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Abstract:

Somatic alterations in nuclear and mitochondrial genomes are known to play important role in the
initiation and progress of tumours. However, crosstalk between these two genomic components in
tumours have not been well investigated till date. We have excavated evidence of such crosstalk
in gingivobuccal oral cancer. We have identified significant correlation between somatic mutations
in nuclear driver genes and mitochondrial genes in 89 gingivobuccal oral cancer patients. Strong
positive correlation between nuclear driver genes CASP8, NOTCH1, USP9X, TRPM3 and
mitochondrial genes has been observed. Patients having mutations in nuclear driver genes except
TP53, were also shown to harbour higher mitochondrial mutation load. TP53 mutations were
shown to be negatively correlated with somatic mutations in mitochondrial 12S rRNA and ATP6.
Also, TP53 mutations were negatively correlated with mutations in NOTCH1, HRAS and USP9X.
We have identified a number of nuclear genes coexpressed with mitochondrial genes, although
their association with tumorigenesis could not be established. Our observations suggest that in the
absence of mutations in TP53, mutations in mtDNA and other driver genes might aid in the
progression of cancer in a complementary fashion.
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Introduction:

Eukaryotic cells meet their energy requirement by producing most of their ATP via the
electron transport chain. This requires a high level of synchronization of the two obligate genomes,
the mitochondrial genome (MtDNA) and the nuclear genome (nDNA) (Wolff et al., 2014). In
addition to coding for the majority of the components of the electron transport chain (ETC), the
nDNA also codes for all proteins required for the replication and upkeep of mitochondria.
Therefore, mitochondrial-nuclear (mitonuclear) interaction at the genome level is essential for the
assembly and function of the mitochondrial ETC (Ryan et al., 2007).

A large number of mitochondrial functions, including important metabolic activities are
regulated by p53 (Lago et al., 2011). p53 mediated base-excision repair pathway protects mtDNA
from oxidative damages caused by reactive oxygen species (ROS) (Kazak et al., 2012). p53 has
also been found to relocate inside mitochondria and mediate apoptosis via mitochondrial
membrane depolarization and caspase activation (Marchenko et al., 2000; Vaseva et al., 2012).

These evidences indicate that the p53 might be involved in mitochondrial homoeostasis.

Oral squamous cell carcinoma of the gingivobuccal region (OSCC-GB) is the most
prevalent cancer among males and fifth most prevalent among females from the Indian
subcontinent (NICPR 2019). Of about 350,000 new cases that arise worldwide each year; 119,992
new cases are contributed by India in 2018 (Globocan 2018). Tobacco chewing in various forms,
such as betel quid, khaini and gutkha, is traditionally popular in India and is known to enhance the
risk of oral cancer (Gupta et al., 2011). Due to this particular mode of tobacco consumption, oral
cancer lesions in the Indian patients are mostly localized in the gingivobuccal region, comprising

buccal mucosa, retro-molar trigone and lower gum.

We have previously identified the nuclear driver genes (ICGC-India Project Team, 2013),
important structural variations in chromosomes (Biswas et al., 2019) and potentially druggable
pathways (Biswas et al., 2014) in OSCC-GB. We have also reported somatic driver mutations in
mtDNA harboured by oral cancer patients (Palodhi et al., 2018). In this report, we provide
information which might be useful in deciphering the interplay between the nDNA and the mtDNA
in tumourigenesis. In order to understand this, we have studied the correlation between somatic
mtDNA mutations and somatic mutations in the nuclear driver genes from 89 gingivobuccal oral

cancer patients.
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Materials and Methods:

Patients of OSCC-GB were recruited with informed consent (ICGC India Project Team,
2013). Tumour and blood samples were collected at the time of surgical excision, from treatment-
naive OSCC-GB patients. Only patients with concordant histologic diagnosis by two independent
reviewers were included. Sections of tumours that contained at least 80% tumour nuclei among
total cellular nuclei were used. Mitochondrial and nuclear DNA mutations were identified from
paired DNA samples from tumour and matched blood from 89 patients. Whole genome sequencing
was performed for 25 patients and mitochondrial DNA sequences were extracted from the same.
For the next 64 patients, mitochondrial genome was amplified using long range amplification and
sequenced in-house (Supplementary Table S1). Mutations in the nuclear genome were identified
from whole genome and whole exome sequencing data of 25 and 64 patients respectively
(Supplementary Table S2). Sample BAM files used in this study are deposited in the European
Genome Phenome Archive under accession code EGAS00001001901 (WGS),
EGAS00001000249 & EGAS00001001028 (WES), EGAD00001004987 (mtDNA sequence) and
EGAS00001003285 (RNA-seq).

