

1 Signatures of relaxed selection in the *CYP8B1* gene of birds and

2 mammals

3 Sagar Sharad Shinde¹, Lokdeep Teekas¹, Sandhya Sharma¹, Nagarjun Vijay¹

4 ¹Computational Evolutionary Genomics Lab, Department of Biological Sciences, IISER Bhopal,
5 Bhauri, Madhya Pradesh, India

6 *Correspondence: nagarjun@iiserb.ac.in

7

8

9

10

11

12

13

14

15

16

17

19

10

20

81

33

24

25

26 **Summary**

27 The *CYP8B1* gene is known to catalyse reactions that determine the ratio of primary bile salts
28 and the loss of this gene has recently been linked to lack of cholic acid in the bile of naked-
29 mole rats, elephants and manatees using forward genomics approaches. We screened the
30 *CYP8B1* gene sequence of more than 200 species and test for relaxation of selection along
31 each terminal branch. The need for retaining a functional copy of the *CYP8B1* gene is
32 established by the presence of a conserved open reading frame across most species screened
33 in this study. Interestingly, the dietary switch from bovid to cetacean species is accompanied
34 by an exceptional ten amino-acid extension at the C-terminal end through a single base
35 frame-shift deletion. We also verify that the coding frame disrupting mutations previously
36 reported in the elephant are correct, are shared by extinct *Elephantimorpha* species and
37 coincide with the dietary switch to herbivory. Relaxation of selection in the *CYP8B1* gene of
38 the wombat (*Vombatus ursinus*) also corresponds to drastic change in diet. In summary, our
39 forward genomics based screen of bird and mammal species identifies recurrent changes in
40 the selection landscape of the *CYP8B1* gene concomitant with a change in dietary lipid
41 content.

42 **Key words:** Frame-shift, comparative genomics, diet change, *CYP8B1*, relaxed selection

43 **Introduction**

44 The increasing number of genomes that are being sequenced across the tree of life has
45 allowed for large-scale comparative genomic analysis. One of the most interesting findings to
46 emerge from these analysis has been the identification of Taxonomically Restricted Genes
47 (TRGs) and their contribution to evolutionary novelty (Albalat and Cañestro 2016; Johnson
48 2018). Striking phenotypic changes such as the loss of teeth in birds and the loss of vitamin C
49 synthesis ability in primates have been convincingly linked to loss of specific genes (Hiller et
50 al. 2012; Meredith et al. 2014). Changes in dietary patterns have also been linked to changes
51 in digestive enzyme gene content (Wang et al. 2016; Chen and Zhao 2019; Rinker et al.
52 2019). These comparative approaches have immense promise in understanding the
53 evolutionary origin of novelty. Utility of finding TRGs is best demonstrated by forward
54 genomics approaches that have used phenotype presence/absence matrices to perform
55 association studies that link gene loss events to specific traits in vertebrates (Sharma et al.
56 2018). Development of dedicated tools that improve local whole genome alignment quality
57 have also greatly aided the search for TRGs (Sharma et al. 2016, 2017). Gene loss in multiple
58 species with the corresponding loss of a trait in the same set of species has been used as
59 evidence of a strong association (Hiller et al. 2012; Meredith et al. 2014). These genome-
60 wide association studies leverage the phylogenetic relationships between species; signatures
61 of intense relaxed selection as well as knowledge about the functional roles of these genes in
62 coding for specific traits (see **Figure 1**). However, identification of subtle taxon-specific
63 changes at the regulatory level continues to be challenging.

64 The bile content of animals is known to affect the digestion and absorption of lipids (Edwards
65 1962). Hence, genetic variation that alters the bile composition would alter lipid metabolism.
66 The ratio of primary bile salts is determined by the reactions catalysed by the *CYP8B1* gene.

67 Experiments in mice have shown that *CYP8B1* knockout individuals have reduced lipid
68 absorption and increased glucose tolerance (Kaur et al. 2015; Bonde et al. 2016). Loss of this
69 gene has recently been linked to lack of cholic acid in naked-mole rats, elephants and
70 manatees using forward genomics approaches (Sharma and Hiller 2018). The approach
71 pioneered by Sharma & Hiller can be used to understand the genetics of the bile pathway in
72 a diverse set of vertebrate species that have distinctive bile compositions (Hofmann et al. 2010;
73 Hagey et al. 2010a). Identification of relaxed selection in the *CYP8B1* gene has also helped
74 identify candidate species (example: cape golden mole) predicted to have distinctive bile
75 composition due to the loss of genes in the bile pathway (Sharma and Hiller 2018).

76 In this study, we focussed entirely on the *CYP8B1* (cytochrome P450 family 8 subfamily B
77 member 1) gene, a single exonic gene of approximately 500 amino acids that catalyses the
78 conversion of 7 alpha-hydroxy-4-cholesten-3-one into 7-alpha, 12-alpha-dihydroxy-4-
79 cholesten-3-one. We screened the genomes of over 200 species to look for signatures of
80 relaxed/intensified selection in the *CYP8B1* gene that might provide clues about evolution of
81 the bile pathway. Our screen found that (1) The *CYP8B1* open reading frame is of similar
82 length and conserved across most bird and mammal species. Surprisingly, cetaceans have
83 acquired a ten amino acid longer c-terminal tail through a single base pair frame-shift
84 deletion. (2) Coding frame disrupting mutations previously reported in the *CYP8B1* gene of
85 the elephant are correct and are shared by woolly mammoths and the American mastodon,
86 suggesting the loss of this gene in all members of the order *Proboscidea*. (3) The previously
87 reported signature of relaxed selection in elephants is consistently detected irrespective of
88 the background species used. However, we show that the detection of relaxed selection in
89 other species of *Afrotheria* is in some cases masked by the set of background species used as
90 well as the tree topology used. Notably, the complete open reading frame of the *CYP8B1*
91 gene is present in the genome of the rock hyrax (a species previously reported to lack cholic
92 acid in its bile) with no obvious signatures of relaxed selection even when different sets of
93 background species are used. (4) A premature stop codon (AAA to TAA substitution)
94 polymorphism is segregating in the *CYP8B1* gene of domesticated chicken. (5) We identify
95 strong relaxation of selection in the *CYP8B1* gene of 14 other species (only 1 of these species
96 (the wombat) shows statistically significant relaxation after correcting for multiple testing) in
97 which the bile pathway may be disrupted or differently regulated.

98 **Materials and Methods**

99 **Data and code availability**

100 The code, data, schematic workflow and detailed instructions required to replicate the results
101 from this manuscript are available for download under GNU license from the github
102 repository <https://github.com/ceglab/CYP8B1>.

103 **Multiple sequence alignment and gene tree inference**

104 The curated coding sequences from the re-annotation step (see **Supplementary Materials** for
105 details) were used to generate a multiple sequence alignment for the *CYP8B1* gene starting
106 from the start codon and extending until the stop codon. For species with premature stop

107 codon, gaps in the form of N's were inserted in place of the stop codon/frame shift inducing
108 alleles to facilitate the alignment process. The multi-fasta open reading frames file consisting
109 of more than 200 species was aligned through Guidance2 with codon option and 100
110 bootstraps independently using PRANK (v.140603), MUSCLE (v3.8.31), MAFFT (v7.407)
111 and CLUSTALW (2.0.12) as the alignment tool (Sela et al. 2015). To assess the consistency
112 of the alignment across these four multiple sequence alignment tools, we compared the
113 alignments using the SuiteMSA tool (Anderson et al. 2011). The visual comparison of the
114 four alignments is provided as a pixel plot in **Supplementary Figure S1**. To obtain a
115 quantitative comparison of the different alignments we also calculated the consistency
116 between the alignments (see **Supplementary Table S1**). We found that the alignments
117 differed from each other mainly at the alignment ends. These differences were mainly driven
118 by the differences in the C-terminal end of cetacean species. The N-terminal end was
119 different in two of the bat species (i.e., *Hipposideros armiger* and *Rousettus aegyptiacus*), the
120 speckled mousebird (*Coliulus striatus*) and the alpaca (*Vicugna pacos*). The overall robustness
121 of the alignment quality was deemed to be good based on the Guidance scores and presence
122 of very few gaps. The comparison of multiple sequence alignments for each group of species
123 was done using the program MUMSA (Lassmann and Sonnhammer 2005) to calculate the
124 AOS (Average Overlap Score: a measure of similarity between alignments) and MOS
125 (Multiple Overlap Score: a measure of biological correctness of individual alignments).
126 Based on the values of AOS and MOS (provided in **Supplementary Table S2**) for each of
127 these cases it is clear that alignment results are largely consistent across programs. We have
128 performed tests of sequence substitution saturation described in (Xia et al. 2003) and
129 implemented in the program DAMBE (Xia 2013). The index to measure substitution
130 saturation (Iss) and the corresponding critical Iss (Iss.c) estimates for symmetrical and
131 extreme asymmetrical tree are reported for each group of species that has been used in our
132 study (**Supplementary Table S3**). In all cases we find that Iss < Iss.c and largely shows a
133 significant difference. Hence, the sequences used in our study show little saturation.

134 The best sequence evolution model was identified using the program modeltest-ng (Darriba et
135 al. 2019) with the multiple sequence alignments generated by each of the four programs as
136 input. The best model according to BIC is provided in **Supplementary Table S2**. We
137 obtained maximum likelihood gene trees for the *CYP8B1* gene using RAxML-NG with 1000
138 bootstraps (Kozlov et al. 2019). Subsets of these species were grouped based on their
139 evolutionary proximity and further analyses were performed within these groups. Robustness
140 of the results obtained was assessed using multiple tree topologies. We also evaluated the
141 sequences for substitution saturation using the index to measure substitution saturation (Iss)
142 described in (Xia et al. 2003) and implemented in the program DAMBE (Xia 2013). The
143 index to measure substitution saturation (Iss) and the corresponding critical Iss (Iss.c)
144 estimates for symmetrical and extreme asymmetrical tree are reported for each group of
145 species that has been used in our study (**Supplementary Table S3**). In all cases we find that
146 Iss < Iss.c and largely shows a significant difference. Hence, the sequences used in our study
147 show little saturation.

148 The nucleotide composition bias across the *CYP8B1* gene sequence was calculated for each
149 species. The mean GC content is reported on the github page:
150 (<https://github.com/ceglab/CYP8B1/ORFs/README.md>). The mean GC content values range
151 from 48% to 66%, with the highest values of GC content being found within Chiroptera and
152 the Platypus. We have also investigated the heterogeneity in GC content along the length of
153 each sequence by calculating the GC content in sliding windows of 100 base pairs with a step
154 size of 10 base pairs (https://github.com/ceglab/CYP8B1/gc_content). The heterogeneity in GC
155 deviation and GC content across the gene sequence for each of the species can be seen in
156 **Supplementary Figure S2A** and **S2B** respectively.

157 **Test for relaxed or intensified selection and episodic diversifying selection**

158 The test for relaxed or intensified selection implemented in the RELAX program compares a
159 background set of species with a foreground set of species to detect signatures of relaxation
160 in selection or intensification of selection in a hypothesis testing framework (Wertheim et al.
161 2015). Here, we have used *CYP8B1* gene sequences from more than 200 species to look for
162 signatures of relaxed selection in subgroups using the program RELAX available in the
163 package HyPhy (hypothesis testing using phylogenies) (Pond et al. 2005). While a minimum
164 of 1 foreground species can be tested using RELAX, at least two other species need to be
165 included in the alignment with at least one of them being labelled as a background species.
166 The tests for selection were performed using the aBSREL (Kosakovsky Pond et al. 2011;
167 Smith et al. 2015), MEME (Murrell et al. 2012), FEL (Kosakovsky Pond and Frost 2005),
168 FUBAR (Murrell et al. 2013) and BUSTED (Murrell et al. 2015) methods implemented in the
169 HyPhy package (Smith et al. 2015).

170 **Results**

171 Intense signatures of relaxed selection have generally been found in genes that have acquired
172 reading frame disrupting changes and are considered as further evidence supporting gene loss
173 (Sharma and Hiller 2018). Nonetheless, relaxed selection can also have other consequences
174 such as phenotypic plasticity and need not always lead to gene loss (Lahti et al. 2009). We
175 have performed manual curation of the *CYP8B1* gene to correct genome assembly and
176 annotation artefacts in numerous species (see **Supplementary Materials**). These curated
177 open reading frames are used to test for signatures of relaxed selection in more than 200
178 species.

