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1

Abstract2

Creating a routing backbone is a fundamental problem in both biology and engineering. The3

routing backbone of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food4

sources using trail pheromone. Unlike species that forage on the ground, arboreal ants are5

constrained to form trail networks along branches and vines within the vegetation. We examined6

what objectives the ant networks meet by comparing the observed turtle ant trail networks with7

alternative networks of random, hypothetical trails in the same surrounding vegetation. We found8

that turtle ant trail networks favor coherence, keeping the ants together on the trails, rather than9

minimizing the distance traveled along edges in the graph. The ants’ trails minimized the number10

of nodes traversed, reducing the opportunity for ants to get lost at each node, and favored nodes11

with 3D configurations most easily reinforced by pheromone, reducing the opportunities for ants to12

diverge onto different paths. Thus, rather than forming the shortest paths, the ant networks take13

advantage of natural variation in the environment to promote the maintenance of a coherent trail14

that ensures that ants stay connected along the routing backbone.15

16

Keywords: Cephalotes, ant trail network, routing networks, foraging, distributed algorithms,17

search, exploration, shortest path, spanning tree18

Introduction19

Many engineered systems rely on a backbone routing network, whose goal is to ensure that20

any two entities or devices on the network can communicate through some path (Lynch, 1996;21

Alwan and Agarwal, 2009; Chouikhi et al., 2015). Some biological systems, such as neural ar-22

bors (Chandrasekhar and Navlakha, 2019), plant arbors (Conn et al., 2017), and slime molds (Tero23

et al., 2010), also use routing networks, to transmit information and nutrients. Effective design of24

routing networks depends on the physical environment, because variation in the environment can25

affect the accuracy and rate of communication in both engineered (Fei et al., 2016; Nguyen and Xu,26

2007; Gong et al., 2016) and evolved natural networks (Levin, 2016; Wiles et al., 2016; Hein et al.,27

2016; Couzin et al., 2005). The environment influences how the system chooses search strategies,28

prioritizes competing objectives, and coordinates its local decisions. For example, wireless networks29

operating in difficult to reach environments may use different routing strategies to minimize energy30

1 of 18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2019. ; https://doi.org/10.1101/714410doi: bioRxiv preprint 

dmgordon@stanford.edu
navlakha@salk.edu
https://doi.org/10.1101/714410
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

consumption of devices (Fei et al., 2016); similarly, in bacterial navigation, chemicals appearing as31

localized pulses in the environment can affect gradient sensing and movement patterns (Hein et al.,32

2016).33

The 14,000 species of ants have evolved diverse distributed routing algorithms to search for,34

obtain, and distribute resources (Gordon, 2014, 2016) in diverse environments (Dussutour et al.,35

2004; Latty et al., 2011;Middleton and Latty, 2016; Gordon, 2019; Perna and Latty, 2014). Models36

of engineered routing networks inspired by ants often emphasize the goal of minimizing the distance37

traveled. Ant colony optimization (ACO), first proposed in 1991, loosely mimics ant behavior to38

solve combinatorial optimization problems, such as the traveling salesman problem (Colorni et al.,39

1991; Dorigo and Blum, 2005; López-Ibánez et al., 2015) and other such routing problems (Di Caro40

and Dorigo, 1998). In ACO, individual ants each use a heuristic to construct candidate solutions, and41

then use pheromone to lead other ants towards better solutions. Recent advances improve ACO42

through techniques such as local search (Gambardella et al., 2012), cunning ants (Tsutsui, 2007),43

and iterated ants (Wiesemann and Stützle, 2006).44

A fascinating recent area of biological research examines the goals met by the trail networks of45

ants (Perna and Latty, 2014). Studies of species that forage on a continuous 2D surface (Middleton46

and Latty, 2016), including Pharaoh’s ants (Malíčková et al., 2015), Argentine ants (Latty et al.,47

2011; Flanagan et al., 2013; Garnier et al., 2009), leaf-cutter ants (Dussutour et al., 2004), army48

ants (Deneubourg et al., 1989; Couzin and Franks, 2003), red wood ants (Cherix et al., 1980), and49

meat ants (Cabanes et al., 2014; Bottinelli et al., 2015), show that ants use local chemical inter-50

actions to form trails (Deneubourg et al., 1986; Franks, 1989; Deneubourg et al., 1989), regulate51

traffic flow (Bouchebti et al., 2019), search collectively (Countryman et al., 2015), and form living52

bridges (Garnier et al., 2013).53

There are many objectives that an ant colony’s trail network might meet, including minimizing54

energy costs by reducing the distance traveled, keeping the ants together to form a coherent trail,55

resilience to rupture, and effective searching (Cook et al., 2014). Ant species that forage and build56

trails on the ground have few constraints on trail geometry because their trails can form nodes and57

edges anywhere on the 2D plane. Prior work (Aron et al., 1989; Garnier et al., 2009; Cook et al.,58

