden BP, Davies JK, Johnson PDR, Stinear TP, Grayson ML. 2010. Reduced
330 vancomycin susceptibility in *Staphylococcus aureus*, including vancomycin-
331 intermediate and heterogeneous vancomycin-intermediate strains: resistance
332 mechanisms, laboratory detection, and clinical implications. Clin Microbiol Rev
333 23:99-139.

334 4. Panthee S, Hamamoto H, Paudel A, Sekimizu K. 2017. Genomic analysis of
335 vancomycin-resistant *Staphylococcus aureus* VRS3b and its comparison with other
336 VRSA isolates. Drug Discov Ther 11:78-83.

337 5. McGuinness WA, Malachowa N, DeLeo FR. 2017. Focus: infectious diseases:
338 vancomycin resistance in *Staphylococcus aureus*. The Yale journal of biology and
339 medicine 90:269.

340 6. Walters MS, Eggers P, Albrecht V, Travis T, Lonsway D, Hovan G, Taylor D, Rasheed K,
341 Limbago B, Kallen A. 2015. Vancomycin-Resistant *Staphylococcus aureus*-Delaware,
342 2015. MMWR Morbidity and mortality weekly report 64:1056-1056.

343 7. Panthee S, Paudel A, Hamamoto H, Sekimizu K. 2017. Draft genome sequence of the
344 vancomycin-resistant clinical isolate *Staphylococcus aureus* VRS3b. Genome
345 Announc 5:e00452-17.

346 8. WHO. 2014. Antimicrobial resistance: global report on surveillance. World Health
347 Organization, Geneva, Switzerland.

348 9. Centers for Disease Control and Prevention. 2013. Antibiotic Resistance Threats in
349 the United States. <https://www.cdc.gov/drugresistance/pdf/ar-threats-2013-508.pdf>. Accessed May 13.

350 10. Otto M. 2014. *Staphylococcus aureus* toxins. Current opinion in microbiology 17:32-
352 37.

353 11. Cheng AG, McAdow M, Kim HK, Bae T, Missiakas DM, Schneewind O. 2010.
354 Contribution of coagulases towards *Staphylococcus aureus* disease and protective
355 immunity. PLoS pathogens 6:e1001036.

356 12. Vandenesch F, Lina G, Henry T. 2012. *Staphylococcus aureus* hemolysins, bi-
357 component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-
358 damaging virulence factors? Frontiers in cellular and infection microbiology 2:12.

359 13. Spaan AN, van Strijp JA, Torres VJ. 2017. Leukocidins: staphylococcal bi-component
360 pore-forming toxins find their receptors. Nature Reviews Microbiology 15:435.

361 14. Clarke SR, Foster SJ. 2006. Surface adhesins of *Staphylococcus aureus*. Advances in
362 microbial physiology 51:187-224.

363 15. Pietrocola G, Nobile G, Rindi S, Speziale P. 2017. *Staphylococcus aureus* Manipulates
364 Innate Immunity through Own and Host-Expressed Proteases. Frontiers in Cellular
365 and Infection Microbiology 7.

366 16. Jenul C, Horswill AR. 2018. Regulation of *Staphylococcus aureus* Virulence. Microbiol
367 Spectr 6.

368 17. Mlynek KD, Sause WE, Moormeier DE, Sadykov MR, Hill KR, Torres VJ, Bayles KW,
369 Brinsmade SR. 2018. Nutritional regulation of the Sae two-component system by
370 CodY in *Staphylococcus aureus*. *Journal of bacteriology* 200:e00012-18.

371 18. Marroquin S, Gimza B, Tomlinson B, Stein M, Frey A, Keogh RA, Zapf R, Todd DA,
372 Cech NB, Carroll RK, Shaw LN. 2019. MroQ Is a Novel Abi-Domain Protein That
373 Influences Virulence Gene Expression in Staphylococcus
374 aureus via Modulation of Agr Activity. *Infection and Immunity*
375 87:e00002-19.

376 19. Ingavale S, van Wamel W, Luong TT, Lee CY, Cheung AL. 2005. Rat/MgrA, a Regulator
377 of Autolysis, Is a Regulator of Virulence Genes in Staphylococcus
378 aureus. *Infection and Immunity* 73:1423.

379 20. Kaito C, Akimitsu N, Watanabe H, Sekimizu K. 2002. Silkworm larvae as an animal
380 model of bacterial infection pathogenic to humans. *Microb Pathog* 32:183-190.

