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Abstract

Creating a routing backbone is a fundamental problem in both biology and engineering. The
routing backbone of arboreal turtle ants (Cephalotes goniodontus) connects many nests and food
sources using trail pheromone. Unlike species that forage on the ground, arboreal ants are
constrained to form trail networks along branches and vines within the vegetation. We examined
what objectives the ant networks meet by comparing the observed turtle ant trail networks with
alternative networks of random, hypothetical trails in the same surrounding vegetation. We found
that turtle ant trail networks favor coherence, keeping the ants together on the trails, rather than
minimizing the distance traveled along edges in the graph. The ants' trails minimized the number
of nodes traversed, reducing the opportunity for ants to get lost at each node, and favored nodes
with 3D configurations most easily reinforced by pheromone, reducing the opportunities for ants to
diverge onto different paths. Thus, rather than forming the shortest paths, the ant networks take
advantage of natural variation in the environment to promote the maintenance of a coherent trail
that ensures that ants stay connected along the routing backbone.

Keywords: Cephalotes, ant trail network, routing networks, foraging, distributed algorithms,
search, exploration, shortest path, spanning tree

Introduction

Many engineered systems rely on a backbone routing network, whose goal is to ensure that
any two entities or devices on the network can communicate through some path (Lynch, 1996;
Alwan and Agarwal, 2009; Chouikhi et al., 2015). Some biological systems, such as neural ar-
bors (Chandrasekhar and Navlakha, 2019), plant arbors (Conn et al., 2017), and slime molds (Tero
et al., 2010), also use routing networks, to transmit information and nutrients. Effective design of
routing networks depends on the physical environment, because variation in the environment can
affect the accuracy and rate of communication in both engineered (Fei et al., 2016; Nguyen and Xu,
2007; Gong et al., 2016) and evolved natural networks (Levin, 2016; Wiles et al., 2016; Hein et al.,
2016; Couzin et al., 2005). The environment influences how the system chooses search strategies,
prioritizes competing objectives, and coordinates its local decisions. For example, wireless networks
operating in difficult to reach environments may use different routing strategies to minimize energy
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consumption of devices (Fei et al., 2016); similarly, in bacterial navigation, chemicals appearing as
localized pulses in the environment can affect gradient sensing and movement patterns (Hein et al.,
2016).

The 14,000 species of ants have evolved diverse distributed routing algorithms to search for,
obtain, and distribute resources (Gordon, 2014, 2016) in diverse environments (Dussutour et al.,
2004; Latty et al., 2011; Middleton and Latty, 2016; Gordon, 2019; Perna and Latty, 2014). Models
of engineered routing networks inspired by ants often emphasize the goal of minimizing the distance
traveled. Ant colony optimization (ACO), first proposed in 1991, loosely mimics ant behavior to
solve combinatorial optimization problems, such as the traveling salesman problem (Colorni et al.,
1991; Dorigo and Blum, 2005; Lopez-lbdnez et al., 2015) and other such routing problems (Di Caro
and Dorigo, 1998). In ACO, individual ants each use a heuristic to construct candidate solutions, and
then use pheromone to lead other ants towards better solutions. Recent advances improve ACO
through techniques such as local search (Gambardella et al., 2012), cunning ants (Tsutsui, 2007),
and iterated ants (Wiesemann and Stiitzle, 2006).

A fascinating recent area of biological research examines the goals met by the trail networks of
ants (Perna and Latty, 2014). Studies of species that forage on a continuous 2D surface (Middleton
and Latty, 2016), including Pharaoh's ants (Malickova et al., 2015), Argentine ants (Latty et al.,
2011; Flanagan et al., 2013; Garnier et al., 2009), leaf-cutter ants (Dussutour et al., 2004), army
ants (Deneubourg et al., 1989; Couzin and Franks, 2003), red wood ants (Cherix et al., 1980), and
meat ants (Cabanes et al., 2014, Bottinelli et al., 2015), show that ants use local chemical inter-
actions to form trails (Deneubourg et al., 1986; Franks, 1989; Deneubourg et al., 1989), regulate
traffic flow (Bouchebti et al., 2019), search collectively (Countryman et al., 2015), and form living
bridges (Garnier et al., 2013).

There are many objectives that an ant colony’s trail network might meet, including minimizing
energy costs by reducing the distance traveled, keeping the ants together to form a coherent trail,
resilience to rupture, and effective searching (Cook et al., 2014). Ant species that forage and build
trails on the ground have few constraints on trail geometry because their trails can form nodes and
edges anywhere on the 2D plane. Prior work (Aron et al., 1989; Garnier et al., 2009; Cook et al.,
2014) showed that ground-living ants, such as red wood ants and Argentine ants, may minimize
the distance traveled by forming trails with branch points that approximate 2D Steiner trees (Latty
et al., 2011; Buhl et al., 2009; Promel and Steger, 2012). However, minimizing distance may not
be the only objective that ant trail networks attempt to optimize. Army ants link their bodies to
form a bridge across gaps, but may not form the shortest possible bridge if this requires the use
of more ants (Reid et al., 2015). Meat ants form trail networks that link nests and trees as nodes,
and their choices of which nodes are linked, as well as the direction and length of trails, suggest
that robustness to the loss of a node is as important as minimizing the distance traveled (Bottinelli
et al., 2015; Cabanes et al., 2014).

