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Abstract: Lack of reliable peak detection impedes automated analysis of large scale GC-MS 

metabolomics datasets. Performance and outcome of individual peak-picking algorithms can differ 

widely depending on both algorithmic approach and parameters as well as data acquisition 

method. Comparing and contrasting between algorithms is thus difficult. Here we present a 

workflow for improved peak picking (WiPP), a parameter optimising, multi-algorithm peak 

detection for GC-MS metabolomics. WiPP evaluates the quality of detected peaks using a machine 

learning-based classification scheme based on seven peak classes. The quality information returned 

by the classifier for each individual peak is merged with results from different peak detection 

algorithms to create one final high quality peak set for immediate down stream analysis. Medium 

and low quality peaks are kept for further inspection. By applying WiPP to standard compound 

mixes and a complex biological dataset we demonstrate that peak detection is improved through 

the novel way to assign peak quality, an automated parameter optimisation, and results integration 

across different embedded peak picking algorithms. Furthermore, our approach can provide an 

impartial performance comparison of different peak picking algorithms. WiPP is freely available on 

GitHub (https://github.com/bihealth/WiPP) under MIT licence. 

 

1. Introduction 

Metabolomics and related sciences use a combination of analytical and statistical approaches to 

qualitatively and quantitatively analyse the small molecules in a cell or biological system to answer 

biological questions [1,2]. Metabolomics benefits from maximizing the number of compounds 

detected in any individual analysis, while requiring concurrently that the results are robust and 

reproducible. Gas chromatography-mass spectrometry (GC-MS) is a common technology used in 

metabolomics research and contains information in both the chromatographic and the mass spectral 

space of the data [3]. Before downstream statistical and functional analysis, the data must first be 

pre-processed, such that individual peaks are identified, retained and catalogued in a numerical 

format, while irrelevant noise data should be removed. Attempting this by hand is a laborious 

process unsuited for epidemiological size datasets and also impedes reproducibility of this 

important data analysis step. Instead, this is commonly achieved by using one of a number of 

software options on the market e.g. XCMS [4], metaMS [5], MetAlign [6], mzMine [7], ADAP-GC 

[8,9], PyMS [10] and eRah [11]. It is commonly understood that there are still certain conditions in 

which these automated methods are sub-optimal, and the user-defined settings as well as some of 

the hard coded features of each software will have a large impact on the results [12]. However, each 

tends to have its strengths and weaknesses and will result in a slightly different result [8,12]. In this 

study, we sought to combine the strengths of different algorithm while minimizing the weaknesses. 
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In order to benefit from the strengths of each individual peak picking algorithm, we adopted a 

machine learning approach to classify peaks, enabling the automatic optimisation of user definable 

parameters for each algorithm and the combining of results. Machine learning uses statistical and 

pattern recognition strategies to progressively improve in their learning of data interpretation 

without requiring specific data interpretation programming [13]. Various forms of machine learning 

have previously been used for metabolomics studies including least squares-support vector 

machine, support vector machine regression, random forest and artificial neural networks [14–16]. 

Support vector machines (SVM) are a well known supervised machine learning models which are 

well suited for classification analysis [17]. Supervised learning uses an existing classified dataset(s) 

to train the model. This has the advantage that the resulting model is easy to optimise and validate 

[13].  

We present a novel approach to automate peak picking in GC-MS data in order to optimise the 

reproducibility, accuracy and quality of the process by combining the strengths of multiple existing 

or new peak picking algorithms. We apply a visualization strategy combined with a support vector 

machine (SVM) based supervised machine learning approach to assess and learn peak quality. The 

learned model enables us to perform automatic optimisation of parameters for different peak 

picking algorithms. This is achieved by scoring the algorithm results on a representative data set. 

The learned model is also used to evaluate and integrate peaks suggested by two or more embedded 

(pre-existing) peak picking algorithms. The workflow result is a single high quality, high confidence 

peak set, which is suitable for immediate further downstream analysis. Once WiPP has been trained 

for a particular setting (resolution and sample type) it can quickly process large data sets 

automatically without further user involvement. The WiPP output format is designed to be easily 

searched by mass spectral libraries software such as NIST and can be subsequently analysed using 

standard statistical tools. It consists of a .csv and a .msp file detailing the individual peaks as 

chromatographic retention time or retention index - mass spectral fragment groups and their 

associated individual absolute mass spectral peak intensities.  