2014) showed that ground-living ants, such as red wood ants and Argentine ants, may minimize59

the distance traveled by forming trails with branch points that approximate 2D Steiner trees (Latty60

et al., 2011; Buhl et al., 2009; Prömel and Steger, 2012). However, minimizing distance may not61

be the only objective that ant trail networks attempt to optimize. Army ants link their bodies to62

form a bridge across gaps, but may not form the shortest possible bridge if this requires the use63

of more ants (Reid et al., 2015). Meat ants form trail networks that link nests and trees as nodes,64

and their choices of which nodes are linked, as well as the direction and length of trails, suggest65

that robustness to the loss of a node is as important as minimizing the distance traveled (Bottinelli66

et al., 2015; Cabanes et al., 2014).67

Many ant species operate in 3D environments, such as arboreal ants that nest and forage in68

trees and bushes. Unlike species that have evolved to create graph structures in continuous space69

in an unconstrained 2D plane, arboreal ants must solve problems on a natural graph structure.70

They cannot form trails with nodes and edges at arbitrary locations; instead, they can use only71

the nodes and edges that are available to them. The arboreal turtle ant (Cephalotes goniodontus)72

nests and forages in the tree canopy of tropical forests (Powell et al., 2011). A turtle ant colony73

creates a trail network in the vegetation that connects several nests, providing a routing backbone74

that must be maintained to allow resources to be distributed throughout the colony (Gordon, 2012,75

2017). Ants search off the backbone to find and create trails to ephemeral food sources. The colony76

modifies the trail from day to day, sometimes forming small alternative paths, or loops, of which77

one is eventually chosen. The colony repairs the backbone in response to frequent changes in78

the vegetation caused by plant growth and by ruptures made by wind or passing animals (Gordon,79

2017).80
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Results81

Candidate objectives82

Here we mapped trail networks of turtle ants in their natural habitat and computationally tested83

what objective functions these trails may be optimizing. We compared the observed networks with84

simulated random networks, to determine how well the observed networks meet three objectives,85

possibly in combination (Bottinelli et al., 2015):86

87

1. Minimizing the distance traveled, which was measured as the average length of the edges88

in the trail network. This is equivalent to minimizing the total trail length for a fixed number of89

edges. Minimizing the distance traveled minimizes the energy cost of building the trail network.90

This distance, however, is not equivalent to the number of nodes traversed, as is often assumed91

in various optimization algorithms (Dorigo and Stützle, 2004; Di Caro and Dorigo, 1998; Eberhart92

et al., 1995; Karaboga, 2005), including our previous work on turtle ants (Chandrasekhar et al.,93

2018), because in the vegetation, the lengths of edges vary; the distance between one node and94

another ranges from less than a centimeter to more than a meter (Table 1).95

96

2. Minimizing the total number of nodes, which promotes the maintenance of a coherent trail97

by reducing opportunities for ants to get lost, but also reduces the opportunities for exploration98

and thus for finding new resources off the trail. The number of nodes was measured by counting99

the nodes traversed along edges used in the trail network. We previously studied how ants at100

a node select which transition through a node to traverse based on the rate at which volatile101

pheromone is deposited (Chandrasekhar et al., 2018). Simulation results were consistent with102

field observations (Gordon, 2012) indicating that ants at a node have a constant probability of103

exploring, or taking a path that is not the one most strongly reinforced by pheromone, of about104

0.2 per node (Chandrasekhar et al., 2018). Thus each node presents an opportunity for ants to get105

lost, and lost ants may lay pheromone trail that could lead other ants astray. Each node is also an106

opportunity to meet the ants of other colonies that make trails in the same vegetation. We test here107

the hypothesis, indicated by previous observations (Gordon, 2017), that modification and repairs108

to the backbone tend to reduce the number of nodes over time.109

110

3. Minimizing the difficulty of establishing a pheromone trail by finding trajectories through nodes111

that are most easily reinforced by pheromone. This objective also contributes to the creation112

and maintenance of a coherent trail. We hypothesized that the physical configuration of a node113

influences how likely are successive ants to cross the node in the same way, thus reinforcing it with114

volatile trail pheromone. The ants have short antennae that detect pheromone only locally, so the115

transition from one edge through a node to another edge is reinforced only when successive ants116

take exactly the same trajectory through the node (Figure 1). Nodes are variable 3D structures,117

ranging from a simple fork created by a branch in a plant, to a cluster of entwined vines and118

branches from different plants. We used an arbitrary categorical index to estimate how many119

possible trajectories an ant could take from one edge through a node to another edge, and thus120

how likely a node is to be reinforced (Figure 1, details below). We tested whether the ants’ behavior121

reflected this estimate. Our previous work (Gordon, 2017; Chandrasekhar et al., 2018) did not take122

into account variation among nodes, and did not examine how trails are selected from among the123

many available alternative networks.124

Preference for nodes more likely to be reinforced was measured as the average transition index125

of all transitions in the trail network. The transition index is a categorical value that ranged from126