Many ant species operate in 3D environments, such as arboreal ants that nest and forage in
trees and bushes. Unlike species that have evolved to create graph structures in continuous space
in an unconstrained 2D plane, arboreal ants must solve problems on a natural graph structure.
They cannot form trails with nodes and edges at arbitrary locations; instead, they can use only
the nodes and edges that are available to them. The arboreal turtle ant (Cephalotes goniodontus)
nests and forages in the tree canopy of tropical forests (Powell et al., 2017). A turtle ant colony
creates a trail network in the vegetation that connects several nests, providing a routing backbone
that must be maintained to allow resources to be distributed throughout the colony (Gordon, 2012,
2017). Ants search off the backbone to find and create trails to ephemeral food sources. The colony
modifies the trail from day to day, sometimes forming small alternative paths, or loops, of which
one is eventually chosen. The colony repairs the backbone in response to frequent changes in
the vegetation caused by plant growth and by ruptures made by wind or passing animals (Gordon,
2017).
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Results

Candidate objectives

Here we mapped trail networks of turtle ants in their natural habitat and computationally tested
what objective functions these trails may be optimizing. We compared the observed networks with
simulated random networks, to determine how well the observed networks meet three objectives,
possibly in combination (Bottinelli et al., 2015):

1. Minimizing the distance traveled, which was measured as the average length of the edges
in the trail network. This is equivalent to minimizing the total trail length for a fixed number of
edges. Minimizing the distance traveled minimizes the energy cost of building the trail network.
This distance, however, is not equivalent to the number of nodes traversed, as is often assumed
in various optimization algorithms (Dorigo and Stiitzle, 2004; Di Caro and Dorigo, 1998; Eberhart
et al., 1995; Karaboga, 2005), including our previous work on turtle ants (Chandrasekhar et al.,
2018), because in the vegetation, the lengths of edges vary; the distance between one node and
another ranges from less than a centimeter to more than a meter (Table 1).

2. Minimizing the total number of nodes, which promotes the maintenance of a coherent trail
by reducing opportunities for ants to get lost, but also reduces the opportunities for exploration
and thus for finding new resources off the trail. The number of nodes was measured by counting
the nodes traversed along edges used in the trail network. We previously studied how ants at
a node select which transition through a node to traverse based on the rate at which volatile
pheromone is deposited (Chandrasekhar et al., 2018). Simulation results were consistent with
field observations (Gordon, 2012) indicating that ants at a node have a constant probability of
exploring, or taking a path that is not the one most strongly reinforced by pheromone, of about
0.2 per node (Chandrasekhar et al., 2018). Thus each node presents an opportunity for ants to get
lost, and lost ants may lay pheromone trail that could lead other ants astray. Each node is also an
opportunity to meet the ants of other colonies that make trails in the same vegetation. We test here
the hypothesis, indicated by previous observations (Gordon, 2017), that modification and repairs
to the backbone tend to reduce the number of nodes over time.

3. Minimizing the difficulty of establishing a pheromone trail by finding trajectories through nodes
that are most easily reinforced by pheromone. This objective also contributes to the creation
and maintenance of a coherent trail. We hypothesized that the physical configuration of a node
influences how likely are successive ants to cross the node in the same way, thus reinforcing it with
volatile trail pheromone. The ants have short antennae that detect pheromone only locally, so the
transition from one edge through a node to another edge is reinforced only when successive ants
take exactly the same trajectory through the node (Figure 1). Nodes are variable 3D structures,
ranging from a simple fork created by a branch in a plant, to a cluster of entwined vines and
branches from different plants. We used an arbitrary categorical index to estimate how many
possible trajectories an ant could take from one edge through a node to another edge, and thus
how likely a node is to be reinforced (Figure 1, details below). We tested whether the ants' behavior
reflected this estimate. Our previous work (Gordon, 2017; Chandrasekhar et al., 2018) did not take
into account variation among nodes, and did not examine how trails are selected from among the
many available alternative networks.