 

2. Results 

To demonstrate and evaluate the performance of the WiPP method we determined the recovery of 

compounds from a known mix at different concentrations (section 2.1). To quantify the added value 

we also compared WiPP results with those obtained from the individual algorithms used within 

WiPP. Furthermore we performed a case study using a complex biological data set: We compare 

results obtained using WiPP to a published independent analysis by third party (section 2.2). 

Readers less familiar with peak detection, algorithm benchmarking and machine learning 

approaches might benefit from first reading section 4.1 of Material and Methods which explains 

important concepts and defines relevant terms and necessary technical jargon. 

2.1. Validation and Benchmarking 

 A known mix of commercially available standards was analysed at three different 

concentrations. Datasets were acquired on two different GC-MS instruments using different (high 

and low) resolutions using multiple replicates each (section 4.3.1). High quality peak sets were 

generated using the WiPP implementation utilising centWave and matchedFilter peak picking 

algorithms. The full pipeline was run, including a manual classification of training sets to generate 

SVM peak classifiers, parameter optimisation for both algorithms, and the filtering step as described 

by the methods section. The set of optimal parameters determined for each peak picking algorithm 

and both dataset is available in Table S1. For comparison the parameter optimisation of 

matchedFilter was also performed on the high resolution data using IPO [18], a tool optimising 

parameters based on isotopolgue detection. Overall, similar optimal parameters were found with 

one notable exceptions as shown in Table S1. Possible reasons for these exceptions are explored in 

the discussion section.  
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WiPP removes peaks classified with insufficient and intermediate quality from the final high 

quality peak set but always keeps them accessible to the user in a separate file. The following 

analysis was conducted only on the high quality peak set, i.e. does not consider the peaks of 

intermediate quality classes, because we do not consider their quantification fit for immediate down 

stream processing. 

First, we compared the performance of WiPP with the embedded matchedFilter and centWave 

algorithm alone, always using the algorithm parameters determined by WiPP. The total number of 

detected peaks and their classification into either high quality or intermediate or low quality were 

analysed and contrasted (Figure 1). For example, in the high concentration, low resolution dataset 1, 

the total number of peaks detected was 137 for matchedFilter and 238 for centWave, of which 88 

(59.9%) and 144 (60.5%) unique peaks were respectively classified as high quality. By contrast, in the 

high concentration, high resolution dataset 2, the total number of peaks detected was 2153 for 

matchedFilter and 997 for centWave, of which 280 (13.0%) and 181 (18.2%) unique peaks were 

respectively classified as high quality. Figure 1.A shows that in low resolution data, the number of 

peaks annotated as high quality and detected by centWave is on average 47% higher than the 

number of high quality peaks detected by matchedFilter. However, the output of the two algorithms 

do not entirely overlap and there are cases where matchedFilter detects high quality peaks which 

centWave does not and vice versa. Therefore, the number of peaks classified as high quality 

increases by merging the results of both algorithms. As the compound mix concentration increases, 

the number of high quality peaks found by both individual algorithms and in WiPP increases due to 

reduced number of peaks near the noise level. The number of peaks filtered out by WiPP (Figure 1.B) 

in low resolution data for matchedFilter and centWave represent on average 40% and 43% of the 

total number of peaks reported by the two algorithms respectively. 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 19, 2019. ; https://doi.org/10.1101/713925doi: bioRxiv preprint 

https://doi.org/10.1101/713925
http://creativecommons.org/licenses/by/4.0/


 

 

 

 

Figure 1. Number of peaks detected by individual algorithms on the high, medium and low 

concentrations of the standards mix dataset 1 in low resolution (A, B) and high resolution (C, D). A & 

C: Number of unique high quality peaks as classified by WiPP and their algorithm of origin. B & D:  

Proportion of peaks detected by centWave and matchedFilter rejected by at least one of the quality 

filters in WiPP. 

Similarly, as for low resolution data, the use of centWave and matchedFilter together increases 

the number of high quality peaks detected in high resolution datasets. However, matchedFilter 

detects 44% more high quality peaks in comparison to centWave (Figure 1.C). The number of filtered 

peaks is very high in comparison to low resolution data, as they represent an average of 90% of the 

total number of peaks detected by matchedFilter and 80% of the total number of peaks detected by 

centWave (Figure 1.D).  