179 **Cetacean specific c-terminal peptide tail**

180 Our dataset consists of *CYP8B1* gene sequences from sixteen cetacean species. We found that
181 the open reading frame of all cetacean species except those from the genus *Sousa* (*Sousa*
182 *chinensis* and *Sousa sahulensis*) and *Tursiops* (*Tursiops truncates* and *Tursiops aduncus*)
183 were approximately 30 base pairs longer, leading to an additional 10 amino-acid peptide tail
184 that is missing in all the other artiodactyl species (see **Figure 2A**). This 10 amino-acid stretch
185 was conserved across twelve cetacean species and was also supported by raw sequencing
186 reads (see <https://github.com/ceglab/CYP8B1/SAMs>). To check whether this is a cetacean
187 specific change, we added the *CYP8B1* gene sequence from ten non-cetacean artiodactyl

188 species to our multi-species sequence alignment and found that all cetacean species had
189 acquired a one base-pair deletion exactly three codons (CCT to C-T) before the erstwhile stop
190 codon found in non-cetacean artiodactyl species (see **Figure 2B**). This single base-pair
191 deletion resulted in a coding frame shift and a downstream stop codon after the split of the
192 cetacean ancestor from the hippopotamus.

193 Lipid metabolism genes are known to have evolved under positive selection in the cetacean
194 lineage (Foote et al. 2015, 2016; Wang et al. 2016). A more detailed study of the lipid
195 metabolism genes in a recent study found that the *CYP8B1* gene has the strongest pattern of
196 positive selection in cetaceans (Endo et al. 2018). The single base pair deletion in the
197 *CYP8B1* of cetaceans was not identified in previous studies to the best of our knowledge.
198 However, the co-occurrence of gene-damaging indels, positive selection and dietary changes
199 has been reported for the *CYP3A* gene cluster in humans (Hu and Ng 2012; Wagh et al.
200 2012). Gene-damaging indels are known to be accompanied by compensatory changes that
201 maintain the complete reading frame. Frame shift inducing in-del changes can drastically
202 alter the protein sequence through even a single base insertion or deletion. The ten amino-
203 acid change in protein length of the *CYP8B1* gene in cetaceans is intriguing given the central
204 role of this gene in the bile pathway. The change from a herbivorous diet in the bovid
205 ancestor to a carnivorous diet in cetaceans is also accompanied by positive selection in the
206 *SLC27A2* and *HSD17B4* genes that are part of the bile pathway (Endo et al. 2018). We have
207 used our alignment to identify the sites under selection in the cetacean lineage (see
208 **Supplementary Table S5**). Hence, the *CYP8B1* gene shows signatures of episodic positive
209 selection at few sites.

210 The bottlenose dolphin (*Tursiops truncatus*) stop codon has been acquired subsequently
211 through an independent (G to T) transversion event that converts the GAG codon to a TAG
212 stop codon (see **Figure 2B**). The recent (after the split from the pacific white sided dolphin
213 (*Lagenorhynchus obliquidens*)) independent change in coding region length in bottlenose
214 dolphin is further supported by the strong conservation of the region downstream from the
215 new stop codon until the old stop codon. Dolphins have a bile profile that is more similar
216 (consisting of CA and CDCA) to the hippopotamus and bovid species in contrast to whales
217 that have a distinctive bile profile consisting of DCA, CA and CDCA (Hofmann et al. 2010).
218 However, it is not clear whether this distinctive bile composition has a genetic basis.
219 Nonetheless, the repeated change in the length of the C-terminal peptide tail of the *CYP8B1*
220 gene needs to be investigated further to understand if it has had any functional consequences.
221 The multi-species alignment spanning cetaceans was analysed using the general descriptive
222 model implemented in RELAX. We did not use the information obtained from the general
223 descriptive model for performing any other tests as that would amount to using the same data
224 twice. Although none of the cetacean species showed (see **Supplementary Table S4**)
225 significant intensification or relaxation, it can be seen (**Supplementary Figure S3A**) that the
226 ancestor of all cetaceans experienced relaxed selection ($K<1$) coinciding with the loss of the
227 stop codon through a one base-pair deletion. Moreover, the intermittent relaxed selection
228 ($K<1$) within various cetacean lineages is in sharp contrast to the presence of intensified
229 selection ($K>1$) in most non-cetacean artiodactyl species. A previous study has already used

230 tests for positive selection comparing bovid species with cetaceans and has found evidence
231 for positive selection in the lineage leading to cetaceans (Endo et al. 2018). Hence, it seems
232 that the C-terminal tail of the *CYP8B1* gene underwent changes in length potentially as a
233 result of intermittent relaxation in purifying selection accompanied by episodic positive
234 selection.

235 **Gene loss and relaxed selection within *Afrotheria***

236 All the five mutations that cause loss of the *CYP8B1* gene are known to be shared between
237 the African and Asian elephant, suggesting the lack of cholic acid in the common ancestor of
238 both elephant species (Sharma and Hiller 2018). We further screened the genomic reads of
239 the woolly mammoth (*Mammuthus primigenius*), Columbian mammoth (*Mammuthus*
240 *columbi*), straight-tusked elephant (*Palaeoloxodon antiquus*) and the American mastodon
241 (*Mammut americanum*) and found that all the five coding frame disrupting changes were
242 shared between the woolly mammoth, American mastodon and the African elephant (see
243 **Supplementary Table S6**). Despite the poor read coverage and potential DNA damage
244 induced artefacts, both the Columbian mammoth (*Mammuthus columbi*) and straight-tusked
245 elephant (*Palaeoloxodon antiquus*) showed evidence for few of the coding frame disrupting
246 changes (see **Supplementary Table S6**).

247 The West Indian manatee (*Trichechus manatus*) shares only one of the five coding frame
248 disrupting changes with the elephant lineage. Hence, the remaining four changes should have
249 occurred after the ancestor of the lineage leading to mastodons, elephants and woolly
250 mammoths split from the ancestor of manatees. However, the possibility of independent loss
251 of the *CYP8B1* gene in these two groups cannot be ruled out. Based on dental wear and
252 distribution of vegetation, proboscideans are thought to have had a herbivorous diet (Saarinen
253 and Lister 2016). Similar to the dietary switch between bovids and cetaceans, the change in
254 selection landscape within Afrotheria coincides with changes in diet.

255 We used seven Afrotherian species and performed independent tests for relaxed selection in
256 each of the species (treating one species as the foreground each time) and the remaining
257 species as the background. A significant relaxation of selection ($K < 1$ at p -value < 0.01) was
258 found in *Loxodonta africana* and strong intensification of selection in the lesser hedgehog
259 tenrec. While significant relaxed selection has also been reported for *Trichechus manatus*
260 *latirostris* and *Chrysochloris asiatica* in a previous study (Sharma and Hiller 2018), we found
261 that neither of these two species showed significant relaxed selection when the six species
262 used in our alignment were used as the background species (see **Supplementary Table S4**).
263 Since the set of species used as the background was different in our test compared to the
264 previous report we systematically investigated the effect of using different species as the
265 background as well as different tree topologies.

266 **Effect of background species choice and tree topology on tests of relaxed selection**

267 In order to evaluate the effect of using different background species in our tests of relaxed
268 selection we used all combinations of background species that are possible within our seven
269 Afrotherian species and performed independent tests of relaxed selection for each of the

270 species. We have performed tests of relaxed selection using all possible combinations of
271 background and foreground species using not just the strict consensus tree but using each of
272 the topologies (topology 1 to 3, see **Figure 3A**) that were supported by at least 10 trees out of
273 the 1000 bootstraps performed. As a contrast to comparing the 3 most well supported
274 topologies, we also evaluated 3 randomly chosen trees that are supported by only 1 tree out of
275 1000 (topology 4 to 6, see **Figure 3A**). Species that are neither labelled as foreground nor
276 background are treated as unclassified. To evaluate the effect of only changing the species
277 labelling, the same alignment was used for all of these tests. Consistent with previous reports,
278 we found that tests for relaxed selection in *Loxodonta africana*, *Trichechus manatus*
279 *latirostris* and *Chrysochloris asiatica* were significant (without correcting for multiple
280 testing) when the background set did not contain species under relaxed selection (see **Figure**
281 **3B**). Among the species showing signatures of relaxed selection, the results of tests in the
282 cape golden mole (*Chrysochloris asiatica*) seem to be affected the most by the tree topology.

283 Despite using a varied set of background species we found that the rock hyrax (*Procavia*
284 *capensis*), lesser hedgehog tenrec (*Echinops telfairi*), cape elephant shrew (*Elephantulus*
285 *edwardii*) and the aardvark (*Orycteropus afer afer*) showed signatures of intensified selection
286 (see **Figure 3C**). Consistent with the results obtained from the above analysis, we found that
287 the general descriptive model also shows strong relaxation in the elephant and manatee
288 lineages (**Supplementary Figure S3B**) and intensification in the lesser hedgehog tenrec.
289 Based on these extensive empirical analyses with different tree topologies, we believe that
290 while tree topology does have an effect on the results, it is much less of a concern than the set
291 of species used as the background and foreground set.
292

293 We performed tests for relaxation/intensification of selection in each of the ten species from
294 the order *Chiroptera* considering the remaining nine species as the background set. Strong
295 intensification of selection (**Supplementary Table S7**) was seen in the Natal long-fingered
296 bat (*Miniopterus natalensis*) and the black flying fox (*Pteropus alecto*). However, tests in
297 three out of the ten species resulted in highly unreliable estimates of K. To ensure that these
298 tests are not strongly affected by the set of species used as the background, we performed
299 additional tests for relaxation/intensification of selection in each of the species after removing
300 one of the ten species from the alignment. We found that the large flying fox (*Pteropus*
301 *vampyrus*) and the great roundleaf bat (*Hipposideros armiger*) showed relaxed selection in
302 most of the tests when one of background species was removed (**Supplementary Table S7**).
303 The Natal long-fingered bat (*Miniopterus natalensis*) continued to show intensification of
304 selection even when one of the bat species was removed from the alignment. These patterns
305 seen in Afrotheria and *Chiroptera* highlight the relevance of background species used for
306 hypothesis testing.

307 **Signatures of relaxed selection in Rodents, Bears, Lemurs and the Wombat**

308 Loss of the *CYP8B1* gene in naked-mole rat (*Heterocephalus glaber*) has been shown by the
309 conserved synteny of the flanking regions, changes in the length of intergenic regions and
310 lack of supporting reads in sequencing datasets (Sharma and Hiller 2018). Among the rodent
311 species with genome assemblies, the Damara mole rat (*Fukomys damarensis*) is

312 evolutionarily the closest to the naked mole rat. Our study finds signatures of relaxed
313 selection (see **Supplementary Table S4**) in the Damara mole rat and provides additional
314 support for the inferred gene loss previously reported in the naked mole rat. Both the naked-
315 mole rat (*Heterocephalus glaber*) and the Damara mole rat (*Fukomys damarensis*) are
316 herbivorous and represent a shift in diet from other rodents. Based on the species included in
317 our alignment, we could see relaxed selection in *Mus pahari* and *Mus spretus* and intensified
318 selection in *Mus musculus* and *Mus caroli* (**Supplementary Table S4**). Previous studies have
319 reported the presence of only β -MCA, α -MCA and CDCA in the African pygmy mouse (*Mus*
320 *minutoides*) and only β -MCA, CA and α -MCA in the South eastern Asian house mouse (*Mus*
321 *musculus castaneus*). Such rapid change in the bile composition and patterns of
322 relaxed/intensified selection suggests divergence of bile pathway might have played an
323 important role in the diversification of the *Mus* subgenus and potentially reflects rapid
324 changes in dietary patterns.

325 The diet of the North American beaver (*Castor canadensis*) mainly consists of tree bark and
326 cambium (the soft tissue that grows under the bark) and its bile composition has been shown
327 to contain only UDCA and CDCA (Hagey et al. 2010b). It is possible to enzymatically obtain
328 UDCA starting from CDCA or CA or even lithocholic acid for industrial production (Eggert
329 et al. 2014; Tonin and Arends 2018). Hence, it is intriguing to evaluate whether the *CYP8B1*
330 gene is still required in the beaver genome as it is possible produce both CDCA and UDCA
331 without having to produce cholic acid. Based on manual curation and correction of the beaver
332 *CYP8B1* gene sequence we could annotate a complete open reading frame that is also
333 supported by raw reads (see <https://github.com/ceglab/CYP8B1/SAMs>). However, we could
334 find relaxation of selection in the beaver lineage (see **Supplementary Table S4**). The relative
335 contribution of CA vs CDCA to the formation of UDCA can help understand the need for
336 retaining a functional copy of the *CYP8B1* gene in the beaver genome and the patterns of
337 relaxed selection identified.

338 It has previously been reported that the bile composition of the family *Lemuridae* consists
339 mostly of CDCA (Hagey et al. 2010b). We used an alignment of six species consisting of
340 *Prosimians & Dermoptera* to look for signatures of relaxed selection. Strong relaxed
341 selection (see **Supplementary Table S4**) was inferred in the black lemur (*Eulemur macaco*)
342 and the Philippine tarsier (*Carlito syrichta*). This raises the intriguing possibility of complete
343 lack of cholic acid in lemurs through disruption of the bile pathway. However, the Philippine
344 tarsier is known to have cholic acid in its bile (Hagey et al. 2010b). While signatures of
345 relaxed selection can help identify candidate species, high quality genomes are required to
346 identify gene disrupting mutations that might be present in one of the bile pathway genes.