Preference for nodes more likely to be reinforced was measured as the average transition index
of all transitions in the trail network. The transition index is a categorical value that ranged from
1, where successive ants are most likely to take and reinforce the same trajectory through the
transition, to 4, where successive ants are least likely to take and reinforce the same trajectory
through the transition (Figure 1). The value of the transition index was assigned based on a visual
estimate of the number of different trajectories available for ants to traverse the node, drawing on
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Figure 1. Transition indices. The photos show examples of nodes of each transition index (TI). The open black
circle shows the node traversed. The blue arrow shows the transition, leading from the edge along which ants
enter the node, through the node, toward the edge along which they exit. Each transition from an edge to a
node to another edge was assigned a transition index with a value between 1 and 4. The lower the transition
index, the more likely it is to be traversed by successive ants in the same way, and thus more likely to be
reinforced. TI-1 (upper left): a node linking two edges on the same plant; in the example shown, all ants are
likely to walk the same way across the top of the branch. TI-2 (upper right): a node that links one plant to
another along a trajectory through a node that is likely to be the same for successive ants; in the example
shown, most ants are likely to climb up the brown vine from the position shown by the ant approaching the
junction from the left. TI-3 (lower left): a node that links one plant to another plant with more than one possible
trajectory through the node; in the example shown, ants on the upper vine can reach the lower one either
directly or by following the smaller vine that ants in the photo are using. TI-4 (lower right): a node that links one
plant to another with many possible trajectories that are often changed by conditions; in the example shown,
wind can easily move the leaf so that different ants reach the junction between the leaf and branch, at different
places.

previous observations of the flow of ants on different edges from a node (e.g., see Fig. 7 in Gordon
(2017)). Each transition through a node in the vegetation (e.g., edge u — v through node v to edge
v — w; Methods) was assigned a value of the transition index. A particular node v may have more
than one transition index if there were many edges connected to that node.
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Tejon 189 Tejon 446 Turtle Hill 460
Available Used Available Used Available Used

Edge

10698 2071 +621 7615 1346074 | 14696  39.97 +9.43
Length (cm)
Total 217 435 +9.43 196 36.00 + 3.81 202 54.0 +17.93
Nodes
Transition 1.60 131 +0.06 1.70 144+ 0.13 1.48 1.44+0.10
Index
Connectivity — 375 +0.23 — 400 +0.24 — 4.46 +0.95

Table 1. Comparison of observed and available networks within the vegetation for the three colonies
observed. Values for ‘Available’ are for all of the vegetation mapped. Values for 'Used’ are means, averaged
over observation days, for the paths used in each colony’s network (» = 10 for Tejon 189 and Turtle Hill 460, and
n = 11 for Tejon 446). Connectivity is a measure of the smallest number of nodes needed to get back to the trail
used by the ants from an edge off the trail, averaged over all edges that lead off the trail used by the ants
(Methods).

Mapping and modeling turtle ant trail networks

To determine what objectives are optimized by the ants’ choice of paths within the vegeta-
tion (Figure 2A), we mapped the trail networks that connected the nests and naturally occurring,
ephemeral food sources of three colonies (Tejon 189, Tejon 446, Turtle Hill 460), for 10-15 days over
the course of 6 weeks, in a tropical dry forest at La Estacién Biologica de Chamela in Jalisco, Mexico.
We visually tracked the path taken by the ants and identified each node or junction in the vegetation,
where an ant had a choice among more than one edge in the direction it is traveling, as well as the
edges between nodes. We measured the length of each edge. We assigned a transition index to
each each transition from one edge through a node to another edge, to estimate how likely were
successive ants to take the same trajectory through the node and thus reinforce it with pheromone.
To evaluate how the ants choose nodes and edges from the options provided by the surrounding
vegetation, we also mapped all nodes, measured all edges, and assigned transition indices, for all
possible paths up to five nodes away from each node used by the ants. A trail network on one day
is illustrated in Figure 2B-C.

We modeled the network of vegetation as a directed, weighted graph, G = (V;, E;), where each
junction forms a node, and edges represent stems or branches that connect one node to another.
Edge weights correspond to physical length. Node weights, which are used in some variants of the
Steiner tree problem (Byrka et al., 2016; Bateni et al., 2018), correspond to transition indices. We
modeled transition indices by converting G into its corresponding line graph (Methods). The nodes
corresponding to the nests and food sources were designated as terminals. We compared the
extent to which each observed network on a given day optimized each of the 3 objectives, relative
to a set of 100,000 random networks connecting the same nests and food sources (Methods).

Turtle ant trail networks favor coherent trails over shortest paths

We compared the relation of observed and random networks, testing for differences among
objectives, colonies, and for a statistical interaction of objective by colony. We tested the hypothesis
that the networks favor coherent trails, and thus minimize the total number of nodes and the
average transition index more than they minimize distance traveled.