1, where successive ants are most likely to take and reinforce the same trajectory through the127

transition, to 4, where successive ants are least likely to take and reinforce the same trajectory128

through the transition (Figure 1). The value of the transition index was assigned based on a visual129

estimate of the number of different trajectories available for ants to traverse the node, drawing on130
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Figure 1. Transition indices. The photos show examples of nodes of each transition index (TI). The open black
circle shows the node traversed. The blue arrow shows the transition, leading from the edge along which ants

enter the node, through the node, toward the edge along which they exit. Each transition from an edge to a

node to another edge was assigned a transition index with a value between 1 and 4. The lower the transition

index, the more likely it is to be traversed by successive ants in the same way, and thus more likely to be

reinforced. TI–1 (upper left): a node linking two edges on the same plant; in the example shown, all ants are

likely to walk the same way across the top of the branch. TI–2 (upper right): a node that links one plant to

another along a trajectory through a node that is likely to be the same for successive ants; in the example

shown, most ants are likely to climb up the brown vine from the position shown by the ant approaching the

junction from the left. TI–3 (lower left): a node that links one plant to another plant with more than one possible

trajectory through the node; in the example shown, ants on the upper vine can reach the lower one either

directly or by following the smaller vine that ants in the photo are using. TI–4 (lower right): a node that links one

plant to another with many possible trajectories that are often changed by conditions; in the example shown,

wind can easily move the leaf so that different ants reach the junction between the leaf and branch, at different

places.

previous observations of the flow of ants on different edges from a node (e.g., see Fig. 7 in Gordon131

(2017)). Each transition through a node in the vegetation (e.g., edge u → v through node v to edge132

v → w; Methods) was assigned a value of the transition index. A particular node vmay have more133

than one transition index if there were many edges connected to that node.134

135
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Tejon 189 Tejon 446 Turtle Hill 460
Available Used Available Used Available Used

Edge
Length (cm) 10698 20.71 ± 6.21 7615 13.46 ± 0.74 14696 39.97 ± 9.43

Total
Nodes 217 43.5 ± 9.43 196 36.09 ± 3.81 202 54.0 ± 17.93

Transition
Index 1.60 1.31 ± 0.06 1.70 1.44 ± 0.13 1.48 1.44 ± 0.10

Connectivity — 3.75 ± 0.23 — 4.00 ± 0.24 — 4.46 ± 0.95

Table 1. Comparison of observed and available networks within the vegetation for the three colonies
observed. Values for ‘Available’ are for all of the vegetation mapped. Values for ’Used’ are means, averaged
over observation days, for the paths used in each colony’s network (n = 10 for Tejon 189 and Turtle Hill 460, and
n = 11 for Tejon 446). Connectivity is a measure of the smallest number of nodes needed to get back to the trail
used by the ants from an edge off the trail, averaged over all edges that lead off the trail used by the ants

(Methods).

Mapping and modeling turtle ant trail networks136

To determine what objectives are optimized by the ants’ choice of paths within the vegeta-137

tion (Figure 2A), we mapped the trail networks that connected the nests and naturally occurring,138

ephemeral food sources of three colonies (Tejon 189, Tejon 446, Turtle Hill 460), for 10–15 days over139

the course of 6 weeks, in a tropical dry forest at La Estación Biológica de Chamela in Jalisco, Mexico.140

We visually tracked the path taken by the ants and identified each node or junction in the vegetation,141

where an ant had a choice among more than one edge in the direction it is traveling, as well as the142

edges between nodes. We measured the length of each edge. We assigned a transition index to143

each each transition from one edge through a node to another edge, to estimate how likely were144

successive ants to take the same trajectory through the node and thus reinforce it with pheromone.145

To evaluate how the ants choose nodes and edges from the options provided by the surrounding146

vegetation, we also mapped all nodes, measured all edges, and assigned transition indices, for all147

possible paths up to five nodes away from each node used by the ants. A trail network on one day148

is illustrated in Figure 2B–C.149

We modeled the network of vegetation as a directed, weighted graph, G = (VG, EG), where each150

junction forms a node, and edges represent stems or branches that connect one node to another.151

Edge weights correspond to physical length. Node weights, which are used in some variants of the152

Steiner tree problem (Byrka et al., 2016; Bateni et al., 2018), correspond to transition indices. We153

modeled transition indices by converting G into its corresponding line graph (Methods). The nodes154

corresponding to the nests and food sources were designated as terminals. We compared the155

extent to which each observed network on a given day optimized each of the 3 objectives, relative156

to a set of 100,000 random networks connecting the same nests and food sources (Methods).157