347 Based on an alignment of six species spanning *Monotremata*, *Marsupialia* and *Xenarthra* we
348 found evidence for significant (even after correcting for multiple testing) relaxed selection
349 (see **Supplementary Table S4**) in the wombat (*Vombatus ursinus*). In contrast to this,
350 significant intensified selection was seen in the Queensland koala (*Phascolarctos cinereus*).
351 Multiple copies of varying lengths have been assembled and annotated for the *CYP8B1* gene
352 in the Tasmanian devil (*Sarcophilus harrisii*) and opossum (*Monodelphis domestica*). Hence,
353 we did not include these two species in our alignment. It has been reported that the wombat

354 has CDCA and unusual 15 α -OH bile acids as the major bile components (Hagey et al. 2010b)
355 and might explain the strong relaxation of selection in its *CYP8B1* gene. Moreover, wombats
356 are herbivorous and represent a dietary shift. We could not see any evidence for the presence
357 of multiple copies of the *CYP8B1* gene within the wombat in the raw sequencing read data
358 (see <https://github.com/ceglab/CYP8B1/SAMs>). The significant intensified selection seen in
359 the koala is potentially reflective of the Queensland koala (*Phascolarctos cinereus*) having a
360 bile composition consisting almost entirely of oxoLCA (Hagey et al. 2010b) and a diet that
361 mainly consists of eucalyptus leaves. The gene-wide test for branch specific selection
362 implemented in the program BUSTED (Murrell et al. 2015) also showed evidence of
363 significant (p-value < 0.01) episodic diversifying selection in the koala branch. However, the
364 signatures of positive selection seen in the koala lineage were not significant after removal of
365 the wombat sequence from the alignment.

366 Selection landscape in bird lineages

367 The bile composition across birds has considerable diversity (Hofmann et al. 2010; Hagey et
368 al. 2010a). Hence, we hoped to find distinctive molecular signatures reflecting the previously
369 reported bile composition. Our expectation is also supported by recently reported patterns of
370 molecular evolution in other dietary enzymes in birds (Chen and Zhao 2019). We analysed
371 different clades of birds by grouping them as *Galliformes*, Ducks, *Palaeognathae*,
372 *Passeriformes*, *Telluraves* (without passerines) and *Aequorlitorinithes* (see **Supplementary**
373 **Material** for details).

374 Population gene dispensability in chicken

375 The chicken genome assembly is a good starting point within birds for performing gene
376 gain/loss analysis as it has the oldest and potentially the most well curated and continually
377 updated genome assembly among birds (International Chicken Genome Sequencing
378 Consortium 2004). Moreover, the latest build of the chicken genome *Gallus_gallus*-5.0 has
379 been assembled to a high quality using long read sequencing methods (Warren et al. 2017).
380 To maintain consistency with the previous assemblies, the same highly inbred red jungle fowl
381 individual used for the initial genome sequencing effort has been used in the recent chicken
382 genome assembly (Warren et al. 2017). The reference genome individual and its associated
383 raw read data provide compelling evidence for a premature stop codon (AAA to TAA) in the
384 UCD-001 individual that results in a 13% reduction in the amino-acid sequence length of the
385 *CYP8B1* gene (see **Supplementary Table S10**).

386 Chicken bile salts are known to contain cholic acid and the inferred premature stop
387 codon/gene loss event appears contradictory. To verify whether this substitution is
388 segregating as a polymorphism in chicken breeds, we screened the re-sequenced whole
389 genomes of more than 100 chicken individuals to look for this stop codon and find that it is
390 found as heterozygous (TAA) in at least three individuals and homozygous (TAA/AAA) in
391 another individual (see **Figure 4** and **Supplementary Table S10**). The *CYP8B1* gene open
392 reading frame was found to be conserved across bird species and none of the other bird
393 species had a stop codon at the position that the chicken *CYP8B1* gene has acquired a stop

394 codon. We found the ancestral codon state (AAA) in the one *Gallus varius* individual
395 screened. This suggests that this premature stop codon inducing polymorphism was
396 potentially acquired in domesticated chicken. To further verify whether the *CYP8B1* gene is
397 lost in chicken due to relaxed selective constraints, we decided to use the strategy used by
398 (Sharma and Hiller 2018) and looked for signatures of relaxed selection in the chicken
399 lineage. We found evidence for relaxation of selection in the chicken lineage when the
400 *CYP8B1* sequence of the greater prairie chicken (*Tympanuchus cupido pinnatus*) was
401 included in the alignment (see **Supplementary Table S4**). To further evaluate the robustness
402 of this result, we used three of the most well supported tree topologies (see **Supplementary**
403 **Figure S4A**) to test for signatures of relaxed selection while using all possible combination
404 of species as the background set for each of the six species included (see **Supplementary**
405 **Figure S4B, S4C**). We found consistent signatures of relaxed selection in chicken (see
406 **Supplementary Figure S3C**). Loss of the *CYP8B1* gene has been shown to have beneficial
407 consequences (Kaur et al. 2015) and a premature stop codon could have been selected during
408 the domestication process in some breeds while being under relaxed purifying selection in
409 other breeds.

410 **Candidate species whose bile composition needs further investigation**

411 Based on our analysis of the *CYP8B1* gene across more than 200 species we have identified
412 distinctive and strong patterns of relaxed selection in 14 new species (5 birds, 2 bat species, 3
413 rodents, 2 primates and one member each of the orders *Eulipotyphla* and *Diprotodontia*)
414 consisting of *Tinamus guttatus*, *Nipponia nippon*, *Buceros rhinoceros silvestris*, *Chaetura*
415 *pelagica*, *Anas platyrhynchos*, *Pteropus vampyrus*, *Hipposideros armiger*, *Mus pahari*,
416 *Fukomys damarensis*, *Castor canadensis*, *Eulemur macaco*, *Carlito syrichta*, *Sorex araneus*
417 and *Vombatus ursinus*. The distinctive bile composition reported earlier in *Palaeognathae*,
418 hornbills, mousebird and duck seems to be associated with signatures of relaxed selection that
419 we detect in these birds (Hofmann et al. 2010). Although we list 14 species as being under
420 relaxed selection, only the signature found in the *Vombatus ursinus* (apart from the
421 previously reported *Loxodonta africana*) is significant after multiple testing corrections. High
422 quality gap-free genomes for these species might help identify gene loss events in genes of
423 the bile pathway. The presence of a complete open reading frame and lack of clear signals of
424 relaxed selection in the rock hyrax (*Procavia capensis*) suggests that the previously reported
425 bile composition for this species might need to be re-evaluated. However, we cannot rule out
426 the possibility that lack of cholic acid is not reflected in relaxed selection on the *CYP8B1*
427 gene of the rock hyrax.

428 **Discussion**

429 While comprehensive genome-wide studies that rely upon the abundance of publically
430 available genome sequence data have improved our understanding of gene gain/loss
431 dynamics during evolution of various clades (Hahn et al. 2007b, a), the quality of genomes
432 used and the stringency of quality controls implemented in different studies have remained
433 points of concern despite the maturity of the field (Han et al. 2013; Bornelöv et al. 2017).
434 Gene loss events have generally been inferred based on one of the following types of

435 observations, (a) Gene sequence is completely missing in the region syntenic to the ortholog
436 and no traces of its existence in the form of pseudogenes or partial gene fragments can be
437 found (b) Partial scattered fragments of the gene can be found but are lacking a reading frame
438 (c) The erstwhile open reading frame can be seen to contain multiple stop codon
439 insertions/reading frame disrupting changes (d) The open reading frame has acquired a single
440 pre-mature stop codon and (e) The open reading frame is intact, but the gene is not
441 transcribed or properly spliced or translated due to change or loss of regulatory sequences.
442 Observations of type (a) and (b) can be the result of gaps in the genome assembly or errors
443 during the assembly process and can generally be remedied by searching for the gene
444 sequence in the high coverage raw sequencing read datasets. The best form of evidence for a
445 gene loss event is probably an observation of type (c) in which the open reading frame can
446 still be discerned but has accumulated multiple stop codon insertions and other reading frame
447 disrupting mutations. However, it has to be noted that genes which have accumulated
448 multiple coding frame disrupting changes can take on alternative roles such as regulatory
449 non-coding RNA (Groen et al. 2014). Inferring gene loss from observations of type (d) is
450 probably the most difficult, as the phenotypic consequences of such loss-of-function
451 mutations are still being understood (Sulem et al. 2015; Pagel et al. 2017). Similarly,
452 inference of gene loss based on splice-site disrupting changes and modifications to the gene
453 or splice-site regulatory regions generally require supporting evidence from other functional
454 data.

455 Use of genomes of single individuals of a species for inference of selection (Mugal et al.
456 2014) as well as demography (Vijay et al. 2018) have been shown to result in an incomplete
457 picture. Hence, it is not surprising that gene loss inferences are also prone to be affected by
458 limited population level sampling. Yet, comparative genomics across hundreds of species
459 rely on pre-existing datasets and in most cases are able to sample the genome of utmost one
460 individual per species (Hiller et al. 2012; Sharma et al. 2018). However, a clever workaround
461 has been the use of tests of relaxed selection in the focal species compared to a set of
462 background species in a hypothesis testing framework as evidence in support of gene loss
463 (Wertheim et al. 2015; Hecker et al. 2017). While tests of relaxed selection are becoming
464 essential when population genetic sampling is sparse or non-existent, use of such tests
465 requires a sufficiently large number of background species in which this particular gene is
466 still under purifying selection. Moreover, relaxed selection need not necessarily lead to loss
467 of a gene even if it accumulates a stop codon inducing polymorphism. Similarly, it is possible
468 that a species which has acquired a gene loss polymorphism lacks signatures of relaxed
469 selection due to existence of balancing/diversifying selection acting on the gene within the
470 focal species.

471 In contrast to this, sequencing of thousands of individuals from diverse human populations
472 has allowed the reliable and robust estimation of allele frequencies across the human genome.
473 Efforts are on to assemble Pan-genomes that incorporate population level variation into
474 genome assemblies to better represent the genetic variation found within a species (Sherman
475 et al. 2019). Intriguingly, some of the single nucleotide polymorphisms identified from such
476 large-scale population sampling result in gain/loss of stop codons (MacArthur and Tyler-

477 Smith 2010; MacArthur et al. 2012). In fact, loss of function (LoF) sequence polymorphisms
478 have been frequently observed when allele frequency estimates are based on sampling of
479 large numbers of individuals (Lee and Reinhardt 2012). It has also been argued that LoF
480 variants could have no observable impact on the phenotype (Pagel et al. 2017) and could be
481 rescued by translational stop codon readthrough that has been observed in numerous genes in
482 metazoan species (Jungreis et al. 2011; Dunn et al. 2013; Loughran et al. 2014). Comparative
483 genomic approaches that integrate ribosomal profiling data and proteomics have even
484 suggested a regulatory role for such stop codon readthrough events (Jungreis et al. 2016).
485 Whether some of these stop codons might have some biological or evolutionary significance
486 is still being investigated (Potapova et al. 2018). Hence, gene loss inferences based on single
487 loss of function substitutions have to be treated with caution. We have focussed on the
488 population gene dispensability of the *CYP8B1* gene in chicken in the current study to
489 highlight this issue. Similar screening of population genomic data across other species could
490 potentially identify segregating gene disrupting nucleotide changes. However, this will
491 require availability of genome re-sequencing data from multiple individuals of each species
492 organised as easily accessible pan-genomes.

493 Sharma & Hiller show that the *CYP8B1* gene in naked mole rat is completely missing in the
494 region syntenic to the human ortholog and represents gene loss event observation of the type
495 (a) defined above. The elephant ortholog of *CYP8B1* has retained the erstwhile open reading
496 frame, but has accumulated four premature stop codons and represents gene loss event
497 observation of the type (c). However, in the case of the manatee, only a single premature stop
498 codon has accumulated in the gene and results in a 35% reduction in the amino acid sequence
499 length. This gene loss inference would be an observation of type (d). Since, gene loss events
500 of type (d) are difficult to understand, Sharma & Hiller rely upon the existence of signatures
501 of relaxed purifying selection in the elephant and manatee lineages as additional evidence in
502 support of the gene loss event. In contrast to the recurrent gene loss pattern identified by
503 Sharma & Hiller it is possible for genes to persist despite relaxed selection or even modify
504 their function (Lahti et al. 2009). Phenotypic plasticity has also been shown to result from
505 relaxed selection (Hunt et al. 2011). However, phenotypic plasticity mediated by changes at
506 the gene expression level that are restricted to specific life stages are harder to identify than
507 changes in the genomic sequence. Hence, being able to identify changes in the coding
508 sequences that reflect changes in regulatory regions would be extremely useful.