In all three colonies, the ants’ networks optimized the maintenance of coherent trails. There
were significant differences among objectives in how well observerd networks were optimized
by observed relative to random networks (Scheirer-Ray-Hare two-factor ANOVA df 2, H = 31.718,
p < 0.001). Trail networks minimized the average transition index (Dunn test, Z = 4.395, p < 0.001)
and minimized the total number of nodes (Dunn test, Z = 5.247, p < 0.001), significantly more than
the distance traveled (Figure 3A). There were no significant differences between the extent to which
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Figure 2. Turtle ant vegetation. A) Vegetation of the network mapped in B, photographed in the dry season
before the branches have leaves. B) lllustration of part of the trail network for Tejon 189 on day 9. The figure
shows 166 of the 217 nodes mapped in the surrounding vegetation. Edge lengths are scaled to measured
distance, but actual location is not represented here. N represents a nest, F represents a food source. Circles
represent nodes. Solid lines represent edges used on that day; dashed lines represent edges not used that day
(Methods). The color of a node represents the transition index (Tl) from the preceding edge to the following one:
TI-1, open circles; TI-2, blue; TI-3, red; TI-4, black. At a node where there is a choice of more than one edge in
the indicated direction, so that there could be more than one transition taken through a given node, a Tl was
assigned to each possible transition. For such nodes with more than one transition index, the Tl is represented
graphically with a pie chart, and arrows show which transition has the Tl represented by the arrow’s color.

observed networks, compared to random ones, minimized the average transition index and the
total number of nodes (Dunn test, Z = 0.852, ns).

Colonies did not differ overall in the relation of observed and random networks for the 3
objectives (S-Test, df 2, H = 2.010, ns), but there was a significant objective x colony interaction
(S-test, df 4, H = 13.284, p < 0.01). One colony, Turtle Hill 460, differed from the other two colonies in
two ways, apparently because of differences in the local vegetation: first, it minimized total nodes,
relative to random networks, significantly more than it minimized average transition index (Dunn
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Figure 2. Turtle ant vegetation. C) Map of all 217 nodes for Tejon 189 on day 9. Symbols as in B. The large
size of the network makes it difficult to show all TIs per node, so nodes with more than one Tl are colored green.

test, Z = 3.347, p < 0.05), and second, it did not minimize average transition index significantly more
than average length, relative to random networks (Dunn test, Z = 1.012, ns).

Random networks with the same number of nodes as the observed network did not differ in
total length from the observed network. We tested this to control for the confounding of total edge
length and total number of nodes because they are correlated (R = 0.67), and to test which one is
prioritized when the two objectives give different results. We compared total length in observed
and random networks by using a percentile measure (Methods). At 50%, the observed network is
equal for the objective to the average random network; the lower the percentile, the better the
observed network optimized the objective compared to random networks. In all three colonies,
the total length of observed networks was similar to that of the random networks with the same
number of nodes: the percentiles were 35.49 + 39.57% for Tejon 189, 40.59 + 27.65% for Tejon 446,
and 34.89 + 38.84% for Turtle Hill 460). For all three colonies, the percentile was within one standard
deviation of 50%.
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Figure 3. Comparison of random and observed networks. A) Similarity of observed and random networks
measured as mean percentile (Methods). A percentile of 50 (dashed line) indicates that the observed network
optimized the objective to the same extent as the average random network; the lower the percentile, the better
the observed network optimized the objective compared to random networks. Error bars show standard error
of the mean. B) Day to day change in trails in Tejon 189, showing a change that decreased both number of
nodes and average transition index. Symbols for transition index are the same as in Figure 2B :TI-1, open
circles; TI-2, blue; TI-3, red; TI-4, black. Solid yellow lines show trails used on day 9; solid blue lines show trails
used on day 10; yellow circles and dashed blue lines show trails linking the six nodes that were used on day 9
but not on day 10. C-E) Day to day changes in mean percentile for each objective. Blue represents average edge
length, orange represents average transition index, and green represents total number of nodes. A red 'X'
indicates one or more ruptured edges on that day. C, Tejon 189, D, Tejon 446, E, Turtle Hill 460.

Turtle ant trail networks increase coherence over time

From day to day, progressive changes in the trail networks of all three colonies tended to
minimize the average transition index and the total number of nodes more than they minimized
average length (Figure 3B-E). The extent to which average length was minimized varied greatly
from day to day in all three colonies, suggesting that minimizing this objective was not a strong
priority. Figure 3B shows an example of a day-to-day change that minimized both the number of
nodes and average transition index. From day 9 to day 10, the network changed from the path
shown in yellow to the path shown in blue, thus eliminating the 6 nodes circled, including 2 nodes
with TI-2 and one node of TI-4, in favor of a path with nodes all of TI-1 (Figure 3B). Overall, trails
in Tejon 189 (Figure 3C) consistently minimized the total number of nodes and average transition
index but twice increased the average length (days 7 to 10 and 11 to 15). Similarly, in Tejon 446
(Figure 3D), trails progressively decreased the total number of nodes and average transition index,
but increased average length from days 6 to 7, 8to 9, and 11 to 13. In Turtle Hill 460 (Figure 3E), the
network consistently minimized the total number of nodes. This trail network shifted nests and
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food sources, and the change led to lower transition indices (days 2 to 10). There was an initial
decrease in average edge length (days 4 to 7), due to a rupture on day 6 of a node leading to a 95
cm edge, one of the longest edges we measured, rather than to a choice of shorter edges, and then
the trails increased in average edge length (days 7 to 14). These day-to-day changes indicate that
the networks do not consistently minimize the distance traveled.