381 21. Ishii K, Hamamoto H, Kamimura M, Sekimizu K. 2008. Activation of the silkworm
382 cytokine by bacterial and fungal cell wall components via a reactive oxygen species-
383 triggered mechanism. *Journal of Biological Chemistry* 283:2185-2191.

384 22. Hamamoto H, Kurokawa K, Kaito C, Kamura K, Manitra Razanajatovo I, Kusuhara H,
385 Santa T, Sekimizu K. 2004. Quantitative evaluation of the therapeutic effects of
386 antibiotics using silkworms infected with human pathogenic microorganisms.
387 *Antimicrob Agents Chemother* 48:774-9.

388 23. Hamamoto H, Urai M, Ishii K, Yasukawa J, Paudel A, Murai M, Kaji T, Kuranaga T,
389 Hamase K, Katsu T, Su J, Adachi T, Uchida R, Tomoda H, Yamada M, Souma M,
390 Kurihara H, Inoue M, Sekimizu K. 2015. Lysocin E is a new antibiotic that targets
391 menaquinone in the bacterial membrane. *Nat Chem Biol* 11:127-133.

392 24. Panthee S, Hamamoto H, Suzuki Y, Sekimizu K. 2017. In silico identification of lysocin
393 biosynthetic gene cluster from *Lysobacter* sp. RH2180-5. *J Antibiot* 70:204-207.

394 25. Panthee S, Hamamoto H, Paudel A, Sekimizu K. 2016. *Lysobacter* species: a potential
395 source of novel antibiotics. *Arch Microbiol* 198:839-845.

396 26. Paudel A, Hamamoto H, Panthee S, Kaneko K, Matsunaga S, Kanai M, Suzuki Y,
397 Sekimizu K. 2017. A novel spiro-heterocyclic compound identified by the silkworm
398 infection model inhibits transcription in *Staphylococcus aureus*. *Front Microbiol*
399 8:712.

400 27. Paudel A, Panthee S, Urai M, Hamamoto H, Ohwada T, Sekimizu K. 2018.
401 Pharmacokinetic parameters explain the therapeutic activity of antimicrobial agents
402 in a silkworm infection model. *Scientific Reports* 8:1578.

403 28. Paudel A, Kaneko K, Watanabe A, Matsunaga S, Kanai M, Hamamoto H, Sekimizu K.
404 2013. Structure-activity relationship study of novel iminothiadiazolo-pyrimidinone
405 antimicrobial agents. *J Antibiot* 66:663-667.

406 29. Panthee S, Paudel A, Hamamoto H, Sekimizu K. 2017. Advantages of the silkworm as
407 an animal model for developing novel antimicrobial agents. *Front Microbiol* 8:373.

408 30. Sekimizu N, Paudel A, Hamamoto H. 2012. Animal welfare and use of silkworm as a
409 model animal. *Drug Discov Ther* 6:226-229.

410 31. Kaito C, Kurokawa K, Matsumoto Y, Terao Y, Kawabata S, Hamada S, Sekimizu K.
411 2005. Silkworm pathogenic bacteria infection model for identification of novel
412 virulence genes. *Molecular Microbiology* 56:934-944.

413 32. Kaito C, Morishita D, Matsumoto Y, Kurokawa K, Sekimizu K. 2006. Novel DNA
414 binding protein SarZ contributes to virulence in *Staphylococcus aureus*. *Molecular*
415 *microbiology* 62:1601-1617.

416 33. Imae K, Saito Y, Kizaki H, Ryuno H, Mao H, Miyashita A, Suzuki Y, Sekimizu K, Kaito C.
417 2016. Novel nucleoside diphosphatase contributes to *Staphylococcus aureus*
418 virulence. *The Journal of Biological Chemistry* 291:18608-18619.

419 34. Thurlow LR, Joshi GS, Richardson AR. 2012. Virulence strategies of the dominant
420 USA300 lineage of community-associated methicillin-resistant *Staphylococcus*
421 *aureus* (CA-MRSA). *FEMS Immunology & Medical Microbiology* 65:5-22.

422 35. Fey PD, Endres JL, Yajjala VK, Widholm TJ, Boissy RJ, Bose JL, Bayles KW. 2013. A
423 genetic resource for rapid and comprehensive phenotype screening of nonessential
424 *Staphylococcus aureus* genes. *mBio* 4.

425 36. Miyazaki S, Matsumoto Y, Sekimizu K, Kaito C. 2012. Evaluation of *Staphylococcus*
426 *aureus* virulence factors using a silkworm model. *FEMS Microbiol Lett* 326:116-124.