509 The accumulation of multiple stop codon/frame-shift changes in a gene is generally
510 considered strong evidence for the loss of that gene as the truncated protein is unlikely to
511 perform the role of the full protein. Detailed quantification of the functional changes at the
512 phenotypic level is required to ascertain the significance of premature stop codons. Another
513 proxy for identifying changes in function is to look for signatures of intense relaxed selection.
514 Our study uses the *CYP8B1* gene sequence of more than 200 species to look for signatures of
515 relaxed selection across bird and mammal species. Notably, we find that reductions in the
516 degree of purifying selection were detected in lineages that don't have coding frame
517 disrupting substitutions in the *CYP8B1* gene and these species might have potentially lost
518 other genes in the bile pathway (see **Supplementary Table S4**). Similarly, the prevalence of

519 the stop codon polymorphism in *CYP8B1* gene of chicken can be better understood by
520 looking at different domesticated chicken breeds; its functional consequences on cholesterol
521 metabolism and bile salt composition. Overall, we find that shifts in diet play an important
522 role in determining the selection landscape of *CYP8B1* and other bile pathway genes.

523 **Acknowledgement**

524 NV would like to acknowledge funding from IISER Bhopal under grant#
525 INST/BIO/2017/019. We thank Council of Scientific & Industrial Research for fellowship to
526 SSS, Ministry of Human Resource Development for fellowships to LT and SS. NV has been
527 awarded the Innovative Young Biotechnologist Award 2018 from the Department of
528 Biotechnology and Early Career Research Award from the Department of Science and
529 Technology (both Government of India).

530 **References**

531 Albalat R, Cañestro C (2016) Evolution by gene loss. *Nat Rev Genet* 17:379–391

532 Anderson CL, Strope CL, Moriyama EN (2011) SuiteMSA: visual tools for multiple
533 sequence alignment comparison and molecular sequence simulation. *BMC
534 Bioinformatics* 12:184

535 Bonde Y, Eggertsen G, Rudling M (2016) Mice Abundant in Muricholic Bile Acids Show
536 Resistance to Dietary Induced Steatosis, Weight Gain, and to Impaired Glucose
537 Metabolism. *PLoS One* 11:e0147772

538 Bornelöv S, Seroussi E, Yosefi S, et al (2017) Correspondence on Lovell et al.: identification
539 of chicken genes previously assumed to be evolutionarily lost. *Genome Biol* 18:112

540 Chen Y-H, Zhao H (2019) Evolution of digestive enzymes and dietary diversification in
541 birds. *PeerJ* 7:e6840

542 Darriba D, Posada D, Kozlov AM, et al (2019) ModelTest-NG: a new and scalable tool for
543 the selection of DNA and protein evolutionary models. *bioRxiv* 612903. doi:
544 10.1101/612903

545 Dunn JG, Foo CK, Belletier NG, et al (2013) Ribosome profiling reveals pervasive and
546 regulated stop codon readthrough in *drosophila melanogaster*. *Elife* 2:e01179

547 Edwards HM (1962) Observations on Feeding Cholic Acid to Broilers. *Poult Sci* 41:340–341

548 Eggert T, Bakonyi D, Hummel W (2014) Enzymatic routes for the synthesis of
549 ursodeoxycholic acid. *J Biotechnol* 191:11–21

550 Endo Y, Kamei K-I, Inoue-Murayama M (2018) Genetic signatures of lipid metabolism
551 evolution in Cetacea since the divergence from terrestrial ancestor. *J Evol Biol* 31:1655–
552 1665

553 Foote AD, Liu Y, Thomas GWC, et al (2015) Convergent evolution of the genomes of
554 marine mammals. *Nat Genet* 47:272–275

555 Foote AD, Vijay N, Ávila-Arcos MC, et al (2016) Genome-culture coevolution promotes

556 rapid divergence of killer whale ecotypes. *Nat Commun* 7:ncomms11693

557 558 Groen JN, Capraro D, Morris K V. (2014) The emerging role of pseudogene expressed non-
coding RNAs in cellular functions. *Int J Biochem Cell Biol* 54:350–355

559 560 561 Hagey LR, Møller PR, Hofmann AF, Krasowski MD (2010a) Diversity of bile salts in fish
and amphibians: evolution of a complex biochemical pathway. *Physiol Biochem Zool*
83:308–21

562 563 564 Hagey LR, Vidal N, Hofmann AF, Krasowski MD (2010b) Evolutionary diversity of bile
salts in reptiles and mammals, including analysis of ancient human and extinct giant
ground sloth coprolites. *BMC Evol Biol* 10:133

565 566 Hahn MW, Demuth JP, Han S-G (2007a) Accelerated Rate of Gene Gain and Loss in
Primates. *Genetics* 177:1941–1949

567 568 Hahn MW, Han M V., Han S-G (2007b) Gene Family Evolution across 12 *Drosophila*
Genomes. *PLoS Genet* 3:e197

569 570 571 Han M V, Thomas GWC, Lugo-Martinez J, Hahn MW (2013) Estimating gene gain and loss
rates in the presence of error in genome assembly and annotation using CAFE 3. *Mol
Biol Evol* 30:1987–97

572 573 574 Hecker N, Sharma V, Hiller M (2017) Transition to an Aquatic Habitat Permitted the
Repeated Loss of the Pleiotropic KLK8 Gene in Mammals. *Genome Biol Evol* 9:3179–
3188

575 576 577 Hiller M, Schaar BT, Indjeian VB, et al (2012) A “forward genomics” approach links
genotype to phenotype using independent phenotypic losses among related species. *Cell
Rep* 2:817–23

578 579 Hofmann AF, Hagey LR, Krasowski MD (2010) Bile salts of vertebrates: structural variation
and possible evolutionary significance. *J Lipid Res* 51:226–46

580 Hu J, Ng PC (2012) Predicting the effects of frameshifting indels. *Genome Biol* 13:R9

581 582 Hunt BG, Ometto L, Wurm Y, et al (2011) Relaxed selection is a precursor to the evolution
of phenotypic plasticity. *Proc Natl Acad Sci* 108:15936–15941

583 584 585 International Chicken Genome Sequencing Consortium (2004) Sequence and comparative
analysis of the chicken genome provide unique perspectives on vertebrate evolution.
Nature 432:695–716

586 587 Johnson BR (2018) Taxonomically Restricted Genes Are Fundamental to Biology and
Evolution. *Front Genet* 9:407

588 589 Jungreis I, Chan CS, Waterhouse RM, et al (2016) Evolutionary Dynamics of Abundant Stop
Codon Readthrough. *Mol Biol Evol* 33:3108–3132

590 591 Jungreis I, Lin MF, Spokony R, et al (2011) Evidence of abundant stop codon readthrough in
drosophila and other metazoa. *Genome Res* 21:2096–2113

592 593 Kaur A, Patankar J V, de Haan W, et al (2015) Loss of Cyp8b1 improves glucose
homeostasis by increasing GLP-1. *Diabetes* 64:1168–79

594 Kosakovsky Pond SL, Frost SDW (2005) Not so different after all: A comparison of methods
595 for detecting amino acid sites under selection. *Mol Biol Evol* 22:1208–1222

596 Kosakovsky Pond SL, Murrell B, Fourment M, et al (2011) A random effects branch-site
597 model for detecting episodic diversifying selection. *Mol Biol Evol*. doi:
598 10.1093/molbev/msr125

599 Kozlov AM, Darriba D, Flouri T, et al (2019) RAxML-NG: a fast, scalable and user-friendly
600 tool for maximum likelihood phylogenetic inference. *Bioinformatics*. doi:
601 10.1093/bioinformatics/btz305

602 Lahti DC, Johnson NA, Ajie BC, et al (2009) Relaxed selection in the wild. *Trends Ecol Evol*
603 24:487–96

604 Lassmann T, Sonnhammer ELL (2005) Automatic assessment of alignment quality. *Nucleic
605 Acids Res* 33:7120–8

606 Lee YCG, Reinhardt JA (2012) Widespread Polymorphism in the Positions of Stop Codons
607 in *Drosophila melanogaster*. *Genome Biol Evol* 4:533–549

608 Loughran G, Chou M-Y, Ivanov IP, et al (2014) Evidence of efficient stop codon readthrough
609 in four mammalian genes. *Nucleic Acids Res* 42:8928–8938

610 MacArthur DG, Balasubramanian S, Frankish A, et al (2012) A systematic survey of loss-of-
611 function variants in human protein-coding genes. *Science* 335:823–8

612 MacArthur DG, Tyler-Smith C (2010) Loss-of-function variants in the genomes of healthy
613 humans. *Hum Mol Genet* 19:R125–R130

614 Meredith RW, Zhang G, Gilbert MTP, et al (2014) Evidence for a single loss of mineralized
615 teeth in the common avian ancestor. *Science* 346:1254390

616 Mugal CF, Wolf JBW, Kaj I (2014) Why Time Matters: Codon Evolution and the Temporal
617 Dynamics of dN/dS. *Mol Biol Evol* 31:212–231

618 Murrell B, Moola S, Mabona A, et al (2013) FUBAR: A fast, unconstrained bayesian
619 AppRoximation for inferring selection. *Mol Biol Evol*. doi: 10.1093/molbev/mst030

620 Murrell B, Weaver S, Smith MD, et al (2015) Gene-wide identification of episodic selection.
621 *Mol Biol Evol* 32:1365–71

622 Murrell B, Wertheim JO, Moola S, et al (2012) Detecting individual sites subject to episodic
623 diversifying selection. *PLoS Genet*. doi: 10.1371/journal.pgen.1002764

624 Pagel KA, Pejaver V, Lin GN, et al (2017) When loss-of-function is loss of function:
625 assessing mutational signatures and impact of loss-of-function genetic variants.
626 *Bioinformatics* 33:i389–i398

627 Pond SLK, Frost SDW, Muse S V. (2005) HyPhy: hypothesis testing using phylogenies.
628 *Bioinformatics* 21:676–679

629 Potapova NA, Andrianova MA, Bazykin GA, Kondrashov AS (2018) Are Nonsense Alleles
630 of *Drosophila melanogaster* Genes under Any Selection? *Genome Biol Evol* 10:1012–
631 1018

632 Rinker DC, Specian NK, Zhao S, Gibbons JG (2019) Polar bear evolution is marked by rapid
633 changes in gene copy number in response to dietary shift. *Proc Natl Acad Sci U S A*
634 201901093. doi: 10.1073/pnas.1901093116

635 Saarinen J, Lister AM (2016) Dental mesowear reflects local vegetation and niche separation
636 in Pleistocene proboscideans from Britain. *J Quat Sci* 31:799–808

637 Sela I, Ashkenazy H, Katoh K, Pupko T (2015) GUIDANCE2: accurate detection of
638 unreliable alignment regions accounting for the uncertainty of multiple parameters.
639 *Nucleic Acids Res* 43:W7–14

640 Sharma V, Elghafari A, Hiller M (2016) Coding exon-structure aware realigner (CESAR)
641 utilizes genome alignments for accurate comparative gene annotation. *Nucleic Acids*
642 *Res* 44:e103

643 Sharma V, Hecker N, Roscito JG, et al (2018) A genomics approach reveals insights into the
644 importance of gene losses for mammalian adaptations. *Nat Commun* 9:1215

645 Sharma V, Hiller M (2018) Loss of Enzymes in the Bile Acid Synthesis Pathway Explains
646 Differences in Bile Composition among Mammals. *Genome Biol Evol* 10:3211–3217

647 Sharma V, Schwede P, Hiller M (2017) CESAR 2.0 substantially improves speed and
648 accuracy of comparative gene annotation. *Bioinformatics* 33:3985–3987

649 Sherman RM, Forman J, Antonescu V, et al (2019) Assembly of a pan-genome from deep
650 sequencing of 910 humans of African descent. *Nat Genet* 51:30–35

651 Smith MD, Wertheim JO, Weaver S, et al (2015) Less is more: an adaptive branch-site
652 random effects model for efficient detection of episodic diversifying selection. *Mol Biol*
653 *Evol* 32:1342–53

654 Sulem P, Helgason H, Oddson A, et al (2015) Identification of a large set of rare complete
655 human knockouts. *Nat Genet* 47:448–452

656 Tonin F, Arends IWCE (2018) Latest development in the synthesis of ursodeoxycholic acid
657 (UDCA): a critical review. *Beilstein J Org Chem* 14:470–483

658 Vijay N, Park C, Oh J, et al (2018) Population Genomic Analysis Reveals Contrasting
659 Demographic Changes of Two Closely Related Dolphin Species in the Last Glacial. *Mol*
660 *Biol Evol* 35:2026–2033

661 Wagh K, Bhatia A, Alexe G, et al (2012) Lactase persistence and lipid pathway selection in
662 the Maasai. *PLoS One* 7:e44751

663 Wang Z, Xu S, Du K, et al (2016) Evolution of Digestive Enzymes and RNASE1 Provides
664 Insights into Dietary Switch of Cetaceans. *Mol Biol Evol* 33:3144–3157