Turtle ant trail networks favor coherent trails over shortest paths158

We compared the relation of observed and random networks, testing for differences among159

objectives, colonies, and for a statistical interaction of objective by colony. We tested the hypothesis160

that the networks favor coherent trails, and thus minimize the total number of nodes and the161

average transition index more than they minimize distance traveled.162

In all three colonies, the ants’ networks optimized the maintenance of coherent trails. There163

were significant differences among objectives in how well observerd networks were optimized164

by observed relative to random networks (Scheirer-Ray-Hare two-factor ANOVA df 2, H = 31.718,165

p < 0.001). Trail networks minimized the average transition index (Dunn test , Z = 4.395, p < 0.001)166

and minimized the total number of nodes (Dunn test, Z = 5.247, p < 0.001), significantly more than167

the distance traveled (Figure 3A). There were no significant differences between the extent to which168
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Figure 2. Turtle ant vegetation. A) Vegetation of the network mapped in B, photographed in the dry season
before the branches have leaves. B) Illustration of part of the trail network for Tejon 189 on day 9. The figure

shows 166 of the 217 nodes mapped in the surrounding vegetation. Edge lengths are scaled to measured

distance, but actual location is not represented here. N represents a nest, F represents a food source. Circles

represent nodes. Solid lines represent edges used on that day; dashed lines represent edges not used that day

(Methods). The color of a node represents the transition index (TI) from the preceding edge to the following one:

TI–1, open circles; TI–2, blue; TI–3, red; TI–4, black. At a node where there is a choice of more than one edge in

the indicated direction, so that there could be more than one transition taken through a given node, a TI was

assigned to each possible transition. For such nodes with more than one transition index, the TI is represented

graphically with a pie chart, and arrows show which transition has the TI represented by the arrow’s color.

observed networks, compared to random ones, minimized the average transition index and the169

total number of nodes (Dunn test, Z = 0.852, ns).170

Colonies did not differ overall in the relation of observed and random networks for the 3171

objectives (S-Test, df 2, H = 2.010, ns), but there was a significant objective x colony interaction172

(S-test, df 4,H = 13.284, p < 0.01). One colony, Turtle Hill 460, differed from the other two colonies in173

two ways, apparently because of differences in the local vegetation: first, it minimized total nodes,174

relative to random networks, significantly more than it minimized average transition index (Dunn175
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C

Figure 2. Turtle ant vegetation. C) Map of all 217 nodes for Tejon 189 on day 9. Symbols as in B. The large
size of the network makes it difficult to show all TIs per node, so nodes with more than one TI are colored green.

test, Z = 3.347, p < 0.05), and second, it did not minimize average transition index significantly more176

than average length, relative to random networks (Dunn test, Z = 1.012, ns).177

Random networks with the same number of nodes as the observed network did not differ in178

total length from the observed network. We tested this to control for the confounding of total edge179

length and total number of nodes because they are correlated (R = 0.67), and to test which one is180

prioritized when the two objectives give different results. We compared total length in observed181

and random networks by using a percentile measure (Methods). At 50%, the observed network is182

equal for the objective to the average random network; the lower the percentile, the better the183

observed network optimized the objective compared to random networks. In all three colonies,184

the total length of observed networks was similar to that of the random networks with the same185

number of nodes: the percentiles were 35.49 ± 39.57% for Tejon 189, 40.59 ± 27.65% for Tejon 446,186

and 34.89 ± 38.84% for Turtle Hill 460). For all three colonies, the percentile was within one standard187

deviation of 50%.188
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Figure 3. Comparison of random and observed networks. A) Similarity of observed and random networks
measured as mean percentile (Methods). A percentile of 50 (dashed line) indicates that the observed network

optimized the objective to the same extent as the average random network; the lower the percentile, the better

the observed network optimized the objective compared to random networks. Error bars show standard error

of the mean. B) Day to day change in trails in Tejon 189, showing a change that decreased both number of

nodes and average transition index. Symbols for transition index are the same as in Figure 2B :TI–1, open

circles; TI–2, blue; TI–3, red; TI–4, black. Solid yellow lines show trails used on day 9; solid blue lines show trails

used on day 10; yellow circles and dashed blue lines show trails linking the six nodes that were used on day 9

but not on day 10. C–E) Day to day changes in mean percentile for each objective. Blue represents average edge

length, orange represents average transition index, and green represents total number of nodes. A red ’X’

indicates one or more ruptured edges on that day. C, Tejon 189, D, Tejon 446, E, Turtle Hill 460.

Turtle ant trail networks increase coherence over time189

From day to day, progressive changes in the trail networks of all three colonies tended to190

minimize the average transition index and the total number of nodes more than they minimized191

average length (Figure 3B–E). The extent to which average length was minimized varied greatly192

from day to day in all three colonies, suggesting that minimizing this objective was not a strong193

priority. Figure 3B shows an example of a day-to-day change that minimized both the number of194

nodes and average transition index. From day 9 to day 10, the network changed from the path195

shown in yellow to the path shown in blue, thus eliminating the 6 nodes circled, including 2 nodes196

with TI–2 and one node of TI–4, in favor of a path with nodes all of TI–1 (Figure 3B). Overall, trails197

in Tejon 189 (Figure 3C) consistently minimized the total number of nodes and average transition198

index but twice increased the average length (days 7 to 10 and 11 to 15). Similarly, in Tejon 446199