Figure S2 explores the performance of the SVM classifier with respect to the size of the training 

data set. Please note that standard ROC curves are not applicable for the classifier evaluation due to 

the multi-class classification approach, i.e. classification does not depend on a single threshold that 

could be varied to generate different sensitivity and recall rates. Therefore, we generated confusion 

matrices (Figure S3) to assess if certain peak classes were misclassified systematically. The highest 

number of constantly misclassified peaks was found for matchedFilter in high resolution data, 

where 9% of peaks were wrongly classified as merged/shouldering and 10% of noise peaks were 

classified differently. The misclassified peaks were evenly distributed among the other classes, 

which lowers the overall result but does not distort it systematically. 
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Compound detection is not a built-in feature of WiPP, but the WiPP output format enables easy 

library matching using existing compound libraries. To test the ability of WiPP to report true 

compound related peaks, peaks detected and classified as high quality were annotated using our 

own internal library corresponding to the compound mix using reverse matching (supplementary 

materials). The output of the automated annotation implemented in WiPP was separated into two 

categories: high confidence annotation, requiring both the retention index (R.I.) to be within a 1.5 R.I. 

window and a spectra similarity score higher than 0.9 (supplementary materials), and low 

confidence annotation requiring only a spectral match to the internal library within the R.I. window. 

Manual annotation of datasets 1 and 2 was performed by an experienced mass spectrometrist and 

used as a gold standard to assess the ability of WiPP to detect known compounds. For comparison a 

manual annotation was generated according to our labs best practice. It consisted of data 

pre-processing and peak detection using Chromatof (Leco), followed by manual annotation using 

the in-house software Maui-via [19]. Parameters used in Chromatof for data pre-processing are 

available in Table S3. 

The automated WiPP workflow achieves comparable performances to the manual annotation 

for medium and high concentration as summarized in Figure 2 (full details for all compounds and 

concentration are shown in Figure S4). WiPP delivers 95% of the manually annotated compounds in 

the high concentration samples and 86% of the compounds in the medium concentration samples. 

WiPP shows however, some limitation with low concentration data as only 42% of the metabolites 

are recovered.  

 

 

Figure 2. Number of metabolites detected and annotated manually or automatically by WiPP 

compared to the number compounds present in the three concentration of dataset 1. 

2.2. Case Study 

To further validate the results produced by WiPP, we ran the full workflow, including the 

generation of classifiers, on a publicly available biological dataset and results were compared to 

original results reported by the study. The selected study and data are introduced in section 4.3.2. 

WiPP classifiers were trained using a subset of the biological samples (2 samples from each 

biological conditions) as no pooled samples were available, and peak picking algorithms  

parameters were optimised using a different subset of the dataset (2 samples from each biological 

conditions). The final high quality peak set obtained by WiPP was annotated using the same spectral 

matching similarity score, reference masses, and intensities, as the original study [20]. Nine analytes 

were confirmed and manually validated in this study through targeted analysis. Using WiPP, six out 

of the nine analytes could be identified automatically with comparable calculated fold changes and 
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corresponding p-values (Table 1). The remaining three analytes were identified by WIPP but 

labelled and flagged as shouldering peaks, requiring user attention. For these we do not report fold 

changes and p-values because they are not automatically calculated by WiPP. Finally, one hexose, 

not reported in the original study, was found to be significantly different by WiPP. Our classifier 

labelled 100% of the peaks as high quality in all samples. 

Table 1. Comparison of the results found by the published study to the one produced using WiPP 

automated workflow. (X) Data could not be automatically computed. (–) Missing data 

ID Identified 

(WiPP) 

p-value (study) Fold change 

(study) 

p-value (WiPP) Fold change 

(WiPP) 

Glutamic acid + 
 

1.9 
 

1.89 

α-tocopherol + 
 

1.5 
 

1.36 

Valine + 
 

1.5 
 

1.52 

Citric acid + 
 

-1.3 
 

-1.20 

Sorbose + 
 

-2.4 
 

-1.66 

Cholesterol + 
 

1.1 
 

1.10 

Lactic acid + 
 

-1.3 X X 

Leucine + 
 

1.6 X X 

Isoleucine + 
 

1.5 X X 

Hexose + – – 
 

-1.61 

 

3. Discussion 

In this study, we present WiPP, a machine learning-based pipeline that enables the 

optimisation, combination and comparison of existing peak picking algorithms applied to GC-MS 

data. WiPP integrates machine learning classifiers to automatically evaluate the performance of peak 

picking algorithms and their selected parameters. WiPP also offers to the community a new 

approach to compare the performances of different peak picking algorithms, not only based on 

quantity but also on quality, and enables an automated parameter optimisation. 