665 Warren WC, Hillier LW, Tomlinson C, et al (2017) A New Chicken Genome Assembly
666 Provides Insight into Avian Genome Structure. *G3 Genes|Genomes|Genetics* 7:109–117

667 Wertheim JO, Murrell B, Smith MD, et al (2015) RELAX: Detecting Relaxed Selection in a
668 Phylogenetic Framework. *Mol Biol Evol* 32:820–832

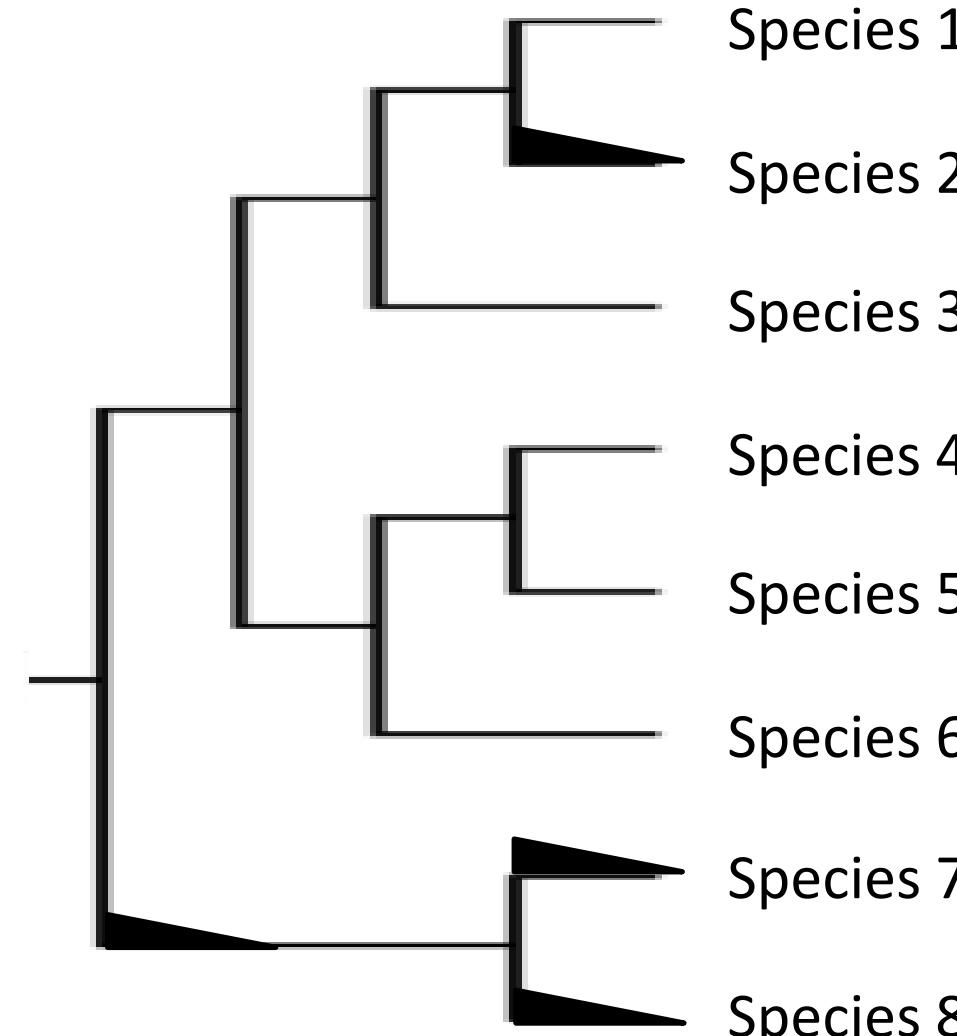
669 Xia X (2013) DAMBE5: A comprehensive software package for data analysis in molecular

670 biology and evolution. Mol Biol Evol. doi: 10.1093/molbev/mst064

671 Xia X, Xie Z, Salemi M, et al (2003) An index of substitution saturation and its application.
672 Mol Phylogen Evol. doi: 10.1016/S1055-7903(02)00326-3

673 **Figure legends**

674 **Figure 1:** Schematic figure showing the phylogenetic relationship between species and their
675 corresponding trait and gene presence/absence matrices. Forward genomics approaches
676 compile such matrices using extensive bioinformatics curation and perform genome-wide
677 associations to identify significant associations. Relaxed purifying selection at the focal gene
678 in the foreground species (i.e., species suspected to have lost the functional copy of the gene)
679 compared to the background species is considered as evidence for the loss of gene function.
680 In this figure a perfect association can be seen between trait 1 and gene 1.


681 **Figure 2:** Multiple sequence alignment of cetacean and non-cetacean Artiodactyl gene
682 sequences for the *CYP8B1* gene. **(A)** Ten amino-acid extension at C-terminal of cetaceans **(B)**
683 Nucleotide sequence alignment showing the one base-pair frame-shift deletion across all
684 cetaceans followed by a single stop-codon inducing transversion in the bottlenose dolphin
685 (*Tursiops truncatus*).

686 **Figure 3:** Signatures of relaxed selection represented as a combination of K values (K<1 is
687 relaxed selection & K>1 intensified selection) denoting the intensity of change in selection
688 and corresponding p-values in species from the order *Afrotheria*. Each data point in the figure
689 is the result of one hypothesis test each. Tests that showed significant relaxation of selection
690 are shown in filled squares while those that are not significant are shown as empty circles.
691 The colour of each data point corresponds to one of the six tree topologies shown in panel A.
692 **(A)** Tree topologies used to assess signatures of relaxed selection **(B)** Species that
693 consistently showed significant relaxed selection **(C)** Species that consistently showed
694 significant intensified selection.

695 **Figure 4:** Fraction of reads supporting each of the four nucleotide bases at the premature stop
696 codon inducing site in the *CYP8B1* gene of chicken. Each bar in the figure represents one
697 individual (Short Read Archive ID provided along the x-axis) with the colour red
698 representing the base A and green representing the stop codon inducing base T.

Figure 1

Genetically resolved species tree

Associations

Trait

Presence/absence

	Trait 1	Trait 2
Species 1	✓	✓
Species 2	✗	✗
Species 3	✓	✗
Species 4	✓	✓
Species 5	✓	✗
Species 6	✓	✓
Species 7	✗	✓
Species 8	✗	✗

Gene

Presence/absence matrix

	Gene 1	Gene 2	Gene 3	Gene 4	Gene 5
Species 1	■	□	■	■	□
Species 2	□	■	■	■	■
Species 3	■	■	■	■	■
Species 4	■	□	■	■	□
Species 5	■	■	■	■	■
Species 6	■	■	■	■	■
Species 7	■	■	■	■	■
Species 8	□	■	■	■	■

■ Gene present

□ Gene lost

→ Relaxed purifying selection

Figure 2A**NCBI Accession#**

XP_019802502.1	KLFVLLVVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR LWS*
XP_007445778.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR LWS ELCPGGRKPG*
XP_022409571.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR LWS ELCPGGRKPG*
XP_024612477.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PW SELCPGGRKPG*
XP_007193526.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHDRVFRYRLH LW SELCPGGRKPG*
XP_007106847.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR LCS ELCPGGRRPD*
XP_004277980.1	KLFVLLVVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR LWS ELCPGGCKPG*
XP_026956035.1	KLFVLLVVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR LWS ELCPGGRKPG*
NKPW01003843.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PVE*
(105073-106960)	
XP_014332269.1	KLFILLMV ^M NFDLKL ^V D ^P ATPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_005695649.1	KLFILLMV ^M NFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PVA*
XP_010833726.1	KLFILLMV ^M NFDLELVD ^P ATPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_006051855.1	KLFILLMV ^M NFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_019840605.1	KLFILLMV ^M NFDLELVD ^P ATPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_012004537.1	KLFILLMV ^M NFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PVE*
XP_020728056.1	KLFILLMV ^M NFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_015091845.1	KLFVLLMVTHFDLELVD ^P DTPVPPVDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_010973047.1	KLFVLLMVTHFDLELVD ^P D ^T TVP ^P VDPQRWGF ^G TTQPSHEVRFRYRLR PAE*
XP_010944219.1	KLFVLLMVTHFDLELVD ^P D ^T TVP ^P VDPQRWGF ^G TTQPSHEVRFRYRLR PAE*

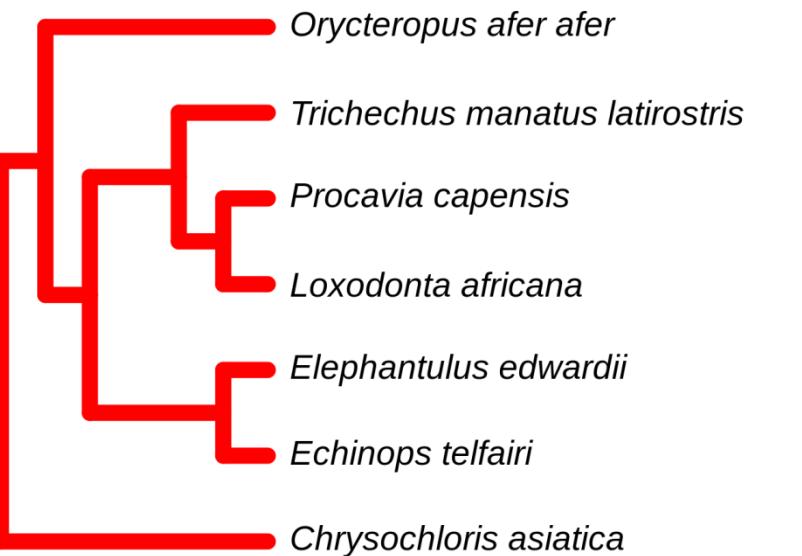
Species name

<i>Tursiops truncatus</i>
<i>Lipotes vexillifer</i>
<i>Delphinapterus leucas</i>
<i>Neophocaena asiaeorientalis</i>
<i>Balaenoptera acutorostrata</i>
<i>Physeter catodon</i>
<i>Orcinus orca</i>
<i>Lagenorhynchus obliquidens</i>
<i>Hippopotamus amphibius</i>
<i>Bos mutus</i>
<i>Capra hircus</i>
<i>Bison bison bison</i>
<i>Bubalus bubalis</i>
<i>Bos indicus</i>
<i>Ovis aries</i>
<i>Odocoileus virginianus texanus</i>
<i>Vicugna pacos</i>
<i>Camelus dromedarius</i>
<i>Camelus bactrianus</i>

Figure 2B**NCBI Accession#**

**Conserved region of the erstwhile ORF
in bottlenose dolphin (*Tursiops truncatus*)**

XM_019946943.1 TAC CGC CTG CGC **C-TG** TGG AGT **TAG** CTC TGC CCA GGT GGC CGC AAG CCT GGC **TAG** GGG
 XM_007445716.1 TAC CGC CTG CGC **C-TG** TGG AGT GAG CTC TGC CCA GGT GGC CGC AAG CCT GGC **TAG**
 XM_022553863.1 TAC CGC CTG CGC **C-TG** TGG AGT GAG CTC TGC CCA GGT GGC CGC AAG CCT GGC **TAG**
 XM_024756709.1 TAC CGC CTG CGC **C-CG** TGG AGT GAG CTC TGC CCA GGT GGC CGC AAG CCT GGC **TAG**
 XM_007193464.1 TAC CGC CTG CAC **C-TG** TGG AGT GAG CTC TGC CCA GGT GGC CGC AAG CCT GGC **TAG**
 XM_007106785.1 TAC CGC CTG CGC **C-TG** TGC AGT GAG CTC TGC CCA GGT GGC CGC AGG CCT GAC **TAG**
 XM_004277932.1 TAC CGC CTG CGC **C-TG** TGG AGT GAG CTC TGC CCA GGT GGC TGC AAG CCT GGC **TAG**
 XM_027100234.1 TAC CGC CTG CGC **C-TG** TGG AGT GAG CTC TGC CCA GGT GGC CGC AAG CCT GGC **TAG**
 NKPW01003843.1 TAC CGC CTG CGG CCT GTG GAG **TGA** GTT CTG CCC AGG CGC CGC AAG CCT GGC TGG GGG
 (105073-106960)
 XM_014476783.1 TAC CGC CTG CGG CCT GCG GAG **TGA** GCT CTG TCC AAG AGG CGG AAG TCT GGC TGG GGG
 XM_005695592.1 TAC CGC CTG CGG CCT GTG GCG **TGA** GCT CTG TCC AGG TGG CCG AAG TCT GGC TGG GGG
 XM_010835424.1 TAC CGC CTG CGG CCT GCG GAG **TGA** GCT CTG TCC AAG AGG CCG AAG TCT GGC TGG GGG
 XM_006051793.1 TAC CGC CTG CGG CCT GCG GAG **TGA** GCT CTG TCC AAG AGG CTG AAG TCT GGC TGG GGG
 XM_019985046.1 TAC CGC CTG CGG CCT GCG GAG **TGA** GCT CTG TCC AAG AGG CCG AAG TCT GGC TGG GGG
 XM_012149147.1 TAC CGC CTG CGG CCT GTG GAG **TGA** GCT CTG TCC AGG TGG CCG AAG TCT GGC TGG GGG
 XM_020872397.1 TAC CGC CTG CGG CCT GCA GAG **TGA** GCT CTG TCC AGG CAG CCA CGA GTG TGG CTG CGG
 XM_015236359.1 TAC CGC CTG CGG CCT GCT GAG **TGA** GCT CTG CCC AGG CGG CCG CCA GCC **TGA** TCG GGG
 XM_010974745.1 TAC CGC CTG CGG CCT GCT GAG **TGA** GAT CTG CCC AGG CGG CCA CCA GCC **TGA** TCG GGG
 XM_010945917.1 TAC CGC CTG CGG CCT GCT GAG **TGA** GAT CTG CCC AGG CGG CCA CCA GCC **TGA** TCG AGG