Turtle ants form loops to promote coherence

Turtle ants form loops in their paths, consisting of small, temporary alternative paths with the
same start and end points, and over time, all but one of these paths tends to be pruned away (Gor-
don, 2017). Loops are often considered to decrease the efficiency of routing networks (Alwan and
Agarwal, 2009; Chouikhi et al., 2015), but may increase robustness by offering alternative paths if
links are broken. Here we hypothesize that loops may occur because trails tend to form along easily
reinforced nodes, and some sequence of easily reinforced nodes may naturally form a cycle in the
graph.

Compared to available loops with the same start and end points (Methods), the observed loops
tended to use nodes with low transition indices, and tended to minimize the number of nodes.
We compared the centered ranks (Methods) of the average transition index, number of nodes,
and average edge length, of paths connecting the same two start and end points on each trail in
observed and available loops. A negative value of centered rank indicates that an observed path
has a low transition index compared to all of the random paths within the available vegetation with
the same start and end points. The mean (SD) of the centered rank in observed loops for average
transition index was -1.59 (2.96); for number of nodes was -1.88 (2.91) and for average edge length
was 0.44 (2.23); in all cases, significantly different from 0 (T-Test, |T| > 3, p < 0.01). These results
suggest that loop formation in trails may occur as a consequence of selecting trails that have lower
transition indices, thus promoting coherence.

Discussion

The trail networks of arboreal ants show how evolution shapes biological distributed algorithms
to respond to dynamic environments. Minimizing distance traveled is often considered the main
objective in wireless routing algorithms and ant colony optimization (Di Caro and Dorigo, 1998;
Dorigo and Blum, 2005; Lopez-Ibdnez et al., 2015), since rapid communication is often needed
between any two nodes in the network. We showed that the trail networks of turtle ants instead
optimize the maintenance of a coherent trail by minimizing the total number of nodes, and by
minimizing the average transition index; optimizing the latter objective, we show, is NP-complete
(Methods). In previous work (Chandrasekhar et al., 2018), we proposed a model for the algorithm
used to maintain and repair networks. This algorithm did not distinguish between minimizing
the number of nodes and the distance traveled, since each edge had equal length. Our results
here show that further work is needed to develop an algorithm that captures the role of physical
variation in the environment.

Minimizing the transition index and the number of nodes contributes to maintaining the coher-
ence of the trail because both diminish the risk of losing ants from the trail. Like water flowing over
a rocky stream bed, turtle ants tend to find trails most conducive to the flow of ants. By avoiding
nodes with high transition indices, turtle ants reduce the chances of ants wandering off the path
and laying pheromone trail that can lead other ants also to leave the trail. Nodes with transition
indices of 1 keep the trail on the same plant (Gordon, 2017). The vines and trees of the tropical dry
forest tend to have long internode distances to reach the sunlight at the edge of the canopy (Olson
et al., 2009). By staying on the same plant, ants are also led to resources at the edge of the canopy,
such as flowers that provide nectar.

The trail networks must also balance the tradeoff between exploration and coherence. Explo-
ration is necessary for the colony to construct trails (Sumpter and Beekman, 2003; Garnier et al.,
2009; Cook et al., 2014; Latty et al., 2011; Garnier et al., 2013; Bouchebti et al., 2019), search for
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new resources (Emek et al., 2015; Feinerman and Korman, 2017, Stickland et al., 1995; Britton
et al., 1998, Monmarché et al., 2000; Countryman et al., 2015) and repair breaks (Gordon, 2017,
Chandrasekhar et al., 2018; Cabanes et al., 2014), and the connectivity of the vegetation (Table 1)
sets the probability that ants that leave the trail will return to another node on the trail. There
appears to be a constant probability of exploration at each node (Gordon, 2017; Chandrasekhar
et al., 2018), so the probability of leaving the trail accumulates with more nodes traversed. Thus,
minimizing the number of nodes traversed reduces opportunities for the ants to get lost.