427 37. Austin CM, Garabaglu S, Krute CN, Ridder MJ, Seawell NA, Markiewicz MA, Boyd JM,
428 Bose JL. 2019. Contribution of YjblH to virulence factor expression and host
429 colonization in Staphylococcus aureus. *Infection and*
430 *Immunity* doi:10.1128/IAI.00155-19:IAI.00155-19.

431 38. Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome
432 comparisons dramatically improves orthogroup inference accuracy. *Genome Biology*
433 16:157.

434 39. Panthee S, Hamamoto H, Ishijima SA, Paudel A, Sekimizu K. 2018. Utilization of
435 hybrid assembly approach to determine the genome of an opportunistic pathogenic
436 fungus, *Candida albicans* TIMM 1768. *Genome biology and evolution* 10:2017-2022.

437 40. Thänert R, Goldmann O, Beineke A, Medina E. 2017. Host-inherent variability
438 influences the transcriptional response of *Staphylococcus aureus* during in vivo
439 infection. *Nature communications* 8:14268.

440 41. Gerlach D, Guo Y, De Castro C, Kim S-H, Schlatterer K, Xu F-F, Pereira C, Seeberger
441 PH, Ali S, Codée J. 2018. Methicillin-resistant *Staphylococcus aureus* alters cell wall
442 glycosylation to evade immunity. *Nature* 563:705.

443 42. García-Betancur J-C, Goñi-Moreno A, Horger T, Schott M, Sharan M, Eikmeier J,
444 Wohlmuth B, Zernecke A, Ohlsen K, Kuttler C, Lopez D. 2017. Cell differentiation
445 defines acute and chronic infection cell types in *Staphylococcus aureus*. *eLife*
446 6:e28023.

447 43. Torres VJ, Stauff DL, Pishchany G, Bezbradica JS, Gordy LE, Iturregui J, Anderson
448 Kelsi L, Dunman PM, Joyce S, Skaar EP. 2007. A *Staphylococcus aureus* regulatory
449 system that responds to host heme and modulates virulence. *Cell Host & Microbe*
450 1:109-119.

451 44. Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster
452 LJ, Brinkman FS. 2010. PSORTb 3.0: improved protein subcellular localization
453 prediction with refined localization subcategories and predictive capabilities for all
454 prokaryotes. *Bioinformatics* 26:1608-15.

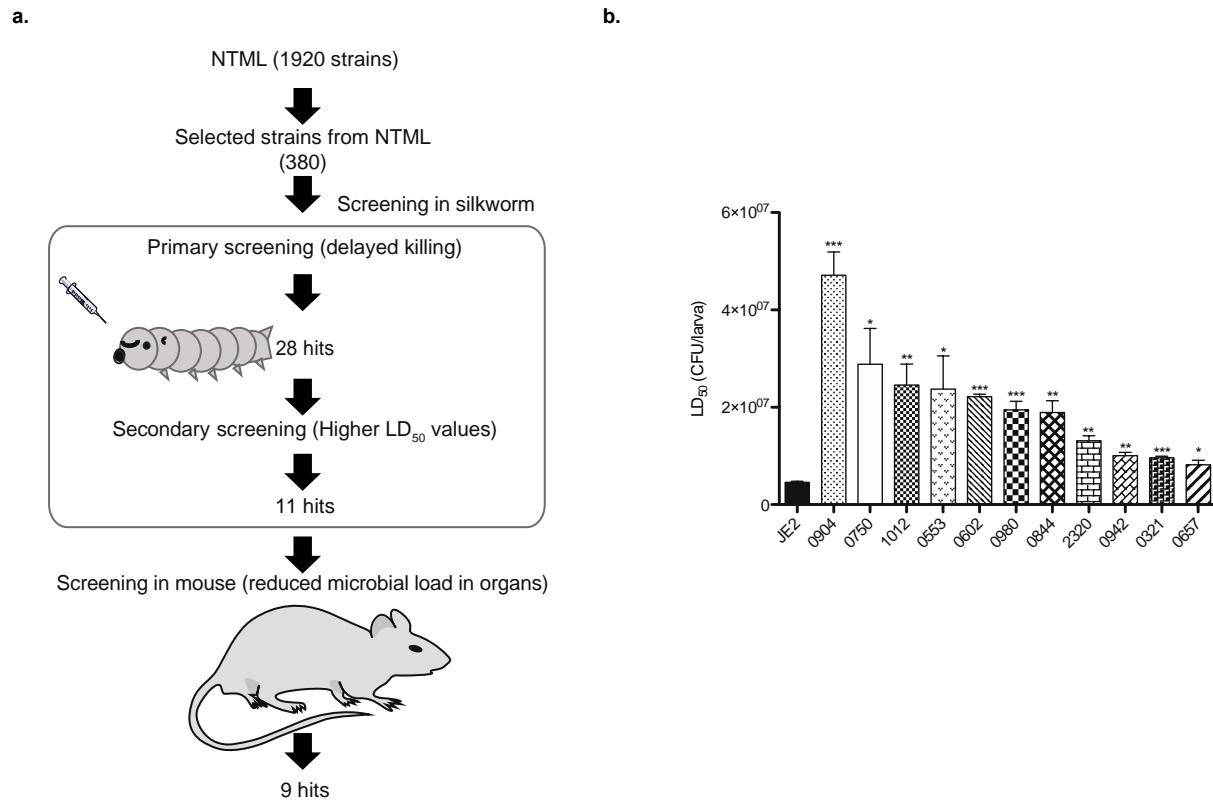
455 45. Hofmann K. 1993. TMBASE-A database of membrane spanning protein segments.
456 *Biol Chem Hoppe-Seyler* 374:166.