Our results show that WiPP produces comparable outputs to manually curation of data in an 

automated and thus more reproducible and scalable manner. For low concentration peaks the 

comparability is less convincing then for medium and high concentrations. This result indicates 

either a general incapability of embedded algorithms to detect low intensity peaks or algorithm 

parameters to be less suitable for low intensity peaks. The latter might be the case in our setting as 

parameters were optimised based on samples from all three concentration ratios, therefore fitting 

best for the entire dataset. Specific training and optimisation for detection of low concentration 

peaks would however be feasible with WiPP. We consider this use case to be less relevant because 
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low quality and low intensity peaks are also difficult to quantify and therefore add unwanted noise 

to statistical down stream modelling. Our main use case for WiPP currently is the automatic 

generation of a comprehensive set of reliably quantified high quality peaks that is suitable for 

immediate down stream analysis, as needed for large scale high sample number studies. Manual 

inspection of intermediate quality peaks is feasible and maybe useful to fully utilize a given data set 

as shown in the case study. However, our cases study also shows that an automated pipeline may 

discover features that may have escaped the attention of human specialists.  

The bar plots in Figure S2 show the number of peaks reported by centWave and matchFilter 

that are considered noise upon human inspection. At least these peaks have to be considered false 

positives and are of high abundance especially in the high resolution data set. The yellow section of 

the bar chart in Figure 1.B and 1.D shows that substantial parts of the peaks generated by centWave 

and matchFilter are rejected for quality reasons. Our approach of using only high quality peaks 

(methods section) aims to achieve low false positive rates. Peaks classified by WiPP with 

intermediate quality are more likely to be false positive, while peaks classified as noise are likely to 

be false positives.  

 

Automated classification of peak picking provides a novel way to assess and compare the 

performance of peak picking algorithms 

We have developed a peak quality classification system that enables algorithm-identified peaks 

to be classified based on user trained peak characteristics related to both peak quality and accurate 

quantification e.g. apex shifted to a side, shoulder peak. We have set the number of distinct classes 

used for classification to 7. This is subjective but represents a balance between having enough classes 

to suitably differentiate between detected peaks while avoiding excessive manual annotation. 

Importantly, the current classifiers enable the reporting of complex peaks such as shouldering peaks 

to the user for manual inspection, avoiding potential loss of data. The number of classes could be 

altered to suit requirements if necessary but requires some changes in the WiPP source code and will 

also affect the time it takes to create the training set. The time taken to manually annotate the 

training set is an important consideration in the functional operation of WiPP and increases 

proportionally with the number of classes. The manual classification of peaks still has an element of 

user subjectivity to it, especially where a peak may fit into more than one category (e.g. too wide and 

skewed). We would recommend users to be consistent in their training classification of such peaks. 

Future versions of WiPP may seek to address this by enabling selection of multiple peak categories 

for an individual peak. Model training should be carried out by someone with a good knowledge of 

mass spectrometry data analysis. The user will imprint his know-how and judgement into the 

classification model.   

Our peak classification method allows to assess the quality of peaks picked by individual 

algorithms, and thus enables a comparison of the relative performance of different peak picking 

algorithms. Peak detection in GC-MS data is a challenging and long-lasting problem. New 

approaches and tools emerge every year, yet there is still no established procedure to evaluate their 

performances objectively, and simple comparisons such as total number of peaks detected is not a 

robust metric for benchmarking purposes [12]. It is also influenced by the selection of algorithm 

specific parameters which leads to a certain subjective component when assessing each algorithm. 

We have demonstrated that WiPP can objectively assess the performance of multiple peak picking 

algorithms and is flexible enough that new algorithms can be added by the user, thus enabling 

future algorithm developers to objectively rate their algorithms against competitors. 