(Figure 3D), trails progressively decreased the total number of nodes and average transition index,200

but increased average length from days 6 to 7, 8 to 9, and 11 to 13. In Turtle Hill 460 (Figure 3E), the201

network consistently minimized the total number of nodes. This trail network shifted nests and202
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food sources, and the change led to lower transition indices (days 2 to 10). There was an initial203

decrease in average edge length (days 4 to 7), due to a rupture on day 6 of a node leading to a 95204

cm edge, one of the longest edges we measured, rather than to a choice of shorter edges, and then205

the trails increased in average edge length (days 7 to 14). These day-to-day changes indicate that206

the networks do not consistently minimize the distance traveled.207

Turtle ants form loops to promote coherence208

Turtle ants form loops in their paths, consisting of small, temporary alternative paths with the209

same start and end points, and over time, all but one of these paths tends to be pruned away (Gor-210

don, 2017). Loops are often considered to decrease the efficiency of routing networks (Alwan and211

Agarwal, 2009; Chouikhi et al., 2015), but may increase robustness by offering alternative paths if212

links are broken. Here we hypothesize that loops may occur because trails tend to form along easily213

reinforced nodes, and some sequence of easily reinforced nodes may naturally form a cycle in the214

graph.215

Compared to available loops with the same start and end points (Methods), the observed loops216

tended to use nodes with low transition indices, and tended to minimize the number of nodes.217

We compared the centered ranks (Methods) of the average transition index, number of nodes,218

and average edge length, of paths connecting the same two start and end points on each trail in219

observed and available loops. A negative value of centered rank indicates that an observed path220

has a low transition index compared to all of the random paths within the available vegetation with221

the same start and end points. The mean (SD) of the centered rank in observed loops for average222

transition index was -1.59 (2.96); for number of nodes was -1.88 (2.91) and for average edge length223

was 0.44 (2.23); in all cases, significantly different from 0 (T-Test, |T | > 3, p < 0.01). These results224

suggest that loop formation in trails may occur as a consequence of selecting trails that have lower225

transition indices, thus promoting coherence.226

Discussion227

The trail networks of arboreal ants show how evolution shapes biological distributed algorithms228

to respond to dynamic environments. Minimizing distance traveled is often considered the main229

objective in wireless routing algorithms and ant colony optimization (Di Caro and Dorigo, 1998;230

Dorigo and Blum, 2005; López-Ibánez et al., 2015), since rapid communication is often needed231

between any two nodes in the network. We showed that the trail networks of turtle ants instead232

optimize the maintenance of a coherent trail by minimizing the total number of nodes, and by233

minimizing the average transition index; optimizing the latter objective, we show, is NP-complete234

(Methods). In previous work (Chandrasekhar et al., 2018), we proposed a model for the algorithm235

used to maintain and repair networks. This algorithm did not distinguish between minimizing236

the number of nodes and the distance traveled, since each edge had equal length. Our results237

here show that further work is needed to develop an algorithm that captures the role of physical238

variation in the environment.239

Minimizing the transition index and the number of nodes contributes to maintaining the coher-240

ence of the trail because both diminish the risk of losing ants from the trail. Like water flowing over241

a rocky stream bed, turtle ants tend to find trails most conducive to the flow of ants. By avoiding242

nodes with high transition indices, turtle ants reduce the chances of ants wandering off the path243

and laying pheromone trail that can lead other ants also to leave the trail. Nodes with transition244

indices of 1 keep the trail on the same plant (Gordon, 2017). The vines and trees of the tropical dry245

forest tend to have long internode distances to reach the sunlight at the edge of the canopy (Olson246

et al., 2009). By staying on the same plant, ants are also led to resources at the edge of the canopy,247

such as flowers that provide nectar.248

The trail networks must also balance the tradeoff between exploration and coherence. Explo-249

ration is necessary for the colony to construct trails (Sumpter and Beekman, 2003; Garnier et al.,250

2009; Cook et al., 2014; Latty et al., 2011; Garnier et al., 2013; Bouchebti et al., 2019), search for251
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new resources (Emek et al., 2015; Feinerman and Korman, 2017; Stickland et al., 1995; Britton252

et al., 1998; Monmarché et al., 2000; Countryman et al., 2015) and repair breaks (Gordon, 2017;253

Chandrasekhar et al., 2018; Cabanes et al., 2014), and the connectivity of the vegetation (Table 1)254

sets the probability that ants that leave the trail will return to another node on the trail. There255

appears to be a constant probability of exploration at each node (Gordon, 2017; Chandrasekhar256

et al., 2018), so the probability of leaving the trail accumulates with more nodes traversed. Thus,257

minimizing the number of nodes traversed reduces opportunities for the ants to get lost.258

Our results here suggest that, as in engineered networks (Byrka et al., 2016; Bateni et al., 2018),259

the cost of including a node in the turtle ant network may vary among nodes, because whether260

other ants follow an exploring ant that leaves the trail at that node depends on the node’s physical261

configuration. The costs of additional nodes include the loss of ants from the trail, and the pursuit of262

fruitless paths, which may detract from the colony’s ability to distribute resources among its many263

nests, and make fewer ants available to recruit effectively when a new food source is discovered. In264

addition, each node provides opportunities for encounters with other, competing species traveling265

in the same vegetation (Yanoviak and Kaspari, 2000; Vandermeer et al., 2008; Philpott et al., 2008).266