Species name

Tursiops truncatus
Lipotes vexillifer
Delphinapterus leucas
Neophocaena asiaeorientalis
Balaenoptera acutorostrata
Physeter catodon
Orcinus orca
Lagenorhynchus obliquidens
Hippopotamus amphibius
Bos mutus
Capra hircus
Bison bison bison
Bubalus bubalis
Bos indicus
Ovis aries
Odocoileus virginianus
Vicugna pacos
Camelus dromedarius
Camelus bactrianus

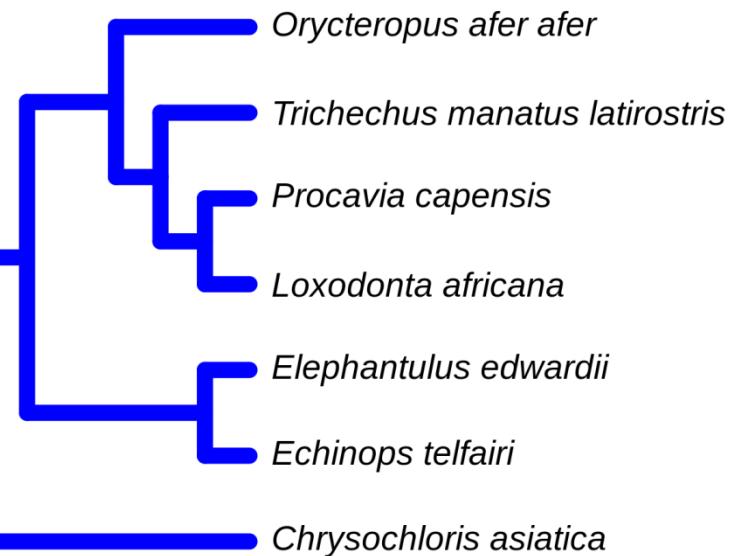
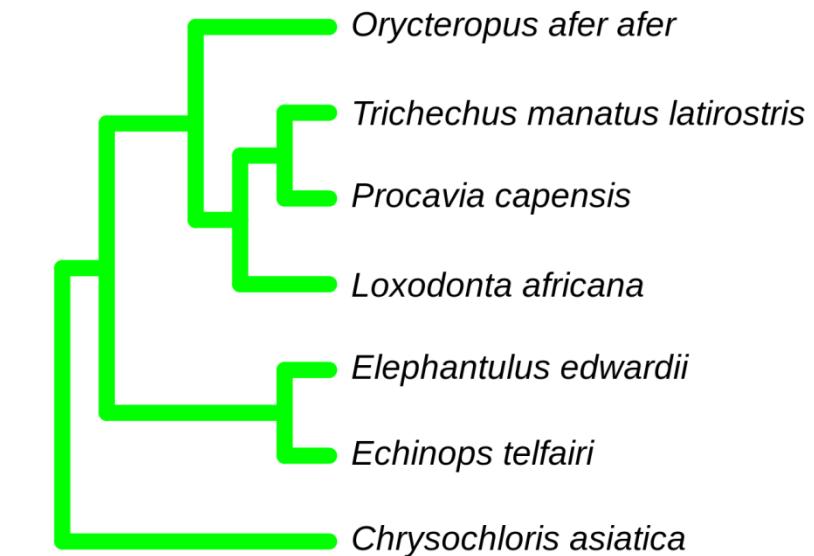
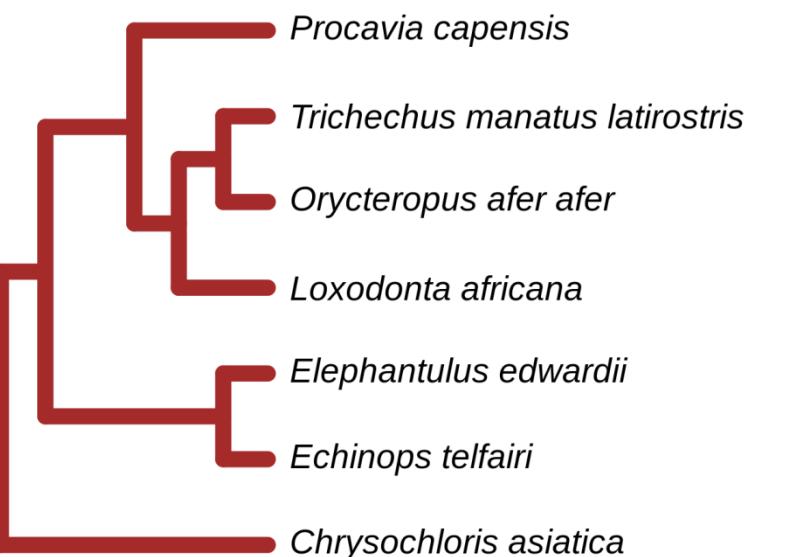
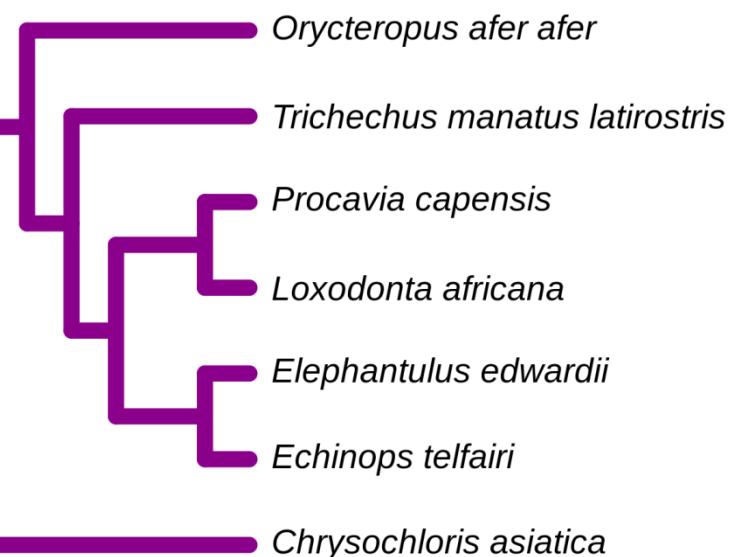

Stop codons are marked in bold red letters**Downstream in-frame stop codons are marked in bold green letters**