 

Optimising parameters for peak picking 

Currently, most peak picking algorithms require manual optimisation of parameters for every 

analysis. This is laborious and if not done can lead to suboptimal parameters being used to process 

datasets having a strong effect on the selected peaks [18]. It is noteworthy that the heatmap figures 

that illustrate the parameter optimisation strategy (Figure S1) also highlight the fact that the best 

parameters found for matchedFilter on the considered samples do not correspond to the parameters 
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that find the maximum number of peaks. In this specific case, the parameters displaying the highest 

number of peaks also find the highest number of high quality peaks. It comes, however, at the cost of 

an increased number of poor quality or false positive peaks compared to the best parameters 

returned by WiPP. An important consideration when dealing with poor quality peaks can be the 

accuracy of their integration for statistical purposes. We would argue that in most cases where 

statistical analysis is being conducted on the results, it is better to have a smaller number of robust 

and accurately quantified peaks than a larger number of peaks with high technical variation. Thus, 

we have optimised the balance between choosing the maximum number of high quality peaks while 

minimising the selection of poor quality peaks. The user can decide which approach to take for 

themselves by changing the weighting parameters of the scoring function. Optimal parameters 

returned by IPO are similar to those determined by WiPP with the notable exception of the FWHM 

value which is much greater in IPO. As the average full peak width of manually annotated peaks is 4 

seconds, the FWHM value of 1 returned by WiPP appears to be more appropriate than the 8.8 value 

returned by IPO. A possible explanation is the technical differences between liquid and gas 

chromatography. Gas chromatography often suffers from column “bleed” at the end of an analytical 

run where large amounts of chemical substances elute from the column, seen as a characteristic 

increase in chemical baseline noise at the end of the run. (We speculate that this well-known 

characteristic of gas chromatography may be distorting the ability of IPO to find an appropriate 

FWHM value). As IPO has been designed for LC-MS data, it is not equipped to deal with 

characteristics that are specific to GC data. In our analysis, the vast majority of peaks detected after 

2000 seconds are associated with noise and therefore penalised by the WiPP optimisation approach. 

 

Improving overall quality of the final picked peak list 

Interestingly, when optimised, centWave detects a higher number of true positive peaks than 

matchedFilter on low resolution data while the opposite is true for high resolution data. It is, 

however, important to note that the vast majority of peaks detected by matchedFilter on high 

resolution data are irrelevant (noise, duplicates or presenting less than 3 characteristic m/z) and 

increases as the concentration decreases. MatchedFilter therefore seems better at detecting low 

concentration peaks but at the expense of a higher poor quality peak or noise selection whereas 

CentWave algorithm is better at avoiding the selection of poor quality or noise peaks, but with a 

potential loss of sensitivity to peaks near the signal to noise threshold. The combination of both 

algorithms as implemented in WiPP shows in both low and high resolution data, a significant 

improvement on the coverage of peaks and compounds detected. These results clearly argue 

towards the use of several peak picking algorithms over a single one as previously shown [21].  

While only centWave and matchedFilter were integrated so far, it is possible to integrate any 

peak picking algorithm to the workflow to further improve the coverage of detected high quality 

peaks. The modular architecture of WiPP, based on the python workflow framework Snakemake, 

enables new peak picking algorithms integration with little effort. The more peak picking algorithms 

are used, the longer the workflow runtime will be. Based on dataset 1 and 2 presented here, we 

estimate a 4-hour manual peak labelling process to generate the training data per algorithm, which 

must only be done once. The total runtime of the workflow is highly dependent on the computing 

power available and the range of parameters tested. For example, the full processing for dataset 1 

can be completed overnight using 4 cores. This time can be further reduced by narrowing the 

parameter search space. For high resolution data, we recommend to use a high performance 

computing cluster (HPC) as the number of parameters tested increases significantly. 

The overall results from the benchmarking process on a known mix of commercial standards 

and the replication of the workflow using a publicly available dataset shows that WiPP brings 

automated data analysis closer to the current gold standard that is manual curation using 

exclusively existing peak picking algorithms. In a context where large studies become routinely run 

in metabolomics laboratories, it is crucial to develop automated tools that can match manually 

validated standards. In this respect, these results also highlight that the shortest way to automation 

may lie in better using existing tools than creating new ones. 
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We have shown that WiPP improves current automated detection of peaks by: 

1. Providing a novel way to classify peaks based on seven classes and thus objectively assess their 

quality. 

2. Enabling objective performance comparison of different peak picking algorithms. 

3. Enabling automated parameter optimisation for individual peak picking algorithm. 

4. Enabling a final, improved high quality peak list to be generated for further analyses. 

5. Reducing the operator-time required by packaging WiPP within a fully automated workflow 

(once the initial training of data is completed). 