457 46. Fan Y-X, Song J, Xu C, Shen H-B. 2013. Predicting Protein N-Terminal Signal Peptides
458 Using Position-Specific Amino Acid Propensities and Conditional Random Fields.
459 *Current Bioinformatics* 8:183-192.

460 47. Mitchell AL, Attwood TK, Babbitt PC, Blum M, Bork P, Bridge A, Brown SD, Chang H-Y,
461 El-Gebali S, Fraser MI, Gough J, Haft DR, Huang H, Letunic I, Lopez R, Luciani A,
462 Madeira F, Marchler-Bauer A, Mi H, Natale DA, Necci M, Nuka G, Orengo C,
463 Pandurangan AP, Paysan-Lafosse T, Pesseat S, Potter SC, Qureshi MA, Rawlings ND,
464 Redaschi N, Richardson LJ, Rivoire C, Salazar GA, Sangrador-Vegas A, Sigrist CJA,
465 Sillitoe I, Sutton GG, Thanki N, Thomas PD, Tosatto SCE, Yong S-Y, Finn RD. 2019.
466 InterPro in 2019: improving coverage, classification and access to protein sequence
467 annotations. Nucleic acids research 47:D351-D360.
468

469

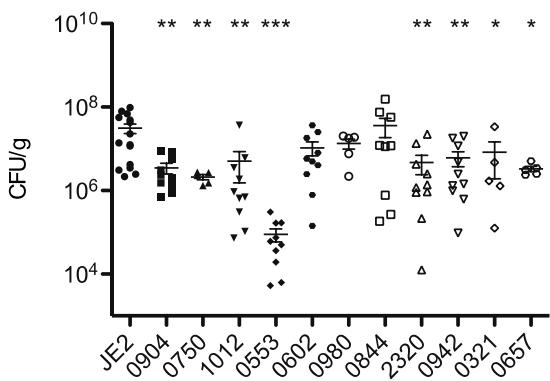
470 **Tables and Figures:**

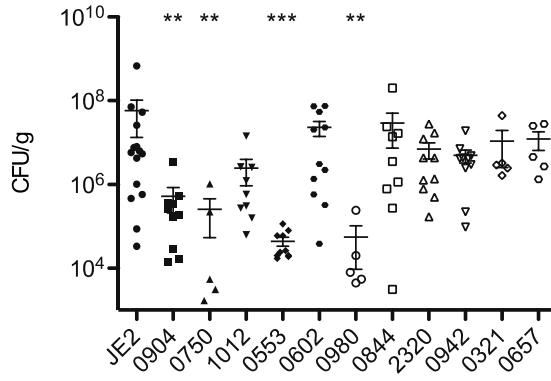

471 **Table 1: The functional domains of the proteins with roles in pathogenicity.**

472 The analyses were performed using: PSORTB Ver 3.0.2(44); TMpred (minimum
473 length: 14, maximum: 33)(45); LnSignal(46); and Interpro(47) for the prediction of
474 location, transmembrane helicase, secretory protein and homologous
475 families/superfamilies, respectively.