Our results here suggest that, as in engineered networks (Byrka et al., 2016; Bateni et al., 2018),
the cost of including a node in the turtle ant network may vary among nodes, because whether
other ants follow an exploring ant that leaves the trail at that node depends on the node’s physical
configuration. The costs of additional nodes include the loss of ants from the trail, and the pursuit of
fruitless paths, which may detract from the colony’s ability to distribute resources among its many
nests, and make fewer ants available to recruit effectively when a new food source is discovered. In
addition, each node provides opportunities for encounters with other, competing species traveling
in the same vegetation (Yanoviak and Kaspari, 2000; Vandermeer et al., 2008; Philpott et al., 2008).
Further work is needed to examine variation among colonies (Jandt and Gordon, 2016) in how well
they minimize the number of nodes, to learn how selection may shape the process that determines
how a trail network is constructed and maintained.

Finally, are there useful applications of the principle that variation in the environment provides
useful constraints on routing network design? Evolved algorithms operating in the natural world can
use structure in the environment to enhance coordination among distributed agents (Werfel et al.,
20174). In engineering, taking into account the physical structure of the environment may improve
the design of routing algorithms (van Rees et al., 2017; Qi et al., 2019; Bajaj and Agrawal, 2004;
Munguia et al., 2012; Pavone et al., 2010), for example, by reducing the search space of possible
routing paths and steering network construction away from parts of the terrain that are difficult
to reach. This could be beneficial in applications such as robot swarms, where distributed agents
must coordinate in complex environments using a communication backbone to explore new terrain,
exploit of temporary resources, and maintain security against intruders (Duan et al., 2019).

Materials and Methods

Observation of trail networks

The trail networks of three turtle ant colonies (Turtle Hill 460, Tejon 446, and Tejon 189) were
observed between 06/20/18 and 08/03/18 at La Estacién Bioldgica de Chamela in Jalisco, Mex-
ico. Tejon 189 was observed for 10 days from 6/22/208-6/28/2018 and again on 07/01/2018,
7/04/2018 and 8/3/2018. Tejon 446 was observed for 11 days on 6/20/2018-6/28/2018 and again
on 07/01/2018, 07/04/2018, and 08/03/2018; and Turtle Hill 460 was observed for 10 days from
06/21/2018-06/28/2018 and again on 07/02/2018, 07/05/2018, and 08/03/2018. Not every net-
work was observed on each day. The colonies appeared to be of about the same size, based on
observations in comparison with previous work in which size was estimated with mark-recapture
measures (Gordon, 2012), but here we did not measure colony size.

The numbers of observation days were 10 for Tejon 189 and Turtle Hill 460, and 11 for Tejon 446,
for a total of 93 = (10 + 10 + 11) x 3 observed networks.

Networks were mapped using the same methods as in prior work (Gordon, 2017), using visual
inspection of the paths the ants took through the vegetation. We mapped each node and edge
traversed by ants and all possible paths up to 5 nodes away from each node traversed by ants.
Each node was assigned a number, and enough nodes were marked, with small labels or stickers
on a dead end branch near the node, to identify all same nodes the next day. The initial map of
a colony's trail network included all nodes used by the ants, and all nodes up to 5 nodes from
each node on the path. The length of each edge was measured with a ruler, including each edge
connecting the nodes on the ants path and all nodes up to 5 nodes from each node on the ants’
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path. A transition index was assigned corresponding to each pair of edges entering and leaving
a node. The assignment of a transition index was based on a visual estimate of the number of
different trajectories that were available for ants to traverse the node. We were not able to make
any direct measurement of the amount of pheromone deposited.

The assignment of the transition index was made using the following criteria:

* TI-1 (Figure 1A): a node linking two edges on the same plant.

+ TI-2 (Figure 1B): a node that links one plant to another along a trajectory through a node that
is likely to be the same for successive ants.

* TI-3 (Figure 1C): a node that links one plant to another plant with more than one possible
trajectory through the node.

* Tl-4 (Figure 1D): a node that links one plant to another with many possible trajectories that is
often changed by conditions such as the wind.

In each day of observation, we recorded which edges and nodes were used by the ants. As
observed previously (illustrated for a different set of 3 colonies (Gordon, 2017)), each colony’s trail
network changed which nodes it used from day to day, although each day’s path conserved some
parts of the previous day's. In the course of the observations reported here, the path of the ants
never went outside the range of the 5 nodes around the trail that were originally mapped. The
number of nodes and edges observed in each network is shown in Table 1.

Assigning directionality to edges

Experiments with marked ants show that ants tend to use particular routes from a nest (Gordon,
2012), and tend not to turn around on the trail. To account for this, for all edges we defined a
direction relative to one terminal; the outbound direction went away from it, and the inbound
direction went towards it. We restricted the analysis to paths that proceed in the outbound direction.