 

For the definition of a peak and the deconvolution process we need to distinguish WiPP from 

the embedded peak picking algorithms. For the classification WiPP operates on the full compound 

spectra, taking into account all measured m/z traces of the raw data within the peak retention time, 

but no deconvolution is applied at this stage. The definition of a peak and de-convolution used in the 

peak picking algorithms may vary for different algorithms, but WiPP is not affected by it. Indeed, 

this actually enables the combination of several peak picking approaches into WiPP. In the current 

implementation of WiPP, XCMS centWave and matchedFilter are used for peak detection and 

CAMERA [22] for the deconvolution of reported peaks. We hope that the permissive licence 

encourages the community to contribute by integrating additional peak picking algorithm. 

Compound identification is currently not a feature of WiPP and presents separate challenges. 

Instead WiPP generates output files in .msp format that can be used by common library matching 

based identification tools. Expanding WiPP to support Liquid Chromatography – Mass 

Spectrometry (LC-MS) data is desirable for future versions of WiPP, as this is the technology of 

choice for most untargeted analysis.  

4. Materials and Methods  

4.1. Peak Detection 

We started the WiPP workflow definition by discussing the problems of peak detection. Myers 

et al. have shown, that, when applied to the same dataset, different peak picking algorithms return 

two different yet overlapping peak sets [8,12]. To assess the performance of a peak picking 

algorithm, we would like to consider the true peak set, which is unknown. The true peak set can be 

defined as the full set of peaks corresponding to all metabolites or contaminants (including 

metabolites adducts and fragments) present in a sample. The accurate quantification of a peak 

requires precise measurement of the peak area, which necessitates knowledge of peak centre and 

boundaries. A multitude of effects including but not limited to neighbouring peaks and technical 

drifts can transform and blur the peak shape making peak quantification problematic. This also 

means that there is a grey area between what is a true peak (i.e. not noise, but a distinct signal caused 

by a chemical) and what should be selected for further analysis. Figure 3 illustrates that algorithms 

select a proportion of the true peak set with a varying degree of success. For the purposes of this 

paper, we are defining a robust/high quality peak as a peak where the peak boundaries are 

accurately identified and demarcated and both the signal to noise and the intensity of the peak are 

sufficiently high to enable accurate peak intensity measurement, allowing for robust statistical 

downstream analysis. Algorithms can report lesser quality measurement of true peaks (e.g. by 

reporting two peaks as a single peak or a single peak as two, or incorrect assessment of peak 

boundaries). Furthermore, each algorithm will also report “peaks” that do not correspond to actual 

chemical signal (i.e. noise). Ultimately, before starting downstream analysis, a user defined filtering 

of what is considered “high enough” quality peaks must be defined. The schematic in Figure 3.A 

represents chromatographic peaks being accepted or rejected by two different peak picking 

algorithms. Figure 3.B and C illustrates that the peak sets returned by two different algorithms 

depends on the algorithm parameters used and have different overlap with the actual true peak set, 

which, due to the addition of chemical signals from contaminants, is normally unknown, even if 

working with known chemical standard mixes. Maximization of the coverage of the true peak set 
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can be achieved through an optimisation approach of the parameters of the peak detection 

algorithms (Figure 3.C). In the same manner, the number of false positive peaks (reported by the 

algorithm but not corresponding to chemical signal) returned by a peak detection algorithm also 

depends on the algorithm parameters. There is a trade-off between the number of false positives and 

false negative peaks and users may have different preferences depending on the kind of analysis 

they are working on.   

The quality of the picked peaks may also be parameter dependent, for example, a true peak can 

be reported as two separate peaks (peak splitting) or two true peaks can be reported as a single peak 

(peak merging). Figure 3.D illustrates the objectives of WiPP which consists of optimising 

parameters for multiple peak picking algorithms, classifying of the reported peaks, and combining 

outputs of different algorithms to automatically produce a high quality peak set for further analysis. 

 

Figure 3. Schematic representation of the peak sets. A. Chromatographic representation of peaks 

detected by the two peak picking algorithms and accepted or rejected by WiPP. Peak 4 and 5 are 

erroneously detected by algorithm 1 as one single merged peak, hence the light blue colour between 

the distinct peaks properly detected by algorithm 2. B. Peak called by peak picking algorithm 1 and 2 

compared to the true peak set of a dataset before parameter optimisation. C. Peak called by algorithm 
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1 and 2 after parameter optimisation. D. Peaks accepted and rejected by WiPP compared to the true 

peak set. Numbers represent the peak id from figure A and are placed in their respective regions in 

peak space. 