Figure 3A


Topology 1


Topology 2


Topology 3

Topology 4

Topology 5

Topology 6

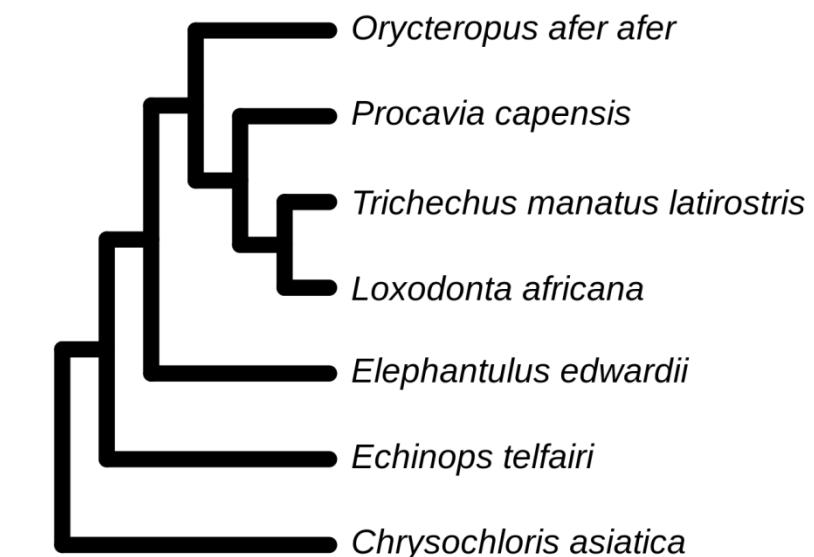


Figure 3B

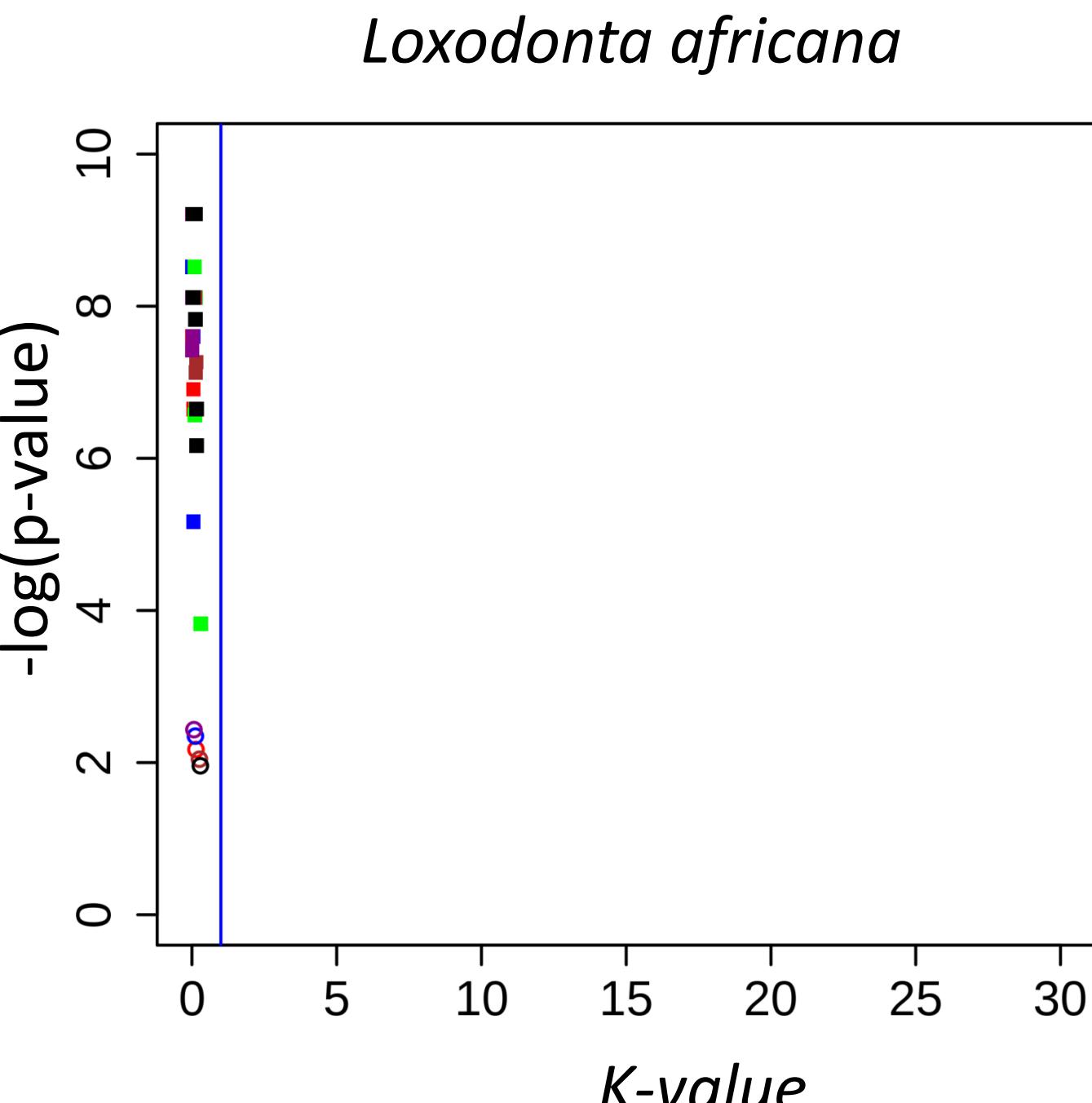
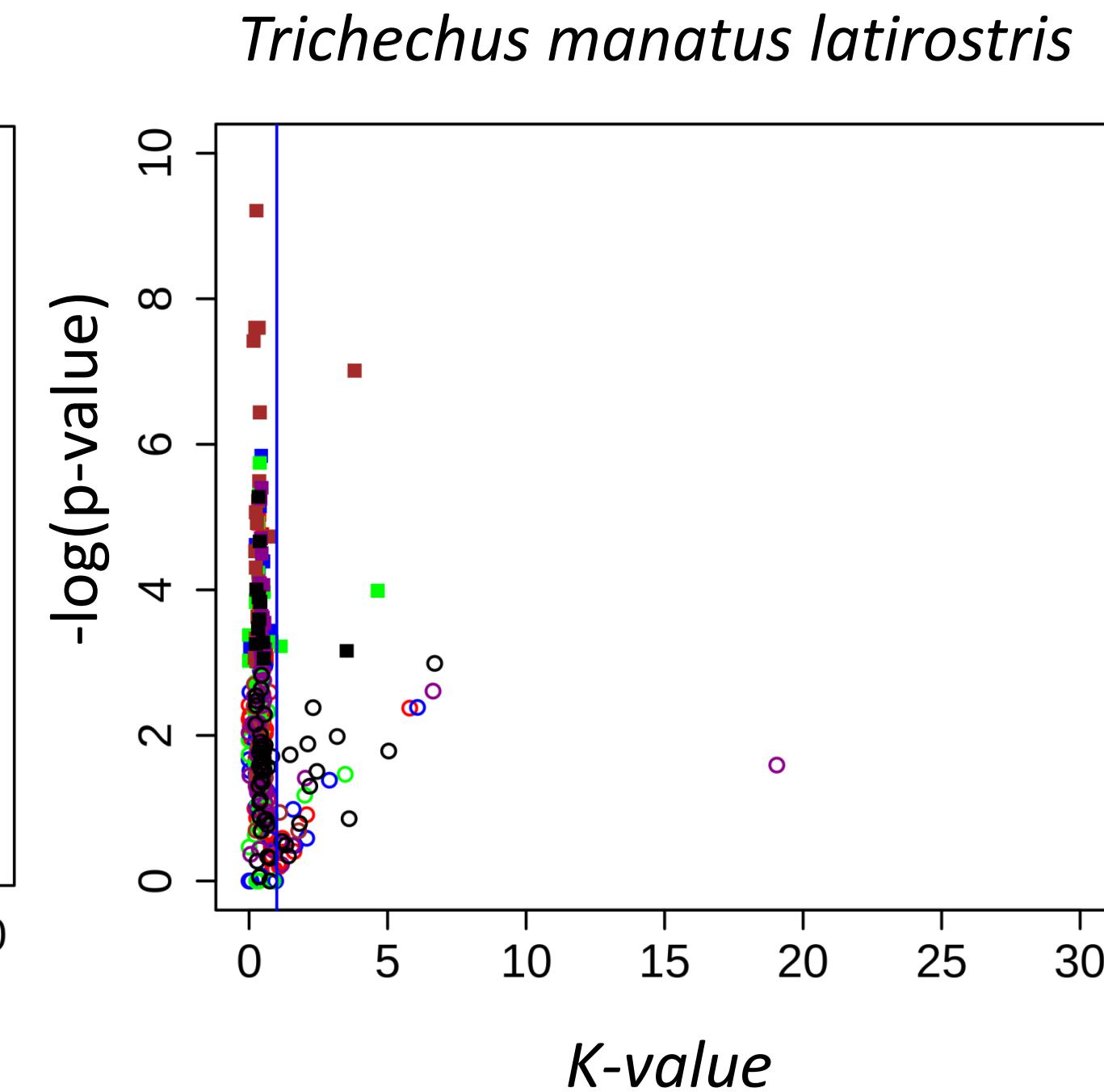
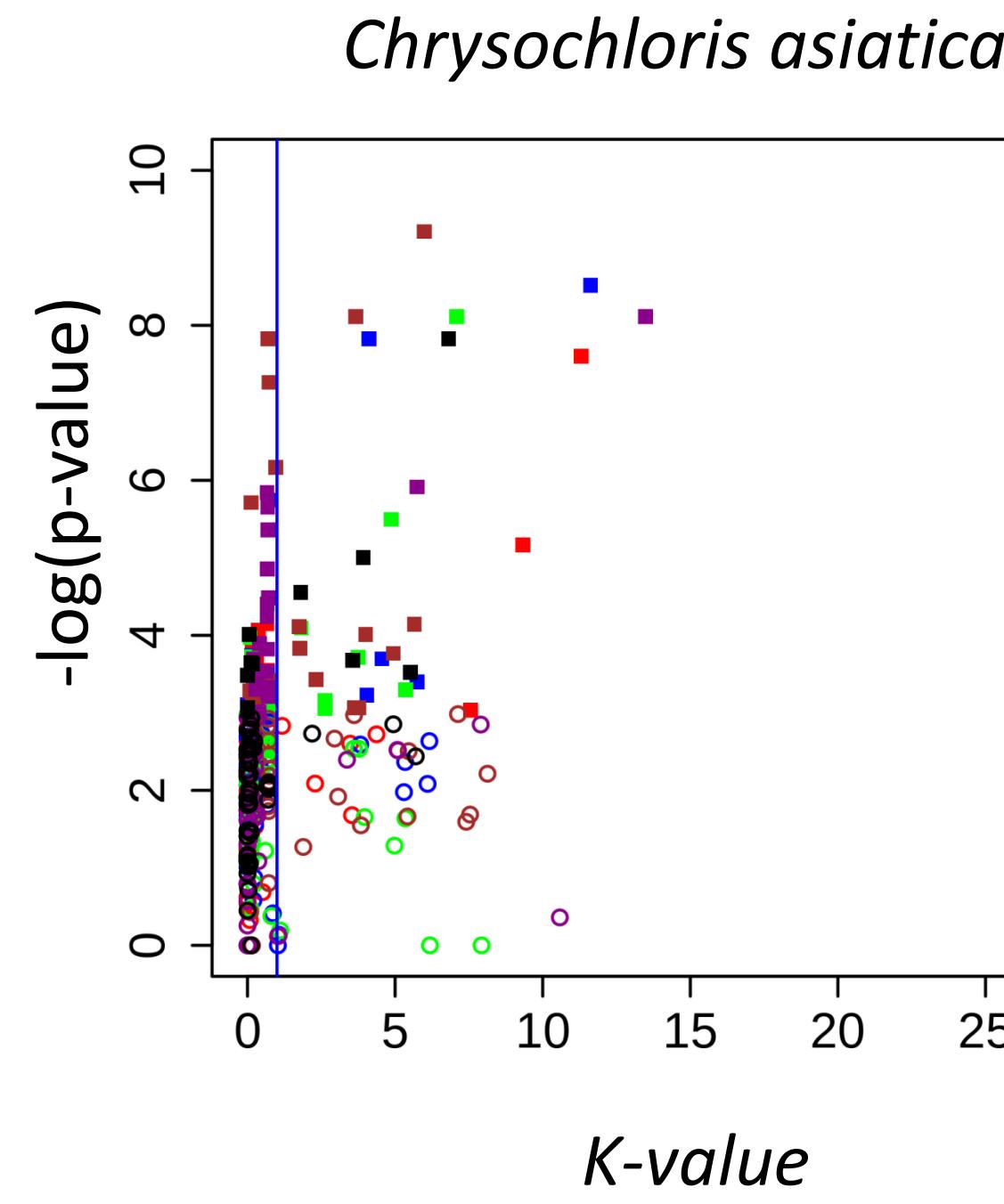
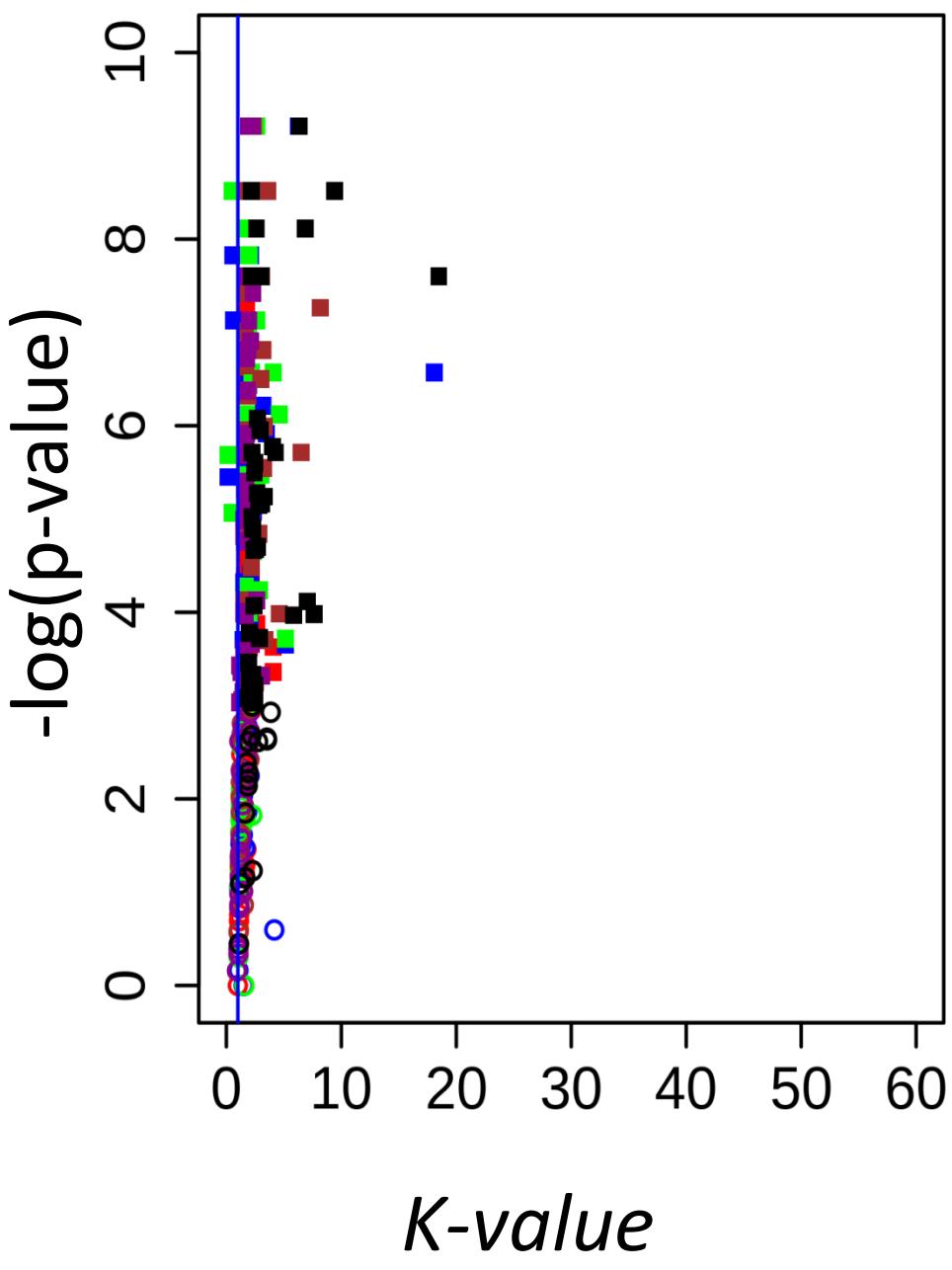