Modeling the transition index as a line graph

The transition index of a node describes the probability that successive ants will take the same
trajectory from an edge (u, v) through node v to edge (v, w). Thus, a transition index involving node
v depends on which incoming edge was used to reach v, and which outgoing edge was used to
leave v.

To model the transition index, we used the line graph of G, where L; = (V;, E;). The nodes
V, = E;, and the edges E;, = {((x, ), (3, 2)|(x,¥), (, z) € E;}. The line graph creates a node for each
edge in G and connects two nodes if they correspond to two adjacent edges in G. Every edge in
the line graph denotes a transition in the original graph; traversing the edge ((u,v), (v,w)) € Ly
corresponds to starting at u, going to v, crossing the junction at v, and then going to w. We assigned
every edge in L a transition index. Figure 4 illustrates this process. The line graph is used to
compare the observed and random networks, as described below.

Generating random trail networks

We compared the observed trail networks to random trail networks based on their average edge
length, total number of nodes, and average transition index. The random networks were simulated
in the graph made from the map of the paths used by ants and the surrounding vegetation up to
five nodes from the nodes used by the ants. The measures of number of nodes, edge length and
transition index were those measured in the vegetation. The random trail networks may include
loops, as did the observed networks.

We generated random trail networks as follows:

1. Input: Graph G = (V, E;), terminals X C V.

2. Create an empty graph R; add a random terminal x € X to R.

3. Choose a random terminal x’ € X that has not already been added to R.

4. Perform a random walk on G that starts at x’ and stops when it touches any node in R.
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A Original Graph B Line Graph

B to D to E transition BD to DE transition

NtoAt(;t_ram

Figure 4. Converting the network to the line graph. A) Original graph. Nodes correspond to junctions in the
vegetation, and edges correspond to links, such as a branch or stem, between junctions. B) Line graph. Every
edge in the original graph has a corresponding node in the line graph. Two nodes are connected in the line
graph if they correspond to two adjacent edges in the original graph. Transitions in the original graph used in
this example are highlighted in red and blue.

5. Add all edges and nodes touched by the random walk to R.
6. Repeat steps 3-5 until all terminals have been added to R.

Comparing observed and random networks

To compare the observed and random networks, we computed for each network, using the line
graph (Figure 4), the following three objectives: 1) Average edge length: the average length of all
edges in the network; 2) Total number of nodes: the total number of nodes in the network; and 3)
Average transition index: the average transition index over all transitions in the network.

For each objective, we computed a value of ¢, for the observed network and ¢, ¢,. ..., 9,
for the n random networks. We measured the similarity between the observed network and the
random networks for that objective as the percentage of random networks that have a lower value
for the objective:

100 x

|{(p1|¢z S @an s}l
— )

An observed network is most similar to a random network when its percentile is 50. The closer
the percentile is to 0, the better the observed network optimized the objective, and the closer the
percentile is to 100, the better the random network optimized the objective. This percentile-based
approach is unit-less, making it possible to compare performance for objectives that differ in the
range of values.

We treated each comparison of the observed and simulated paths, drawn from observations on
a given day, as independent, because we compared each day’s path to a set of randomly generated
paths using the same number of nodes. The relation between the randomly generated paths and
the observed paths for each day was independent of those on any other day. We did not compare
the observed paths from one day to those of another day. The path used by the ants on one day
was similar to the one used by the ants on the previous day, perhaps because of the effect of the
transition indices which generally remained the same from day to day.

For each colony (Tejon 189, Tejon 446, Turtle Hill 460), and for each objective (average length,
total nodes, and average transition index), we computed the similarity of each observed network to
100,000 random networks that connected the same set of terminals, using Equation (1).

Because the total number of nodes and the total edge length are correlated, we did not
simultaneously compare total length and total number of nodes between random and observed
trail networks. Instead, we tested whether there was a statistically significant difference in total
length between observed and random trail networks with the same number of nodes. For each
observation of one colony on one day, we found all the randomly generated networks that had
the same number of nodes as that observed network (209 for Tejon 189, 1420 for Tejon 446, 221
for Turtle Hill). We then found the total lengths of all of these networks, and used Equation (1) to
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evaluate how well each observed network optimized total length compared to random networks
with the same number of nodes.

Comparision of objectives and colonies

We used the non-parametric Scheirer-Ray-Hare two-factor ANOVA test (Scheirer et al., 1976)
to test for effects of objective, colony, and the colony x objective interaction on the percentiles of
the observed networks compared to random networks. We then applied post hoc Dunn’s non-
parametric tests (Ogle et al., 2018), using a Bonferroni correction for multiple comparisons, with a
significance threshold of p = 0.05.

Loops

We compared the average transition index and number of nodes in observed loops with loops
that were available in the underlying vegetation. A loop was defined as two or more outbound paths
that start and end at the same source and target nodes. For each observed loop, we computed all
possible paths in the vegetation between the corresponding source and target nodes. We ranked
all paths based on the average transition index of the path, and compared this to the rank of the
average transition index of the paths used by the ants. We repeated the same measure for total
number of nodes and average edge length.