Further work is needed to examine variation among colonies (Jandt and Gordon, 2016) in how well267

they minimize the number of nodes, to learn how selection may shape the process that determines268

how a trail network is constructed and maintained.269

Finally, are there useful applications of the principle that variation in the environment provides270

useful constraints on routing network design? Evolved algorithms operating in the natural world can271

use structure in the environment to enhance coordination among distributed agents (Werfel et al.,272

2014). In engineering, taking into account the physical structure of the environment may improve273

the design of routing algorithms (van Rees et al., 2017; Qi et al., 2019; Bajaj and Agrawal, 2004;274

Munguia et al., 2012; Pavone et al., 2010), for example, by reducing the search space of possible275

routing paths and steering network construction away from parts of the terrain that are difficult276

to reach. This could be beneficial in applications such as robot swarms, where distributed agents277

must coordinate in complex environments using a communication backbone to explore new terrain,278

exploit of temporary resources, and maintain security against intruders (Duan et al., 2019).279

Materials and Methods280

Observation of trail networks281

The trail networks of three turtle ant colonies (Turtle Hill 460, Tejon 446, and Tejon 189) were282

observed between 06/20/18 and 08/03/18 at La Estación Biológica de Chamela in Jalisco, Mex-283

ico. Tejon 189 was observed for 10 days from 6/22/208–6/28/2018 and again on 07/01/2018,284

7/04/2018 and 8/3/2018. Tejon 446 was observed for 11 days on 6/20/2018–6/28/2018 and again285

on 07/01/2018, 07/04/2018, and 08/03/2018; and Turtle Hill 460 was observed for 10 days from286

06/21/2018–06/28/2018 and again on 07/02/2018, 07/05/2018, and 08/03/2018. Not every net-287

work was observed on each day. The colonies appeared to be of about the same size, based on288

observations in comparison with previous work in which size was estimated with mark-recapture289

measures (Gordon, 2012), but here we did not measure colony size.290

The numbers of observation days were 10 for Tejon 189 and Turtle Hill 460, and 11 for Tejon 446,291

for a total of 93 = (10 + 10 + 11) × 3 observed networks.292

Networks were mapped using the same methods as in prior work (Gordon, 2017), using visual293

inspection of the paths the ants took through the vegetation. We mapped each node and edge294

traversed by ants and all possible paths up to 5 nodes away from each node traversed by ants.295

Each node was assigned a number, and enough nodes were marked, with small labels or stickers296

on a dead end branch near the node, to identify all same nodes the next day. The initial map of297

a colony’s trail network included all nodes used by the ants, and all nodes up to 5 nodes from298

each node on the path. The length of each edge was measured with a ruler, including each edge299

connecting the nodes on the ants path and all nodes up to 5 nodes from each node on the ants’300
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path. A transition index was assigned corresponding to each pair of edges entering and leaving301

a node. The assignment of a transition index was based on a visual estimate of the number of302

different trajectories that were available for ants to traverse the node. We were not able to make303

any direct measurement of the amount of pheromone deposited.304

The assignment of the transition index was made using the following criteria:305

• TI–1 (Figure 1A): a node linking two edges on the same plant.306

• TI–2 (Figure 1B): a node that links one plant to another along a trajectory through a node that307

is likely to be the same for successive ants.308

• TI–3 (Figure 1C): a node that links one plant to another plant with more than one possible309

trajectory through the node.310

• TI–4 (Figure 1D): a node that links one plant to another with many possible trajectories that is311

often changed by conditions such as the wind.312

In each day of observation, we recorded which edges and nodes were used by the ants. As313

observed previously (illustrated for a different set of 3 colonies (Gordon, 2017)), each colony’s trail314

network changed which nodes it used from day to day, although each day’s path conserved some315

parts of the previous day’s. In the course of the observations reported here, the path of the ants316

never went outside the range of the 5 nodes around the trail that were originally mapped. The317

number of nodes and edges observed in each network is shown in Table 1.318

Assigning directionality to edges319

Experiments with marked ants show that ants tend to use particular routes from a nest (Gordon,320

2012), and tend not to turn around on the trail. To account for this, for all edges we defined a321

direction relative to one terminal; the outbound direction went away from it, and the inbound322

direction went towards it. We restricted the analysis to paths that proceed in the outbound direction.323

Modeling the transition index as a line graph324

The transition index of a node describes the probability that successive ants will take the same325

trajectory from an edge (u, v) through node v to edge (v,w). Thus, a transition index involving node326

v depends on which incoming edge was used to reach v, and which outgoing edge was used to327

leave v.328

To model the transition index, we used the line graph of G, where LG = (VL, EL). The nodes329