The degree of correlation between mutation events in nuclear driver genes and mtDNA
was assessed by calculating Phi-coefficient. Spearman’s test was used to assess the correlation
between mitochondrial mutation load and nuclear driver mutation. All statistical analyses were

performed using R (R-core team, 2014).
Results:

Ten nuclear genes (TP53, FAT1, CASP8, USP9X, MLL4, NOTCH1, HRAS, UNC13C,
ARID2 and TRPM3) frequently mutated in OSCC-GB have been reported previously (ICGC India
Project Team, 2013). Among the 89 patients, 55 patients (61%) harboured somatic mutations in
TP53. FAT1 or CASP8 were mutated in 26 patients each, followed by NOTCH1 (19 patients).
Mutations in the mitochondrial genome in these patients were categorized into 17 features which
are as follows; 13 mitochondrial coding genes as 13 individual features, 2 rRNAs (12S and 16S)
and the D-loop region each as one feature and all mitochondrial tRNAs as a single feature. We
calculated the Phi-coefficient between the somatic mutations in these nuclear driver genes and
those in the mtDNA (Supplementary Table S3). We found that mutations in ARID2 positively

correlated with mutations in D-loop, mt-tRNA and ND4. Somatic mutations in four nuclear driver
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genes, CASP8, NOTCH1, USP9X and TRPM3 displayed positive correlation with mutations in
mitochondrial genes COX3, ND5, ND1 and COX2 respectively. Mutations in TP53 were found to
be negatively correlated with somatic mutations in mitochondrial 12S rRNA and COX3 gene.
Additionally we observed that TP53 mutations were negatively correlated with mutations in
NOTCH1, HRAS and USP9X. Thus NOTCH1 and USP9X simultaneously appeared to be
negatively correlated with TP53 mutations and positively correlated with some mitochondrial gene
mutations (Figure 1A). Mutations in rest of the driver genes, namely FAT1, HRAS, UNC13C and

MLL4 were not significantly correlated with somatic mtDNA mutations.
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We also investigated the relationship between the mutation load of nuclear driver genes

and mutation load of mtDNA in our dataset. Some of the nuclear driver genes, most notably TP53
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has tumour suppressor activity. Loss of function mutations in TP53 may lead to higher somatic
mutation load in mtDNA, making the guardian of the mitochondrial genome (Park et al., 2016).
We have categorized mutation burden of nuclear driver genes in each patient in 3 groups; mutation
burden in all driver genes, mutation burden in TP53 and mutation burden in 9 other non-TP53
driver genes. Similarly, total somatic mutation burden in mtDNA was categorized into 4 groups;
cumulative mutation burden in mitochondrial protein coding genes, mutation burden in D-loop as
this is the control region for transcription and translation of mtDNA, mutation burden in all non-
coding regions which includes D-loop, 2 mitochondrial rRNAs and 22 mitochondrial tRNAs, and
total mutation burden which combines all the categories mentioned (Figure 1B). Spearman
correlation test was performed between each of the nuclear mutation groups and individual
mtDNA mutation groups (Supplementary Table S4). The mtDNA coding mutation load and
mutation burden in 9 non TP53 driver genes was found to be significantly positively correlated (p
=0.2700105 P = 0.02087).

Discussion:

We have observed that patients harbouring mutations in other nuclear driver genes such as
HRAS, NOTCH1, USP9X etc., are more likely to harbour mutations in mitochondrial genes. We
also found that most of the patients carrying mutations in TP53 are less likely to harbour mutations
in mtDNA. We hypothesize that in the absence of mutations in TP53, mutations in mtDNA and
other driver genes might aid in the progression of cancer in a complementary fashion. The positive
correlation between the mutation load in mtDNA and mutation burden in non-TP53 driver genes

further supports our hypothesis.

In this study, we have also investigated the co-expression of 1701 nuclear coded genes
(gene list in Supplementary Table S5) which are associated with structure and function of
mitochondria and mtDNA coded respiratory complex genes (result not shown). This analysis did
not throw any light on the retrograde signalling pathway which might be associated with oral
cancer. This phenomenon might be attributed to factors such as post-transcriptional regulation of
mitochondrial RNA processing, which result in the difference in abundance of 13 mitochondrial
transcripts (Rorbach et al., 2012; Palodhi et al., 2018), despite that they are transcribed at once as
a single poly-cistronic RNA (Mercer et al., 2011). Previous studies have also indicated additional

roles played by translational modulation of nuclear and mitochondrial genes in regulating the
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mitochondrial and nuclear OXPHQOS protein levels which might be necessary for the various
subunits of the electron transport chain to assemble at a specific stoichiometric ratio (Couvillion
et al., 2016). A recent report by Bajzikova et al. (2018) suggest that the presence of functional
mitochondria is necessary for the requirement of pyrimidine biosynthesis in tumour cells. The
above reports along with our observations point towards the possible shortcoming of gene
expression data as surrogate for mito-nuclear interaction at RNA level. Although altered
expression of mitochondrial and nuclear OXPHOS genes independently, might indicate potential
reprograming of the tumour metabolism (Reznik et al., 2017). In some cases, the correlation
between the nuclear and mitochondrial gene expression may have yet unknown implications for

the respiratory activity.

Here we report positive correlation between mtDNA mutations and mutation burden in
non-TP53 driver genes in gingivobuccal oral cancer. We also observed negative correlation
between TP53 mutation and mutations in the mtDNA in cancer which has not been reported earlier.
These observations suggest that in the absence of mutations in TP53, mutations in mtDNA and
other driver genes might aid in the progression of cancer in a complementary fashion. The possible
mechanism via which mtDNA coding mutations and mutations in 9 non-TP53 driver genes aid in

tumour progression in absence of TP53 loss of function mutations needs further investigation.
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