SAUSA300	AA length	Definition (GenBank)	Location	Transmembrane helicase	Secretory protein	Homologous family (Interpro ID)
0904	121	Protozoan/cyanobacterial globin family protein	Unknown	Yes, N-terminus outside	Non-secretory	Truncated hemoglobin (IPR001486)
0750	314	Hypothetical protein	Cytoplasm	No	Non-secretory	Sporulation regulator WhiA-like (IPR033981)
1012	91	Hypothetical protein	Cytoplasm	No	Non-secretory	Uncharacterised protein family UPF0358 (IPR009983)
0553	120	Hypothetical protein	Unknown	No	Non-secretory	Protein of unknown function DUF1806 (IPR014934)
0980	431	Membrane protein	Cytoplasmic membrane	Yes, N-terminus inside	Secretory	None
2320	143	Hypothetical protein	Cytoplasmic membrane	Yes, N-terminus outside	Non-secretory	Protein of unknown function DUF2871 (IPR021299)
0942	96	Hypothetical protein	Cytoplasmic membrane	Yes, N-terminus inside	Non-secretory	None
0321	275	Hypothetical protein	Cytoplasm	No	Non-secretory	Alpha/Beta hydrolase fold (IPR029058)
0657	214	Hypothetical protein	Cytoplasm	No	Non-secretory	None

476

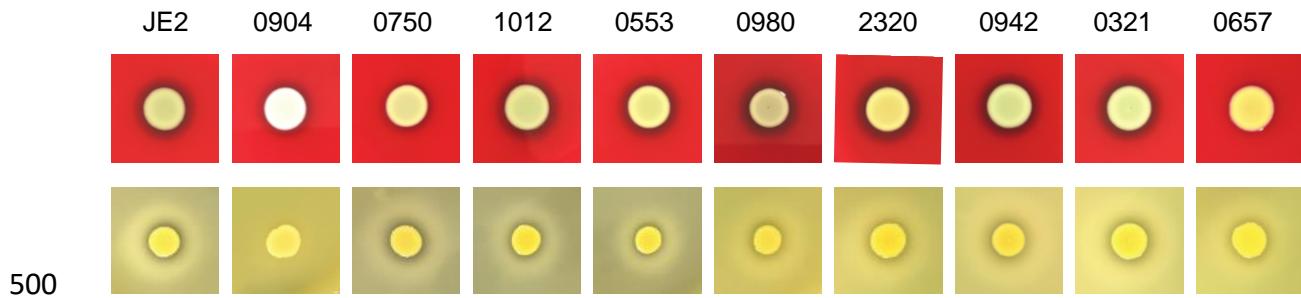

477


479 **Figure 1: Screening and identification of novel candidate virulence factors of**
480 ***S. aureus* using silkworms. a: Screening strategy and results of screening. b:**
481 **Strains exhibiting reduced pathogenicity to silkworms compared to the wild-**
482 **type.** Overnight cultures of *S. aureus* gene-disruptant mutants were serially diluted
483 and injected into the silkworm hemolymph (n=5), and survival was determined 30h
484 post infection. LD₅₀ values were determined using logistic regression analysis using
485 R-studio Program. Data are means \pm S.E.M of three independent experiments,
486 analyzed by Student's unpaired *t*-test and significant differences compared with the
487 wild-type are indicated by asterisks (* $p \leq 0.05$, ** $p \leq 0.01$, *** $p \leq 0.001$).

488

a.

b.


489

490 **Figure 2: Microbial burden in kidney (a) and heart (b).**

491 Mice were injected intravenously with the strains into the tail vein and bacteria
492 recovered from the isolated organs (kidney and heart) was counted. Each symbol
493 represents data obtained from one animal. Data are shown as mean \pm S.E.M,
494 analyzed by the Mann–Whitney U-test and significant differences compared to the
495 wild-type are indicated by asterisks ($*p \leq 0.05$, $** p \leq 0.01$, and $***p \leq 0.001$).

496 Average injected CFU: JE2: 1.2×10^8 ; 0553: 1.2×10^8 ; 1012: 9.9×10^7 ; 0750: 1.3×10^8 ;
497 0904: 1.2×10^8 ; 0657: 1.3×10^8 ; 2320: 1.3×10^8 , 0942: 1.2×10^8 ; 0321: 1.3×10^8 ; 0602:
498 1×10^8 ; 0980: 1.4×10^8 ; 0844: 2×10^8 .

499

500 **Figure 3: Hemolytic and proteolytic activities of the strains.** Two microliters of
501 the overnight cultures of the strains were spotted on sheep blood agar (upper panel)
502 and TSB+ 3.3% skim milk agar plates (lower panel) and incubated at 37°C overnight.
503 Data are representative of three independent experiments.