4.1.2 Peak Classes 

For the purpose of our workflow we define seven classes of peaks (Figure 4). Many criteria can 

be considered to define the different peak classes, we focus on the peak shape and peak boundaries. 

While Figure 4 shows schematic representation of a single m/z trace, WiPP operates on the full 

compound spectra, taking into account all measured m/z traces within the peak retention time. 

Special attention was paid to the boundaries as this heavily influences both the risk of inaccurate 

quantification (if peak area is used) and the risk of peak splitting and peak merging. Figure 4 shows 

a schematic representation of the seven classes established in WiPP based on the selected criteria. 

Each of these classes carries qualitative information about the peaks. We have designated classes A, 

B and C as being “high quality” peaks, class D describes noise signal and is considered as a false 

positive, while the last 3 classes, E, F and G represent intermediate quality true peaks which we 

consider not to be robust enough for downstream analysis. In WiPP, classes E, F and G are reported 

to the user for manual attention. 

 

Figure 4. Schematic representation of the seven peak classes defined in WiPP. For clarity purposes, 

only one m/z is represented here. A. Apex shifted to the left. B. Centred apex. C. Apex shifted to the 

right. D. Noise. E. Peak with wide margins to window borders. F. Peak exceeds window borders. G. 

Merged/shoulder peak. 

4.1.3 WIPP Workflow and Model 

The proposed workflow (Figure 5) is composed of two main distinct parts, the training of the 

classifiers, and the high quality peak set generation. The supervised classifier training involves 

manual interaction. It should be performed at least once per instrument and sample type (i.e. blood, 

specific tissue, cell extract) but the same training dataset can then be used for all other analyses 

performed of this type. The final output of this first part is an instrument/sample type specific 

classifier for each individual peak detection algorithms. The second part of the workflow uses the 

trained classifier for unsupervised optimisation of the peak detection algorithms parameters. 

Subsequently, it generates a high quality peak set based on integrating results from the individual 

algorithms. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted August 19, 2019. ; https://doi.org/10.1101/713925doi: bioRxiv preprint 

https://doi.org/10.1101/713925
http://creativecommons.org/licenses/by/4.0/


 

 

 

Figure 5. Flowchart of the WiPP method consisting of 6 steps. Steps 1 to 3 consist of generating the 

training data and training the classifiers using a calibration dataset. Step 4 optimises the parameters 

of individual algorithms using an optimisation dataset and the trained classifiers. Step 5 run the 

optimised peak detection algorithms on the full biological dataset. Step 6 classifies, filters and 

merged the outputs of individual peak picking algorithms to generate a high quality peak set. 

The first step of the workflow aims at generating a training peak set containing a large variety 

of peaks differing in quality and intensity. For this purpose, we recommend to apply the algorithms 

to pooled or quality control samples using a wide range of parameters, and to manually classify a 

minimum of 700 peaks (which in our datasets equated to a minimum of 7 peaks in the smallest class) 

to generate the training set (Figure S2), henceforth called the calibration dataset. The parameter 

search ranges are user defined and should be set by an experienced user with prior knowledge on 

both the data produced by the instrument and the algorithm they are applying (see Table S2 for the 

parameters used in this study). A representative set of peaks for the supervised training is generated 

in step 2 by sampling algorithm parameters and retention time ranges (supplementary materials). 

WiPP provides an efficient peak visualization tool (Figure S5) allowing users to label each detected 

peak with one of the seven classes described in Figure 4. This important step allows expert users to 

imprint their individual peak classification know-how into the machine learning model. The labelled 

peaks form the training dataset that is used in step 3 of the workflow to train SVM classifiers. Every 

peak is described by an array of intensities within a certain m/z and retention time window. The 

peaks are baseline corrected, scaled and flattened to meet the input format required by the 

classifiers. During training, hyper-parameter optimisation [23] is performed using stratified 

cross-validation to avoid over-fitting.  