We computed the centered rank of each path used by the ants as follows: We ranked » available
paths in the vegetation, by the average transition index of nodes in the path, total number of nodes
in the path, or average length of edges in the path. The ranks of the paths are 1,2,3, ... n, and the
median rank s r,, = (n+1)/2. For each observed path, we computed its centered rank by subtracting
the median rank from that path’s rank. Using average transition index as an example, the centered
rank is 0 when the observed loop had the same average transition index as the median random
loop, negative when the observed loop has a lower average transition index, and positive when the
observed loop has a higher average transition index. We performed a similar analysis for the total
number of nodes and average edge length.

Connectivity

To calculate the connectivity of the vegetation (Table 1), we estimated how many nodes are
required for an ant that leaves the trail to return to the trail. For each edge (v, v) connecting a node
on the trail to a node off the trail, we found the length, in number of nodes, of the path with fewest
nodes from v back to a node on the trail. We measured connectivity as the smallest number of
nodes in a path back to the trail, averaged over all edges (v, v) leading off the trail on all days.

Optimizing transition index is NP-complete

Here we show that the problem of constructing the foraging network that connects a given set
of terminals while minimizing the average transition index of the network is NP-complete. To do
this, we start by showing that finding the minimum average-weight path between two vertices in a
graph is NP-complete. In this problem, we are given a graph G = (V,, E;) and two verticesu,v € V.
The goal is to find a path P = [(u, ), (r;, 7). . . (Frs Fipp)s Py )1 that minimizes the average edge
length: I%I Y.cp W(e), where w(e) defines the length of edge e. This problem differs from the classic

shortest path problem, which seeks a path with minimal total edge length.

The standard method for considering the complexity class of an optimization problem is to
consider the equivalent decision version of the problem: given a graph G = (V, E;), two vertices
u,v € V;, and an integer k, we ask: is there a path from u to v whose average weight is < k?

Lemma 1. Finding the minimum average-weight path is NP-Complete.
Proof. First, we show that this problem is in the class NP. If we are given a path from u to v, we can

verify that the path is a valid u-v path, and that the average edge weight is < k. This certificate will
clearly be of polynomial length, and we can verify that it is correct in polynomial time.
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Next, we show that the problem is NP-hard. We proceed via reduction from the Hamiltonian
path problem, which is NP-Complete. Given a directed graph G = (V, E;;), the directed Hamiltonian
path problem seeks a path that touches every vertex v € V,; exactly once. We construct a graph G’
as follows: G’ contains all of the vertices in G along with two additional vertices, s and . We assign
a weight of 1 to all of the original edges in G. We add a directed edge from s to every vertex v € V,
and we add a directed edge from every vertex v € V to t. We assign a weight of 2 to all edges that
include either s or 1.

. . 34V,
The smallest possible average edge weight for any path from s to ¢ is Vsl

TAFSK and such a path
G

exists if and only if G has a directed Hamiltonian path.
The reduction requires adding 2 new nodes, and 2|V | new edges to G. Thus the reduction clearly
takes only polynomial time. O

We now use Lemma 1 to show that optimizing average transition index is NP-Complete. Let
L =(V,,E,) be agraph whose edge weights correspond to transition indices, which we represent
using the line graph (Figure 4). Given a set of terminals X C V,, we seek to find a subtree F, C L that
minimizes the average value of all edge weights in F,. We require that F, be connected without
cycles to represent the fact that cycles in turtle ant trails are typically pruned.

Once again we consider the decision problem: given a line network L = (V,, E;), a set of
terminals X, and an an integer k, does L contain a subtree F, whose average weight is < k?

Lemma 2. finding the subtree F, that optimizes average transition index is NP-Complete.

Proof. First, we prove that the problem is in NP. Given V,, X, k, if we are presented with a subgraph
F, as a certificate, we can verify that F, is a valid solution. We check that F, is valid subgraph,
that F, is connected, that F, contains every terminal node X, and that the average weight of the
edges in F is < k. Clearly the size of Fy is polynomially bounded, and we can verify that F, is a valid
solution in polynomial time.

To show that the problem is NP-hard, we proceed via reduction from the minimum average-
weight path problem above. Given G and vertices u and v, we simply treat G as the line graph
(L), and designate terminals X = {u, v}; this means F, is simply a u-v path. We seek the trail that
optimizes the average transition index between terminals u and v. By construction, this is the
minimum average-weight path from u to v in the line graph, meaning there is a subgraph F, with
average weight of < k if and only if the original graph has a u-v path with average edge weight < k.
Further, the reduction clearly takes only polynomial time. O
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