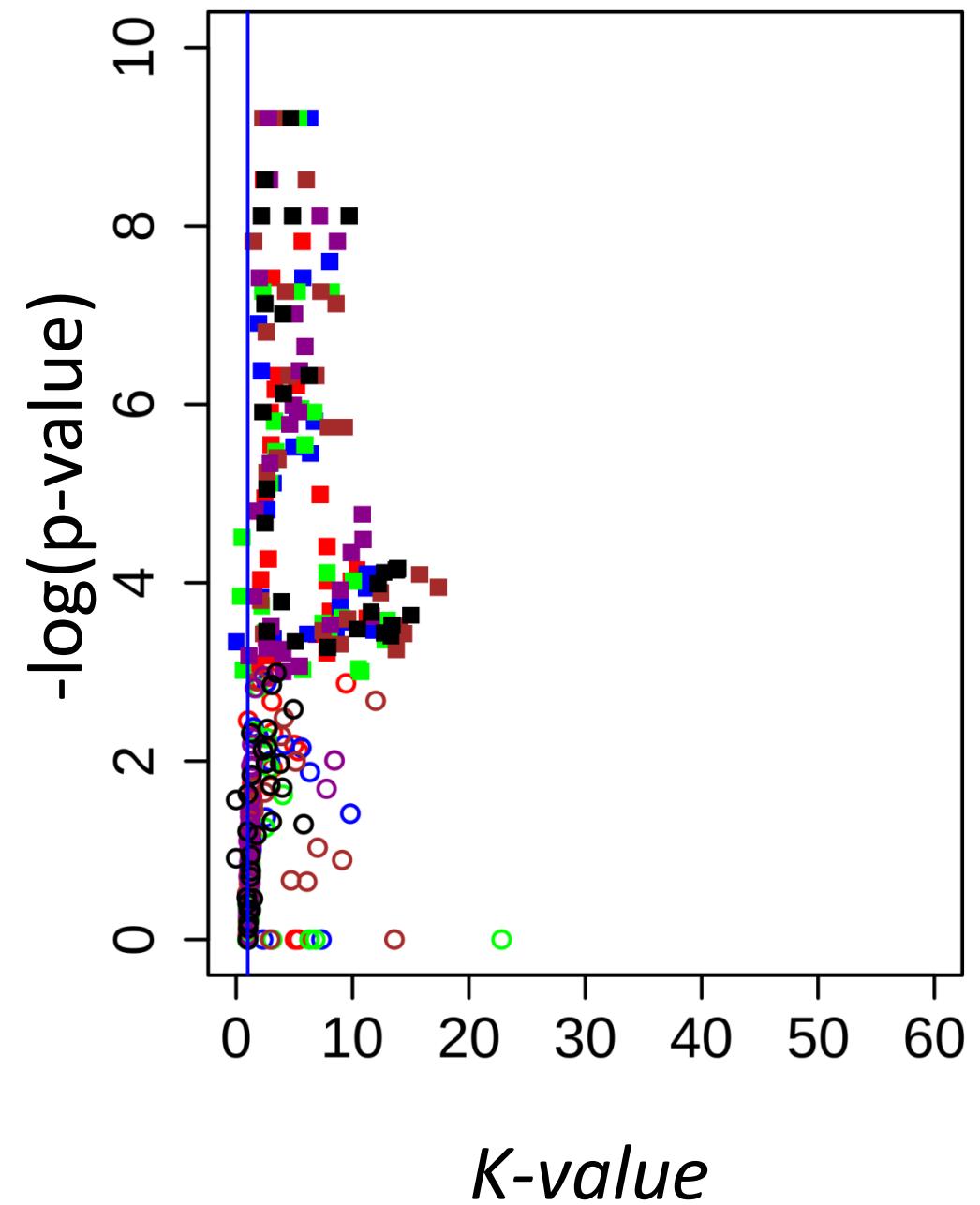
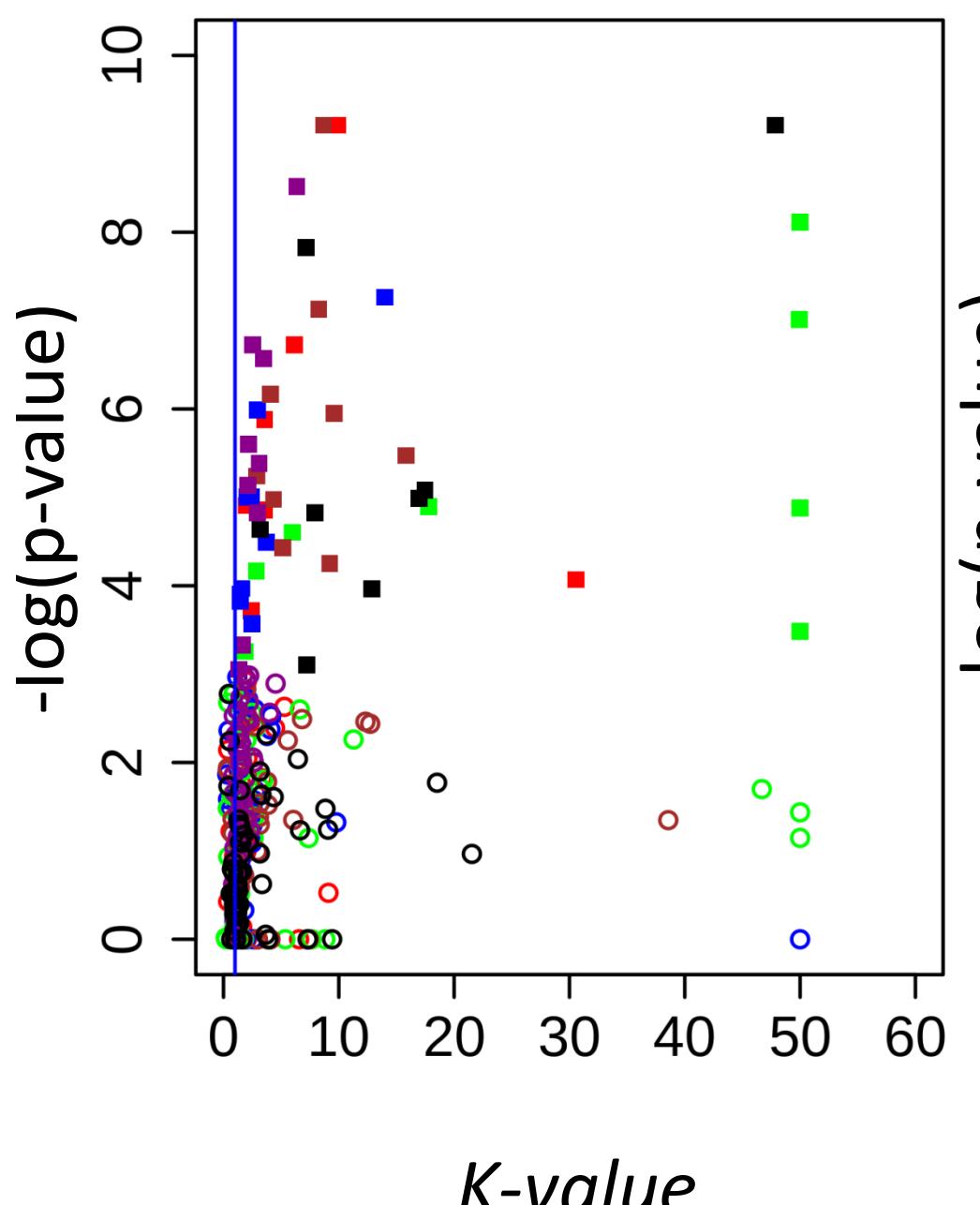
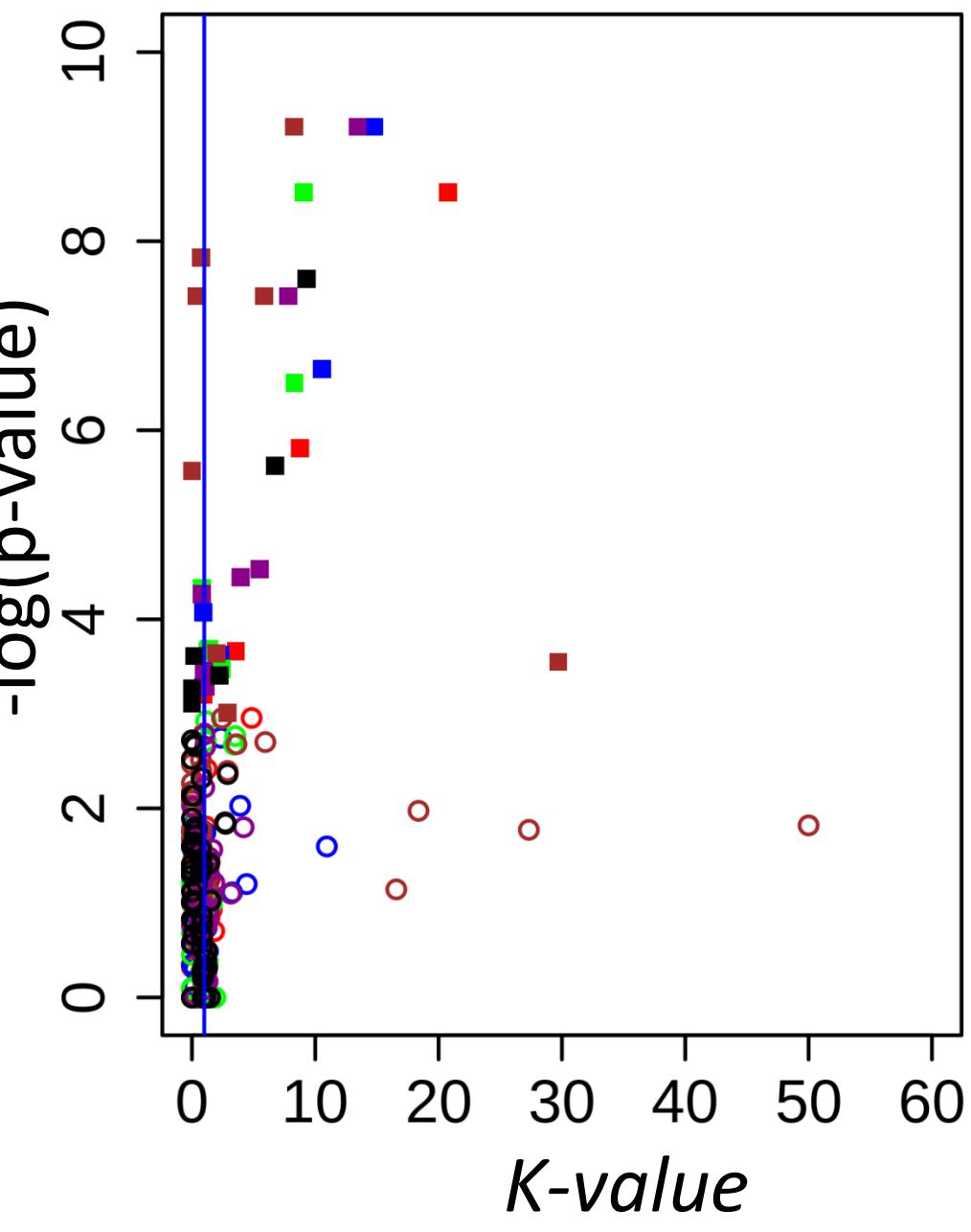
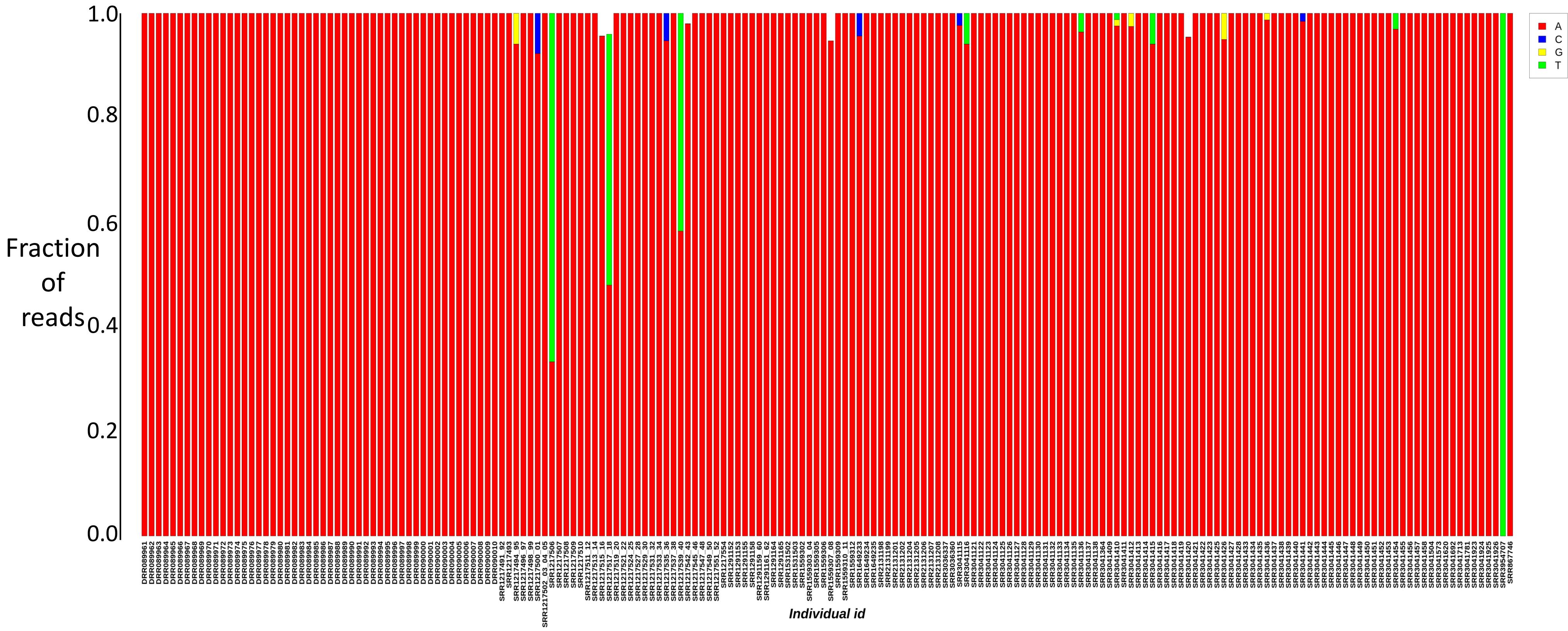






Figure 3C


Echinops telfairi


Elephantulus edwardii


Procavia capensis

Orycteropus afer afer

Figure 4