The fourth step of the workflow performs an unsupervised optimisation of the 

algorithm-specific parameters for each of the peak picking algorithms. For this purpose, the number 

of peaks within each class is determined and a scoring function (supplementary materials) is applied 

that rewards high quality peaks while penalizing low quality peaks. Relative weighting can be 

user-defined to cater for different use cases, e.g. discovery studies or diagnostic studies 

(supplementary materials). To perform this unsupervised optimisation, WiPP generates a new peak 

set containing a large variety of peaks differing in quality and intensity. We recommend to apply the 

peak picking algorithm using different pooled or quality control samples than the one used for the 

training data generation (with a minimum of two samples). We call this peak set the optimisation 

dataset (Figure 5). The peaks detected by every single parameter set are classified using the 
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algorithm specific classifier and scored using the scoring function. We apply a simple grid search 

approach to determine the parameters returning the highest score. Those parameters are considered 

as optimal. We consider this method preferable to other alternatives; descent methods may lead to 

suboptimal solutions if the algorithm is trapped in local minima, and annealing methods are 

potentially computationally costly. As minima are generally shallow and broad, there is very little 

benefit in using more computationally costly methods. An example of the results for parameter 

optimisation performed by WiPP for matchedFilter and based on optimising the number of peaks 

per quality class is shown in Figure S1. 

The following step (step 5) consists of running the peak detection algorithms with their optimal 

parameters on the full biological dataset.  

Finally, a high quality peak set is generated in step 6 through a series of sub steps. First, the 

peaks detected by the different algorithms are classified using their respective classifiers. Next, 

simple filters such as class-based removal of duplicate peaks or rejection of peaks presenting less 

than n m/z are applied (n is set to 3 by default and can be user defined). The resulting algorithm 

specific peak sets are then merged, removing duplicate peaks where the peak sets overlap. The final 

peak set is composed of only high quality peaks, and the peaks predicted as low and intermediate 

quality are kept aside for optional further manual inspection. 

4.2. Implementation and availability 

The pipeline is implemented in python 3 using Snakemake [24], a reproducible and scalable 

workflow management system. WiPP offers a modular design to allow the addition of other existing 

or newly developed peak picking algorithms written in common programming languages (Java, 

python, R…). Currently centWave and matchedFilter peak picking algorithms are available in WiPP, 

eRah was also considered as an additional algorithm, but, in our hands, had memory issues when 

processing large datasets and was thus omitted from the current release. The pipeline can be run on 

local computers as well as on a high performance cluster. WiPP supports mzML, mzData and 

NetCDF input formats. It was tested with Ubuntu 16 and CentOS 7.6.1810 (Core). A comprehensive 

user manual and quick start guide are available on the GitHub repository. WiPP is released under 

the permissive MIT open source license and freely available at https://github.com/bihealth/WiPP, 

contributions and bug reports are welcome. 

4.3. Data 

4.3.1. Dataset 1 & 2 

The first two datasets are made of an identical three-point dilution series (designated high, 

medium and low concentration) of a compound mix of 69 metabolites in known concentrations [25]. 

9 samples of each dilution (1:1, 1:10 and 1:100) for a total of 27 samples were used to form the first 

dataset. These samples were prepared in duplicates to be run on two instruments with different 

resolutions (Pegasus 4D-TOF-MS-System: RP(FWHM) = 1290 at m/z = 219, and 7200 Q-TOF: 

RP(FWHM) = 14299 at m/z = 271,9867, see supplementary materials for details). Sample preparation 

and data acquisition details are available in the supplementary materials.  

4.3.2. Dataset 3 

The third dataset was collected by Ranjbar et al. and is publicly available in Metabolights 

repository [26] at https://www.ebi.ac.uk/metabolights/MTBLS105. The study evaluates changes in 

metabolite levels in hepatocellular carcinoma (HCC) cases vs. patients with liver cirrhosis by 

analysis of human blood plasma using GC-MS [20]. Briefly, data was collected using a GC-qMS 

(Agilent 5975C MSD coupled to an Agilent 7890A GC) equipped with an Agilent J&W DB-5MS 

column (30 m x 0.25 mm x 0.25 µm film 95% dimethyl/5% diphenyl polysiloxane) with a 10 m 

Duragard Capillary column with a 10 minute analysis using a temperature gradient from 60 °C. to 

325 °C. Only 89 files generated in selected ion monitoring (SIM) mode were used for validation 

purposes here. Although SIM normally simplifies peak detection, in this dataset, there were often 
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multiple peaks detected for the same m/z meaning that there was still a peak detection issue to be 

addressed. 
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