VL = EG, and the edges EL = {((x, y), (y, z))|(x, y), (y, z) ∈ EG}. The line graph creates a node for each330

edge in G and connects two nodes if they correspond to two adjacent edges in G. Every edge in331

the line graph denotes a transition in the original graph; traversing the edge ((u, v), (v,w)) ∈ LG332

corresponds to starting at u, going to v, crossing the junction at v, and then going to w. We assigned333

every edge in L a transition index. Figure 4 illustrates this process. The line graph is used to334

compare the observed and random networks, as described below.335

Generating random trail networks336

We compared the observed trail networks to random trail networks based on their average edge337

length, total number of nodes, and average transition index. The random networks were simulated338

in the graph made from the map of the paths used by ants and the surrounding vegetation up to339

five nodes from the nodes used by the ants. The measures of number of nodes, edge length and340

transition index were those measured in the vegetation. The random trail networks may include341

loops, as did the observed networks.342

We generated random trail networks as follows:343

1. Input: Graph G = (VG, EG), terminals X ⊆ VG.344

2. Create an empty graph R; add a random terminal x ∈ X to R.345

3. Choose a random terminal x′ ∈ X that has not already been added to R.346

4. Perform a random walk on G that starts at x′ and stops when it touches any node in R.347

11 of 18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2019. ; https://doi.org/10.1101/714410doi: bioRxiv preprint 

https://doi.org/10.1101/714410
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

N A

B

C

D

E

F

NA

AB BD

AC CD

DE

DF

Original Graph Line GraphA B

N to A to C transition NA to AC transition
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Figure 4. Converting the network to the line graph. A) Original graph. Nodes correspond to junctions in the
vegetation, and edges correspond to links, such as a branch or stem, between junctions. B) Line graph. Every

edge in the original graph has a corresponding node in the line graph. Two nodes are connected in the line

graph if they correspond to two adjacent edges in the original graph. Transitions in the original graph used in

this example are highlighted in red and blue.

5. Add all edges and nodes touched by the random walk to R.348

6. Repeat steps 3–5 until all terminals have been added to R.349

Comparing observed and random networks350

To compare the observed and random networks, we computed for each network, using the line351

graph (Figure 4), the following three objectives: 1) Average edge length: the average length of all352

edges in the network; 2) Total number of nodes: the total number of nodes in the network; and 3)353

Average transition index: the average transition index over all transitions in the network.354

For each objective, we computed a value of 'ants for the observed network and '1, '2,… , 'n355

for the n random networks. We measured the similarity between the observed network and the356

random networks for that objective as the percentage of random networks that have a lower value357

for the objective:358

100 ×
|{'i|'i ≤ 'ants}|

n
. (1)

An observed network is most similar to a random network when its percentile is 50. The closer359

the percentile is to 0, the better the observed network optimized the objective, and the closer the360

percentile is to 100, the better the random network optimized the objective. This percentile-based361

approach is unit-less, making it possible to compare performance for objectives that differ in the362

range of values.363

We treated each comparison of the observed and simulated paths, drawn from observations on364

a given day, as independent, because we compared each day’s path to a set of randomly generated365

paths using the same number of nodes. The relation between the randomly generated paths and366

the observed paths for each day was independent of those on any other day. We did not compare367

the observed paths from one day to those of another day. The path used by the ants on one day368

was similar to the one used by the ants on the previous day, perhaps because of the effect of the369

transition indices which generally remained the same from day to day.370

For each colony (Tejon 189, Tejon 446, Turtle Hill 460), and for each objective (average length,371

total nodes, and average transition index), we computed the similarity of each observed network to372

100,000 random networks that connected the same set of terminals, using Equation (1).373

Because the total number of nodes and the total edge length are correlated, we did not374

simultaneously compare total length and total number of nodes between random and observed375

trail networks. Instead, we tested whether there was a statistically significant difference in total376

length between observed and random trail networks with the same number of nodes. For each377

observation of one colony on one day, we found all the randomly generated networks that had378

the same number of nodes as that observed network (209 for Tejon 189, 1420 for Tejon 446, 221379

for Turtle Hill). We then found the total lengths of all of these networks, and used Equation (1) to380
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evaluate how well each observed network optimized total length compared to random networks381

with the same number of nodes.382

Comparision of objectives and colonies383

We used the non-parametric Scheirer-Ray-Hare two-factor ANOVA test (Scheirer et al., 1976)384

to test for effects of objective, colony, and the colony x objective interaction on the percentiles of385

the observed networks compared to random networks. We then applied post hoc Dunn’s non-386

parametric tests (Ogle et al., 2018), using a Bonferroni correction for multiple comparisons, with a387

significance threshold of p = 0.05.388

Loops389

We compared the average transition index and number of nodes in observed loops with loops390

that were available in the underlying vegetation. A loop was defined as two or more outbound paths391

that start and end at the same source and target nodes. For each observed loop, we computed all392

possible paths in the vegetation between the corresponding source and target nodes. We ranked393

all paths based on the average transition index of the path, and compared this to the rank of the394

average transition index of the paths used by the ants. We repeated the same measure for total395

number of nodes and average edge length.396

We computed the centered rank of each path used by the ants as follows: We ranked n available397

paths in the vegetation, by the average transition index of nodes in the path, total number of nodes398

in the path, or average length of edges in the path. The ranks of the paths are 1, 2, 3,… n, and the399

median rank is rm = (n+1)∕2. For each observed path, we computed its centered rank by subtracting400

the median rank from that path’s rank. Using average transition index as an example, the centered401

rank is 0 when the observed loop had the same average transition index as the median random402

loop, negative when the observed loop has a lower average transition index, and positive when the403

observed loop has a higher average transition index. We performed a similar analysis for the total404

number of nodes and average edge length.405

Connectivity406

To calculate the connectivity of the vegetation (Table 1), we estimated how many nodes are407

required for an ant that leaves the trail to return to the trail. For each edge (u, v) connecting a node408

on the trail to a node off the trail, we found the length, in number of nodes, of the path with fewest409

nodes from v back to a node on the trail. We measured connectivity as the smallest number of410

nodes in a path back to the trail, averaged over all edges (u, v) leading off the trail on all days.411

Optimizing transition index is NP-complete412

Here we show that the problem of constructing the foraging network that connects a given set413

of terminals while minimizing the average transition index of the network is NP-complete. To do414

this, we start by showing that finding the minimum average-weight path between two vertices in a415

graph is NP-complete. In this problem, we are given a graph G = (VG, EG) and two vertices u, v ∈ V .416

The goal is to find a path  = [(u, r1), (r1, r2),… , (rk, rk+1), (rk+1, v)] that minimizes the average edge417

length:
1
||

∑

e∈ w(e), where w(e) defines the length of edge e. This problem differs from the classic418

shortest path problem, which seeks a path with minimal total edge length.419

The standard method for considering the complexity class of an optimization problem is to420

consider the equivalent decision version of the problem: given a graph G = (VG, EG), two vertices421

u, v ∈ VG, and an integer k, we ask: is there a path from u to v whose average weight is ≤ k?422

Lemma 1. Finding the minimum average-weight path is NP-Complete.423

Proof. First, we show that this problem is in the class NP. If we are given a path from u to v, we can424

verify that the path is a valid u-v path, and that the average edge weight is ≤ k. This certificate will425

clearly be of polynomial length, and we can verify that it is correct in polynomial time.426

13 of 18

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 27, 2019. ; https://doi.org/10.1101/714410doi: bioRxiv preprint 

https://doi.org/10.1101/714410
http://creativecommons.org/licenses/by-nc-nd/4.0/


Manuscript submitted to eLife

Next, we show that the problem is NP-hard. We proceed via reduction from the Hamiltonian427

path problem, which is NP-Complete. Given a directed graph G = (VG, EG), the directed Hamiltonian428

path problem seeks a path that touches every vertex v ∈ VG exactly once. We construct a graph G′
429

as follows: G′ contains all of the vertices in G along with two additional vertices, s and t. We assign430

a weight of 1 to all of the original edges in G. We add a directed edge from s to every vertex v ∈ VG,431

and we add a directed edge from every vertex v ∈ VG to t. We assign a weight of 2 to all edges that432

include either s or t.433

The smallest possible average edge weight for any path from s to t is
3 + |VG|

|VG| + 1
, and such a path434

exists if and only if G has a directed Hamiltonian path.435

The reduction requires adding 2 new nodes, and 2|V | new edges to G. Thus the reduction clearly436

takes only polynomial time.437

We now use Lemma 1 to show that optimizing average transition index is NP-Complete. Let438

L = (VL, EL) be a graph whose edge weights correspond to transition indices, which we represent439

using the line graph (Figure 4). Given a set of terminalsX ⊆ VL, we seek to find a subtree FX ⊆ L that440

minimizes the average value of all edge weights in FX . We require that FX be connected without441

cycles to represent the fact that cycles in turtle ant trails are typically pruned.442

Once again we consider the decision problem: given a line network L = (VL, EL), a set of443

terminals X, and an an integer k, does L contain a subtree FX whose average weight is ≤ k?444

Lemma 2. Finding the subtree FX that optimizes average transition index is NP-Complete.445

Proof. First, we prove that the problem is in NP. Given VL, X, k, if we are presented with a subgraph446

FX as a certificate, we can verify that FX is a valid solution. We check that FX is valid subgraph,447

that FX is connected, that FX contains every terminal node X, and that the average weight of the448

edges in F is ≤ k. Clearly the size of FX is polynomially bounded, and we can verify that FX is a valid449

solution in polynomial time.450

To show that the problem is NP-hard, we proceed via reduction from the minimum average-451

weight path problem above. Given G and vertices u and v, we simply treat G as the line graph452

(L), and designate terminals X = {u, v}; this means FX is simply a u-v path. We seek the trail that453

optimizes the average transition index between terminals u and v. By construction, this is the454

minimum average-weight path from u to v in the line graph, meaning there is a subgraph FX with455

average weight of ≤ k if and only if the original graph has a u-v path with average edge weight ≤ k.456

Further, the reduction clearly takes only polynomial time.457
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